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Abstract

This expository paper is an introduction to supergeometry through
the study of G∞-DeWitt supermanifolds. After briefly discussing the
physical significance of the theory and its relevance, we delve into the
fundamentals of supermathematics, gradually progressing to defining the
Rm,n

S superspace and the associated DeWitt topology. These building
blocks allow us to introduce the G∞-DeWitt supermanifolds, which are
the supergeometric analogs of smooth manifolds. Then, we present a
concrete example: the real super projective space SRPm,n. Finally, we
conclude with a brief overview of modern supergeometry.

Contents

1 The Big Picture of Supermathematics 2
1.1 Why Supersymmetry? . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Big Themes in Supermathematics . . . . . . . . . . . . . . . . . . 3
1.3 Two Approaches To Supermanifolds . . . . . . . . . . . . . . . . 4

2 The m,n-dim Flat Superspace 4
2.1 Super Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Real Grassmann Algebras RS[L] . . . . . . . . . . . . . . . . . . . 5
2.3 DeWitt Topology on Rm,n

S . . . . . . . . . . . . . . . . . . . . . . 6

3 G∞-DeWitt Supermanifolds 7
3.1 G∞ Functions on Rm,n

S[L] . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 G∞ Functions on Rm,n
S . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 G∞ DeWitt Supermanifolds via G∞-Charts . . . . . . . . . . . . 11
3.4 Manifolds Underlying Supermanifolds . . . . . . . . . . . . . . . 12
3.5 Example: The Real Super Projective Space SRPm,n . . . . . . . 12

4 What’s Next? 14

1



1 The Big Picture of Supermathematics

1.1 Why Supersymmetry?

Over the past 50 years, the Standard Model of particle physics has become one
of the most successful theories, classifying all known elementary particles and
describing three of the four fundamental forces. However, a major question
remains: How can we unify all four fundamental forces under a single theory?

Supersymmetry was proposed as an extension of the Standard Model to help
address this issue. It suggests a symmetry between fermions (half-integer spin
particles like quarks and leptons) and bosons (integer spin particles like photons
and gluons). Supersymmetry predicts that each particle has a ”superpartner”
whose spin differs by 1

2 : fermions pair with bosonic superpartners, and bosons
pair with fermionic ones. For example, the electron is paired with a selectron,
and the photon is paired with a photino.

Theoretically, supersymmetry resolves several critical issues:

• The Hierarchy Problem: Why is the weak force scale (related to the
mass of the Higgs boson) 1016 smaller than the Planck scale (the scale
where quantum gravity becomes important)? This difference in scales
creates a problem because quantum corrections grow quadratically with
energy, leading to an unnaturally large mass for the Higgs Boson. Super-
symmetry addresses this by introducing superpartners for each Standard
Model particle. In supersymmetry, the quantum corrections from fermions
and bosons have opposite signs, leading to a cancellation of large correc-
tions.

• Unification of Forces: In the Standard Model, the three gauge cou-
plings - strong, weak, and electromagnetic - evolve with energy but do
not converge at any scale. Supersymmetry improves this by introducing
superpartners, which modify the coupling constants. In supersymmetry
models, the contributions from both Standard Model particles and their
superpartners cause the couplings to evolve in such a way that they con-
verge at a single energy scale, around 1016 GeV, known as the Grand
Unified Theory scale. This convergence suggests a potential unification
of the forces at high energy, a feature of supersymmetry models like the
Minimal Supersymmetric Standard Model.

• Dark Matter: Although invisible, dark matter is widely believed to ex-
ist because of its gravitational effects on visible matter, such as the rota-
tion curves of galaxies and patterns in the cosmic microwave background.
While it has not been detected experimentally, it is believed to consist of
particles that interact only very weakly with normal matter. In the con-
text of supersymmetry, a promising dark matter candidate is the lightest
supersymmetric particle, typically a neutralino, a mixture of photino, zino,

2



higgsino, and the bino.

• String Theory: String theory is a framework that attempts to unify
all fundamental forces, including gravity, by describing particles as one-
dimensional ”strings” rather than point-like particles. Supersymmetry is
a critical ingredient to make string theory consistent and mathematically
well-defined. Without supersymmetry, string theory would face inconsis-
tencies, such as the absence of a consistent quantum theory of gravity. In
particular, supersymmetry ensures that the theory includes a consistent
massless spin-2 particle (the graviton), which is required to describe grav-
ity in quantum mechanics. Consequently, superstring theory provides a
potential framework for unifying all fundamental forces.

Despite its promising implications, supersymmetry has not been confirmed ex-
perimentally. Extensive searches at the Large Hadron Collider have failed to
detect any superpartners. Although many physicists now consider supersymme-
try unlikely to be a complete theory, suggesting instead that it might describe
a ”different universe” rather than our own, the principles of supersymmetry
continue to offer valuable insights into the possible structure of the universe.
As a result, the mathematics behind supersymmetry remains an active area of
research.

1.2 Big Themes in Supermathematics

The mathematics underlying supersymmetry is known as supermathematics.
One of the fascinating aspects of supermathematics is that many mathematical
structures and theorems can be made ”super”. Consequently, the development
of supermathematics has largely involved creating super-analogs for existing
mathematical objects and results.

There are two big recurring themes throughout all of supermathematics:

• Grading by parity: All objects in supermathematics are graded modulo
2, meaning they are classified as either ”even” or ”odd.” Even objects cor-
respond to bosons, which obey standard commutation relations, while odd
objects correspond to fermions, which follow anti-commutation relations.

• Anticommutativity of odd elements: In classical formulas, swapping
the order of two odd objects results in a sign change. This property
reflects the Pauli exclusion principle, which states that no two identical
fermions can occupy the same quantum state. Mathematically, the Pauli
exclusion leads to anticommutativity, explaining the appearance of minus
signs when switching the order of odd elements.

For this paper, our primary focus is on supergeometry, which extends the
concepts of differential geometry into supermathematics. Specifically, we aim
to explore how smooth manifolds can be turned into supermanifolds.
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1.3 Two Approaches To Supermanifolds

There are two (equivalent) approaches to defining supermanifolds:

• The concrete approach: This approach treats a supermanifold as a
manifold that is locally modeled on a flat ”superspace.” The coordinates
of this superspace include both even and odd components from the Grass-
mann algebra.

• The algebro-geometric approach: This approach defines a superman-
ifold by extending the sheaf of functions on a manifold.

Each of these approaches has its strengths and weaknesses. The concrete ap-
proach is generally favored by physicists because it is easier to work with and
draws many parallels to classical differential geometry. Meanwhile, the algebro-
geometric approach is more abstract, mathematically elegant, and appealing to
mathematicians. As both approaches are equivalent, it is generally a good rule
to pick between the two based on specific problems.

In this expository paper, we focus on the concrete approach.

2 The m,n-dim Flat Superspace

In classical differential geometry, we want our manifolds to look locally like
Euclidean space. In supergeometry, we want our manifolds to look like flat
superspace instead. But before delving into the structure of superspace, we must
first introduce some fundamental concepts in the context of supergeometry.

2.1 Super Algebras

Perhaps the most basic and well-studied object in mathematics is the vector
space. This serves as the foundation for more abstract structures, and naturally,
a good starting point is to generalize this concept to incorporate supersymmetry.
We begin by introducing a super vector space, which are vector spaces with a
Z2 grading:

Definition 2.1. A super vector space V is a vector space, together with a
choice of two subspaces V0 and V1 of V such that

V = V0 ⊕ V1.

Elements of the subspace V0 are even and elements of V1 are said to be odd.
An element V which belongs to Vi where i = 0 or 1 is said to be homogeneous
and the Z2 degree of V is |V | = i.

Once we have the notion of a vector space, it is natural to ask about the next
level of structure: an algebra. Let’s do this:
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Definition 2.2. Suppose that A is an algebra over R or C. Then A is a super
algebra if it is a super vector space (over the same field) and

AiAj ⊂ Ai+j i, j = 0, 1.

where addition is mod 2.

From the underlying physics, bosons lead to commutativity, while fermions lead
to anticommutativity. With this in mind, it’s straightforward to infer the defi-
nition of super commutativity:

Definition 2.3. The super algebra A is super commutative if for all A,B ∈
A,

AB = (−1)|A| |B|BA.

2.2 Real Grassmann Algebras RS[L]

Remember that the goal of this section is to define the most important structure
in supergeometry: superspace. Before formally defining superspace, let us in-
troduce the Grassmann algebra, the super commutative algebras that are used
to construct concrete supermanifolds.

Definition 2.4. For each finite positive integer L, RS[L] denotes the Grass-
mann algebra over R with L generators. That is, RS[L] is the algebra over R
with generators

1, β[1], ..., β[L]

and relations
1β[i] = β[i] = β[i]1 i = 1, ..., L

β[i]β[j] = −β[j]β[i] i, j = 1, ..., L

Theorem 2.5. The Grassmann algebra is a super commutative algebra.

Proof. Define

R[L 0] =

x | x ∈ RS[L], x =
∑

λ∈ML 0

xλβ[λ]


R[L 1] =

ξ | ξ ∈ RS[L], ξ =
∑

λ∈ML 1

ξλβ[λ]


where λ is a multi index λ = λ1...λk with 1 ≤ λ1 < ... < λk ≤ L, ML is the
set of all such multi indices (including the empty index ∅), each Xλ for λ ∈ML

is a real number, and β[λ] = β[λ1]...β[λk] (with β[∅] = 1). Now, the Grassmann
algebra can be rewritten as

RS[L] = RS[L 0] ⊕ RS[L 1]
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so it is a super commutative algebra.

Finally, we can describe the superspace that we wish to locally model our man-
ifolds as:

Definition 2.6. The (m,n)-dimensional flat superspace is

Rm,n
S[L] = RS[L 0] × · · · × RS[L 0]︸ ︷︷ ︸

m copies

×RS[L 1] × · · · × RS[L 1]︸ ︷︷ ︸
n copies

with elements denoted (x1, ..., xm, ξ1, ..., ξn).

There is a crucial map, called the body map, that will be the building block for
the DeWitt topology. We will state it here, but the use case will only become
apparent in the next subsection: the inverse of this map defines an open set in
the DeWitt topology.

Theorem 2.7. There is a unique algebra homomorphism, called the body map
ϵ, of RS[L] onto R which maps the identity element 1 onto 1 and all of the
generators β[i], i = 1, ..., L to 0 given by

ϵ : RS[L] → R∑
λ∈ML

Xλβ[λ] 7→ X∅.

Let’s explicitly write out ϵ on our m,n-dim flat superspace:

Definition 2.8.

ϵm,n : Rm,n
S[L] → Rm

(x1, ..., xm; ξ1, ..., ξn) 7→ (ϵ(x1), ..., ϵ(xn))

2.3 DeWitt Topology on Rm,n
S

For our purpose of defining the DeWitt topology, we mostly care about the
following Grassmann algebra, which is modified to have an infinite number of
generators:

Definition 2.9. RS is the algebra over R with generators

1, β[1], ...

and relations
1β[i] = β[i] = β[i]1 i = 1, 2, ...

β[i]β[j] = −β[j]β[i] i, j = 1, 2, ...
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By simply replacing RS[L] with RS , everything in the previous subsection holds:
RS is a super commutative algebra, we can construct the (m,n)-dim flat super-
space Rm,n

S , and the body map is the same. Most importantly, the body map
on the superspace ϵm,n is identical to the previous case, except that we replace
Rm,n

S[L] with Rm,n
S .

Finally, we can define a topology on our superspace, which makes the importance
of the body map apparent:

Definition 2.10. A subset U of Rm,n
S is said to be open in the DeWitt topol-

ogy on Rm,n
S if and only if there exists an open subset V of Rm such that

U = ϵ−1
m,n(V )

This is the best topology to use on our superspace for our purposes (it helps
avoid convergence issues in infinite sums, and has algebraic structures to make
other important features such as partitions of unity work). We won’t go more
into depth about this, rather just accepting that this is the best topology to
use.

However, many other topologies can be placed on Rm,n
S by turning our super-

space into a Banach or Fréchet space, but this is unnecessary for our goals.

3 G∞-DeWitt Supermanifolds

In classical differential geometry, the most fundamental class of manifolds is
smooth manifolds because we can perform calculus on them. Similarly, in su-
pergeometry, we want to study supermanifolds that support supercalculus. In
this section, we will explore one way to define supermanifolds - the G∞ DeWitt
supermanifold.

To do super calculus, we need super functions. But what exactly is a function
on a (m,n)-dim flat superspace?

Definition 3.1. A superfunction on an (m,n)-dimensional superspace takes
the form

f(x1, ..., xm; ξ1, ..., ξn) =
∑

µ∈Mn

fµ(x)ξ
µ (1)

where the µ are the multi indices in the set Mn.

Earlier, in the case of RS[L], we defined the multi index λ = λ1....λk with
1 ≤ λ1 < ... < λk ≤ L, and let ML be the set of all such multi indices. In this
definition, Mn is the same as ML, but for RS .
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3.1 G∞ Functions on Rm,n
S[L]

Just as we have C∞ functions in classical differential geometry, we seek an anal-
ogous concept for supergeometry: G∞ functions. First, we define G∞ functions
on RS[L]. Before we do this, we need to introduce a norm on the Grassmann
algebra:

Definition 3.2. Suppose X is an element of RS[L], with

X =
∑

λ∈ML

Xλβ[λ].

We define ∥X∥ by

∥X∥ =
∑

λ∈ML

|Xλ|.

Now, we can state the definition of a G∞ map on Rm,n
S[L].

Definition 3.3. Let U be an open set in Rm,n
S[L] and f : U → RS[L]. Then

• f is said to be G0 if f is continuous on U with respect to the usual finite-
dimensional vector space topology.

• f is said to be G1 on U if there exist m continuous functions ∂Ei f : U →
RS[L], i = 1, ...,m, and n continuous functions ∂Oj f : U → RS[L], j =
1, ..., n and a function ρ : Rm,n

S[L] → RS[L] which satisfies

∥ρ(h; η)∥ → 0 as ∥(h; η)∥ → 0

such that, if (x; η) and (x+ h, ξ + η) are both in U , then

f(x+ h; ξ + η) = f(x; ξ) +

m∑
i=1

hi(∂Ei f)(x; ξ)

+

n∑
j=1

ηj(∂Oj f)(x; ξ) + ∥(x; ξ)∥ρ(h; η).

• The definition of Gp, where p is a finite positive integer, is made induc-
tively. A function f is said to be Gp on U if f is G1 on U and it is possible
to choose ∂Sk f, k = 1, ...,m + n which are Gp−1 on U . (Here ∂Sk denotes
a partial derivative of either parity, with ∂Si = ∂Ei for i = 1, ...,m and
∂Sj+m = ∂Oj for j = 1, ..., n).

• f is said to be G∞ on U if it is Gp for any positive integer p.

• f is said to be Gω on U if, given any point X = (x; ξ) in U , there exists a
neighborhood NX of X such that, for all Y = (y, v) in NX , f(Y ) is equal
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to the sum of an absolutely convergent power series of this form:

f(X) =

∞∑
k1=0,...,km+n=0

ak1...km+n(Y
1 −X1)k1 ...(Y m+n −Xm+n)km+n

(with each coefficient ak1...km+n
in RS[L]).

• The set of Gp functions of U into RS[L] is denoted Gp(U).

Also, suppose that g : U → Rr,s
S[L]. Then g is said to be G∞ on U if each of the

r+ s components of g is G∞. The set of all functions is denoted G∞(U,Rr,s
S[L]).

The definition of a G∞-function is stricter than that of a C∞-function: all G∞

functions are C∞, but not all C∞ functions are G∞. Thus, it makes sense
to classify G∞ functions in terms of C∞ functions. This is the idea behind
Grassmann analytic continuation:

Definition 3.4. Suppose that V is an open subset of Rm and U is a subset
of Rm,n

S[L] such that ϵm,n(U) = V . Then f̂ is called the Grassmann analytic

continuation of f , given by

̂: C∞(V,RS[L]) → {functions of U into RS[L]}

via

f̂(x; ϵ) =

L∑
i1=0,...,im=0

1

i1!...im!
∂i11 ...∂

im
m f(ϵm,n(x))× s(x1)i1 ...s(xm)im

Now that we have the definition, let’s see why it’s useful:

Theorem 3.5. Given a function f in G∞(U), there exist functions fµ in

C∞(ϵm,n(U)), µ ∈Mn such that

f =
∑

µ∈Mn

f̂µξ
µ

where ξj (for j = 1, ..., n) are the odd coordinate functions ξj(x; ξ) = ξj and
ξµ = ξµ1 ...ξµk if µ = µ1...µk.

Roughly, this gives us a way to study G∞ functions in terms of C∞ functions.

3.2 G∞ Functions on Rm,n
S

However, there is a major flaw with G∞ functions on Rm,n
S[L]: since RS[L] is not a

field, the odd partial derivatives ∂Oj f, j = 1, ..., n will not in general be unique.
This is precisely why we introduced RS and modeled our supermanifolds on Rm,n

S
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instead of on Rm,n
S[L]. Using an infinite-dimensional Grassmann algebra, there are

no longer any elements that are annihilated by an arbitrary odd element of the
algebra, making the odd derivatives well-defined.

Now that we understand why we introduced Rm,n
S , let’s develop the same theory

from the previous section, but on the ”better” space.

Definition 3.6. Let V be open in Rm and f : V → RS.

• f is said to be C∞ if for each positive integer L, the function PL ◦f : V →
RS[L] is C

∞, where PL denotes the projection of RS onto RS[L] obtained
by setting all generators β[r] with r > L to zero. The set of all functions
is denoted C∞(V,RS).

• If f is a function in C∞(V,RS), then the function f̂ : (ϵm,0)
−1(V ) → RS

is defined by

f̂(x; ϵ) =

L∑
i1=0,...,im=0

1

i1!...im!
∂i11 ...∂

im
m f(ϵm,n(x))× s(x1)i1 ...s(xm)im

Similar to previously, let’s use the Grassmann analytic expansion, which helps
confirm that our function is indeed a superfunction (compare with Definition
3.1).

Definition 3.7. Let U be open in Rm,n
S . Then f : U → RS is G∞ on U if and

only if there exists a collection {fµ|µ ∈Mn} of functions in C∞(ϵm,n(U)) such
that

f(x; ξ) =
∑

µ∈Mn

f̂µ(x)ξ
µ

for each (x; ξ) in U . This expansion is called the Grassmann analytic expan-
sion of f and the functions fµ are called the Grassmann analytic coefficients
of f .

If a function f is G∞, the notation suggests that f should be G-differentiable
infinitely many times. What exactly is the derivative here? Let’s write it ex-
plicitly:

Definition 3.8. Suppose that f is in G∞(U) with Grassmann expansion coeffi-
cients fµ. Then for i = 1, ...,m, the derivative ∂Ei f is defined to be the function

in G∞(U) with Grassmann expansion coefficients ∂ifµ while for j = 1, ..., n, the

derivative ∂Oj f is defined by

∂Oj f(x; ξ) =
∑

µ∈Mn

(−1)|fµ|pj,µf̂µ((x)ξ
µ/j)
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where

pj,µ =

®
(−1)ℓ+1 if j = µℓ

0 otherwise

and

µ/j =

®
µ1...µℓ−1µℓ+1...µk if j = µℓ

0 otherwise

3.3 G∞ DeWitt Supermanifolds via G∞-Charts

Next, we introduce charts and atlases forG∞ DeWitt supermanifolds. Similar to
the classical case, a G∞-chart allows us to define coordinates on a supermanifold
such that the transition functions between overlapping charts preserve the G∞

structure.

Definition 3.9. Let M be a set, and let m and n be positive integers:

• An (m,n) − G∞-chart on M is a pair (V, ψ) where V is a subset of M
and ψ is a bijective mapping of V onto an open subset of Rm,n

S (in the
DeWitt topology).

• An (m,n) − G∞ atlas on M is a collection of charts {(Vα, ψα)|α ∈ Λ}
such that

–
⋃

α∈Λ Vα = M

– for each α, β in Λ such that Vα ∩ Vβ ̸= ∅, the map

ψα ◦ ψ−1
β : ψβ(Vα ∩ Vβ) → ψα(Vα ∩ Vβ)

is G∞.

• An (m,n) − G∞ atlas {(Vα, ψα)|α ∈ Λ} on M which is not contained in
any other such atlas on M is called a complete (m,n)−G∞ atlas on M

• An (m,n)−G∞ DeWitt supermanifold consists of a set M together with
a complete (m,n)−G∞ atlas on M.

Finally, we can establish that the collection of sets defined by these charts forms
a topology on the supermanifold.

Theorem 3.10. Let M be a (m,n)−G∞ DeWitt supermanifold with complete
atlas {(Vα, ψα)|α ∈ Λ}. Let ΓDeWitt be the collection of subsets of M consisting
of sets U ⊂ M such that, for all α ∈ Λ, ψα(U ∩ Vα) is open in Rm,n

S with the
DeWitt topology. Then ΓDeWitt is a topology on M.

Earlier, we defined the DeWitt topology on the superspace Rm,n
S . Now, we have

”extended” this topology onto the supermanifold M. This topology provides
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the structure necessary for defining and studying smooth functions, differential
forms, and other geometric structures on superspaces, thereby extending the
framework of classical differential geometry to the supergeometric setting.

3.4 Manifolds Underlying Supermanifolds

By now, it should be clear that not all supermanifolds are manifolds. But there
is a neat way to recover a manifold from a supermanifold:

Definition 3.11. Let M be a G∞ DeWitt supermanifold with atlas {(Vα, ψα)|α ∈
Λ}. Then

• The relation ∼ defined on M by p ∼ q if and only if there exists α ∈ Λ
such that both p and q lie in Vα and

ϵm,n(ψα(p)) = ϵm,n(ψα(q))

is an equivalence relation.

• The space M[∅] = M/ ∼ has the structure of an m-dimensional C∞

manifold with atlas {(V[∅]α, ψ[∅]α|α ∈ Λ, where

V[∅]α = {[p]|p ∈ Vα}
ψ[∅]α : V[∅]α → Rm

[p] 7→ ϵm,n ◦ ψα(p)

where [] denotes equivalence classes in M under ∼.

The manifold M/ ∼ is called the body of M and is denoted M[∅].

This shows that we can go ”full circle”:

manifold M → supermanifold M → manifold M[∅]

but in general, the body M[∅] is not the same manifold as M .

3.5 Example: The Real Super Projective Space SRPm,n

To illustrate the concept of G∞ DeWitt supermanifolds, we now consider the
real super projective space, which serves as a concrete example. This space is
constructed by taking the quotient of a certain open subset of a superspace and
imposing an equivalence relation on it. Let us define this space more formally.

Definition 3.12. We define the following:

• Let U ⊂ Rm+1,n
S be the set (ϵm+1,n)

−1(Rm+1 − {0}) where

ϵm,n : Rm,n
S[L] → Rm

(x1, ..., xm; ξ1, ..., ξn) 7→ (ϵ(x1), ..., ϵ(xn))
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• Let ∼ be the equivalence relation on U with (x; ξ) ∼ (y; η) if and only if
there exists an invertible even element ℓ of RS such that

xi = ℓyi i = 1, ...,m

ξj = ℓηj j = 1, ..., n

We call SRPm,n = U/ ∼ the real super projective space.

The construction of the real super projective space is now complete, and we
proceed to verify that this space is indeed a (m,n)−G∞ DeWitt supermanifold.

Proposition 3.13. SRPm,n is a (m,n)−G∞ DeWitt supermanifold.

Proof. An atlas is given as follows: for i = 1, ...,m = +1, let

Vi = {[(x; ξ)]|(x; ξ) ∈ U, ϵ(xi) ̸= 0}

where [(x; ξ)] is the equivalence class containing the point (x; ξ).

The transition functions ψ are given by

ψi : Vi → Rm,n
S

[(x; ξ)] 7→
Ç
x1

xi
, ...,
“xi
xi
, ...,

xm+1

xi
,
ξ1

xi
, ...,

ξn

xi

å
where “xi denotes ommision. The transition functions are well-defined because
if (x; ξ) ∼ (y; η) and ϵ(xi) ̸= 0, then xj

xi = yj

yi for j = 1, ...,m + 1 and ξj

xi = ηj

yi

for j = 1, ..., n.

It is straightforward to check that the transition functions are G∞. We will
check it only for (m,n) = (2, 1) since the general case is basically the same
computation but messier. We have

ϕ1([(x
1, x2; ξ)]) =

Å
x2

x1
,
ξ

x1

ã
, ϕ2([(x

1, x2; ξ)]) =

Å
x1

x2
,
ξ

x2

ã
and

ϕ−1
1

Å
x2

x1
,
ξ

x1

ã
= (x1, x2, ξ), ϕ−1

2

Å
x1

x2
,
ξ

x2

ã
= (x1, x2, ξ)

so the ϕij are given by

ϕ12

Å
x2

x1
,
ξ

x1

ã
=

Å
x1

x2
,
ξ

x2

ã
, ϕ21

Å
x1

x2
,
ξ

x2

ã
=

Å
x2

x1
,
ξ

x1

ã
.

We can write all four of these using a Grassmann analytic expansion with coef-
ficients:“f1 Åx2

x1

ã
=
x1

x2
, “f1 Åx1

x2

ã
=
x2

x1
, “f2 Åx2

x1

ã
=

ξ

x2
, “f2 Åx1

x2

ã
=

ξ

x1
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which are all clearly C∞ on RS , so the transition functions are G∞ and SRP2,1

is a (2, 1)−G∞ DeWitt supermanifold.

4 What’s Next?

We conclude with a brief overview of some current areas of focus for modern
supergeometers:

• Lie Supergroups/Superalgebras: The theory of Lie groups extends
naturally to Lie supergroups. The research behind Lie supergroups has
been largely driven by the mutual interest among mathematicians and
physicists about the super Poincaré group: for many mathematicians, su-
persymmetry is defined as the action of the super Poincaré group on a
theory, and for physicists, the super Poincaré group gives the symme-
tries of supersymmetric quantum field theory. Since the super Poincaré
group is itself a Lie supergroup, it has garnered significant attention, along
with other Lie supergroups. As with classical Lie groups, classifying these
groups is a major challenge, typically addressed through the study of
their representations. The classification of simple Lie supergroups was
completed by Victor Kac, and ongoing research continues to explore the
representations of Lie superalgebras, which remains an active area of re-
search.

• Integration on Supermanifolds: The path integral is one of the most
useful concepts in physics, so it follows naturally that we would extend
this idea to supermanifolds. However, integration on supermanifolds was
the first area where classical and the corresponding ”super” theory were
developed vastly differently. Today, the Berezin integral is widely regarded
as the standard for integration on supermanifolds. But it is quite bizzare:
it is algebraic, does not appear to have any elementary properties of a
classical integral, resembles a derivative more than an integral, and has
no measure-theoretic interpretation. Nonetheless, it manages to be largely
both useful and elegant, and many open problems are based on the Berezin
integral. For example, one of the most active areas of research is the
RMS formalization of superstring perturbation theory, where the theory
is formulated in terms of Berezin integration on the moduli space of super
Riemann surfaces.

• Noncommutative Supergeometry: Earlier, we discussed commutative
superalgebras, which were developed many decades before the more chal-
lenging, noncommutative versions began to take shape. With the founda-
tions of Hilbert superspaces, C∗-superalgebras, and quantum supergroups
established, the theory has seen significant advancement. These structures
now appear in a variety of important contexts, including the deformation
quantization of symplectic supermanifolds and the harmonic analysis of
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Lie supergroups. As a result, they have become central to many areas of
research.

• Supergeometric Homotopy Theory: Some homotopy theorists argue
that the geometry underlying physics should be supergeometric homotopy
theory. Inspired by Grothendieck’s works decades earlier, these theorists
attempt to apply functional geometry in a higher topos that captures the
structure of higher-dimensional superspaces. This emerging theory has
many desirable features, including numerous connections with higher Lie
theory and M-theory. However, given that this field is still in its early
stages, there is not yet a broad consensus on whether it constitutes the
most promising direction for future research in supergeometry.
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