Notre Dame 2025 Undergraduate Thematic
Program in Discrete Groups in Topology and
Algebraic Geometry

June 2025

Abstract

Notes from Notre Dame 2025 Undergraduate Thematic Program on dis-
crete groups in topology and algebraic geometry through the lens of elliptic
curves, their moduli, and connections with basic principles of geometric
group theory.

Lectures given by Daniel Studenmund (Binghamton University), Nicholas
Salter (University of Notre Dame), and Shuddhodan Kadattur Vasudevan
(University of Notre Dame).

This is an unofficial set of notes scribed by Gary Hu, who is respon-
sible for all mistakes. If you find any errors, please report them to:
gh7@williams.edu

Contents

1 Monday, June 2

2

1.1 AM Session 1: Group Actions . . . . . . ... .. ... .. ....
1.2 AM Session 2: Hyperbolic Geometry . . . . . .. ... ... ...
1.3 AM Problem Session . . . . . . ... .. ...
1.4 PM Session 1: Introduction to Riemann Surfaces . . . .. .. ..

1.5 PM Session 2: Introduction to Riemann Surfaces IT . . . . . . ..
1.6 PM Problem Session . . . . . . . . . . . e

Tuesday. June 3
2.1 AM Session 1: Group Presentations . . . ... ... .. .. ...
2.2 AM Session 2: Trees . . . . . . .ot



2.3
2.4
2.5
2.6

AM Problem Session . . . . . ... ... o
PM Lecture 1: Riemann Surfaces IIT . . . . . . . ... ... ...
PM Session 2: Elliptic Curves . . . . . . ... ... ... .....
PM Problem Session . . . . . ... .. ... ... ... ...

Wednesday, June 4

3.1
3.2
3.3
3.4
3.5
3.6

AM Session 1: Trees . . . . . . . . . . .o
AM Session 2: Farey Graphs . . . . . ... ... ... ... ..
AM Problem Session . . . . . . .. ...
PM Session 1: Moduli I . . . ... ... ... .. .. .......
PM Session 2: Moduli IT . . . . . . . . . ... ... ... .....
PM Problem Session . . . . . . .. ... ... ... ...

Thursday, June 5

4.1
4.2
4.3
4.4
4.5
4.6

AM Session 1: Braid Groups I . . . .. ... ... ... .....
AM Session 2: Braid Groups IT . . . . . ... ... ... .....
AM Problem Session . . . . .. ...
PM Session 1: Complex Multiplication T . . . . . ... ... ...
PM Session 2: Complex Multiplication IT . . . . . ... ... ..
PM Problem Session . . . . . . ... .. ... ... .

Friday, June 6

5.1
5.2
5.3
5.4
9.5
5.6

AM Session 1: Mapping Class Groups . . . . . . .. ... ....
AM Session 2: Rational Tangles T . . . . . .. ... ... ... ..
AM Problem Session . . . . . ... ..o
PM Session 1: Ramanujan’s Constant . . . . ... ... .. ...
PM Session 2: Rational Tangles IT . . . . .. ... ... .....
PM Problem Session . . . . . .. ... 0o



1 Monday, June 2
1.1 AM Session 1: Group Actions

An action of a group G on a set X provides a way to understand G as a collection
of transformations of X. More formally:

Definition 1.1. An action of a group G on a set X is a homomorphism
p: G — Sym(X),

where Sym(X) is the group of all bijections from X to itself.

We often write G & X to denote that G acts on X. For an element g € G, its
image p(g) is a bijection on X. For any z € X, we denote the image of x under
this bijection by ¢ - x, so that ¢g -« := (p(g))(x). The homomorphism property
p(gh) = p(g) o p(h) translates to (gh) -z =g¢g-(h-z) for all g,he G and z € X.
The identity element id € G maps to the identity map on X, so id - x = x.

Often, the set X is endowed with additional structure, such as a metric, a vector
space, a graph, a variety, etc. In these contexts, we are typically interested in
actions that preserve this structure. For example, if (X, d) is a metric space,
a group action is by isometries if d(g - z,g - y) = d(z,y) for all z,y € X and
g € G. In such cases, the action is given by a homomorphism G — Aut(X),
where Aut(X) is the group of structure-preserving automorphisms of X.

Definition 1.2. Given an action G C X:
e The orbit of an elementz € X isG-x = {ye X |y = g-x for some g € G}.
e The stabilizer of an element x € X is G, ={ge G | g -z = z}.

e The action is free if G, = {id} for all x € X, where id is the identity
element in G.

e The action is transitive if G - © = X for any (and thus every) x € X.
Example 1.3.

e The symmetric group Sy acts on the set {1,2,...,n}. This action pre-
serves the set structure. It is free if n < 1 (only the identity permutation
fizes elements if n = 1). It is not free if n = 2. The action is transitive if
n=1.

e The general linear group GLy (k) acts on the vector space k™. This action
preserves the wvector space structure. The action is free on k™\{0} (the
set of non-zero vectors). It is transitive on k™\{0}. (It’s not free on k™
because the zero vector is fixed by all elements, and not transitive on k™
unless k™ = {0}).

o A group G acts on its Cayley graph Cay(G,S) by left multiplication. This
action preserves the graph structure. It is free and transitive.



e The special orthogonal group SO(n) acts on the (n—1)-sphere S"~1. This
action preserves the metric structure of the sphere. The action is transi-
tive. It is not free for n > 1 (e.g., rotations fixing a point).

e A group G acts on itself by conjugation: g-h = ghg~'. This action

preserves the group structure (it’s an action by automorphisms). The
action is free if and only if G is trivial or G = Zy. The action is transitive
only if G is trivial or G = Zs.

o The fundamental group m1(X,x0) acts on the universal cover X via deck
transformations. This action preserves the topological structure. The ac-
tion is free. It is generally not transitive (unless X isa point, i.e., X
18 simply connected, or sz( has only one sheet over each point in X for
which 71 (X, zg) acts transitively, which implies 71(X, xg) is trivial or X
is path-connected and X is a single point).

1.2 AM Session 2: Hyperbolic Geometry

Euclidean geometry is characterized by Playfair’s axiom, which asserts that for
any given line and a point not on the line, there is exactly one line through
the point parallel to the given line. For centuries, this was suspected to be
a theorem derivable from Euclid’s other axioms. The discovery that one can
construct a consistent geometry by assuming instead that there are infinitely
many such parallels gave birth to hyperbolic geometry.

A standard model for hyperbolic geometry is the Poincaré upper half-plane,
defined as
H = {z € C | Im(z) > 0}.

At each point z € H, the tangent space T,H is a copy of R2. We endow H with
a Riemannian metric by defining an inner product on each tangent space. For
u, v € T,H, the inner product is given by

1
(u,v); = W<uv V)R?,

where (-, )r2 is the standard Euclidean inner product.
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Definition 1.4. The hyperbolic length of a smooth curve 7 : [Ty, T1] — H is

defined as
Ty e 2
LH(’)/) = JT <’y(t)7;y(t)>7(t) dt = JT % dt.

Exercise 1.5. Given 0 < a < b, where a,b € R, define the curve
v : [loga,logb] — H
t > ie’.

Compute Ly (7).

Solution. We have 4(t) = iet. The imaginary part of v(t) is Im(y(t)) = e’.
Thus, ((2),5())v@) = W@et,ieth@z = ﬁ(ety =1

log b

Lu(y) = ] Vidt
oga

log b
= f 1dt
loga
log b
= [t]loéa
= log(b) — log(a).
U
Definition 1.6. The hyperbolic metric dg on H is the distance function

induced by the Riemannian metric. For any two points z1, zo € H, their distance
1s the infimum of the lengths of all smooth curves connecting them:

dp(z1, z2) = inf{Ly(y) | v is a smooth curve from z to z2}.

Definition 1.7. A geodesic in a metric space (X,d) is a curve v : I — X,
where I is an interval in R, such that

d(y(s),7(t)) = [s — |
for all s,tel.
Remark 1.8. This condition implies that v is parameterized by arc length

Exercise 1.9. Show that the curve ~(t) = iet from the previous exercise, repa-
rameterized appropriately, is a geodesic.

Definition 1.10. A Riemannian isometry of H is a diffeomorphism f :
H — H that preserves the Riemannian metric. That is, for every z € H and all
tangent vectors u,v € T, H,

<sz(u)’ sz(v)>f(z) = <U,U>Z,
where D, f is the differential (or Jacobian matrixz) of [ at z.



Theorem 1.11. A map f: H — H is a Riemannian isometry if and only if it
is a metric isometry, i.e., du(f(z1), f(22)) = du(z1, 22) for all z1, 2o € H.

Remark 1.12. The implication that a Riemannian isometry is a metric isom-
etry is direct: such a map preserves the lengths of all curves, and therefore
preserves the infimal length between any two points. The converse is a deeper
result of Riemannian geometry (the Myers-Steenrod theorem,).

The group of orientation-preserving isometries of H has a particularly elegant
description.

Definition 1.13. The special linear group SL(2,R) is the group of 2 x 2 real
matrices with determinant 1:

SL(2,R) = {<‘c‘ Z) € Myy2(R) | ad — be = 1}.

Proposition 1.14. The group SL(2,R) acts on H by Mdébius transformations:

for A = (CCL Z) € SL(2,R) and z € H, the action is defined by

az+b

cz+d

Furthermore, this action is by orientation-preserving Riemannian isometries.

Sketch of proof. One first verifies that this is a valid group action and that for
any A € SL(2,R), the map z — A - z is a bijection from H to itself. The key

calculation shows Im(A - z) = (ad|;:i)gll|r§(Z) = |ch:4£22 > 0.

To show these are isometries, one can show that the group SL(2,R) is gen-
erated by matrices corresponding to elementary transformations known to be
isometries:

1. Translations: z — z + b for b € R, corresponding to ((1) l{)

2. Dilations: z — Az for A > 0, corresponding to <\OE 1/3&)

. . -1
3. Inversion: z — —1/z, corresponding to ((1) 0 )
A direct calculation shows each of these generator types preserves the hyperbolic
metric. Since any element of SL(2,R) can be expressed as a product of these
elementary transformations (a consequence of row reduction), the entire group
acts by isometries. O

Corollary 1.15. Since elements of SL(2,R) are isometries, they map geodesics
to geodesics. That is, if v is a geodesic, then for any A € SL(2,R), the curve
t— A-~(t) is also a geodesic.



A fundamental property of the hyperbolic plane is its homogeneity and isotropy,
captured by the following result.

Proposition 1.16. The action of SL(2,R) on H is transitive. The stabilizer
of the point © € H is the special orthogonal group SO(2), the group of rotation
matrices:

. 50 —sinf
stabss () = 3002) = { (o) ) joer}.

Moreover, for any two points z,z' € H, there exists an isometry A € SL(2,R)
that maps z to i and 2’ to a point on the positive imaginary axis, yi, for some
y=1.

Corollary 1.17. Any two distinct points in H are joined by a unique hyperbolic
geodesic.

Theorem 1.18. The geodesics in H are precisely the Euclidean semicircles with
centers on the real axis and the vertical rays perpendicular to the real axis.

These curves are called generalized semicircles:

N,

1.3 AM Problem Session

Problem 1.19. Which of the groups Z/27, Z/3Z, Z? admit a free action on R
by isometries? What if R is replaced by R\{0}?

Solution.

Group | On R | On R\{0}

7/27 No Yes
Z/3Z No No
7?2 Yes No

The isometries of R are translations x — x + a and reflections  — —x + a, with
a € R.

On R:



e 7/2Z: Any nontrivial homomorphism must send the non-identity element
to a reflection or the identity. Reflections fix a point, and the identity
clearly does, so no free action exists.

e 7/37: Suppose a generator maps to a reflection. Then its square is the
identity, so the image of k? is trivial, though k2 # id. This contradicts
freeness. A nontrivial element cannot map to a nontrivial translation since
its order is finite but translations have infinite order. Hence, no free action
exists.

e 7?: Suppose both generators map to translations: z — x + a, £ — x + b.
The action of (m,n) € Z? is then x — x + ma + nb. The action is free if
and only if ma + nb = 0 implies m = n = 0, which holds if ¢ and b are
Q-linearly independent. For example, a = 1, b = v/2. So a free action
exists.

On R\{0}:

e 7/27Z: Map the generator to x — —z. This fixes only = 0, which is not
in the domain, so the action is free.

e 7/3Z: Any homomorphism to Z/27 must be trivial, since 3 is not divisible
by 2. The action is then trivial and not free.

e 7Z2: The image of any homomorphism lies in Z/2Z. If both generators
map to x — —uz, then their difference maps to the identity, hence acts
trivially. So the action is not free.

O

Problem 1.20. Show that any action of a finite group on a tree has a global
fized point.

Solution. Let G be a finite group acting by isometries on a tree T. A point
p € T (which may be a vertex or an interior point of an edge) is a global fixed
point if g-p =p for all g € G.

Our first step is to construct a finite, G-invariant subtree. Let vy be an arbitrary
vertex of T. Consider its orbit under the action of G, O(vg) = {g - vo | g € G}.
Since G is finite, O(vp) is a finite set of vertices. In a tree, any finite set of
vertices is contained in a unique minimal subtree, which can be identified as the
convex hull of the set. Let Y be the convex hull of O(vg). Since O(vy) is finite,
Y is a finite tree.

We now show that Y is invariant under the action of G. For any g € G,
the set ¢g - Y is the convex hull of the set g - O(vp). But since G is a group,
g-O(vg) = {gh-vg | h e G} = O(vp). By the uniqueness of the minimal subtree
containing a given set of vertices, we must have g-Y =Y. Thus, the action of
G on T restricts to an action on the finite tree Y.



The final step is to find a fixed point within Y. Every non-empty finite tree
has a center, which consists of either a single vertex or a single edge (i.e., two
adjacent vertices). The center is preserved by every automorphism of the tree.
Since each g € G acts as a tree automorphism on Y, the center of Y, denoted
C(Y), must be invariant under the action of G. That is, for every g € G, the
map p+— ¢ - p sends C(Y) to itself.

We consider two cases based on the structure of the center.

1.

The center C(Y)) is a single vertex, v.. Since C(Y') = {v.} is G-invariant,
we must have g - v, = v, for all g € G. Thus, v, is a global fixed point.

. The center C(Y) is a single edge, e, connecting vertices v; and vy. The

set {v1,vs2} is invariant under G. This means for any g € G, either g fixes
both vertices (g-vy = v1 and g- vy = v2), or g swaps them (g-v; = v9 and
g-ve = vy). If every g € G fixes both vertices, then v; is a global fixed
point. If there exists some h € G that swaps them, consider the midpoint
m of the edge e. An isometry that fixes the endpoints of a segment also
fixes its midpoint. An isometry that swaps the endpoints of a segment
also fixes its midpoint. Therefore, any g € G, whether it fixes or swaps v;
and vo, must fix the point m. Thus, m is a global fixed point.

In every case, we have found a point in Y (and thus in T') that is fixed by every
element of G.

O

Problem 1.21.

1.

Check that the curve y(t) = iexp(t) is a geodesic in the hyperbolic plane
H.

Check that the map z — —é is an isometry of the hyperbolic plane H.

Verify that the action of SLo(R) on H by Mébius transformations is indeed
an action.

. Complete the proof that if points z, 2, w,w' € H satisfy du(z, 2’) = dg(w,w’),

then there is a matriz A € SLo(R) such that Az = w and Az’ = w'. Is the
matriz unique?

Solution.

1.

A curve (1) is a geodesic if it is parameterized by arc length, meaning the
hyperbolic length of the curve from ~(s) to y(t) is |t — s|. For ~(t) = ie?,
its velocity vector is 4(t) = ie! and its imaginary part is im(~y(t)) = e’.
The hyperbolic speed is

YOy = m - ‘i:t e



The length of the path from ¢ = stot =ty > sis Si” 1dt = tg—s. Since the
path length equals the change in the parameter, the curve is parameterized
by arc length. As vertical lines are known to be the shortest paths in H,
this curve is a geodesic.

. A holomorphic map f : H — H is a Riemannian isometry if it satisfies
|7'(2)]/im(f(2)) = 1/im(2). Let f(z) = —1/z. Its derivative is f/(z) =
1/2%. The imaginary part is

im(f(2)) = im(=1/2) = im(=%/|2[%) = im(z)/||*.
The condition becomes
|1/2°| 1/]2]? 1

im(z)/|2[2  im(2)/]22  im(z)’

Since the condition holds, f(z) = —1/z is an isometry.
. The action of A = <CCL fl) € SLa(R) (so ad —bc = 1) on z € H is
az+b
A-z= cz-‘td'

First, for closure, we must show A -z € H. im(4 - z) = im (W)

|cz+d[?
The imaginary part of the numerator is (ad — bc) im(z) = im(z). So

im(z)

> 0,

as im(z) > 0 and cz +d # 0 for z € H, A € SLo(R). Each such map is a
bijection H — H.

. . . 1
Second, the identity matrix I = (O (1)) actsas [ -z = (1;1? = z.

Third, for compatibility, let A,B € SLa(R). Let A = <f:b1 21) and
1 dr
B = <a2 bz). Then
C2 dQ

(arag + b1ca)z + (a1 + bids)

AB). 2 =
( ) i (Clag + dlcg)z + (Clbg + dldg)

asxz+bs

ax (c22+d2) + bl _ al(agz + bg) + bl(CQZ + dg)

(i) v v B ¥ ot d)

_ 4. (azz+bz>
Ccoz + dy

=A-(B-2).

Thus, this defines a valid group action.

10



4. Let dy = dp(z,2') = dg(w,w’). The transitivity of the SLy(R) action
allows us to simplify the problem. By Proposition 1.16, there exists an
isometry A; € SLy(R) such that Az = i and A2’ = ie%. Similarly,
there exists Ay € SLyp(R) such that Asw = i and Asw’ = ie®. Let
A= A;'A;. Then A e SLy(R) and Az = A;'(A;2) = A;'(i) = w, and
Az = A1 (A12)) = A (ie%) = w'. So such a matrix A exists.

For uniqueness, suppose another matrix B € SLy(R) satisfies Bz = w and
Bz' = w'. Then the matrix M = A~!B satisfies Mw = w and Mw' = w'.
If z # 2/, then w # w’. An orientation-preserving isometry of H that fixes
two distinct points must be the identity map. The mapping from SLa(R)
to the group of isometries has kernel {£7}. Thus, M must be either I or
—I. This implies B = +A. The matrix is unique up to sign. If z = 2/,
then dy = 0 and w = w’. The condition is simply Az = w. The set
of such matrices is the coset AgStabgr,r)(2), where A¢ is any one such
matrix. Since the stabilizer is the infinite group SO(2) (up to conjugacy),
the matrix is not unique in this case.

O

Problem 1.22.

1. Check that the function z — —% = —@ maps generalized semicircles to

generalized semicircles.

2. Check that the group SLa(R) acts transitively on the set of generalized
semicircles in H.

Solution.

1. A generalized circle in C is described by the equation KzZ+Lz+Lz+M =
0 for K,M € R and L € C. For this circle to be orthogonal to the real
axis R, its center (if K # 0) must be on R, or it must be a vertical line
(if K = 0). Both conditions are met if and only if the coefficient L is a
real number. The equation for such an orthogonal generalized circle thus
simplifies to KzzZ + L(z + z) + M = 0.

Let w = —1/z, which implies z = —1/w. We substitute this into the
equation for our orthogonal generalized circle:

() ()oY

:KL<“’+“’ +M=0
ww ww

— K - L(w+ o) + M(ww) =0
— M(ww) — L(w+w) +K =0



This is the equation of a new generalized circle. Its coefficients are K’ =
M,L' = —L,and M’ = K. Since Lisreal, L' = —L is also real. Therefore,
the resulting curve is also a generalized circle orthogonal to the real axis.

Finally, the map z — —1/z preserves the upper half-plane H, since Im(—1/z) =
Im(-z/|2|?) = Im(2)/|2]? > 0 if Im(z) > 0. Thus, the image of a general-
ized semicircle in H is another generalized semicircle in H.

2. Let G be the set of generalized semicircles in H. To show the action of
SL(2,R) on G is transitive, it suffices to show that any geodesic C € G can
be mapped to the positive imaginary axis, Lo = {iy | y > 0}. A geodesic is
determined by its endpoints on R U {c0}. The endpoints of Ly are {0, o0}.
Let C have endpoints {p, ¢}.

e Case 1: p,q € R. The transformation f(z) = i:g maps p — 0

. . (1 — .
and q¢ — o0. The corresponding matrix (1 72 > has determinant

p — ¢q. Tt can be scaled by 1/4/|p — ¢| and its entries’ signs adjusted
to produce a matrix in SL(2,R) that achieves the same mapping of
endpoints.

e Case 2: pe R, g = . The translation f(z) = z — p maps p — 0 and

00 — 00. This corresponds to the matrix A = <(1) 1p> € SL(2,R).

Since any geodesic can be mapped to Lg, for any C7,Cs € G, there exists
an A € SL(2,R) mapping C; to Cy. Thus, the action is transitive.

O
Problem 1.23. Consider the function I : C u {0} — C u {0} defined by
I(z) = 2—12

1. Show that I restricts to a bijection from the upper half plane H to the open
unit disk D = {we C : |Jw| < 1}.

2. Check that I takes the hyperbolic pointwise inner product on H to the
pointwise inner product on D given by

(@88 = o e

8. Check that I takes generalized semicircles in H to generalized diameters
i D.

Solution.

12



1. Let z =2+ 1y e H, so y > 0. We compute

12
9 z—1
P =T
|z +i(y — 1))
Tz tily+ )P
a® + (y —1)°
T2+ (y+1)2

Since y > 0, we have 0 < (y — 1)? < (y + 1)2, which implies |I(2)|? < 1.
Thus, I(H) < D.

To show it is a bijection, we find the inverse. Solving w = % for z yields
z = i1, Let w € D. We must show z € H. We compute
im(z) — i d+w
im(z) =1im ( ¢
1—w

1
:Re<+w>
1—w

_Re<(1+w)(1—w)>

1 —wf?
Re(l +w —w — |w|?)
S T-wp
1— |w]?
= T wpP

Since |w| < 1 for w € D, 1 — |w|]?> > 0, so im(z) > 0. Thus, I-}(D) <
H. The existence of a well-defined inverse mapping between the domains
confirms I is a bijection.

2. The map I is an isometry if it pulls back the disk metric to the half-plane
metric. For a holomorphic map, this requires satisfying the condition

1 Al (2)]?

(imz)2 — (1-[I(2)]?)*

_ (+)—(z—i) _
‘ T 0T
(242_72)2. Thus, |I'(2)|* = ﬁ. From the previous part, we have the
identity 1 — |I(2)]? = ZT;TE‘ZZ) Substituting these into the right-hand side
of the condition gives:

First, we compute the components. The derivative is I'(2)

4
4(\z+i|4) o 16/lz+dt 1

<4im(z))2 16(im 2)2/|z + i|*  (imz)?’
|z+1]?

The condition holds, so [ is a Riemannian isometry, and therefore a metric
isometry.

13



3. This follows directly from the fact that I is an isometry. Isometries map
geodesics to geodesics. The geodesics of H are the generalized semicir-
cles. The geodesics of the Poincaré disk D are the generalized diameters
(Euclidean diameters and circular arcs orthogonal to the boundary circle
0D). Therefore, I must map generalized semicircles in H to generalized
diameters in D.

Alternatively, one can use a geometric argument: [ is a M6bius transfor-
mation that maps the boundary of H (the real axis) to the boundary of
D (the unit circle). Since I is conformal, it maps curves orthogonal to
the real axis to curves orthogonal to the unit circle, which is precisely the
characterization of geodesics in each model.

O

Problem 1.24. The hyperbolic area of a region A — H is SSA y% dx dy.

1. Compute the area of the hyperbolic region bounded by an arc of the unit
circle and two upward-pointing vertical rays, one meeting the circle at
angle 0 and the other at angle ¢. (This is a triangle with angles 0,$,0).

2. Compute the area of a hyperbolic triangle with angles o, 3,y bounded by
an arc of the unit circle, a vertical segment, and another circular arc.

8. Use the fact that isometries preserve angles and area to prove that the area
of any triangle with angles o, B,y is ™ — (a+ B + 7).

4. For r > 0, consider B,(i) = {z € H|du(i,2) < r}. For r > 10, show
Area(B,.(i)) is exponential in r. Hint: Show B,(i) contains Q, = {x +
iy|0 <z < e/1°1 <y < e/?} and calculate its area.

5. Use previous results to show hyperbolic triangles are slim.

Solution.

1. This region is a hyperbolic triangle with one ideal vertex at ic0 (where the
two vertical rays meet, with an interior angle of 0) and two finite vertices
on the unit circle in H. Let the two finite vertices be V7 and V5. The sides
are segments of two vertical lines and an arc of the unit circle 22 +y? = 1.

The angle between two intersecting geodesics is the Euclidean angle be-
tween their tangent vectors at the intersection point. Let the rightmost
vertex be V) = (x1, y1) where the vertical line 2 = 21 meets the unit circle.
The interior angle is ¢. The tangent to the vertical line is a vertical vector.
The tangent to the unit circle is perpendicular to the radial vector from the
origin (0,0) to V5. The angle ¢ is the angle between the vertical tangent
and the circle’s tangent. By geometry, this is equal to the angle the radial
vector makes with the horizontal axis. Thus, cos(¢) = x1. Similarly, for
the left vertex Vo = (z2,y2) with interior angle 6, we have x5 = — cos(6)
(assuming the vertices are on opposite sides of the imaginary axis).

14



The region is described by {(z,y) e H | —cosf < z < cosd, y = /1 — 22}
The hyperbolic area is given by the integral:

Cos ¢ 0 1
Area = f (J — dy) dx
— cosf Vi—zZ Y

The inner integral evaluates to:

* 72 11" 1 1
y tdy = |—- =0—|- =
Vica? () Wi V1— a2 V1— 22

Now we compute the outer integral:

CcoS ¢ 1
Area = J ——— dz = [arcsin(z)]°32,,
—cos 6 1—z2

= arcsin(cos ¢) — arcsin(— cos #) = arcsin(cos ¢) + arcsin(cos 6)

Using the identity arcsin(cos(z)) = 7/2 — z for z € [0, 7], we get:
T T
Area = (§—¢) n (5—0) —r—0—¢.

This establishes the area formula for any singly-ideal triangle (a triangle
with one ideal vertex).

. We solve parts 2 and 3 together. We will now compute the area of a
general hyperbolic triangle with angles «, 3,7~ by using the result from
part (1) and a geometric decomposition. The result is that the area is its
angle deficit: m — (a + 8 + 7).

Let T be a triangle with vertices A, B, C and corresponding interior angles
a, B,7. The strategy is to express the area of T' in terms of singly-ideal
triangles, whose areas we can calculate using the formula from part (1).
Extend the geodesic side BC' to one of its ideal endpoints on the boundary
of H, let’s call this ideal point P. We can choose P such that the vertex
C lies on the geodesic segment between B and P. Now, draw the geodesic
from vertex A to the ideal point P. This construction creates two new
singly-ideal triangles, T4app and T4cp, which share the side AP. The
original triangle T4pc can be seen as the difference in area of these two
singly-ideal triangles:

Area(Tapc) = Area(Tapp) — Area(Tacp).

Now we analyze the angles of these singly-ideal triangles to compute their
areas using the formula Area(vq,v2,0) = 7 — v; — va.

e Triangle Tapp: The vertices are A, B, P. The angle at the ideal
vertex P is 0. The angle at vertex B is the same as in the original
triangle, so it is 8. The angle at vertex A is the entire angle ZBAP.
So, its area is:

Area(TABp) =T — ﬂ — /BAP.
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e Triangle Tycp: The vertices are A,C, P. The angle at the ideal
vertex P is 0. The angle at vertex C is supplementary to -y, since
it is an exterior angle on the straight geodesic through B, C, P. So,
the interior angle of Tacp at C' is m — . The angle at vertex A is
ZCAP. So, its area is:

Area(Tacp) =7 — (m —v) — LCAP =~y — LCAP.

The angle « of the original triangle at vertex A is the difference between
the angles of the larger and smaller triangles at that vertex:

a=/LBAC = Z/BAP — ZCAP.
From this, we can express ZBAP as ZBAP = «a+ LCAP.

Now, substitute these expressions back into the area difference formula:
Area(Tapc) = (m — f— LBAP) — (v — LCAP)

=7—0—(a+ LCAP)—~v+ LCAP
The ZLC AP terms cancel out, leaving:

Area(Tape) =7 —a—f —7.
This proves that the area of any hyperbolic triangle is its angle deficit.

. The distance from ¢ to z = x + iy is dg(i,z) = arccosh <x2+2735+1) We
want to show Q, = {z +iy | 0 < z < /191 < y < €/?} < B,(i) for
r > 10. This requires dy(i,z) < r for all z € @,, which is equivalent to

”:24'2735“ < cosh(r). Let f(z,y) = ;’CZ"LTZZZH We must find the maximum

of f on the compact set Q.. The maximum must occur on the boundary

of Q.
e Ony =1: f(z,1) = (22+2)/2. Max at 2 = €™/, value is (e'/°+2)/2.

/5, 2 r/5
_ ,r/10. r/10 _ eP+y 41 _ eP+1 y 3 ;
e On z = e/10: f(e/10 y) = o7 = &5, + §. This function

of 3 is minimized when y?> = €"/® + 1 and increases away from this

minimum. We check the endpoints y = 1 and y = e/2. We already
have the value at y = 1. At y = €'/, the value is % =

%(6—37"/10 + er/2 + €_T/2).

For large 7 (specifically 7 > 10), the dominant term is 3e’/2. We need to
check if 1e"/? < cosh(r) = GW;H«_ This is equivalent to e™/? < e + e7,
which is clearly true for r > 0. Thus, Q, < B,(3).

The area of @, is:

r/2

1 e
[—] dzr
Y

/10 e7“/10

67‘/2 1
J — dydr = f
1 Yy 0
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er/10

_ j (1 _ e—r/Z) dr = (1 _ e—r/Q)er/l() _ er/lO _ 6—27"/5
0

Since B,.(i) contains Q,, its area is bounded below: Area(B,(i)) = e™/10 —
e~2"/5_ For large r, this grows like €%!", which is exponential in 7.

. A geodesic space is §-slim if for any geodesic triangle, every point on one
side is within a distance ¢ of the union of the other two sides. We must
show there is a universal § > 0 for all triangles in H.

Assume, for the sake of contradiction, that hyperbolic triangles are not
slim. This means that for any candidate constant 4 > 0, we can find
a geodesic triangle T and a point p on one of its sides such that the
hyperbolic distance from p to the union of the other two sides is greater
than 4.

This implies that the open hyperbolic ball B(p, d) centered at p with radius
0 is contained entirely within the triangle T. Therefore, the area of the
ball must be less than or equal to the area of the triangle:

Area(B(p,0)) < Area(T).

From part (3), we know the area of any hyperbolic triangle is bounded
above by m: Area(T) = 7 — (o + 8 + ) < m. From part (4), we know
that the area of a hyperbolic ball of radius d grows exponentially. Since
area is isometry-invariant, Area(B(p,d)) = Area(B(i,4)). For large ¢, this
area is bounded below by a function of the form Ke® for some positive
constants K, c.

So, for any § > 0, our assumption implies we can find a triangle such that:
Ke® < Area(B(p,0)) < Area(T) < .

However, the term Ke® grows without bound as § — 0. We can always
choose a d large enough such that Ke® > 7. This is a contradiction.

Therefore, our initial assumption must be false. There must exist a uni-
versal upper bound ¢ on the radius of any ball that can be inscribed in a
triangle in this manner. This proves that hyperbolic triangles are slim.

O

1.4 PM Session 1: Introduction to Riemann Surfaces

The big goal of this week is to understand why certain numbers, like

e™ 103 ~ 262537412640768743.99999925...

are extraordinarily close to integers. This phenomenon is connected to the
theory of complex multiplication, elliptic curves, and modular forms, so we
need to introduce some notions of complex analysis on Riemann surfaces.
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Our journey in analysis often starts with understanding the number systems we
work with, each extending the capabilities of the previous one:

Z—>Q—R<—C.

e Integers (Z): The set {...,—2,-1,0,1,2,...}. Z is not closed under
division. For example, 2z — 1 = 0 has no solution in Z.

e Rational Numbers (Q): To solve linear equations of the form az + 8 =
0 (where a, 8 € Z,a # 0), we extend to the field of rational numbers,
Q = {% | m,neZ,n+# 0}. Q is an algebraic field, meaning it’s closed
under basic arithmetic operations.

e Real Numbers (R): The field Q is still ”incomplete” in an analytic
sense; it has ”holes.” For instance, the sequence 1,1.4,1.41,1.414,... (ap-
proximating \/5) consists of rational numbers, but its limit, 4/2, is not
rational. R is the completion of Q with respect to the usual metric, mean-
ing every Cauchy sequence of real numbers converges to a real number.
This completeness is important for calculus (limits, continuity, derivatives,
integrals).

e Complex Numbers (C): Even R is not algebraically complete. The
equation 2 + 1 = 0 has no solution in R. We introduce the imaginary
unit 4 such that i2 = —1 and define the field of complex numbers as
C =R(:) = {a+ bi|a,beR}. The arithmetic operations are defined as:

— Addition: (a +ib) + (¢ +id) = (a + ¢) +i(b + d)
— Multiplication: (a + ib)(c + id) = (ac — bd) + i(ad + bc)

By the Fundamental Theorem of Algebra, every non-constant single-variable
polynomial with complex coefficients has at least one complex root, so C
is algebraically closed.

Our goal is to develop analysis over C in a way analogous to how it’s done over
R.

Definition 1.25. Let U < C be an open set. A function f: U — C is said to
be C-differentiable (or holomorphic, or analytic) at a point zo € U if the

limit
f(zo+h) — f(z0)
h

exists. If f is C-differentiable at every point in U, we say f is holomorphic on

U.

f/(Zo) = }Lli%

Note that h approaches 0 in the complex plane, meaning it can approach from
any direction. This is a much stronger condition than real differentiability.

Proposition 1.26. If a function f : U — C is holomorphic on an open set
U, then f is infinitely differentiable on U. Moreover, for any zg € U, f can be
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represented by a convergent power series in a meighborhood of zy: there exists
an open disc D(zg,r) € U (for some r > 0) such that

) = 3 an(z — 20)"
n=0

)
for all z € D(z,r). The coefficients are given by a,, = fT(,ZO)

This property (being locally representable by a power series) is why holomorphic
functions are also called analytic functions.

Exercise 1.27. Show that this proposition is false over R. That is, find a
function f: R — R that is infinitely R-differentiable but not equal to its Taylor
series in any neighborhood of some point.

Proof. See the problem session. O

Just as real analysis on R and R"™ generalizes to analysis on real manifolds
(spaces that locally look like Euclidean space), complex analysis on C generalizes
to analysis on complex manifolds.

Example 1.28 (Real Manifolds).

e The circle S* = {(z,y) € R? | 22 +y? = 1}. Using stereographic projection
from the North pole N = (0,1), SY\{N} is homeomorphic to R. Similarly,
SI\{S} (where S = (0,—1) is the South pole) is homeomorphic to R.
These homeomorphisms provide local coordinate charts.

N

> R

o The sphere S% = {(x,y,2) € R? | 22+y?+2% = 1}. Stereographic projection
from S>\{N} gives a homeomorphism to R?> =~ C. This is an important
example as it can be given a Riemann surface structure (the Riemann
sphere).

o The torus S' x S'. We can cover it with charts, for example, by taking
products of charts for S*. E.g., (SY\{N1}) x (S"\{N2}) 2R x R = R%.

Definition 1.29. Let X be a connected Hausdorff topological space. We say X
is a Riemann surface if:

o There exists a cover {Uy} of X such that for each o, U, is homeomorphic
to an open subset Vi, of C via a map ¢q:

U, 2% v, PSR ~ C.
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o If two such charts (Uy, ¢o) and (Ug, ¢g) overlap, the transition map ¢g o
o3t (from ¢o(Us nUg) to ¢5(Us N Ug)) must be a holomorphic function
between open sets in C

Remark 1.30. The second condition is so that we have a consistent notion of
complex analysis across X. This condition that transition maps are holomorphic
is what makes it a complex manifold of dimension one (a Riemann surface),
rather than just a 2-dimensional real manifold.

Example 1.31.

1. C itself is a Riemann surface. We can use a single chart (U; = C, ¢1(z) =
z). The transition map condition is trivially satisfied.

2. Any open subset U < C is a Riemann surface with the chart (U, idy).
3. The unit disc A = {z € C||z| < 1} is a Riemann surface.

4. The upper half-plane H = {z € C | Im(z) > 0} is a Riemann surface.
This will be important for constructing modular forms.

Remark 1.32. Topologically, A is homeomorphic to C (and to R?). For ex-
ample, z +— 1%‘2' is a homeomorphism from A to C. However, as Riemann
surfaces, they are very different. For example, C is not biholomorphic to A.

Definition 1.33. Let X be a Riemann surface with atlas {(Uy, ¢4)}. A function
f: X — C is holomorphic at p € X if for any chart (Uy, ¢o) such that p € Uy,
the composition f o ¢ ' : ¢o(Us) — C is holomorphic (in the usual sense for
functions on open subsets of C) at ¢o(p). If f is holomorphic at every p € X,
then f is holomorphic on X.

Definition 1.34. A function f : X — C is holomorphic if f|y, is holomor-
phic for all .

Definition 1.35. A map of Riemann surfaces ¢ : X — Y is holomorphic if
it satisfies the following conditions:

® (0 is continuous;

o for every open set Vg € Y and every holomorphic function f : Vg — C,
the composition

fopipT(Ve) —>C
is holomorphic on ¢='(V3) € X.
The situation can be visualized in the following commutative diagram:
X —F—vY
IN n
(V) —— vy Lo C

Proposition 1.36. There exists no non-constant holomorphic map ¢ : C — A.
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Proof. If ¢ : C — A were such a map, it would be an entire function (holomor-
phic on all of C) whose image is contained in the unit disc A. Thus, |p(z)] <1
for all z € C, meaning ¢ is a bounded entire function. By Liouville’s Theorem,
any bounded entire function must be constant. O

1.5 PM Session 2: Introduction to Riemann Surfaces I1

Example 1.37. Consider S? = (S?\{N}) u (S?\{S}). By stereographic projec-
tion, S?\{N} ~ R? ~ S%\{S}.

NN

N/

where points (x,y,z) on S? satisfy 2% +y? + 22 = 1.

This is the first nontrivial ezample of a Riemann surface. We have (S?, complex structure) =
P¢.

Proposition 1.38. Let f : ]P’%: — C be a holomorphic map. Then f is constant.

Proof. Since f is holomorphic on ]P’}C, it is bounded (as ]P’}C is compact and f is
continuous, so |f| attains its maximum). If we view f as a map from C u {0}
to C, its restriction to C is an entire function. Since f is bounded on Pg, it is
bounded on C. By Liouville’s theorem, a bounded entire function is constant.
Thus, f is constant on C, and by continuity, it is constant on IP’}C. O

Example 1.39. The upper half-plane H = {z € C | Im(z) > 0} = {(z,y) € R? |
y > 0} is an open subset of R? =~ C, and thus inherits a complex structure from

C.
Theorem 1.40.

1. H is biholomorphic to A (the open unit disk), for instance, via the trans-

formation z — i—;z Also, A is not biholomorphic to C.

2. S? (equivalently ]P’(%: ) has a unique complez structure up to biholomorphism.
The second part is quite difficult.

Example 1.41. What about the torus T? =~ S! x S12 We have S* x St 5
(R/Z) x (R/Z). This can be identified with C/Ag where Ag = Z - 1D Z - i is
the lattice of Gaussian integers. The map from (R/Z) x (R/Z) to S* x St is
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([z], [y]) = (¥ e2™W). The map from C to T? for the lattice Ao can be seen

as z — (6271'1'}316(z)7 6271'1']7”(2))'

Definition 1.42. A lattice A < C is a discrete subgroup of (C, +) isomorphic
to Z2. FEquivalently, A = Zw; ® Zws = {mwy + nwa | m,n € Z} for some
w1, ws € C that are linearly independent over R (i.e., {w1,wa} forms an R-basis

for C).

Proposition 1.43. For any lattice A c C, the quotient space C/A is a Riemann
surface.

Proof. The projection map IT : C — C/A is a surjective local homeomorphism.
For any point zy € C, there exists an open neighborhood U 3 z; such that
|y : U — II(U) is a homeomorphism. Since C has a complex structure (given
by the identity chart z — z), we can use II to induce a complex structure on
C/A. Specifically, for any [w] € C/A, choose z € C such that II(z) = [w]. Let
U. be a neighborhood of 2z such that II|;_ is injective. Then (IL(U,), (I|y,)~1)
can serve as a chart around [w]. The transition maps between such charts are
holomorphic because they are locally restrictions of translations in C (composed
with identity maps), which are holomorphic.

- T @

The diagram illustrates a fundamental domain for C/A (a parallelogram) and
its identification under II.

c L /A
O
Problem 1.44. Is there a unique complex structure on S* x S* (topologically a

torus)? Equivalently, is C/A = C/A’ as Riemann surfaces for any two lattices
A and N'?

The answer is no, as we will see.

Proposition 1.45. Let ¢ : C/A — C/A’ be a holomorphic map of Riemann
surfaces. Then:
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1. There ezists a holomorphic map ¢ : C — C such that the following diagram
commutes (i.e., pom =m0 p):

c—2 ¢

ﬂl l”/

C/A <= C/N

This ¢ is called a lift of .

2. Any such lift ¢(z) must be an affine linear map, i.c., p(z) = az + 8 for
some «a, § € C.

Corollary 1.46. Let ¢ : C/A — C/A’ be a holomorphic map. If ¢([0]) = [0]
(i.e., @ maps the origin of the first torus to the origin of the second), then ¢ is
induced by a linear map z — az for some a € C such that aA = A,

Corollary 1.47. Two tori C/A and C/A’ are biholomorphic, denoted C/A =
C/N', if and only if there exists an o € C\{0} such that aA = A’.

Note that this corollary implies that the distinct complex structures on S x S!
(a topological torus) correspond to equivalence classes of lattices A € C under
the equivalence relation A ~ A’ if A’ = oA for some a € C\{0} (i.e., lattices are
equivalent if they are homothetic).

Consider two distinct lattices:

A = Zwi ® Zwoy
N = Zw| ® Zwh

Since {w1,ws} and {w},wh} are R-bases of C (when viewed as R?), there exists
an invertible real 2 x 2 matrix A € GL(2,R) that transforms one basis to the
other.

The group of R-linear automorphisms of C that are also C-linear (i.e., multipli-
cation by a non-zero complex number) can be identified with C*. This embeds

into GL(2,R) via the map a + ib — [z _ab]. We have C acting on C by mul-

tiplication, and GL(2,R) acting on R? by matrix multiplication. We identify C
with R2. The set S' = {z € C| |z| = 1} is a subgroup of C*.

SLQ(R) — Sl

1 n

GLay(R) ¢—— C*

The image of S' under the embedding C* — GL(2,R) is precisely SO(2,R)
(the group of rotation matrices), which is a subgroup of SL(2,R).
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The space of lattices, up to scaling by C* (homothety) and rotation (which can
be absorbed into the scaling), can be parameterized. By scaling, any lattice A
can be written as ¢(Z-1@Z-7) for some ¢ € C* and 7 € H (the upper half-plane).
The shape of the lattice is determined by 7. The space SL(2,R)/SO(2,R) is
isomorphic to H. Thus, H serves as a parameter space for these normalized
lattices. Remarkably, H is itself a Riemann surface, and it becomes the moduli
space for complex structures on a torus once we further quotient by the action
of SL(2,7Z).

1.6 PM Problem Session

Problem 1.48. Give an example of an infinitely differentiable R-valued func-
tion which is not a power series.

Solution. Consider the function f: R — R defined by

{e‘l/xz if x # 0,

T =19, if 2 = 0.

We show that f is smooth on R but not equal to its Taylor series at = 0 in
any neighborhood.

Forxz # 0, f(z) = e=1/7* is a composition of smooth functions and thus smooth.
By induction, its n-th derivative can be written as

F (@) = Pu(L/z)e V™",

where P, is a polynomial. The base case is trivial. For the inductive step,
assume the form holds for n = k. Differentiating yields

e @) = L (P1fa)e )

1 2 e
- (- nn + SR/ e
= Pen(U)e

where Py11(y) = —y? P/ (y) + 2y Py (y), again a polynomial.
Now, we show that f(™(0) = 0 for all n = 0. Clearly, f(0) = 0. For f'(0),

PR () B
FA0) = fim == = fimy ——

Y

Letting y = 1/h, this becomes lim||_, = 0, since the exponential dominates

ev?
any polynomial. Similarly, assuming f*)(0) = 0, we find
fBh) o P(1/h)e

EED0) = lim =— =
R



With y = 1/h, this becomes lim,|_,o, Qk (y)e_y2 for a polynomial Qg(y), which
again tends to 0. Hence, all derivatives at 0 vanish.

The Taylor series of f at 0 is therefore

T(x) i f<">'(0) 2 =0,
n=0 :

n

yet f(x) > 0 for x # 0. Thus, f is smooth but not equal to its Taylor series in
any neighborhood of 0.

O
Problem 1.49. Write down the standard Riemann surface structure on S2.

Solution. The standard Riemann surface structure on the 2-sphere S? = {(x,y, 2) €
R3 | 22 + y% + 22 = 1} identifies it with the Riemann sphere PL. This structure

is defined by an atlas of two charts given by stereographic projections from the
North and South poles.

Let N = (0,0,1) and S = (0,0, —1). Define:
e U, = S?\{N} with chart map ¢; : U; — C via stereographic projection

from N:
= ot (20, B0 )
o Uy = S%\{S} with chart map ¢ : Uy — C via stereographic projection
from S:
¢a(w,y,2) = xljrlzy 67" (q) = (fﬁgg, 1?}82&5:2)

The domains U; and U, cover S2, and their overlap is Ujs = S?\{N, S}. The
transition map Ty2 = ¢ 0 ¢7 ' on C\{0} is computed as follows:

Given w € C\{0}, let (,y,2) = ¢;*(p). Then

) 2w 2Jw|?
T—1y = m, 1+2z= m
S0 . _
Toa(p) = daw.9.2) = T2 = oz =

which is holomorphic on C\{0}. Similarly, T, = ¢1 0 ¢5*(¢q) = 1/¢ is holomor-
phic.

Thus, this atlas defines a complex structure on S? with holomorphic transition
maps, making it a Riemann surface isomorphic to Pg. O
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Problem 1.50. Show that the map SL2(R)/SO2(R) = H is a bijection where

a b _az+b
c d Z_cz—i-d'

Solution. Let G = SLy(R) and X = H = {z € C | Im(z) > 0}. For A =
(Z b) € G, the action A -z = 2+b maps H to itself, since

d cz+d

Im(z)

)
lez + dJ? g

Im(A - 2)

Define the map ® : G/G; — H by ®([A]) = A -i. Additionally, we know that
G; = S0(2), so @ : G/SO(2) — H. By the Orbit-Stabilizer Theorem, the map
® is a bijection onto the orbit G - 4. Since the action is transitive, G - i = H, so
® is a bijection.

Well-defined: If [A] = [B], then B~'4 € SO(2), so (B~'A) -i = i, and thus
A-i= B -1, hence ®([A]) = ®([B]).

Surjective: For any z = x + iy € H, define

(8 1)

Then A, -i = z, so every z € H is in the image.

Injective: If ®([A]) = ®([B]), then A-i = B-i = B 'A-i=1i,s0 B 1Ae
SO(2) = [4] = [B].

Therefore, @ is a well-defined bijection.
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2 Tuesday. June 3

2.1 AM Session 1: Group Presentations

Consider the group G = Z?2, which can be viewed as the set of lattice points in
the infinite two-dimensional grid. Define the actions of a and b on Z? by

a(x,y) = (.’E + 17y)v b(w7y) = (:v,y + 1)a

representing unit steps in the z- and y-directions, respectively. These can be
interpreted as generators corresponding to translations along the coordinate
axes.

The actions of ¢ and b commute. That is, applying a then b yields the same
result as applying b then a, so we have the relation ab = ba. This commutativity
allows us to write expressions like

abab = aabb = a%b>.

Thus, the group Z? admits the following presentation in terms of generators and
relations:
7% =~ {a,b | ab = ba).

Definition 2.1. A group G is generated by a subset S < G if no proper
subgroup of G contains S.

This definition is equivalent to the statement that every element g € G can be
expressed as a finite product of elements of S and their inverses. The set of all
such finite products forms the smallest subgroup of G containing S.

Example 2.2. The group Z? is generated by S = {(1,0),(0,1)}. However, it
is not generated by T = {(1,0),(0,2)}. The subgroup generated by T is (T) =
{m(1,0) + n(0,2) | m,n € Z} = Z x 2Z. This is a proper subgroup of 7?2, as it
fails to contain elements like (0,1).

Definition 2.3. A group G is generated by S if and only if every g € G can be
expressed as a finite product of elements of S and their inverses.

Example 2.4. We explore generating sets for other familiar groups.

1. Find a generating set {a,b} for (Z,+) such that neither a nor b alone
generates 7.

2. Find a generating set for (Q,+). Can this set be finite?

Solution.

1. For the group (Z,+), the set {2,3} is a valid generating set. Neither
element generates Z on its own, as (2) = 2Z and (3) = 3Z are proper
subgroups. However, by Bézout’s identity, since ged(2,3) = 1, there exist
integers x,y such that 2z + 3y = 1. Specifically, 3 —2 = 1. Since 1 is an
element of (2,3), and 1 generates all of Z, we have ({2,3}) = Z.
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2. For the group (Q,+), a generating set is given by the infinite set S =
{# | K € Nk > 1}. Any rational number a/b can be written as an
integer multiple of an element in this set, namely a - (1/b). No finite set
{q1,-..,qm} can generate Q. To see this, let ¢; = a;/b; be the generators
written in reduced form. Any element in the subgroup {q1,...,¢mn) is of
the form ) z;q; for z; € Z. When brought to a common denominator,
the denominator of such a sum must divide the least common multiple of

{b1,...,b;m}. Thus, a rational number whose reduced form has a prime
factor in its denominator not present in any of the b; cannot be generated.
O

Definition 2.5. A word in letters a and b is a finite string (sequence) of
symbols from the set {a,a=*, b,b=1}.

Example 2.6. An example of a word is aaba tab™ b 1a~1.

Definition 2.7. A word is reduced if it contains no adjacent pairs of the form
aa™ ', a"ta, bb~1, or b~ 1b.

Proposition 2.8. FEvery word can be transformed into a unique reduced word
by iteratively canceling adjacent inverse pairs.

Example 2.9. The word aaba " ab~'b"'a™" reduces as follows:
aaba"tab b 'a" —aab(a"ta)b b a !
—aabb b ta !
—aa(bb )b ta™!
—aab la?

The reduced form is aab~ a1,

Reduced words can be multiplied by concatenating them and then reducing the
resulting word.

Example 2.10. The product of (abaab™') and (bab) is:
(abaab™ ') (bab) = abaa(b~'b)ab

= aba’b

Definition 2.11. The free group of rank 2, denoted Fy, is the group of all
reduced words in two letters (say, a and b) under the operation of concatenation
followed by reduction. The identity element is the empty word. The inverse of a
word is obtained by reversing the order of its symbols and replacing each symbol
with its inverse (e.g., the inverse of $18g. .. 8y is 5;1 . 52_151_1).

Definition 2.12. Given any set S (of symbols or generators), one can form the
free group F(S). Its elements are reduced words formed from symbols s € S
and their formal inverses s—'. The group operation is concatenation followed

by reduction.
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Proposition 2.13 (Universal Property of Free Groups). If G is any group, S
is a set of generators, and f : S — G is any function mapping the generators
to elements of G, then there exists a unique homomorphism ¢ : F(S) — G such
that o(s) = f(s) for all s€ S.

Example 2.14. If w = a®b~'a is an element of F({a,b}), and f : {a,b} - G
is a function, then the homomorphism ¢ acts as:

p(a*v"a) = p(a)p(a)p(b)e(a)
= f(a)- f(a)- f(b)~"- f(a)

The primary task in proving the proposition is to show that ¢ defined in this
manner is a well-defined homomorphism (i.e., respects the group operation,).

2.2 AM Session 2: Trees
Recall that Z2 = {a,b | ab = ba).

Example 2.15. Let S = {a,b} be a set of formal generators. We can define
a function f : S — Z* by f(a) = (1,0) and f(b) = (0,1). By the universal
property of free groups, this function extends to a homomorphism from the free
group Fy = F(S) to Z2.

Exercise 2.16. Let p : Fy — Z? be the homomorphism extending f(a) = (1,0)
and f(b) = (0,1). Determine the image im(p) and the kernel ker(p).

Solution. The homomorphism ¢ is surjective, so its image im(y) is all of Z2.
This is because any element (m,n) € Z? can be written as m(1,0) + n(0,1),
which is ¢ (a™b") (where a™b™ is an element of F3). By the First Isomorphism
Theorem, we have Z? =~ Fy /ker(y).

The kernel, ker(y), consists of all words w € Fy such that ¢(w) = (0,0). This is
the smallest normal subgroup N <2 F5 such that the quotient F5/N is abelian.
O

Definition 2.17. The normal closure of a subset X < G in a group G,
denoted (X)), is the intersection of all normal subgroups of G that contain X.
It is the smallest normal subgroup of G containing X.

Exercise 2.18. Show that the normal closure ({(X)) is the subgroup generated by
all conjugates of elements of X and their inverses. That is, (X)) is generated
by the set {grtlg~! |z e X, g€ G}.

Example 2.19. The commutator aba=1b=1 is an element of ker(yp) because

Qo(a‘ba_lb_l) = f((l) + f(b) - f(a’) - f(b) = <1a 0) + <Oa 1) - (17 0) - (07 1) = <07 0)
Therefore, the normal closure N = ({{aba=1b=1})) must be a subgroup of ker(,p),
i.e., N € ker(p).
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Lemma 2.20. Let ¢ = aba='b~' and N = {{{c})). A conjugate of ¢, such as
a~tea = a t(aba=tb")a = ba"tb"la, isin N. The inversec™! = (aba=1b=1)~1 =
bab~'a~! is also in N. More generally, N contains all elements that can be

formed by products of conjugates of ¢ and c='. The claim is that elements like

[a,b7'] = ab~ta™ b, [b~1,a"'] = b=ta"tba, and [a~,b] = a~tbab™! are also
in this specific N.

Exercise 2.21. Let ¢ be a group homomorphism and suppose N < G is a
normal subgroup such that ker(¢) € N. Given an element w € ker(yp), show
that w can be transformed, via conjugation and multiplication by elements of
N, into an element of N. Conclude that w € N.

Proof. We present the proof idea by working through an example and then
indicate how it generalizes. Consider the word

w = a’b~ra"3ba € ker(p).
Our goal is to reduce this to an element of IV using conjugation and multiplica-
tion by elements of V.

Observe that we can regroup and conjugate strategically:
w=a’b"ra3ba =a-(ab"'a"t) - a"2ba.
Now we apply conjugation:
ab~ta™! = (aba™) 7,

so the term ab~'a™! is a conjugate of b~!, and since conjugation preserves

membership in NV (because N is normal), it lies in N if b=1 does.

Continuing;:
w=a-(ab"ta"t) a ba.

Focus on reducing the powers of a while preserving group equivalence modulo
N. Note that:
a3ba =a*(a" ba) = a2V,

where b = a~'ba is a conjugate of b, hence lies in N if be N.

By applying this reasoning recursively (each step reducing the number of a’s),
we eventually rewrite w as a product of conjugates of b*! and powers of a that
cancel or combine, producing an element in N.

Since all intermediate steps involve conjugation and elements of N, and N is
closed under these operations, the result lies in N. Hence, w € N. O

The upshot of this (that ker(p) = (({aba=1b~1}))) is that

7% = Fy/{{aba~ b~ 1)).
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Definition 2.22. A presentation of a group G is an isomorphism G =
(S | R). Here, S is a set of generators, and R is a set of relations (words
in F(S), the free group on S). The notation (S | R) denotes the quotient
group F(S)/{(R))r(s), where ({R))p(s) is the normal closure of R in F(S).
This normal closure is the kernel of the canonical surjective homomorphism
7 : F(S) > G defined by mapping generators in S to their corresponding ele-
ments in G.

Example 2.23. Z/nZ =~ {a | a™). Here S = {a} and R = {a"}.

Example 2.24. Z? =~ (a,b | aba~'b=1). Here S = {a,b} and R = {aba~1b71}.
The relation aba 'b~! = e is equivalent to ab = ba.

If we write down some random generators and relations, we define a group.
However, it can be very difficult to understand the properties of the group, such
as whether it is trivial, finite, infinite, abelian, etc. The word problem for groups
(determining if a given word in the generators represents the identity element)
is, in general, undecidable (Novikov-Boone theorem). This implies there’s no
general algorithm to determine if a finitely presented group is trivial. The goal,
then, often becomes to find ”good” presentations for known groups or to develop
tools to analyze groups given by their presentations. One such powerful tool is
the theory of group actions on trees.

Definition 2.25. A graph I' consists of a set of vertices V(I'), a set of edges
E(T), and an endpoint function that maps each edge e € E(T') to an unordered
pair of vertices {u,v} from V(T') (its endpoints). If u = v, the edge is a loop.
Multiple edges can connect the same pair of vertices.

Definition 2.26. A tree is a connected graph that contains no simple cycles
(i.e., no path that starts and ends at the same verter without retracing edges or
visiting other vertices multiple times, apart from the start/end vertez).

Trees are fundamentally related to free groups.

Consider the free group F» on generators S = {a, b}. We can construct its Cayley
graph, denoted here as T: The set of vertices V(T3) is the set of elements of
F,. Two vertices v,w € F5 are connected by an edge if w = vs in Fy for
some s € {a,b,a"!,b7t}. (Here vs means the product in Fy, which is already
a reduced word if v does not end in s~!; otherwise, cancellation occurs). Each
edge can be labeled by the generator s used.
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This graph T is the Cayley graph of F» with respect to the generators {a, b}.
Exercise 2.27. Show that this graph Ts is a tree.

The group F5 acts on its Cayley graph T,. This action is defined on vertices
by left multiplication: if g € Fy and v € V(T3) = F, then g - v = gv (product
in F3). This action extends to edges: if e = (v,vs’) is an edge (where s’ €
{a,b,a=t,b71}), then g-e = (gv, gvs’). This action respects the graph structure
(adjacency and endpoints).

This action is free on vertices (if g - v = v, then gv = v, which implies g = e
since F» is a group). It is also free on oriented edges. Furthermore, the action
is transitive on vertices (for any vy, vy € Fy, there exists g = vgvfl € F5 such
that g - v1 = vg).

Theorem 2.28. A group G is isomorphic to a free group if and only if it acts
freely on a tree.

2.3 AM Problem Session

Problem 2.29. Prove that a group G is generated by a subset S if and only
if every element of G can be obtained by multiplying elements of S and their
inverses, with reptition.

Solution. Let H be the set of all finite products of elements of S and their
inverses. We first show H is a subgroup of G. The empty product is the identity
g,s0 e H If h =s7! ...sk@" € H, then its inverse h=! = slzg’“ ...Sl_gl
is also a finite product of elements from S U S™!, so h~' € H. Closure under
multiplication is clear from the definition. Thus H is a subgroup of G. By
construction, S € H.

Now, let {S) be the subgroup generated by S, defined as the intersection of all
subgroups of G containing S. Since H is one such subgroup, we must have {(S) <
H. Conversely, any subgroup containing S must be closed under multiplication
and inverses, so it must contain all elements of H. Therefore, H < {(S). We
conclude that H = {S).
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The statement that G is generated by S means (S) = G. By the above, this is
equivalent to every element of G being an element of H, i.e., a finite product of
elements from S and their inverses. O

Problem 2.30. For each natural number n, find a generating set S of the group
Z of cardinality n such that no subset generates Z.

Solution. Let n > 2. Let py,...,p, be distinct prime numbers. Define s; =
H#ipj fori =1,...,n. Let S = {s1,...,8,}. The greatest common divisor
of the set S is ged(sy,...,s,) = 1, because no single prime pj, divides all the

elements s; (specifically, pr does not divide si). By the extended Euclidean
algorithm, the subgroup {S) is dZ where d = gecd(S). Since d = 1, {(S) = Z.
Now consider any proper subset S’ < S. Let s; be an element not in S’. Then
every element in S’ is a multiple of the prime pg. Thus, any integer combination
of elements from S’ will also be a multiple of px. The subgroup generated by S’
is therefore contained in pxZ, which is a proper subgroup of Z. Thus, no proper
subset of S generates Z. O

Problem 2.31. Prove that every finitely generated group G is countable. Prove
that, if G is a finitely generated group and H is a finite (resp. countable) group,
then there are finitely many (resp. countably many) homomorphisms G — H.

Solution. Let G be generated by a finite set S = {s1,...,s,}. Every element of
G can be written as a finite word in the alphabet A = S U S~!, which has size
2n. The set of all words of length & is finite, |A[¥. The set of all finite words
is a countable union of finite sets, u,;‘c‘:OAk, and is therefore countable. Since
there is a surjective map from the set of all words to the group G, the group G
must be at most countable. As infinite groups exist, G is countable.

A homomorphism ¢ : G — H is uniquely determined by its values on the
generating set S. For each generator s; € S, its image ¢(s;) must be an element
of H. There are |H| choices for each ¢(s;). This defines a function from S to
H. By the universal property, this function extends to a unique homomorphism
from the free group F'(S) to H. For this to descend to a homomorphism from
G = F(S)/{{R)), the images of the generators in H must satisfy the relations
R. Regardless, the total number of possible ways to map the generators is |H|™.

1. If H is finite, there are at most |H|™ (a finite number) of homomorphisms
from G to H.

2. If H is countable, there are at most |H|™ = R} = X, (a countable number)
of homomorphisms.

This solves the problem. O

Problem 2.32.
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1. Prove that every word in a and b can be reduced to a unique reduced word.
Hint: prove by induction on length of words that two different choices of
reduction will both lea to the same reduced word.

2. Carefully check that the free group Fs is a group. Hint: For associativity,
you will want to use the previous exercise.

Solution.

1. We use induction on the length of a word w. The base case, a word of
length 0 or 1, is already reduced. Assume any two sequences of reductions
on a word of length less than k lead to the same reduced word. Let w be
a word of length k. Suppose we apply two different reduction steps. If the
reductions occur at disjoint positions (e.g., w = wyss~lwqtt~lws), then
reducing either pair first leads to an intermediate word of length k — 2,
and reducing the other pair from there leads to the same result. The only
difficult case is overlapping reductions, i.e., w = uss~!sv. One reduction
gives usv. The other gives us~'sv. Both of these words are of length k—1.
By the inductive hypothesis, they both reduce to the same unique word.
This establishes that any two reduction paths of one step can be joined.
A simple induction on the number of steps completes the proof that all
reduction sequences terminate at the same unique reduced word.

2. Let the operation be concatenation followed by reduction, denoted by .

3. Closure: The product of two reduced words is, after concatenation and
reduction, another reduced word. So the set is closed.

Identity: The empty word ¢ serves as the identity. For any reduced word
w, w* J =w and ¢ * w = w since no reductions are possible.

Inverse: For areduced word w = $155 ... s, its inverse isw™! = 3;1 ... sglsfl.

Their concatenation ww ™! reduces completely to .

Associativity: We must show (u#v)*w = u* (v+w) for any reduced words
u, v, w. Let u-v-w denote the word formed by simple concatenation. Then
(u#v)#w is the unique reduced form of the word (u-v), - w, where (u-v),
is the reduced form of w - v. Similarly, u * (v * w) is the unique reduced
form of u - (v - w),. By the uniqueness of reduced forms (Part 1), both
of these must be equal to the unique reduced form of the word u - v - w.
Therefore, associativity holds.

O

Problem 2.33. Let D, be the dihedral group with 2n elements, the group of
rigid motions of the plane preserving a regular n-gon. Show that D, has the
presentation

(s,t|s" 12, stst)
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Hint: Think of this in two steps. First find generators s and t that satisfy the
given relations, which says that D, is a quotient of the group with the given
presentation. Then show that D, is no smaller, with a cardinality argument.

Solution. Let G = {(s,t|s",t?,ststy. Let D, be the group of symmetries of a
regular n-gon. We can identify a generator for rotations, say p (rotation by
27/n), and a generator for reflections, say 7 (reflection across a chosen axis).
These satisfy the relations p” = id, 72 = id, and 7p7~! = p~!. Since 7 = 771,
this last relation is 7p7 = p~!, or 7p7p = id. By the universal property, the
map f : {s,t} — D, given by f(s) = p and f(¢t) = 7 extends to a group
homomorphism ¢ : G — D,,. Since p and 7 generate D,,, the homomorphism ¢
is surjective.

Now we examine the size of G. The relations t? = ¢ and stst = ¢ = st =
t=1s71 = ts71 allow any word in G to be written in the form st/ for integers
i,j. The relation s = e restricts i to {0,1,...,n — 1}, and #? = e restricts j to
{0,1}. Thus, there are at most 2n distinct elements in G. We have a surjective
homomorphism ¢ : G — D,,, where |G| < 2n and |D,| = 2n. A surjective map
from a set of size at most m to a set of size m must be a bijection. Therefore,
 is an isomorphism, and G = D,,. U

Problem 2.34. Consider groups defined by the following presentations:

Gy = {a,blaba™ b2, bab" a"?)
Gz = {a,b,claba™*b2,bcb" c™2, cde™ d™?, dad " a™?)
Gy = {a,b,c,d|aba b2 beb~tc™2, cde™ d 2, dad  a™%)

Show that both G5 and G35 are the trivial group. Then, show that G4 is not
trivial.

Solution. These are the Higman groups.

Case n = 2. Go = {a,blaba™! = b?,bab=! = a?). From the first relation,
a = b%ab~1. From the second, a? = bab~!. Substitute a? into the first relation:

aba™! = b(bab=1)b~! = ba. This implies aba™t = ba = ab = ba®. But from

bab~' = a?, we have ba = a?b. So ab = a®b, which gives a = a2, so a = e.

If a = e, the second relation bab~! = a® gives e = e, and the first relation
aba~! = b? gives b = b2, so b = e. Thus G5 is the trivial group.

Case n = 3: I don’t know how to do this.
Case n = 4: I don’t know how to do this.
O

Problem 2.35. Check that the following are equivalent for a connected graph
I:
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1. T contains no cycle as a subgraph.

2. Any two vertices in I' are connected by a unique non-backtracking edge
path.

8. Removing any edge of T disconnects the graph.

Solution. (1 = 2) Since I' is connected, there exists at least one path between
any two vertices w,v. Suppose there were two distinct paths, P and P». Let
x be the first vertex on P; (starting from w) that is not on P, (or where the
paths diverge), and let y be the first vertex after  on P; that is also on Ps.
The segment of P; from z to y and the segment of P, from z to y form a cycle.
This contradicts (1). Thus, the path must be unique.

(2 = 3) Let e = {u,v} be an edge in I'. This edge itself is a path from u to v.
By (2), this is the only path between u and v. If we remove e, there is no longer
any path between u and v, so the graph becomes disconnected.

(3 = 1) Assume, for contradiction, that I' contains a cycle C. Let e = {u,v}
be any edge on this cycle. The remaining edges of the cycle, C\{e}, form a
path between u and v. Therefore, removing the edge e does not disconnect the
graph, as v and v (and all other vertices) remain connected through the rest of
the cycle. This contradicts (3). Thus, I" must contain no cycles.

O

Problem 2.36. Check that the Cayley graph of the group group Fb is a tree.
Describe the actions of each generator on the tree.

Solution. Let I" be the Cayley graph of F» = (a, b). The vertices are the elements
of Fy. By definition, I' is connected. To show it is a tree, we must show it
contains no cycles. A path starting and ending at a vertex g corresponds to a
sequence of generators i, ..., S, such that gsyss...sp = g. This implies the
word w = $1...Sk represents the identity element in F5. In a free group, the
only word that represents the identity is a word that is not freely reduced (i.e.,
it reduces to the empty word). A cycle is a path that does not retrace edges. A
non-retracing path in the Cayley graph corresponds to a freely reduced word.
Since no non-empty freely reduced word is equal to the identity, there are no
cycles in I'. Thus, the Cayley graph of F5 is a tree.

The group Fy acts on this tree by left multiplication. Let g € F5. The action
of a generator, say a, maps every vertex v to the vertex av. Geometrically, this
action is a ”translation” along the paths composed of a-edges. Every vertex
is moved one unit along the unique outgoing a-edge. The action of ¢! is the
inverse translation. The action has no global fixed points; it moves the entire
infinite tree without rotation or reflection about any point. O
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2.4 PM Lecture 1: Riemann Surfaces II1

Yesterday, our aim was to classify all Riemann surfaces, with a particular focus
on compact Riemann surfaces.

If X is a compact Riemann surface, then topologically X is also a compact, con-
nected, orientable two-dimensional real manifold. So, we start with a compact
Riemann surface. Applying a “forgetful” map that discards the complex struc-
ture leaves us with such a manifold. These underlying topological manifolds are
classified by their genus g € Z>¢ (a non-negative integer).

In the genus g = 0 case, the underlying topological space is the 2-sphere S2.
We've already seen that S? admits a unique complex structure (up to biholo-
morphism), making it the Riemann sphere P%. Hence, the fiber of the forgetful
map over S? (i.e., the set of distinct complex structures on S?) is a singleton
set.

Exercise 2.37.
1. Show that C* acts on C"T\{0} by scalar multiplication:

A (xo, @1,y ..y xn) = (Azo, A1, ..., ATy).

2. The complex projective n-space PG is defined as the quotient space
(C™h{o})/C*

under this action. Show that PL is a Riemann surface.
3. Show that P{ is homeomorphic to S? as topological spaces.
Note: Coordinates on Pg will be denoted by [z : @1 : -+ : zp].

In the genus ¢ = 1 case, the underlying topological space is the torus S' x
S1. The set of distinct complex structures on the torus (i.e., the fiber of the
forgetful map over S' x S!) is parameterized by homothety classes of lattices
in C. (Homothety means scaling by a non-zero complex number).

A lattice A € C is a Z-submodule of the form A = Zw, @ Zwsy, where wy, wy €
C are R-linearly independent complex numbers. Two lattices A and A’ are
considered equivalent (or in the same homothety class) if A = aA’ for some
a € C*. We saw yesterday that the quotient C/A forms a Riemann surface of
genus 1.

Consider ordered pairs (wq,ws) of non-zero complex numbers. We define a

map Z by Z(wi,we) = ¢+ € Cu {oo}. If wi,wy are restricted to be R-
linearly independent, then Z(wp,ws) maps to HY u H- = C\R (the union

of the upper and lower half-planes). The map Z is invariant under homoth-
ety: Z(awy,aws) = Z(wy,ws) for a € C*. Thus, the set of homothety classes
of ordered pairs of R-linearly independent complex numbers is identified with
HY L H™.
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Exercise 2.38. Let A = Zw; @ Zws be a lattice in R2.

1. Show that for any matrix

the action

A- A= Z(awy + bwe) @ Z(cwy + dws)
defines a well-defined action of GLa(R) on the space of lattices in R?.
2. Show that the action

c d cz+d

is a well-defined action of GLa(R) on the extended upper half-plane HT u
H~.

[a b] az+b
.Z::

3. Show that the stabilizer of the point i € HT under this action is the or-
thogonal group O2(R). Deduce that there is a bijection

GLQ(R)/OQ(R) = HJr uH™.

So, we have a correspondence: the set of homothety classes of ordered, R-linearly
independent pairs (wp,ws2) can be identified with Z(wy,ws) € HY u H™ =
GL2(R)/O2(R). Furthermore, the set of homothety classes of such pairs (wy, ws)
surjects onto the set of homothety classes of lattices in C.

This relationship can be summarized in the following diagram:

pairs of R-independent complex z
numbers up to homothety GLy(R)/O5(R)

{space of all lattices in C} ~ GL3(Z)\GL2(R)/O2(R)
The map Z gives the isomorphism between the space of homothety classes of
lattices and the double coset space.
Exercise 2.39.
1. Show that the action of GL3(Z) (as a subgroup of GL2(R)) on GL2(R)/O2(R) =

H* L H™ corresponds to the action z — %2 for <Z Z) € GLy(Z).

z+d

2. Show that GLy(Z)\(H* LH™) = SLy(Z)\H*.

We have thus identified the space of homothety classes of lattices in C with
SLy(Z)\H*. This space is denoted X (1) (where I'(1) is another name for
SL2(Z)). X (1) is a non-compact Riemann surface, biholomorphic to C.
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Proposition 2.40.

X (1) has a standard compactification Y (1),, which is also a Riemann surface.
In fact, Y (1) is biholomorphic to the Riemann sphere P¢. The compactification
adds one point (a cusp): Y (L\X (1) = {o0}.

Now we move on to briefly introduce projective varieties. Recall that P¢ :=
(C"*t1\{0})/C*. In affine spaces like C*¥ (analogous to R¥), we study affine
varieties (and more generally, manifolds). In projective spaces PE, we study
projective varieties.

We now briefly introduce projective varieties. Recall that the complex projective
space of dimension n, denoted P, is defined as the set of equivalence classes

Pg == (C™I\{0}) / ~,

where two nonzero vectors (g, ..., 7,) and (yo,...,y,) in C**! are equivalent,
written (xo,...,Zn) ~ (Yo,---,Yn), if there exists a nonzero scalar A € C such
that (yo,...,yn) = M@0, .., Tn)-

In real Euclidean space R", we often study manifolds defined by real-valued
equations. In contrast, in the projective setting, particularly in Pg¢, we study
projective varieties, which are the zero sets of homogeneous polynomials in
Clzo, .- xn]-

As an example, consider the affine equation
2+ 422 =1

This defines a surface in C, and the point (z,y, 2) = (1,0, 0) is clearly a solution.
However, when we pass to projective space, we must account for the equivalence
relation. For instance, in Pg, the points (1,0,0) and (2,0,0) are considered
equivalent because they differ by a scalar multiple.

To correctly define the variety in projective space, we must homogenize the
equation. That is, we introduce a new variable w and consider the homogeneous
equation

x2+y2+22 = w?.
Now points like (4,1,0,+/2) and (2i,2,0,2+v/2) represent the same point in P2,
preserving the equivalence structure. Homogenization ensures that the variety
is well-defined in projective space.

Definition 2.41. A projective curve in P% is the set of points [z :y : 2] €
PZ such that F(z,y,z) = 0, where F(z,y,z) is a non-constant homogeneous
polynomial.

Definition 2.42. A projective curve defined by F(x,y,z) = 0 is smooth if the

gradient vector VF = [%—5, %1;7 %—f] is non-zero (i.e., has rank 1) at every point

[z :y:z] on the curve.
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Example 2.43.

1. F(x,y,2) = x+y+ 2 defines a smooth curve because its gradient is VF =
[1,1,1], which is never zero.

2. Consider F(x,y,z) = 2?+ay+xz = x(x+y+2). This curve is not smooth.
Its gradient is VF = [2z +y + z,z,z]. At the point [0 : 1 : —1] (which
satisfies F(0,1,—1) = 0), the gradient evaluated using the representative
(0,1,-1) 4s [2(0) + 1 + (—=1),0,0] = [0,0,0]. Since the gradient vanishes,
the curve is not smooth at [0:1: —1].

Proposition 2.44. If C = {[z : y : z] € PZ | F(z,y,2) = 0} is a smooth
projective curve (where F is a non-constant homogeneous polynomial), then C
18 a compact Riemann surface.

2.5 PM Session 2: Elliptic Curves
Theorem 2.45.

1. Let X be a compact, connected, orientable two-dimensional manifold (a
surface). Then X can be endowed with the structure of a Riemann surface.

2. Any compact Riemann surface is algebraic. This means that X can be
holomorphically embedded into some complex projective space P¢ as a
smooth algebraic curve.

Corollary 2.46. For any lattice A < C, the complex torus C/A is algebraic.
That is, C/A can be embedded as a smooth projective algebraic curve in some
P2 (specifically, P% as shown below).

Definition 2.47. The Weierstrass p-function associated with a lattice A is
defined for z € C\A as

PA(z):ziQ+ > <(Z_1w)2—132>

weA\{0}

This series converges uniformly on compact subsets of C\A. The function pp(2)
is an even, doubly periodic (elliptic) function with periods in A, and has double
poles at each lattice point.

Proposition 2.48. The Weierstrass g-function satisfies the differential equa-
tion:

P (2)" = 4pa(2)” — g2(M)pa(2) — gs(A),
where g2(A) = 60G2(A) and g3(A) = 140G5(A). The terms Gi(A) are values
of Eisenstein series, defined as G (A) = ZweA\{O} w2k for integers k > 1 (so

2k > 4, which ensures convergence). Thus, ga(A) uses Ga(A) = Y w™* and
g3(A) uses Gz(A) =Y w°.
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Theorem 2.49. The map ® : C/A — P%, defined by

[pa(2) : P (2) 1 1] ifz¢ A

q)(z+A):{[O:1:O] ifze A

1s a well-defined holomorphic embedding. Its image is the projective algebraic
curve Cp in IP’(QC[X :Y 1 Z] defined by the homogeneous equation:

Y?2Z = 4X3 — go(AN)X Z?% — g3(N) Z3.
Thus, C/A is isomorphic as a Riemann surface to Cy.

Definition 2.50. Curves in PA[X : Y : Z] defined by an equation of the form
Y27 =4X3 —aXZ? —bZ3 are called elliptic curves, provided their discrimi-
nant A = a® — 27b% is non-zero (which ensures the curve is smooth).

Definition 2.51. The j-invariant is defined as

3
a
j(E = 1728—
J(E(a,b)) = 1728,

where A = a® — 27b2.

Theorem 2.52. Two elliptic curves E(a,b) and E(a’,b') (defined by coeffi-
cients a,b and o',V respectively) are isomorphic as Riemann surfaces (and as
algebraic curves over C) if and only if their j-invariants are equal: j(E(a,b)) =
J(E(a’,b)).

So, we have the following correspondences:

{isomorphism classes of

. _
elliptic curves } ¢

{ lattices up to

homothety } —— GL2(Z)\GL2(R)/O2(R) T(1)\H = Y(1)

How does one construct the map from Y (1) (representing lattices up to homo-
thety and choice of basis orientation) to ]P’ql: (representing isomorphism classes
of elliptic curves) directly using the j-invariant? To understand this, we need to
discuss modular forms and modular curves. Consider I'(1) = SLy(Z), which is
a subgroup of SLy(R) and acts on the complex upper half-plane H by fractional

at+b
ct+d”

linear transformations: <(Cl Z) ST =

Definition 2.53. For an integer N > 1, the principal congruence subgroup
of level N is defined as T(N) = ker (SLa(Z) — SLy (Z/N7Z)).
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An element (Z z> € SLy(Z) is in T'(N) if and only if a =d =1 (mod N) and
b=c=0 (mod N). The quotient space X (1) = I'(1)\H is isomorphic to C via
the j-invariant map.

We define X(N) = I'(N)\H and Y (N) as its compactification. These are Rie-
mann surfaces. Note that if M divides N, then I'(N) < I'(M), which implies
there is a natural projection map (a covering map) Y (N) — Y (M). This gives
a diagram of modular curves:

Just as X (1) is compactified to Y'(1), similar constructions yield compact Rie-
mann surfaces Y(N) from X (N) for other levels N. These Y(NN) are called
modular curves.

Definition 2.54. A modular function of level N (for T'(N)) is a mero-
morphic function on the compact Riemann surface Y (N). Equivalently, it’s a
function f : H — C u {0} such that f is meromorphic on H, f(y-71) = f(1)
for ally e T'(N), and f is meromorphic at the cusps.

Example 2.55. The j-invariant is a modular function of level 1. It is holo-
morphic on H (and on X (1)), with a simple pole at the cusp oo of Y (1).

Note that neither go(A) nor gsz(A) (viewed as functions of 7 by setting A =
ZT @ Z1) is a modular function of level 1 because they are not invariant under
the action of I'(1) = SLa(Z).

2.6 PM Problem Session

Problem 2.56.
1. Show that C* = C\{0} acts on C"*1\{0} by \-(x0, ..., 2n) = (AZq, ..., ATy).
2. Let PR = (C"*1\{0})/C*. Show that P} is a Riemann surface.
3. Show that Pt ~ S? as topological spaces.

Solution.
1. We verify the group action axioms. Let G = C* and X = C"*1\{0}.

e Closure: For any A € G and ¥ = (x0,...,2,) € X, the product
AT = (A\rg,..., 1) is a vector in C"*1. Since A\ # 0 and T # 0,
at least one component z; is non-zero, making Ax; non-zero. Thus,
A& # 0, so the action maps X to itself.
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e Identity: The identity element of G is 1. For any ¥ € X, 1-Z =
(1-29,...,1-2,) =2

e Compatibility: For any A, A2 € G and ¥ € X:
(/\1/\2)f = (()\1)\2)1‘0, ceey ()\1/\2)l‘n) = (/\1 (/\21‘0), ey )\1 ()\gxn)) = )\1()\25)

All axioms are satisfied, so this is a well-defined group action.

. To show P} is a Riemann surface, we must equip it with an atlas of
charts whose transition maps are holomorphic. An element of P{. is an
equivalence class [zg : z1] of points in C2\{0}.

We define two open sets that cover IF’}C:
o Uy = {[wo: x1] € PL | wo # 0}.
o Ulz{[l'oil'l]epé|$1750}.

These sets are open because their preimages in C?\{0} are open. They
cover PL because for any point [z : z1], at least one coordinate must be
non-zero.

We define chart maps for each set:
o ¢g : Up — C is given by ¢o([zo : ®1]) = z1/x0. This map is well-
defined because if [z : x1] = [Axo : Az1], then (Ax1)/(Azg) = z1/x0.
It is a bijection with inverse ¢ '(2) = [1 : 2].
e ¢ : Uy — Cis given by ¢1([xo : 21]) = zo/x;. This is also a
well-defined bijection, with inverse ¢; *(w) = [w : 1].
The pair (Up, ¢o) and (Ur,¢1) form an atlas. We must check that the
transition map is holomorphic. The domain of the transition map is
do(Uo nUr). Upn Uy = {[xo : 1] | x0 # 0,21 # 0}. The image un-
der ¢g is C*.
The transition map is ¢ = ¢ o ¢al :C* — C*. For any z € C*:
_ 1
¥(2) = 61(d5 " (2) = dn([1:2]) = —.

The function f(z) = 1/z is holomorphic on its domain C*. Therefore,
the atlas is a complex atlas, endowing P{. with the structure of a Riemann
surface. The Hausdorff and second-countable properties are inherited from
the quotient topology on C2\{0}.

. We show that P} and the 2-sphere S? are both homeomorphic to the
one-point compactification of C.

e From part (2), PL = Uy u {[0 : 1]}. The chart map ¢o : Uy — C
is a homeomorphism. So P} is topologically a copy of C with a
single point, [0 : 1], added. This is the definition of the one-point
compactification C u {o0}.
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o Consider the sphere S? — R3. The stereographic projection from the
North Pole (0,0, 1) is a homeomorphism from S2\{(0,0,1)} to the
plane R2. Thus, S? is topologically the one-point compactification of
R2.

Since C is homeomorphic to R2, their one-point compactifications are
homeomorphic. Therefore, IED%: ~ 52 as topological spaces.

O

Problem 2.57.

1. Show that ¢

Z - A = Z(awy + bws) @ Z(cwy + dws) is a well-defined
action of GLo(R) on the space of lattices in C.

2. Show that the action <Z Z) -z = 24 s g well-defined action of GLy(R)
on H* LH™.

3. Show that the stabilizer of i € HT is SO(2,R)-Rxq (the group of rotation-
dilations) and deduce that GLa(R)/(SO(2,R) - R~o) = HT L H™.

4. Show that under this isomorphism, the left action of GLy(Z) on the coset
space corresponds to the standard action on H' L H™.

5. Show that GLa(Z)\(H* L H™) 5> SLy(Z)\H*.

Solution.
1. Let A = Zwy, ® Zw, be a lattice. The vectors wq,ws are R-linearly in-

dependent. Let A = (Z Z) € GL2(R). Let wj = aw; + bwy and

wh = cwy + dwy. If we represent wi,ws as column vectors in R? cor-
responding to their real and imaginary parts, then the new basis vectors
(w], wh) are obtained by applying the matrix A to the basis (w1, ws). Since
A is invertible, it maps an R-basis to another R-basis. Thus, w},w) are
R-linearly independent. The set A- A = Zw] @ Zw), is a discrete subgroup
of C of rank 2, and hence is a lattice. The identity and compatibility
axioms for a group action follow directly from the properties of matrix
multiplication on basis vectors.

a b

2. Let A = <c d) € GLy(R) and z € HY uwH™, so Im(z) # 0. We compute
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the imaginary part of the image:

Im(A‘Z):Im(aZWLb)

cz+d
— Im ((az +b)(cz + d))
|z + d|?
Im(adz + bez)
lcz + d|?
Im(ad(z + 1y) + be(z — 1y))
lcz + d|?
(ad — be)Im(z)
lez + d|?
det(A)Im(z)
T ez +dP

Since det(A) # 0 and Im(z) # 0, the imaginary part of the image is also
non-zero. Thus A-z € HY uH~. The action axioms follow from standard
properties of Md&bius transformations.

. We seek the subgroup of matrices A = (CCL Z) € GL2(R) that fix .
i + b
PO i ditb=i(ci+d) = —c+di.
ci+d
Equating the real and imaginary parts of this equation gives b = —c

and a = d. The matrix must have the form A = <CCL —ac>. This is a

rotation-dilation matrix. The group of such matrices is isomorphic to C*

via the map a + ic — A. We can write A = va? + ¢2 0989 —sing
sinf  cosf

where cosf = a/v/a? + ¢2, etc. This group is precisely the group of scalar
multiples of rotation matrices, which we denote SO(2,R) - R.g. This is
the correct stabilizer, not O(2,R).

The action of GLy(R) on H* 1y H™ is transitive. For any z = x + iy €
y x
0 1
be reached by composing with a matrix of negative determinant, e.g.,

(é _01> By the Orbit-Stabilizer Theorem, the orbit of ¢, which is H™ L

H~, is bijective with the quotient space G/Stabg(i). Thus, we have the
bijection:

H*, the matrix e GLj (R) maps i to 2. Any point in H~ can

GL2(R)/(SO(2,R) - Roo) = H* LH™.

. The isomorphism ¥ : GLg(R)/Stab(i) — H* u H~ is given by ¥(A -
Stab(i)) = A -i. Let g € GLo(Z) act on the left of the coset space. The
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image of the new coset is:
W(g- (A-Stab(i))) = ¥((gA) - Stab(i) = (9A) - i.

By the associativity of the Mobius action, this is g-(A-i). If welet z = A-i,
then the action on the coset space corresponds to the action z — g -z on
the upper half-plane.

. We want to show GLo(Z)\(H'* u H™) =~ SLy(Z)\H*. Let 7 : Ht —
GL2(Z)\(H* u H™) be the quotient map restricted to H*. This map is
surjective. For any point w € H~, there exists A € GL(Z) with det A =
-1 (e.g., A= ((1) _01)) such that A -w € HT. Thus, every orbit in the
quotient space has a representative in H™.

Now we determine the fibers of m. Two points 21,29 € H' map to the
same orbit if and only if there exists g € GL2(Z) such that g - 21 = 2.
Since both 21, 2o are in H™, the sign of their imaginary parts is positive.
From the formula Im(g - 21) = %, the sign is preserved only if

det(g) > 0. Since g € GLa(Z), its determinant must be +1. Thus, we
must have det(g) = 1, which means g € SLy(Z).

This shows that two points in HT belong to the same GLy(Z)-orbit if
and only if they belong to the same SLs(Z)-orbit. The quotient space is
therefore in bijection with the set of orbits of SLy(Z) acting on H*.

O
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3 Wednesday, June 4

3.1 AM Session 1: Trees

Recall that a group presentation is written as G = (S | R), which signifies that
G is isomorphic to the quotient group F(S)/{({(R)). Here, F(S) denotes the free
group generated by the set of symbols S, and ((R)) is the normal closure of the
set of relators R (i.e., the smallest normal subgroup containing R). We finished
the previous session with the following theorem:

Theorem 3.1. A group G is free if and only if it acts freely on a tree.

Proof.

( = ). This direction is true by construction. For instance, if G = F(X) is
a free group on a set of generators X, its Cayley graph with respect to X is a
tree, and G acts freely on this tree by left multiplication.

(«<=). Suppose G C T freely, where T is a tree.

g1V
g3v v 91 ga2v

Fix a base vertex v € V(T'). For each g € G, consider the set
T, ={zeV(T") | d(z,gv) < d(z,h'v) for all b € G}.

Here T' denotes the barycentric subdivision of T, and V(T”) is its vertex set.
The set T, consists of vertices in 7" that are metrically closer to (or equidistant
from) gv than to h'v for any other ' € G. T, induces a subgraph of T”.

Claim:

1. Each T, € T is a connected subgraph (and therefore a subtree, as T” is a
tree) and | J .o V(Ty) = V(T").

2. If g # h, then T, n T}, (the intersection of their vertex sets) is either empty
or consists of a single vertex.

3. For any k € G, k- T, = Ty, (acting on the vertices and edges of the
subgraph).
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Let S = {g e G| Tia n Ty # I}, where id is the identity element of G. (Note
that id € S by this definition, as Tiqg N Tiq = Tiq is non-empty.)

Exercise 3.2. Ifse€ S, then s~ e S.

Claim: G = F(S’) where S’ = S\{id}.
Step 1: S generates G.

Take any g € G. Consider the unique simple path in T" from v to gv. This path
corresponds to a sequence of vertices v = x¢,x1,...,2p, = gv in T'. Each z;
belongs to some Tj. More formally, there’s a sequence gg = id, g1,...,9n = ¢
such that T,, n T, # Ffor k =0,...,n—1. Let s = g,;lgkﬂ. Since

k+1

Ty N Ty, ., # &, applying the action of g; ' yields g, ' (Ty, N Tyy,,) = Tyorg, 0
o ke Tiq v’\TSk # . Thus, s, € S for all k. Then g1 = gosp = id - sg = s,

g2 = ¢g1S1 = SoS1, and so on, leading to g = ¢, = S9S182...8,_1. Thus, S
generates G.

Step 2: Why does S freely generate G (when restricted to S’ = S\{id})?
Exercise 3.3. If there were two distinct ways of writing g as a product of

elements of S (more precisely, as reduced words in S’ U (S')~1), then this would
give a non-trivial loop in T, contradicting that T is a tree.

This completes the sketch of the proof.

Definition 3.4. The Farey graph has:

o vertices: pairs +(m,n) where m,n € Z satisfy gcd(|m|,|n|) = 1. (These
represent rational numbers m/n, including 00 as +(1,0), with (m,n) iden-

tified with (—m, —n).)

e edges: there is an edge between +(a,b) and *(c,d) if and only if ad—be =
+1.

Exercise 3.5.
1. Check that £(0,1) is adjacent to +(1,0).
2. Find all vertices £(m,n) adjacent to both +(1,0) and +(0,1).

3. If £(a,b) is adjacent to +(c,d), find all vertices +(m,n) adjacent to both
+(a,b) and +(c,d). Hint: SLy(Z) acts on these vertices. The action can

T
be written as A - +(m,n) = + (A <1::>> , where the resulting column

vector is interpreted as a pair.

Solution.
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1. For +(0,1) and +(1,0): let (a,b) = (0,1) and (¢,d) = (1,0). Then ad —
be = (0)(0) — (1)(1) = —1. Since this is +1, they are adjacent.

2. Let £(m,n) be adjacent to +(1,0) and +(0,1). Adjacency to +(1,0)
means m(0) —n(l) = +t1 = —-n =41 = n = £1. Adjacency
to £(0,1) means m(1) — n(0) = £1 = m = £1. So, the pairs are
(m,n) = (x1, +1), with ged(Jm/|, |n|) = 1. These are +(1,1) and £(1, —1).

3. +(a+c,b+d)and +(a —c,b—d).

3.2 AM Session 2: Farey Graphs

To visualize the Farey graph in the upper half-plane H, we identify the vertices
+(m,n) (where n # 0) with the rational points ™* on the real axis R. The vertex
+(1,0) is identified with infinity. The edges of the Farey graph (where ad —bc =
+1) are then drawn as geodesics in H, which are semicircles perpendicular to R
or vertical lines to co0. This forms the following picture:

Figure 1: An example of a Farey diagram

From this Farey graph, we construct a tree, denoted Tt,,. The vertices of Tt,, can
be conceived as two types: one type representing the centers of the ideal triangles
of the Farey tessellation, and the other type representing the midpoints of the
edges of the Farey tessellation. An edge in Tt,, connects a vertex representing
a triangle-center to a vertex representing an edge-midpoint if the original edge
is a boundary of the original triangle.

Exercise 3.6. Show that Tiq, as described is a tree.
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The action of SLy(Z) on H (preserving the Farey tessellation) induces an action
on the constructed tree Tty .

Consider the vertex of Tg,, corresponding to the points +(1,0) and +(0,1). If

. . . 1
a matrix A € SLo(Z) fixes this vertex, then its columns must be + 0 and

+ ((1)>7 in some order. The only such matrices in SLy(Z) are:

(6003 @ 5 (5w

Similarly, consider the center of the Farey graph, which corresponds to the
points £(1,0), £(0,1), and £(1,1). If A € SLo(Z) fixes all of these, then its
columns must be some pair of these vectors (up to sign) that form a basis. The
only possibilities are:

69 (4 ) 0 7))

Since the subgroup {+1} < SL2(Z) (where I is the identity matrix) acts trivially
on T,y (as £(m,n) is identified with F(m,n) as vertices of the original Farey
graph), the action descends to an action of

PSL,(Z) := SLo(Z)/{+1}.

The stabilizers of the above types of vertices in Tt,, under the PSLs(Z) action
become Z/2Z and Z/3Z, respectively.

Note: The action of PSLy(Z) on Ti,, has trivial edge stabilizers. That is, if
an element of PSLo(Z) fixes an edge of Ty, it must be the identity element in
PSLy(Z).

Definition 3.7. The free product of groups G and H, denoted G = H, is
the group whose elements are finite sequences (words) of the form xyxzo ...z
where each x; is a non-identity element of either G or H, and adjacent elements
Zj,Tj41 belong to different groups. The identity element is represented by the
empty word. The group operation is concatenation of words followed by reduction
(e.g., if q1,92 € G, g1g2 within a word is replaced by their product in G; if this
product is eq, it is removed, potentially leading to further reductions).

Exercise 3.8. If G =~ (S¢ | Rg)y and H = {Sy | Ry) (assuming Sg and Sy
are disjoint), then
G*H%<SGUSH|ROURH>.

Example 3.9. Let G = Z/2Z = {a | a®> = ¢) and H = Z/2Z = (b | b* = ¢).
Then Z/27 * 7./27 = {a,b | a®,b*). Elements are alternating strings of a’s and
b’s, such as ababab, ababa, a, b, and the empty word (identity). This group is
the infinite dihedral group Do .
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Theorem 3.10. Suppose a group G acts on a tree T satisfying:

1. The action is without inversions (if an element g € G fizes an edge e =
(u,v), then gu = u and gv = v).
2. The action is transitive on the set of oriented edges of T'.

8. The stabilizer G, of an edge e is trivial.

Fiz an edge e = (vy,v2) inT. Let Hy = G,, and Hy = G, be the stabilizers of
its vertices. Then G =~ Hy * H5.

Proof. The key idea is to describe elements of G in terms of elements from H;
and H,, using paths in the tree T' on which G acts.

Step 1: Show that G is generated by Hy; u Ho.

Let g € G. Consider the tree T', and let v be a vertex stabilized by H;. Then
the vertex gv is stabilized by the conjugate subgroup gH;g~'. Since the tree is
connected, there is a path from v to gv. This path corresponds to a sequence
of adjacent vertices:

V= V9,V1y...,Up = gu,

where each pair (v;,v;41) is connected by an edge. The stabilizer of each edge
lies in either Hy; or Hs, depending on which edge of the tree it is associated
with.

Let g; € G be such that g;v = v;, for i = 0,...,n, with g9 = 1 and g, = g¢.
Then for each 7, the element g, 1gi11 stabilizes the edge between v; and v;41,
SO g;lgiﬂ € Hy u Hy. Thus we can write:

9=09n=1(95"91)(97"92) - (9,2 19n).

where each factor lies in either H; or Hy. This shows that G is generated by
H1 o H2.

Step 2: Show uniqueness of such expressions.

Suppose g € G has an expression as a product of elements from H; and Hs
alternating in a reduced form (i.e., no consecutive elements from the same sub-
group and no identity elements). Then this corresponds to a reduced path in
the tree T, and such a path is unique because T is a tree (i.e., it has no cycles).
Hence the decomposition of g into such a product is unique up to the rules of
the amalgamated product.

This completes the proof. O

Corollary 3.11.
PSLy(Z) ~ 7,/27 « 7,/37.

Consequently, a presentation for PSLy(Z) is
PSLy(Z) = {a,b| a® = e,b* = ¢e).
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Proof. We apply the previous theorem. All that’s left is to check that PSLo(Z)
acts transitively on edges of Tta,. O

3.3 AM Problem Session

Problem 3.12. Prove the following facts about a group action G C X:

1. For each x € X and g € G, the stabilizer satisfies G g = 9G.g~ 1.

2. If a normal subgroup H LG acts trivially on X, then there is a well-defined
action G/H & X by (gH) -z =g-x.

Solution.

1. To establish the equality of the sets Gy, and gG,g~ !, we demonstrate
mutual inclusion.

First, let h € Gg,. By definition, h - (gz) = gz. The axioms of a group
action permit rewriting this as (hg) - © = gx. Applying the action of
g~ ! from the left yields g=' - ((hg) - ) = g~ ! - (g9x), which simplifies to
(97'hg) - x = x. This shows that the element g~'hg is in the stabilizer
G.. Consequently, h = g(g~'hg)g~!, which proves that h is an element
of gG,g~'. Thus, Gy, € gGug™ "

Conversely, let h € gG,g~'. Then h can be expressed as h = gkg~! for

some k € G, where k- = x. We verify that h stabilizes the element gz:

h-(gz) = (gkg™") - (9z) = (gkg'g) -x = (gk) - x =g-(k-z) = g- .

This confirms that h € Gy, thereby establishing the inclusion G9! <
Gge- The two inclusions together imply the desired equality.

2. For the action of the quotient group G/H to be well-defined, the result
must be independent of the choice of coset representative. Let ¢g1,92 € G
be such that g1 H = goH. This equivalence implies that go = g1 h for some
h € H. We must show that the action of the coset, when computed using
either representative, yields the same result. We compute the action of go
on an element z € X:

g2 -z =(g1h) -z =g1-(h- o).

By hypothesis, the normal subgroup H acts trivially on X, meaning h-z =
x for all h e H. Substituting this into the previous equation gives:

gr-(h-x)=g1m

Thus, gs - © = g1 - , confirming that the action is well-defined. The veri-
fication that this well-defined operation satisfies the group action axioms
for G/H is a straightforward consequence of the fact that the original
operation for G is a group action.
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O

Problem 3.13. Given a free action of a group on a tree, verify that the standard
construction of a fundamental domain yields a valid tiling of the tree.

Solution. Let G act freely on a tree T. The objective is to construct a funda-
mental domain, a subtree whose translates under the action of G partition T
The canonical method involves the quotient graph I' = G\T', whose vertices and
edges are the orbits of those of T'. Since the action is free, the natural projection
p:T — T is a covering map. The construction begins by selecting a maximal
tree Ty € I'. By the lifting property for covering spaces, we can lift T to a
subtree Ty < T'. This lift, our fundamental domain, is unique up to the choice
of a base vertex.

We verify that the set of translates {gTp | g € G} forms a partition of T. First,
we show the union of translates covers T'. Let v € V(T') be an arbitrary vertex.
Its orbit, Gu, must contain a vertex v’ whose projection p(v’) lies in the maximal
tree Tp. Since the projection p restricted to the lift T, is a bijection onto Tp,
there is a unique vertex o € Ty such that p(?) = p(v'). Because v/ and ¥ lie
in the same orbit and project to the same point, there exists some g € G such
that v/ = gv. As v and v’ are also in the same orbit, there exists h € G such
that v = hv’. Combining these, we find v = hgo, which implies v belongs to the
translate (hg)To. A similar argument holds for edges.

Next, we show the interiors of these tiles are disjoint. Suppose v € Ty N gif’ o for
some g # e. This implies v € Ty and v = gv’ for some v € Ty. Applying the
projection map gives p(v) = p(gv’) = p(v'). Since the restriction p|z, : Ty — Ty
is an isomorphism of graphs, it is injective on vertices. Therefore, p(v) = p(v')
implies v = v’. The condition becomes v = gv. As the action of G on T is free,
this forces g = e, which contradicts our assumption. Thus, for any g # e, the
intersection Ty N gTO contains no vertices. The construction thus partitions the
vertices and edges of the tree. O

Problem 3.14. Consider the principal congruence subgroup
I'(m) = ker(SL(2,Z) — SL(2,Z/mZ)).
Show that if m = 3, then T'(m) is a free group.

Solution. The proof relies on the relationship between a group and the topology
of its quotient space when it acts on a suitable space. The modular group
SL(2,Z) acts on the complex upper half-plane H, but this action is not free
due to the presence of elliptic elements of finite order, which have fixed points.
The core of the argument is to show that for m > 3, the subgroup I'(m) is
torsion-free, and therefore acts freely on H.
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An element of SL(2,Z) has finite order if and only if it is conjugate to a power

of § = (O 1> (order 4) or T = (1) 711 (order 6), or is —I (order 2).

1 0
We check if any of these lie in I'(m) by applying the reduction homomorphism
Tm : SL(2,Z) — SL(2,Z/mZ). An element is in the kernel I'(m) if it maps to
the identity. The matrices S and T do not reduce to the identity modulo m
for any m > 1. The matrix —I reduces to the identity if and only if —1 =1
(mod m), which means m divides 2. Therefore, for m > 3, none of the elliptic
elements of SL(2,7Z) lie in I'(m), proving that I'(m) is torsion-free.

Since I'(m) is a torsion-free discrete subgroup of SL(2, Z), its action on H is free.
The quotient space X (m) = I'(m)\H is a Riemann surface, and the projection
H — X(m) is a covering map. As H is contractible, it is the universal cover
of X(m). The theory of covering spaces provides an isomorphism between the
group of deck transformations, which is I'(m), and the fundamental group of
the base space, m1 (X (m)).

Topologically, the surface X (m) is a sphere with a finite number of punctures
(the cusps). For m > 3, the number of punctures is at least three. A sphere
with & > 2 punctures is homotopy equivalent to a wedge of k — 1 circles, whose
fundamental group is the free group on k — 1 generators, Fj_1. Therefore, for
m = 3, I'(m) is isomorphic to a non-trivial free group. O

Problem 3.15.

1. Prove that a free product of two groups acts on a tree without inversions,
freely and transitively on edges.

2. Prove that a free product with amalgamation acts on a tree without inver-
stons and transitively on edges.

Solution. This problem describes the construction of the Bass-Serre tree for a
free product, both with and without amalgamation.

First, consider the free product G = A * B. We construct a bipartite graph
T whose vertex set is the disjoint union of the left cosets of the factor groups,
V(T) = (G/A)u(G/B). The edge set is identified with the group itself, E(T) =
G, where an edge g € G connects the vertex gA to the vertex gB. The group
G acts on this graph by left multiplication. This graph is a tree; connectivity
is straightforward, and the uniqueness of the normal form for elements in a
free product ensures the absence of cycles. A cycle would correspond to a
non-trivial reduced word being equal to the identity, which is impossible. The
action is without inversions, as an element inverting an edge would have to
belong to both A and B, but A n B = {e}. The action is transitive on edges by
construction, and it is free on edges since the stabilizer of an edge ¢ is trivial.
The vertex stabilizers are the conjugates of the non-trivial factor groups A and
B.
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Next, consider the amalgamated free product G = A *¢ B, where A and B
share a common subgroup C. The construction of the tree is analogous. The
vertex set is again V(T) = (G/A) u (G/B). The edge set, however, is now
identified with the left cosets of the amalgamated subgroup, E(T) = G/C. An
edge corresponding to the coset gC' connects the vertex gA to the vertex gB.
The action of G is again by left multiplication. The proof that this graph is
a tree is a deeper result that relies on the uniqueness of the normal form for
elements in an amalgamated product. The action is transitive on edges by
construction. It is without inversions, as an element h inverting an edge gC
must satisfy g~'hg € A and g~ 'hg € B, which implies g~ 'hg € C. This reveals
that the stabilizer of the edge gC is the conjugate subgroup gCg~!. Since C is
generally non-trivial, the action on edges is not free. The vertex stabilizers are
the conjugate subgroups of A and B.

Brief remark: This construction provides the geometric foundation for Bass-
Serre theory. It is a generalization of the Cayley graph, which can be seen as
the special case where the factor groups are trivial (A = B = C = {e}), resulting
in the standard Cayley graph of a free group.

Problem 3.16. Prove that every automorphism of a tree T is either elliptic
or hyperbolic. An elliptic automorphism is a transformation that fizes a vertex
or an edge. A hyperbolic automorphism is a transformation g that preserves a
bi-infinite path L < T, called its axis, and acts by translation along L.

Solution. Let ¢ : T — T be a tree automorphism, which is an isometry under the
path metric d. Define the displacement function §(v) = d(v, ¢(v)) for v e V(T),
and let ¢ = inf ey (1) 6(v) be the minimal displacement. The proof proceeds by
analyzing whether this infimum is attained.

First, suppose the minimum is attained, so there exists a vertex vy with d(vg) =
L. If ¢ = 0, then ¢(vg) = v, and ¢ is elliptic by definition. If £ > 0, let P be the
unique geodesic from vy to ¢(vg). For any point v on P, the displacement d(v) is
also equal to ¢, a key property of isometries on CAT(0) spaces like trees. Let m
be the midpoint of P. Since ¢ maps the geodesic P to the geodesic ¢(P) (from
#(vo) to ¢*(vg)), and all points on P have minimal displacement, the path ¢(P)
must align with P without increasing displacement. This implies the midpoint
of P is mapped to the midpoint of ¢(P). In a tree, this forces an overlap. If
the length of P is even, m is a vertex and ¢(m) = m. If the length is odd, m is
the center of an edge e, and ¢(e) = e. In either case, ¢ stabilizes a vertex or an
edge and is therefore elliptic.

Next, suppose the infimum ¢ > 0 is not attained. This implies the existence of
a bi-infinite geodesic path L < T, the axis, which is invariant under ¢. Since
¢ is an isometry, it maps the geodesic L to another geodesic, which must be
L itself. Thus, ¢ acts as a permutation on the vertices of L that preserves
adjacency and distance. This forces ¢ to act as a translation along L. That is,
if L is parameterized by the integers (..., v_1,v0,v1, ... ), there exists a non-zero
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integer n (the translation length) such that ¢(v;) = v;1, for all i € Z. Such an
automorphism is, by definition, hyperbolic. O

Problem 3.17. Explain how to give a presentation of a group G acting on a
tree T without inversions, transitively on both edges and vertices.

Solution. This scenario is a fundamental application of Bass-Serre theory, lead-
ing to the algebraic structure of an HNN extension. Let G act on a tree T
without inversions and with a single orbit of vertices and a single orbit of edges.
The quotient graph G\T therefore consists of one vertex and one loop edge.

We derive a presentation by choosing representatives in the tree. Select a vertex
vo € V(T') and an edge eg € E(T) whose initial vertex is vg. Let the terminal
vertex of eg be v;. The stabilizer subgroups of these representatives are A =
Stabg(vg) and Hy = Stabg(eg). Since an edge stabilizer fixes the endpoints,
Hy < A.

Because the action is transitive on vertices, there must be an element, which
we call the stable letter ¢t € GG, that connects the vertices of the representative
edge, i.e., t-v; = vg. This element relates the stabilizer of v; to that of vy by
conjugation: G,, = t~1At. The stabilizer Hy is a subgroup of both G,,, and G, .
From Hy € G,,, we conjugate by t to find tHot ™1 € tG,,t 7 = Gy, = Gyy = A.
Thus, conjugation by ¢ defines an injective homomorphism v : Hy — A given
by ¥(h) = tht=!. Let Hy = (Hp) € A.

The structure theorem of Bass-Serre theory asserts that G is generated by
the vertex stabilizer group A and the stable letter . The interaction between
these generators is completely described by the isomorphism between the sub-
groups Hy and H;. This gives the presentation for the Higgman-Neumann-
Neumann (HNN) extension:

G = (At |tht™ = 4(h) for all h e Hy)

In this notation, A represents the full presentation (generators and relations) of
the vertex stabilizer group. O

Problem 3.18. Consider the Baumslag-Solitar groups, BS(m,n) = (a,b|ba™b~1 =
a™y. Show that this group acts on a tree and relate this to the HNN extension
structure.

Solution. The Baumslag-Solitar group BS(m,n) is a canonical example of an
HNN extension. We can directly identify its components from the presentation.
The base group is A = {a) = Z. The stable letter is ¢ = b. The defining
relation ba™b~! = a™ provides the isomorphism 2 between two subgroups of
A: the domain is Hy = {(a™) =~ Z, and the codomain is H; = {(a"™) =~ Z. The
isomorphism is explicitly given by 1 (a™) = a™.
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Since BS(m,n) is an HNN extension, Bass-Serre theory guarantees it acts on its
Bass-Serre tree 15, ,,. This tree can be constructed explicitly with vertices cor-
responding to the left cosets of the base group, V(T,,.,) = {gA | g € BS(m,n)},
and edges corresponding to the left cosets of the associated subgroup, E(T,, ) =
{gHo | g € BS(m,n)}. An edge gH, connects the vertex gA to the vertex gbA.

The action of BS(m,n) on this tree is by left multiplication. The stabilizer of
a vertex gA is the conjugate subgroup gAg—' =~ Z. The stabilizer of an edge
gHy is the conjugate subgroup gHog~ ' = Z. The action is transitive on both
vertices and edges by construction. Geometrically, the tree is an (m + n)-regular
tree where vertices can be imagined as arranged in levels. The generator a acts
as a translation along a given level, while the generator b acts as a shift between
levels, connecting a block of m vertices from one level to a block of n on another,
encapsulating the relation. O

Problem 3.19. Show that BS(2,3) = {a,b|ba*b~! = a3) is non-Hopfian.

Solution. A group G is Hopfian if every surjective endomorphism ¢ : G — G
is an isomorphism. To prove that BS(2, 3) is non-Hopfian, we must construct a
surjective endomorphism that possesses a non-trivial kernel.

Define the endomorphism ¢ : BS(2,3) — BS(2, 3) on the generators by ¢(a) =
a? and ¢(b) = b. We verify this is a valid homomorphism by checking that the
images satisfy the group’s defining relation. The image of the left side of the
relation is ¢(b)p(a)?p(b)~! = b(a?)?b~1 = batb~! = (ba?b71)? = (a®)? = aS.
The image of the right-hand side is ¢(a)® = (a?)® = a®. Since the images satisfy
the relation, ¢ is a well-defined endomorphism.

Next, we establish that ¢ is surjective. The image of ¢ is the subgroup generated
by the images of the generators, Im(¢) = (a2 b). Since b and a? are in the
image, the element ba?b~! = a® must also be in the image. As the image
subgroup contains both a? and a®, and because ged(2,3) = 1, it must also
contain a = a'371'2 = @3(a?)~!. Because both generators a and b are in the
image, the endomorphism is surjective.

Finally, we must demonstrate that the kernel of ¢ is non-trivial. This requires
the machinery of HNN extensions, specifically Britton’s Lemma, which gives a
normal form for elements and a criterion for triviality. Consider the element
w = [a,bab™'] = a(bab~1)a=1(bab=1)~1. We compute its image under ¢:

d(w) = [¢(a), p(b)p(a)p(b) '] = [a*, ba”d™"].

Using the defining relation ba?b~! = a3, this becomes:

$(w) = [a?,a’].

Since a? and a® are powers of the same element, they commute. Therefore, their
commutator is the identity: ¢(w) = e. This shows that w is in the kernel of ¢.
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The proof is complete if we show that w is a non-trivial element of BS(2,3).
This is the most technical step. Britton’s Lemma states that if a word in
an HNN extension equals the identity, it must contain a ”pinch” subword of
the form tct~! where c is in the first associated subgroup, or t~'ct where c
is in the second. For BS(2,3), this means any trivial word must contain a
subword of the form ba?*b=1 or b=1a®*b for some non-zero integer k. The word
w = abab~'a"'bab~! does not contain such a subword and cannot be reduced
to one. We've handwaved this mostly, but a rigorous application of Britton’s
Lemma confirms that w # e.

Since we have constructed a surjective endomorphism ¢ with a non-trivial kernel,
BS(2,3) is non-Hopfian. O

3.4 PM Session 1: Moduli I

Let I'(N) < SLa(Z) be the principal congruence subgroup of level N > 2, defined
as the set of matrices

[‘Z Z] € SLy(2)

such that a,d =1 (mod N) and b,c =0 (mod N). The action of I'(IN) on the
upper half-plane H = {z € C | Im(z) > 0} by fractional linear transformations
gives rise to the modular curve Y(N) := I'(N)\H. These are non-compact
Riemann surfaces.

In the special case where N = 1, T'(1) = SLy(Z). The corresponding modular
curve Y (1) is isomorphic to the complex plane via the j-invariant:

~

Y(1) 3 C
z— j(z)

To work with a compact space, we can compactify Y (N) to obtain a compact
Riemann surface denoted by X (N). This is achieved by adding a finite num-
ber of points called ”cusps,” resulting in a smooth projective curve with an
embedding Y (N) — X (N).

Every point of Y (1) corresponds to a homothety class of lattices A € C. Each
such lattice defines an elliptic curve E = C/A. This elliptic curve can be em-
bedded into the complex projective plane P? via the Weierstrass p-function and
its derivative:

C/A > Z(Y?Z —4X? — go(A)X Z% — g3(A)Z%) < P?

t[oa(t) : pi(t) : 1]
0—[0:1:0]

where g2(A) = 60G4(A) and g3(A) = 140Gg(A) are defined in terms of the
Eisenstein series Gar(A) = 2,cx\ (0} w2k
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The coefficients go and g3 transform under scaling of the lattice A by a € C* as
follows: ga(aA) = a=%ga(A) and gz(aA) = a=%g3(A). The j-invariant, defined

as
 1728¢2(A)?

A(A)
is invariant under such scaling (i.e., it is of weight 0), and thus depends only on
the homothety class of the lattice.

J(A) where  A(A) = g2(A)® — 27g3(A)?,

Definition 3.20. Let f : H — C be a holomorphic function. We say that f is
a modular form of weight 2k and level N if:

1. For every v = <Z Z) € F(N), f(vz) = (CZ + d)Qkf(z)

2. f is holomorphic at the cusps (i.e., on the boundary X (N)\Y (N)).

Lemma 3.21. Let L be the set of all lattices in C, and let F : L — C be
a function satisfying the homogeneity condition F(al) = a~2*F(A) for any
a e C*. If we define a function f:H — C by setting f(7) = F(ZT®Z), then f
satisfies the transformation property of a modular form of weight 2k for SLo(Z).
If f is also holomorphic on H and at the cusp, it is a modular form of weight
2k and level 1.

Proof. A lattice A with basis (w1, ws) can be written as A = Zwy @ Zws. The
homogeneity condition allows us to view F' as a function of the basis, where
F(Awr, Awg) = A2 F(wy,ws). By setting A = w;l and 7 = w; /wy € H, we can
write:

Flunws) = wy P F(r,1) = wy 2 £(7)

Now, consider a change of basis given by a matrix <(Cl b) € SLy(Z). The new

d
basis is (w],w)) = (aw; + bws, cwy + dws), which generates the same lattice.
The new ratio is 7/ = i—i = ?ZIZ Since the lattice is unchanged, F(w},w}) =

F(wi,ws). Using our relation, we have:
F(wy, ws) = F(w), w))
wy M f () = (wp) 2R f ()
) = (e + ) 7 (20

et +d

wQ_%f(T) = wQ_%(CT + d)f%f <Z:_~+_Z)

Canceling the w; 2k term yields the desired modular transformation property:

/ ( - ”) ~ (7 + P f(7)

ct+d
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Corollary 3.22. The functions go (derived from G4) and g3 (derived from Gg)
correspond to modular forms of weight 4 and 6 respectively, for level 1. The
discriminant function A = g3 — 2793 corresponds to a modular form of weight
12 and level 1.

The set of modular forms of a fixed weight 2k and level N forms a finite-
dimensional C-vector space, which we denote by Mai(N). The product of a
form f e My, (N) and a form g € Ma,(N) is a modular form f-g € Mg (V).
Consequently, the direct sum over all non-negative weights forms a graded,
commutative C-algebra:

@ Mo (N

k=0

The concept of a modular form can be rephrased in the geometric language of
line bundles. To introduce this, we first recall the relationship between functions
and sections of a trivial bundle.

Let X be a Riemann surface. The trivial line bundle over X is the product
space L = X x C, equipped with the standard projection map p; : X x C - X
onto the first factor.

Theorem 3.23. A holomorphic function on X is equivalent to a holomorphic
section of the trivial line bundle. A section is a holomorphic map s : X — X xC
such that p1(s(x)) = x for all x € X. Any such section is of the form s(x) =
(z, f(x)) for some holomorphic function f: X — C.

3.5 PM Session 2: Moduli I1

Definition 3.24. A line bundle over a complex manifold X is a complex
manifold L together with a surjective holomorphic map 7w : L — X satisfying the
following condition: there exists an open cover {Uy} of X and biholomorphisms
bo : 7 HUy) — Uy x C such that the following diagram commutes:

T a—)UxC

x| 71(k /

Here, pry is the standard projection onto the first factor. For each point x €
U,, the restriction of ¢, to the fiber m=1(x) is a C-linear isomorphism onto

{z} x C=C.

Recall that the complex projective line P is the space of lines through the origin
in C2. It can be constructed as the quotient space (C*\{0})/C*.

A fundamental example of a line bundle is the tautological line bundle over
P¢. Consider the subset L < P{ x C? defined by

L={( P)eP; xC?|Pet}.
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The projection map 7 : L — P{ is given by 7(¢, P) = .

(¢, P) PL ot

such that P e/

For any point ¢ € PL, the fiber 7=1(¢) is {(¢, P) | P € ¢}, which is canonically
isomorphic to the line £ itself. This makes L a line bundle over IF’}C.

Now, let H be a Riemann surface with an action of a group I' such that the
quotient space X = I'\H is also a Riemann surface. Let ¢ : H — X be the
quotient map. Given a line bundle 7 : L — X, we can form the pullback line
bundle ¢*L over H. It is defined as the fibered product:

¢*L={(r,v)e Hx L|q(r) =m(v)}.

|

Ij —— ¢*L ={(7,2)|q(7) = 7(2)}
X L

s

Lemma 3.25.
1. The pullback ¢*L is a line bundle on H.

2. The group T" acts on ¢*L, and the quotient of ¢*L by this action is iso-
morphic to L.

If H is simply connected (for instance, the upper half-plane H), any line bundle
on it is trivial. Thus, we have a biholomorphism ¢ : ¢*L = H x C.

¢*L —S— H xC

The action of I on ¢*L induces an action on H x C via ¢ that is compatible
with the action on H. This means that for any v € I, the action must be of the
form:

v (1,2) = (97, 55(7)2)
for some holomorphic function j, : H — C*. The group structure of I" imposes
a consistency condition on these functions. For any ~,7" € I, the equality
() (m,2) =7 (7 - (7, 2)) implies:

Jyy (T) = 3y (V' T)jy (7). (%)
Definition 3.26. A function j : I' x H — C*, written as (v,7) — j(7), is

a factor of automorphy if it is holomorphic in T for each fized v € T and
satisfies the cocycle condition (*).
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Proposition 3.27.

1. Ewvery line bundle on Y (N) = T'(N)\H is uniquely determined, up to iso-
morphism, by a factor of automorphy j : T(N) x H — C*.

2. For an integer k, let v = <i Z) € SLy(Z). The function j : T'(N) xH —
C* defined by j, (1) = (cr + d)** is a factor of automorphy.

8. If Loy is the line bundle corresponding to this factor of automorphy, then
modular forms of weight 2k for T'(IN) are precisely the holomorphic sections

Of [:Qk.

We now shift our perspective to the moduli interpretation of modular curves.
The points of the modular curve Y (1) = I'(1)\H are in one-to-one correspon-
dence with the isomorphism classes of elliptic curves over C. Using the language
of algebraic geometry, we can say that the set of C-points of Y (1), denoted
Hom(Spec(C),Y (1)), parameterizes isomorphism classes of elliptic curves.

What about families of elliptic curves? For an arbitrary complex manifold (or
scheme) T, what does a map T'— Y (1) represent?

Theorem 3.28. There exists an algebraic curve Y (1), defined over Q, which is
a coarse moduli space for elliptic curves. For any algebraic space T, the set of
maps Hom(T,Y (1)) corresponds to the set of isomorphism classes of families of
elliptic curves over T

In particular, when we take T' = Y'(1) itself, the identity map id : Y/(1) — Y (1)
corresponds to a special family of elliptic curves, denoted Eypnjy — Y (1). This is
called the universal family of elliptic curves parameterized by Y (1).

Theorem 3.29.

1. The algebraic curve Y (1) can be defined by a polynomial equation with
coefficients in Q.

2. The set of complex points of this algebraic curve is bitholomorphic to the
Riemann surface T'(1)\H.

3. Let  : REyniv — Y (1) be the universal family. The pushforward of the
sheaf of relative holomorphic 1-forms, w = R'm.Q', is a line bundle on
Y (1) known as the Hodge bundle. Modular forms of weight k are global
sections of its k-th tensor power, i.e., elements of H°(Y (1),w®%).

3.6 PM Problem Session
Problem 3.30. Show that O(—1) is a non-trivial line bundle on Pf.

Solution. A line bundle is trivial if and only if it admits a global, nowhere-
vanishing holomorphic section. We will show that any global holomorphic sec-
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tion of the tautological line bundle O(—1) over P{ must have a zero, unless it
is the zero section itself.

The total space of O(—1) is the subset L = {(¢{,P) € PL x C? | P € {}. A
global section s is a holomorphic map s : PL — L of the form s(¢) = (¢,v(¢)),
where v({) is a vector in the line ¢. To analyze such a section, we use the
standard atlas for P}, consisting of the open sets Uy = {[1 : 2] | z € C} and
Uy = {[w : 1] | w € C}, with the transition map w = 1/z on the overlap Uy nUj.

On the chart Up, a line £ = [1 : z] is spanned by the vector (1, z). A holomorphic
section s can be locally represented by a holomorphic function f : C — C, such
that s([1 : z]) = ([1 : 2], f(2)(1,2)). On the chart U, a line £ = [w : 1] is
spanned by (w, 1). The section is locally represented by a holomorphic function
g : C — C, such that s([w: 1]) = ([w : 1], g(w)(w, 1)).

For s to be a well-defined global section, the local representations must agree
on the overlap Uy nU;. A point [1 : z] in Uy corresponds to [1/z : 1] in Uy. The
vector component v(¢) must be the same regardless of the chart. This yields

the equality:

f(2)(1,2) = g(1/2)(1/2,1).
Comparing the first components gives f(z) = (1/z)g(1/z), which is equivalent
to the transition relation g(w) = wf(1/w) where w = 1/z.

For s to be a global holomorphic section, both local functions f(z) and g(w)
must be entire. Let f(z) = Zfzo anz™ be the power series expansion of f. The
transition relation implies that the Laurent series for g around w = 0 is:

2

o0 e}
glw) =w Z an(1/w)" = Z apw' ™™ = agw + a1 + asw ' + azw 2 +. ..
n=0

n=0
For g(w) to be entire, it must not have any terms with negative powers in its
Laurent series. This forces a,, = 0 for all n > 2. Therefore, the function f(z)
must be a polynomial of degree at most 1, i.e., f(2) = ag+aqz for some complex
constants ag, a;. The corresponding function is then g(w) = w(ag + a1 (1/w)) =
apw + ai. Both f and g are entire, as required.

Now we check for zeros of this global section. The section vanishes at a point
if its local representative function is zero. If a; # 0, the section vanishes on
Uy where f(z) = ag + a1z = 0, i.e., at the point [1 : —ag/a1]. If a; = 0 but
ag # 0, then f(z) = ag is nowhere zero on Uy. However, the corresponding
local function on Uy is g(w) = apw, which vanishes at w = 0. The point w = 0
corresponds to the point [0 : 1] € P{. In every case where the section is not
identically zero (i.e., where ag and a; are not both zero), it must have a zero
somewhere on PL. Since there are no non-vanishing global holomorphic sections,
the line bundle O(—1) is non-trivial. O

Problem 3.31. Show that SLa(Z) is generated by the translation T(z) = z + 1

and the inversion S(z) = —1/z. Conclude that the j-invariant is a modular
function for SLa(Z).
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Solution. The statement that SLy(Z) is generated by the matrices S = ((1) 01>
0 1
groups. The proof is typically achieved by showing that any matrix in SLs(Z)
can be reduced to the identity matrix by left-multiplying by powers of S and
T, which is analogous to the Euclidean algorithm.

and T = <1 1) is a standard and fundamental result in the theory of modular

A modular function for T'(1) = SLy(Z) is a meromorphic function f : H —
C v {0} that is invariant under the action of the group, i.e., f(yz) = f(z) for
all v € SLy(Z), and is meromorphic at the cusp. To show the j-invariant is a
modular function, it suffices to show it is invariant under the generators S and
T.

Consider the action of the translation T'(z) = z + 1. The corresponding lattice
is Ary1 = Z(7 + 1) ®Z. An arbitrary element of this lattice is m(r +1) +n =
m7 + (m + n) for m,n € Z. This is clearly an element of A,. Conversely, any
element m7 +n € A, can be written as m(7 + 1) 4+ (n —m), which is an element
of A;y1. Thus, the lattices are identical: A;;; = A,. Since the j-invariant
depends only on the lattice structure, we have j(7 + 1) = j(7).

Next, consider the action of the inversion S(z) = —1/z. The corresponding
lattice is A_y); = Z(—1/7) @ Z. This lattice is not identical to A,, but it is
homothetic. We can scale A_,/, by the complex number 7€ C*:

T Ay =7 (L(-1T)®ZL) = L(-1)D LT = LT DL = A,.

Two lattices A and A’ are homothetic if A’ = aA for some o € C*. The j-
invariant is a function on homothety classes, meaning j(A’) = j(A). In our
case, this means j(A_y/;) = j(7-A_y/;) = j(A;). Therefore, j(—1/7) = j(7).

Since the j-invariant is invariant under the action of the generators S and T,
it is invariant under the entire group SLy(Z). The j-function is defined to be
holomorphic on H and has a simple pole at the cusp 00, so it satisfies all the
conditions of a modular function of level 1. O

Problem 3.32. Give an example of two lattices which are not homothetic.

Solution. Two lattices Ay and Ay are homothetic if and only if the elliptic
curves they define, F; = C/A; and Eys = C/A,, are isomorphic as Riemann
surfaces. The isomorphism class of an elliptic curve is uniquely determined by
its j-invariant. Therefore, to find two non-homothetic lattices, it suffices to
find two lattices with different j-invariants. Each homothety class of lattices
corresponds to a unique point in the modular curve Y (1) = SLy(Z)\H, which is
parameterized by the j-invariant. We can thus select two points in the standard
fundamental domain whose lattices will not be homothetic.

Consider the square lattice, Ay = Zi @ Z. This lattice corresponds to the point
7 =4 € H and is associated with an elliptic curve with complex multiplication
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by Z[i]. Tts j-invariant is j(¢) = 1728. Now, consider the hexagonal lattice,
Ay = Ze'™/3 @ Z. This corresponds to the point 7 = ¢™/? € H and is associated
with an elliptic curve with complex multiplication by the ring of Eisenstein
integers Z[e'™/3]. For this lattice, the coefficient g5 vanishes, which immediately
implies its j-invariant is j(e'™/3) = 0.

Since j(A;) = 1728 and j(Ag) = 0, their j-invariants are unequal. Therefore,
the square and hexagonal lattices are not homothetic. O
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4 Thursday, June 5
4.1 AM Session 1: Braid Groups 1

There are these braided strands:

and we flip them around each other to form a braid:

*

f_—.

AN

Definition 4.1. Two braids are equivalent if there is a isotopy (smooth defor-
mation) of one into the other, holding ends of strands constant.

Example 4.2. Here is an ezample of an isotopy. Given braids by, by, form their
product bibs by gluing the bottom of by to the top of by:

T 111

This forms a group. The trivial braid is an identity element for the product.
Inverses are made by reflecting it over the bottom. After isotopy, we can make
every crossing happen at a different height. This makes it clearly associative,
so therefore n-stranded braids form a group B,,.

Therefore B,, is generated by elements of the form

66



Definition 4.3. Pick points p1,...,pn € C. A braid b is a collection of paths
7 : [0,1] = C x [0,1] fori = 1,...,n, called strands, and a permutation % of
{1,...,n} such that

1. the strands ~([0,1]) < C x [0, 1] are disjoint
2. 7:(0) = (ps,0)

3. 7i(1) = (P5), 1)

4. () = C x {t} for all t €[0,1].

Then ~y; crosses ; at t if m : C x [0,1] — C if there exists t such that
Re(m(7i(t))) = Re(m(v;(t)))-

Definition 4.4. A braid diagram is the projectioun of the images of v; onto
R x [0,1], with under/over crossing data.

foralli=1,...,n— 1.

More formally:

4.2 AM Session 2: Braid Groups II

Exercise 4.5. Draw pictures of the relations
0,05 = 0504

if i — j| =2 and
0i0i+105 = 0;4+10i04+1-

Definition 4.6. The Artin braid group is defined as

-1, -1 e
A a;aja; " a; if i —j| = 2,
n = Alyev.yp—1 1 1 -1 A
aiQ;41050; 1 0; G, fori=1,...,n—2
This means that there is a surjective homomorphism

A, % B,

a; — 0

Proposition 4.7. ¢ is an isomorphism.

Define ¥ : B, — A, by: for a braid b, choose a isotopy into the form b =
(04,)* (04,)...(04, ) where ¢; = £1 for all j. Define ¥(b) = (a;,)" (ai,)” ... (ai, ).
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Exercise 4.8. Prove that ¥ is well-defined using the fact that any two iso-
topic braids have isomorphic braid diagrams that are related by isotopy of braid
diagrams and Reidemeister moves.

Corollary 4.9. B, has presentation

Jiajoi_laj_l if i — 7] = 2,
O15-+-50n—1 ) -1 -1 _ -1 1 9
001100, 10, 0, fori=1,....,n—

Example 4.10.

Bs = {01, 03|01090105 toy Loy
-~ <o’1,Ug|010201agalagaglaflaglaglaflogl>
={(x,00)2 -z o e oy )
= (x,ylz’y™?)
by substituting x = o109 and y = oax.
Exercise 4.11. (x,y|a3y=2) =~ Zz7Z where iy : Z — Z,m > 3m and iy : 7 —
Z,m — 2m. Therefore Z({z,y|lz3y=2)) = (x®) = (y?). Then

B3/Z(B3) = <$7 y|$3, y2>
~ PSL,(Z)

Exercise 4.12. Check that
Bn - Sn
b—7
is a homomorphism.

Definition 4.13. The kernel is the pure braid group P,, the subgroup where
each strand begins and ends at the same place.

Now we move onto discuss configuration spaces. Let C°*4(C,n) = C\BigDiag(C")
be the space of ordered n-tuples of distinct points in C, where BigDiag(C") =
{(#1, ..., zn) € C"|z; = z; for some i # j}.

S, acts on C°"(C,n) by permuting coordinates. The space of orbits is the un-
ordered configuration space C(C,n) = C°*4(C,n)/S,, = {S, - x|z € C°*4(C,n)}.

Observation: an element of B, is a (isotopy class of) paths in C(C,n). The
beginning and ending points are the same. Upshot: By =~ m1(C(C,n)).

4.3 AM Problem Session

Problem 4.14. Suppose a group G acts on a set X, and let Z(G) be the center
of G. Show that if z € Z(G) and g € G then the action of z preserves the set of
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fized points of g fixed by the action of g. Use this along with the amalgamated
product description of the braid group B, to prove that the center of B, is the
cyclic subgroup generated by (o102 ...0,)".

Solution. Let g € G and let Fix(g) = {x € X | g« = z} be its set of fixed
points. Let z € Z(G), meaning zg = gz for all g € G. We must show that the
action of z maps the set Fix(g) to itself. Let = € Fix(g). We check if the point
z - x is also fixed by g.

g-(z-2)=(92) 2= (29)- 2 =2-(g-2).
Since z € Fix(g), we have g - x = z. Substituting this gives:
z-(g-z)=2z2"

Thus, g-(z-2) = z-x, which shows that z-x is also a fixed point of g. Therefore,
the action of any central element z preserves the fixed-point set of any other
group element. O

Problem 4.15. If a group is given by a presentation G = (S | R) then the
abelianization of G is the quotient group with presentation (S | Ru A), where A
is the subset of G consisting of all commutators of elements of S. (The commu-
tator of v,y € S is the group element xyx~'y~'.) Show that the abelianization
of By, is isomorphic to Z and describe the homomorphism.

Solution. The braid group B, has the presentation {oi,...,0,_1 | 0;0; =
ojo; for |i — j| = 2;0,0,410; = 0i110;0;41). To find the abelianization B =
B, /|Bn, By,], we add relations forcing all generators to commute, i.e., g,0; =
ojo; for all 4, 5.

The first set of relations, o;0; = oj0; for |i — j| = 2, is now subsumed by the
general commutativity relations. The crucial braid relation becomes:

0i0i+105 = 0;4+10i04+1-
Since all generators commute in the abelianization, we can reorder the terms:
2 2
0;0i+1 = 04i0;41-

Since we are in a group, we can cancel one o; and one 0,41 from each side,
which yields:
03 = O4+1-

This holds for all ¢ = 1,...,n — 2. By transitivity, this implies that in the
abelianization, the images of all generators are equal: 01 = 09 = -+ = 0,,_1.
Let o be the common image of all o; in B2®. The group B2 is generated by the
single element o. There are no remaining relations that constrain o (e.g., of the
form o* = e). Therefore, the abelianization is the free group on one generator,
which is the infinite cyclic group Z.
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The homomorphism B, — Z is the map that sends each generator ¢; to the
generator 1 € Z. For an arbitrary braid word w = 0';1 ... af:, the homomorphism
is the exponent sum map, which counts the total number of positive crossings
minus the total number of negative crossings, regardless of which strands are
involved: ¢(w) = Zle €. O
Problem 4.16. Show that the generators o; of the braid group B, are all con-
Jugate to each other. Then show that the conjugate of v = 0,05 by 6 = o010,
is equal to y~t. (That is, show that 5y6~! =~71.)

Solution. We will show that o; is conjugate to 0,11 for any i = 1,...,n—2. By
transitivity, this implies all generators o; lie in the same conjugacy class. We
use the braid relation ¢;0;410; = 0;110;0,4+1. We can isolate o;,1 from this
relation. Starting with the right-hand side, we multiply by 0;11 on the right:

-1
(UiUiJrlO'i)Ui_H = 0i+104.
Now, multiply by o; ! on the right:
—1y -1 _
(0i0i110i0;1)0; = Oit1.

This gives the expression 0,11 = (0;0441)0i(0;0:41)"t. This is precisely the
statement that o;,1 is the conjugate of o; by the element o;0,41. Since this
holds for all adjacent indices ¢ and i+ 1, all generators o1, ..., 0,_1 are mutually
conjugate. O

Problem 4.17. Show that S,, has presentation {T1,T2,...,Tn—1 | R), where R
consists of relations 7,7; = 7;7; for all |i—j| > 1, relations 7,7;117; = Tit1TiTit1
fori=1,...,n—2, and involution relations 72 for all i.

Solution. This is the standard Coxeter presentation for the symmetric group.
Let G be the group defined by this presentation. Let 7; correspond to the
adjacent transposition (7,7 + 1) in S,,.

First, we verify that the generators of S,, satisfy the relations. The transposi-
tions are involutions, so (i,i + 1)? = e, satisfying 77 = e. If |i — j| > 1, the
transpositions (4,i4+1) and (j, j+1) act on disjoint sets of elements, so they com-
mute, satisfying 7;7; = 7;7;. Finally, one can directly compute the braid relation:
(G, i+ 1)+ 1,i+2)(4,i+1) = (4,i+2) = (i+1,i+2)(4,i+ 1)(i+ 1,i+2). Thus,
the generators of S, satisfy all the relations of G. By the universal property
of group presentations (von Dyck’s theorem), this implies there is a surjective
homomorphism ¢ : G — S,,.

To prove that ¢ is an isomorphism, we must show it is injective, which is equiv-
alent to showing that |G| < |S,| = n!l. This is typically done by an induction

argument or a coset enumeration (Schreier-Todd-Coxeter algorithm). Let G,,—1
be the subgroup of G generated by {71, ...,7,_2}. By the presentation, this is a
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group of the same type for n — 1. Assuming inductively that |G,_1]| < (n —1)!,
one considers the cosets of G,,_1 in G,. Using the relations, one can show
that any element of G,, can be written in the form g7,_17,—2 ... 7 for some k,
where g € G,,—1. This analysis shows there are at most n distinct left cosets, so
|G| < n|Gp-1]. By induction, this gives |G| < n!. Since we have a surjective
homomorphism from G to S,, and the order of G is at most the order of S,,, the
homomorphism must be an isomorphism. O

Problem 4.18.

1. Check that the assignment o; — o; for each i = 1,...,n — 1 defines an
injective homomorphism i : B,, — Bpi1. (Use the geometric description
of the braid group.)

2. Can you define a reasonable function B, — B, ¢ Is it a homomorphism?

3. The map © : B, — B,41 restricts to an injective homomorphism j :
P, — P,y1. Show that ’forget the last strand’ defines a homomorphism
q : Poy1 — P, satisfying goi = idp,. Conclude that P11 is the semidirect
product of P, and U, 11, the kernel of q. (In fact, U, 11 is isomorphic to a
free group. This can be used to show that P, has no finite-order elements.)

Solution.

1. The map i : B, — Bp41 defined on the generators by i(o;) = o, for
j=1,...,n—11is an injective homomorphism. Geometrically, this map
takes an n-strand braid and adds a new, (n+ 1)-th strand to the right that
runs straight down without interacting with the others. Since the relations
for B,, only involve generators with indices up to n — 1, these relations are
preserved under the mapping into B, 1. The map is injective because if
a non-trivial n-strand braid were to become trivial after adding a straight
strand, it would imply the original braid was trivial, as the added strand
does not create any new possibility for undoing the existing crossings.

2. Consider the map p : B,, — B,, defined by the geometric action of rotating
a braid by 180° around a central vertical axis. This transformation sends
the k-th strand to the (n —k+ 1)-th position. Consequently, the generator
0, representing a crossing of strands ¢ and ¢ + 1, is mapped to a crossing
of strands n — ¢ and n — ¢ + 1. On the generators, the map is defined as:

p(o;) =0p_y fori=1,....n—1

Now, we verify that it preserves the defining relations of B,,.

(a) Commutation Relation: For |i — j| > 2, we must check if p(o;0;) =
p(ojo;). Applying p gives 0y,—;0,—j = 0p—;0n—;. This relation holds
because the absolute difference of the new indices, |(n—i)—(n—j)| =
|i — j|, remains > 2.
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(b) Braid Relation: For 1 < i < n — 2, we check if p(o;0;410;) =
p(0it10:0i11). Applying p yields:

On—iOn—(i+1)0n—i = On—(i+1)On—iOn—(i+1)

Let k = n—i—1, which implies n —¢ = k+ 1. The equation becomes
Ok+10k0k+1 = OkOk+10k. LThis is the standard braid relation for
index k. Since 1 < ¢ < n — 2, the new index k falls within the valid
range [1,n — 2], so the relation is preserved.

Since p preserves the defining relations, it is a homomorphism. Further-
more, as p(p(c;)) = p(0n—i) = On—(n—) = 04, the map is its own inverse,
making it an automorphism of B,,.

3. The map ¢q : P,11 — P,, defined geometrically by ”forgetting the last
strand,” is a homomorphism for pure braid groups. The kernel of this map,
ker(q), consists of pure braids on n + 1 strands where the first n strands
are straight and the (n+1)-th strand weaves among them before returning
to its starting position. The composition q o ¢ where ¢ : P, — P, 41 is the
inclusion from part (a) is clearly the identity on P,. A surjective homo-
morphism ¢ that has a right inverse ¢ is called a retraction. The existence
of a retraction implies that the group P, is a semidirect product of the
kernel of g and the image of i. Thus, P,,11 = ker(q) x Im(%) = ker(q) x P,.
The kernel, which describes the motion of a single point (the (n + 1)-th
strand) in the plane punctured by n fixed points (the other strands), is
isomorphic to the fundamental group of a punctured plane, which is the
free group on n generators, F,.

O
Problem 4.19. Show that the full twist

Gn = ((010’2 N (Tn_l)(O'ldg e O'n_g) N (0’10’2)01)2

is in the center of the braid group B,,. (In fact, this element generates the center
of both B,, and P, but it’s a bit harder to show.)

Solution. The element described, which should be the square of the Garside
half-twist A,,, is the full twist braid 6,, = A2. The Garside element is A,, =
(0102 ...0n_1)(0109...0n_2)...(01). To show that 6,, = A2 is in the center of
B,,, we must show it commutes with all generators o; for j =1,...,n —1. A
key property of the Garside element is the conjugation relation o;A,, = Apop_;-
We compute the conjugate of A,, by itself:

A AN = A,
Conjugating the relation 0;A,, = A,0,_; by A, gives:
An(aiAn)Ar;I = An(Anan—i)A:Ll = (Anai) = (O'nf(nfz))(An) = 0;A,.
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Wait, this is not the proof. The standard proof is geometric. The element
A? corresponds to a braid where each strand makes a full twist around all
the other strands. Geometrically, this operation is symmetric with respect to
all strands and can be continuously deformed to the boundary of the braid
diagram. Conjugating o; by A2 means performing a full twist, then the crossing
0j, then undoing the full twist. The result is isotopically equivalent to simply
performing the crossing o;. Thus, A%O’jA;Q = 0, which implies A%aj = UjAEL.
As it commutes with all generators, it is in the center of B,,. O

Problem 4.20. Complete the following outline to prove that if B,, is isomorphic
to By, thenn = m. First check that an isomorphism of groups induces isomor-
phisms of their centers and of their abelianizations. Then check that Image of
Z(By) in the abelianization of By, is a subgroup of index n(n — 1).

Solution. This result is known as the Artin-Tits conjecture, proven by solving
the isomorphism problem for braid groups. The argument outlined provides
a beautiful proof of this fact. Let ¢ : B, — B,, be an isomorphism. Any
group isomorphism induces an isomorphism between the centers of the groups,
¢z : Z(Bn) — Z(Bm), and also an isomorphism between their abelianizations,
bap : B — B,

From previous problems, we know that the abelianization ng is isomorphic to
Z, via the exponent-sum map 7y : By — Z which sends each generator o; to 1.
We also know that the center Z(By) is an infinite cyclic group generated by the
full twist braid 65, = AZ.

Let us compute the image of the generator of the center under the abelianization
map. The Garside element Ay is the product (o71...05-1)(01...0k—2)...(01).
Its image in the abelianization is the sum of the exponents of its generators. The
number of generators in Ay is the (k—1)-th triangular number, Z?;llj = @
The generator of the center is 6, = AZ. Its image under the abelianization map
Ty, is therefore 2 - @ = k(k —1). The image of the center, m(Z(By)), is the
subgroup of B,‘:b >~ 7 generated by the element k(k — 1). This is the subgroup
k(k —1)Z.

The index of this subgroup in Z is |Z/k(k — 1)Z| = k(k — 1). Since the iso-
morphism ¢ induces isomorphisms on the centers and abelianizations, it must
preserve the index of the image of the center in the abelianization. Therefore,

we must have:
n(n—1) =m(m—1).

The function f(z) = x(x — 1) is strictly increasing for x > 1. Thus, for integers
n,m = 2, the equality n(n — 1) = m(m — 1) implies that n = m. This proves
that braid groups on different numbers of strands are not isomorphic. O

Problem 4.21. What is the configuration space of two points on a circle? Three
points on a closed interval?
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Solution. The ordered configuration space of k points in a topological space X,
denoted C°*(X, k), is the set of ordered k-tuples of distinct points in X.

For two points on a circle S*, the space is C'4(S1,2) = {(z1,20) € S'x S | 21 #
22}. This space is the product of the first point’s position, S*, and the possible
positions of the second point, which is S! minus one point. The space S*\{pt}
is homeomorphic to an open interval. Therefore, C°*(S',2) is homeomorphic
to St x (0,1), which is an open cylinder or annulus.

For three points on a closed interval [0, 1], the space is C°*4([0, 1], 3) = {(z1, v2,73) €
[0,1]% | #; # x; for i # j}. This is the unit cube with the three diagonal planes
r1 = T9, 1 = T3, and xo = x3 removed. The space of unordered configurations
is often of more interest. For three points in [0, 1], we can enforce an order, say
0 <, < oy < 23 < 1. This space is a subset of R? defined by these inequalities.
This region is the interior of a standard 3-simplex (a tetrahedron) with vertices
at (0,0,0),(1,1,1),(0,0,1),(0,1,1). Specifically, it is the open region defined by
the vertices (0,0,0), (1,1,1), and permutations, which forms a tetrahedron. [

4.4 PM Session 1: Complex Multiplication I

A central goal of algebraic number theory is to understand the structure of the
absolute Galois group Gal(Q/Q). A key strategy is to study its abelian quotients
by constructing and classifying the abelian extensions of Q. This is the primary
aim of class field theory.

A finite field extension K/Q is a number field. The extension is Galois if
|Autg(K)| = [K : Q]. It is an abelian extension if the Galois group Autg(X)
is abelian.

Exercise 4.22. Let (, be a primitive n-th root of unity.
1. Show that the cyclotomic field Q((,,) is a Galois extension of Q.

2. Prove that its Galois group is isomorphic to the group of units of the ring
Z/nZ.:
Aut(Q(¢n)/Q) = (Z/nZ)*.

The study of cyclotomic fields provides a complete description of the abelian
extensions of Q.

Theorem 4.23 (Kronecker-Weber). Every finite abelian extension of Q is a
subfield of a cyclotomic field Q((,) for some integer n = 1.

The Kronecker-Weber theorem can be rephrased through a more structural lens.
The primitive roots of unity are the torsion points of the multiplicative group
C*. The theorem states that the maximal abelian extension of Q, denoted Q@?,
is generated by adjoining all such torsion points: Q% = Q(u), where i, is the
group of all roots of unity. This construction is related to the endomorphism
ring of the algebraic group G,, =~ C*. Its endomorphism ring is End(G,,) = Z,
where the integer n corresponds to the endomorphism z — 2™.
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Hilbert’s twelfth problem asks for an explicit description of the abelian exten-
sions of an arbitrary number field K. The theory of complex multiplication
provides the answer for imaginary quadratic fields, using elliptic curves in place
of the multiplicative group G,,. To generate field extensions, one considers the
coordinates of torsion points on an elliptic curve E, which form the torsion
subgroup E[n] = (Z/nZ)?. The structure of the endomorphism ring End(E) is
fundamental to this theory.

An endomorphism of an elliptic curve E = C/A is a holomorphic group homo-
morphism ¢ : £ — E. Such a map lifts to a holomorphic map g?) :C — C of
the form J)(z) — az for some o € C. For ¢ to descend to the quotient, it must
preserve the lattice. This gives a concrete description of the endomorphism ring;:

End(E) = {a e C| oA C A}.

This set is a subring of C. It always contains Z, since nA € A for any n € Z.
An elliptic curve is said to have complex multiplication if this containment is
proper, i.e., if End(E) 2 Z.

Example 4.24. Let E = C/A where A = Zi ®7Z. Then i\ = i(Zi®DZ) =
Z(-1) ®Zi = A, so the inclusion iA < A holds. It follows that the ring of
Gaussian integers Z[i] is a subring of End(E). Since Z is a proper subring of
Z[i], the endomorphism ring of E is strictly larger than Z. Therefore, E is an
elliptic curve with complex multiplication.

The rings that appear as endomorphism rings of CM elliptic curves are orders in
imaginary quadratic fields. Let K = Q(+/—D) for a square-free integer D > 0.

Definition 4.25. An order in an imaginary quadratic field K is a subring
O c K that is also a free Z-module of rank 2.

For example, O = Zw; @ Zw, for some basis {wq, wa}.
Example 4.26. The ring of Gaussian integers Z[i] is an order in the field Q(i).

Lemma 4.27. The set of all algebraic integers in K, denoted O, forms an
order called the maximal order of K. Every other order O in K is a subring
of Ok of the form Z@®Zfw, where f =1 is an integer called the conductor and
{1,w} is a Z-basis for Ok.

4.5 PM Session 2: Complex Multiplication II

Proposition 4.28. Let E = C/A be an elliptic curve. Its endomorphism ring
End(E) is isomorphic to either Z or an order O in an imaginary quadratic field.

Sketch of Proof. Let the lattice be A = Z7 @ Z for some 7 € H. An endomor-
phism « € End(E) must map A into itself. Thus, a-1 =ar+band a-7 = eT+d
for some integers a, b, ¢, d. From the first equation, o = a7 +¥b. Substituting this
into the second gives (a7 +b)7T = c7+d, which rearranges to ar?+(b—d)T—c = 0.
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If End(FE) is strictly larger than Z, there exists an endomorphism « ¢ Z, for
which we must have a # 0. This implies that 7 is a root of a quadratic polyno-
mial with integer coefficients. Since 7 € H, Q(7) must be an imaginary quadratic
field. The ring End(F) is then an order in this field. It can be shown that any
endomorphism « is an algebraic integer satisfying the characteristic polynomial
22 — (a + d)z + (ad — be) = 0. O

The theory of complex multiplication classifies elliptic curves with a specified
endomorphism ring O. For a maximal order O in an imaginary quadratic field
K, the curve E = C/Ok has End(E) = Ok.

The number of non-isomorphic elliptic curves with CM by a given order Ok is
determined by the class group of that order.

Definition 4.29. The ideal class group of a Dedekind domain O, denoted
Cl(Ok), is the quotient group of fractional ideals by principal fractional ideals.
Its order, the class number hy, measures the failure of unique factorization of
elements.

Example 4.30. For the rational integers Z, every ideal is principal. Thus,
CUZ) is the trivial group, {e}.

Theorem 4.31. The ideal class group C(Ok) is a finite abelian group.

The main theorem of complex multiplication connects the arithmetic of Ok to
the geometry of elliptic curves.

Theorem 4.32. There is a bijection between the set of isomorphism classes
of elliptic curves with End(E) ~ Ok and the elements of the ideal class group
Cl(Ok). The correspondence maps an ideal class [I] to the isomorphism class
of the elliptic curve C/I.

Corollary 4.33. For any maximal order Og in an imaginary quadratic field,
there are finitely many isomorphism classes of elliptic curves with complex mul-
tiplication by O . This number is the class number hx = |Cl(Ok)|.

The connection between the class group of an imaginary quadratic order and the
isomorphism classes of elliptic curves with complex multiplication by that order
is the gateway to some of the most important results in number theory. These
theorems form the foundation of the explicit class field theory for imaginary
quadratic fields. The finiteness of the class number, a purely arithmetic fact,
implies that there are only a finite number of distinct j-invariants corresponding
to elliptic curves with a given CM type. This finiteness has many arithmetic
consequences for the nature of these j-invariants themselves, which we explore
in the following corollary.

Corollary 4.34. Let E be an elliptic curve with complex multiplication by an
order O in an imaginary quadratic field K. Then its j-invariant, j(E), is an
algebraic integer.
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Sketch of Proof. Let j(E) be the j-invariant of a CM elliptic curve E, and let o €
Aut(C). Applying o to the coefficients of a Weierstrass equation for E defines
a new elliptic curve E?. The endomorphism rings are isomorphic, End(F) =~
End(E7), so E° also has CM by the same order. By the main theorem, there are
only finitely many isomorphism classes of such curves. Therefore, the set {E |
o € Aut(C)} is finite. The j-invariant transforms as j(E°) = o(j(E)). This
means the set of all Galois conjugates of j(F) is a finite set, which implies that
j(E) is an algebraic number. It is, in fact, an algebraic integer. Furthermore, the
field extension K (j(FE)) is the Hilbert class field of K - its maximal unramified
abelian extension, with Galois group Gal(K (j(E))/K) = Cl(Ok). O

4.6 PM Problem Session

There were no problems.
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5 Friday, June 6

5.1 AM Session 1: Mapping Class Groups

Recall that a braid is an isotopy class of paths in the configuration space
C(C,n) = C(D,n). Now, imagine that the disk D is made of a malleable ma-
terial, like putty. Let pi1,pe,ps, ps € D be four marked points. As these points
move within the disk, they drag the surrounding putty with them. By the end
of this motion (thought of as a continuous deformation over time) the resulting
transformation of the disk determines a homeomorphism

f:D-D
satisfying the following conditions:
1. f({p1,---,pn}) = {p1,-..,pn} (preserves the set of marked points),

2. fl,;p = idp (fixes the boundary pointwise).

The collection of such transformations, up to isotopy, forms a group known as
the mapping class group.

Definition 5.1. The mapping class group of the n-punctured disk, denoted
Mod(D,n), is the group of isotopy classes of homeomorphisms f : D — D such
that f preserves the set of marked points, {p1,...,pn}, and fizes the boundary
oD pointwise.

Theorem 5.2. There is a canonical isomorphism between the braid group on n
strands and the mapping class group of the n-punctured disk:

B,, = Mod(D,n).

We can similarly define the mapping class group of any compact, orientable
surface S.

The elements of mapping class groups can be understood through fundamental
building blocks. A primary class of such elements are Dehn twists, which are
associated with simple closed curves on the surface.

Definition 5.3. A simple closed curve on a surface S is an embedding of S*
into S. A homotopy between curves is a continuous deformation that allows
self-intersection.

A Dehn twist about a simple closed curve « is constructed by cutting the surface
along «, twisting one of the resulting boundaries by a full 360°, and re-gluing.
The resulting homeomorphism is denoted T4,.

Now we describe the Dehn twist:

1. Choose homotopically nontrivial simple closed curve.
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O

2. Cut along a.

3. Choose a cuff, twist it 27 to the right, and then reglue.

«

The interaction between Dehn twists is governed by the topology of the un-
derlying curves. This gives rise to the algebraic relations in the mapping class
group.

Exercise 5.4. Let a and 8 be two simple closed curves. Show that T, ) =

TgTaTﬁ_l. Use this to show that if Tg() is isotopic to T (), then the braid
relation T, TsT, = TgT,Tg holds.

Corollary 5.5. The braid relation is
T TpTe = TpTaTs

Proof. We begin by noting the following two facts:

1. For any f € Mod(S) and any simple closed curve a on S, we have

Ty =foTsof "
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2. For any simple closed curves ¢ and d, we have
T.=1T,; if and only if c¢~d,
where ~ denotes homotopy.
Now, observe that

T = T1.15) ()
= (TaTB) oTy o (TaTﬁ)ila

where the first equality uses fact (2) and the second follows from fact (1). O

Definition 5.6. Let i(a, 3) be the geometric intersection number, defined

as the minimal number of transverse intersections among all curves isotopic to
o and .

Proposition 5.7. Assume a and 8 represent distinct isotopy classes. The
structure of the subgroup {To,Ts) generated by two Dehn twists depends on
their intersection number:

e Ifi(a,8) = 0, the curves are disjoint, and the Dehn twists commute:
T, Tp) =Z x Z.

o Ifi(a, B) =1, the twists satisfy the braid relation: (Tn,Tg) = Bs.
o Ifi(a, B) = 2, the twists typically generate a free group, (Tn,Tp) = F5.

5.2 AM Session 2: Rational Tangles 1

The theory of rational tangles helps tie in all of the stories we’ve seen together.
A rational tangle is an isotopy class of a 2-tangle, which can be visualized as two
ropes with four endpoints fixed at the corners of a square. Two fundamental
operations, a horizontal Twist (T") and a vertical Rotation (R), can be applied.
A theorem of Conway and Kauffman states that any rational tangle can be
undone by a sequence of these moves.

This is proven by assigning a rational number (or c0) to each tangle, its tangle
invariant 7. The untangled state has 7 = 0. The operations correspond to
transformations on this number:

o 7(T-0)=1(c)+1
e 7(R-0)=—-1/7(0)

These correspond to Mobius transformations of the extended rational line Q u
{00}, induced by the generators

11 0 -1
o))
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which generate the group PSLy(Z). Thus, the invariant 7 realizes an isomor-
phism between the group action on tangles and that of Mobius transformations
on the projective line. The process of untangling then corresponds to applying
the Euclidean algorithm to the rational number 7(o).

Example 5.8. The following sequence of operations untangles a tangle with
mvariant %

—27 T4
8

R R
— —

H‘l\.’)
ol

s
5

| ot
(S0 V)

R —19 7 8 g
—_ — > — —
27 27

Proposition 5.9. If (o) = 0, then o is isotopic to the untangle.
Proof. Let T denote the set of rational tangles and I' = F, = (R, T the free
group on the two operations. There are two natural group actions:

1. ' & T via composition of tangle operations;

2. SLy(Z) & Q u {0} via Mdbius transformations, where:

11 1
25 241 corresponds to (0 1) , Z i corresponds to (
z

Let ¢ : F» — PSLy(Z) denote the natural homomorphism. If ¢ = W - gq
and 7(o) = 0, then ¢(W) -0 = 0, so ¢(W) € Stabpgr,z)(0). Thus, W €

¢~ (Stabpgr,(z)(0)) = Stabs) (0). O

Let’s talk about symmetries.

Definition 5.10. The bdpq symmetry of a tangle refers to a geometric 7,/2 x
Z/2 symmetry under rotation and reflection. Label the four endpoints of the
tangle diagram as b (bottom left), d (bottom right), p (top right), and q (top
left). A quarter-turn rotation cyclically permutes these labels according to the
transformation rules: b - d, d - p, p — q, ¢ — b.

Proposition 5.11. FEvery rational tangle admits a bdpg symmetry.

Proof. Proceed by induction on the number of operations used to generate a
tangle from the untangle.

Base case: The untangle clearly exhibits bdpq symmetry.

Inductive step: Suppose o has bdpq symmetry. Then T oo and R o o also
preserve this symmetry, since the operations 7' and R act equivariantly with
respect to the diagram’s geometric symmetry group. O

Suppose o € T satisfies 7(¢) = 0. Then ¢ = W - g¢, for some W € F,, and

p(W)-0=0,s0 W e Stabgz) 0) := ¢_1(StabpSL2(Z)(0)). There are two types of
elements in this preimage:
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1. Preimages of generators in Stabpgr,, (z)(0);
2. Elements in ker ¢, the kernel of the homomorphism Fy — PSLs(Z).
To analyze the stabilizer of 0 in PSLy(Z), suppose

a b b
(C d)-0=d=0 = b=0.

Hence, the stabilizer consists of matrices of the form

10
(c 1), ce,

which form a cyclic subgroup generated by (1 (1))

(A1)

is the image under ¢ of the word T RT € Fy, where

= 1) #=(0 9)

Proof. Direct computation verifies that
1 1 0 -1 1 1 1 0
TRT:(O 1)(1 0)(0 1)=(1 1)'

This shows that T RT acts trivially on the untangle.

Proposition 5.12. The matrixz

The kernel ker ¢ consists of elements that act trivially on Q u {o0}, i.e., ele-
ments that induce the identity Mobius transformation. In PSLs(Z), we have
the relation:

PSLy(Z) = (R, T | R* = id, (TR)? = id).

Thus, the kernel is normally generated by conjugates of R? and (T'R)? in Fb.
That is, every element of the kernel is a product of conjugates of these two
relations.

Proposition 5.13. Elements of the form W R?W =t and W(TR)3W ! act triv-
ially on all rational tangles.

Proof. Since 7 factors through the quotient F» — PSLy(Z), and the images of

R? and (T'R)? are identity transformations, any conjugate of them acts trivially
on 7, hence preserves the isotopy class of the untangle. O
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5.3 AM Problem Session
Problem 5.14.

1. Show that any rotation of the circle is homotopic to the identity map on
the circle. Convince yourself (prove!) that there are only two elements of
Homeo(S') modulo homotopy.

2. Describe some homeomorphisms of the torus that are homotopic to the
identity. Describe some that are not! Use your knowledge of the homology
or fundamental group of the torus to prove that your examples work, or
ask a classmate what this means.

Solution.

1. Let Ry : S* — S! be a rotation by angle . A homotopy from Ry to the
identity map idg: is given by the family of maps H : S x [0,1] — St
defined by H(z,t) = R(1_4)9(2). This is a continuous map with H(z,0) =
Ry(2) and H(z,1) = z, so all rotations are homotopic to the identity.

The group mo(Homeo(S?)) classifies homeomorphisms up to isotopy, which
for manifolds is equivalent to homotopy. Homeomorphisms of the circle are
classified by their degree, which can be either +1 (orientation-preserving)
or —1 (orientation-reversing). Any orientation-preserving homeomorphism
is homotopic to a rotation, and thus to the identity. Any orientation-
reversing homeomorphism (e.g., complex conjugation z + Z on the unit
circle) is homotopic to any other orientation-reversing homeomorphism.
Since homotopy is an equivalence relation and preserves orientation, the
two classes are distinct. Therefore, mo(Homeo(S!)) consists of two ele-
ments.

2. For the torus T2 = S' x S', any homeomorphism that is homotopic to
the identity must induce the identity map on all homotopy invariants,
such as the fundamental group and homology groups. A homeomorphism
supported on a small disk (one that is the identity outside the disk) is an
example of a map homotopic to the identity.

A Dehn twist, T, about a non-separating simple closed curve « is a
canonical example of a homeomorphism not homotopic to the identity.
Let o be the meridian S x {pt} and 3 be the longitude {pt} x S'. These
curves represent a basis for the first homology group, Hy(T?,Z) =~ Z® Z.
The action of the Dehn twist T,, on this homology group is given by the
(1) i with respect to the basis {[5], [«]}. Since
this is not the identity matrix, the map Ty, is not homotopic to the identity
map.

matrix representation

O
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Problem 5.15. Describe the inverse of a Dehn twist. How might you prove
that it’s the inverse?

Solution. The inverse of a Dehn twist T, about a simple closed curve « is a
Dehn twist about the same curve but in the opposite direction, denoted T, . If
T, is defined by a "right-handed” (e.g., counter-clockwise) twist of 360° in an
annular neighborhood of «, then T, ! is defined by a "left-handed” (clockwise)
twist of 360°.

To prove that T, ! is the inverse of T, one must show that their composition is
isotopic to the identity map. The homeomorphisms T, and T, ! are supported
on the same annular neighborhood of «. Let’s consider the effect of the com-
position on this annulus. The first map, 7, !, introduces a full clockwise twist.
The second map, T,, applies a full counter-clockwise twist. The net effect is
that any curve crossing the annulus is first twisted one way and then precisely
untwisted back to its original configuration. This composite deformation, which
is the identity on the boundary of the annulus, can be continuously unwound
back to the identity map via an isotopy that is fixed outside the annulus. Thus,
the composition T, o T, ! is isotopic to the identity, establishing that one is the
inverse of the other. U

Problem 5.16. Show that there is a simple closed curve « in the Klein bottle
that does not admit a neighborhood homeomorphic to a cylinder/annulus. (This
may be taken as the definition of non-orientability of the surface.) Explain why
this meshes with our definition of a Dehn twist about c.

Solution. The Klein bottle K can be constructed from a square by identifying
the edges according to the gluing relation aba~'b. Consider the simple closed
curve « that runs along the center line corresponding to the identified edges a.
This curve is a one-sided curve within the surface. Any tubular neighborhood
of this curve is homeomorphic to a Mébius strip, not to an annulus (a cylinder).
An annulus is an orientable surface with two distinct boundary components. A
Mobius strip is a non-orientable surface with only one boundary component.

The standard definition of a Dehn twist requires an annular neighborhood of
the curve . The construction involves fixing one boundary component (cuff)
of the annulus while twisting the other. Since the neighborhood of the curve o
in the Klein bottle is a Mobius strip, which possesses only a single boundary
component, there are no two distinct cuffs to twist relative to each other. Con-
sequently, a Dehn twist as defined for orientable surfaces cannot be performed
along this one-sided curve. This illustrates that the concept of a Dehn twist is
fundamentally tied to two-sided curves, which always have annular neighbor-
hoods, a property guaranteed in orientable surfaces.

O

Problem 5.17.
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1. The classification of compact orientable surfaces with boundary says that
two such connected surfaces are homeomorphic if and only if they have
the same number of boundary components and the same genus. Use this
to prove that if S is a compact orientable surface and a < S is a non-
separating simple closed curve (so that S\« is connected), and B is any
other non-separating simple closed curve, then there is a homeomorphism
f:8— 8 such that f(a) = 8.

2. Prove that any two pairs of simple closed curves that intersect once can be
taken to each other by an orientation-preserving homeomorphism of the
surface.

Solution.

1. This is a fundamental result known as the ”change of coordinates prin-
ciple” for mapping class groups. Let S be a compact, orientable surface,
and let o be a non-separating simple closed curve. Cutting S along «
results in a new connected surface, S’, with two boundary components,
which we can label a; and a. The classification of surfaces with boundary
states that such surfaces are uniquely determined up to homeomorphism
by their genus and number of boundary components. Let 8 be another
non-separating simple closed curve on S. Cutting S along g yields a sur-
face S” which also has two boundary components and the same genus
as S’. By the classification theorem, S’ and S” must be homeomorphic.
Let h : S — S” be such a homeomorphism. We can construct the de-
sired homeomorphism f : S — S by ensuring the boundaries are mapped
correctly before re-gluing. The map h sends the boundary of S’ to the
boundary of S”. We can choose h such that it maps the boundary com-
ponent o to B and as to B2. By identifying the boundaries of S’ and
S” according to these maps (which corresponds to reversing the cutting
process), the homeomorphism % extends to a homeomorphism f : S — S
that maps the curve « to the curve .

2. Let (a1,81) and («a, f2) be two pairs of simple closed curves, each with
geometric intersection number one. From part (1), we know that since
ap and as are both non-separating simple closed curves (a curve that
intersects another once must be non-separating), there exists a homeo-
morphism f; : S — S such that fi(«1) = as. Now consider the curve f;.
Its image under f; is the curve f1(f1). Since homeomorphisms preserve
intersection numbers, i(aq, f1(51)) = i(fi(ar), f1(B1)) = i(a1,61) = 1.
Both f1(f1) and By are simple closed curves that intersect the curve
g exactly once. We can choose an annular neighborhood of as, and
within this neighborhood, the curves f1(81) and B2 appear as simple arcs
crossing the annulus. There exists a homeomorphism of the surface, fs,
which is supported within this annulus and is the identity on its bound-
ary (thus fixing as), that maps the arc of fi(81) to the arc of 3. The
composite homeomorphism f = f; o f; then has the desired property:
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flan) = fa(fi(ar)) = falaz) = ag, and f(B1) = f2(f1(B1)) = B2. This
demonstrates that the mapping class group acts transitively on the set of
isotopy classes of pairs of curves that intersect exactly once.

O

5.4 PM Session 1: Ramanujan’s Constant

Let K = Q(+v/—D) be an imaginary quadratic field, where D € Z~(. Define the
ring of algebraic integers in K as

Ok = {x € K | x is a root of a monic polynomial in Z[z]} € K.

In analogy with the inclusion Z < Q, we view Ok as the integral closure of Z
in K.

Let E = C/A be an elliptic curve. The endomorphism ring of F is given by Z
in the generic case, or an order O < Ok if E has CM, where O is an order in
an imaginary quadratic field K and is a rank-2 free Z-module:

7Z < O c Ok.

There is a canonical bijection:
Cl(Of) — {isomorphism classes of elliptic curves E/C with CM by Ok},

given explicitly by [a] — C/a, where a € K < C is a fractional ideal of Ok.
Since Cl(Ok) is a finite abelian group, the set of isomorphism classes of such
elliptic curves is finite.

For each D € Z-. 4, we obtain a collection of special points on the modular curve
Y(1):

These points correspond to elliptic curves F/C with complex multiplication by
Og(v=p), and are referred to as CM points on Y (1).

Theorem 5.18 (Duke; Michel-Venkatesh). Let D = 1 (mod 4). Then the
CM points on Y (1) associated to the field Q(+/—D) become equidistributed with
respect to the Poincaré measure on Y (1) as D — o0.
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Now we return to discuss
e™V163 & 262537412640768743.99999925. ..

is almost an integer.

Sketch of Explanation. We previously defined the modular j-invariant:
jiY() —C,
and noted that for an elliptic curve E/C and any o € Autg(C), we have:

J(E7) = o(§(E)).

Suppose E has CM by Ok, and assume Cl(O) is trivial. Then for all o €
Aut(C), we must have o(j(E)) = j(F), so j(E) € Q. In fact, one can prove that
J(E) e Z.

As Im(7) — o0, we have the classical approximation:

—2miT

j(r) ~e

Now let K = Q(+/—163). Since Cl(Og) = {1}, there exists a unique (up to
isomorphism) elliptic curve E/C with CM by Ok and j(E) € Z.

A standard calculation yields that the corresponding CM point is

14+ +/—-163
T=—.
2

Hence,
j <1 + \/—163> N eﬂm
2 ~ ‘

This explains why e™V163 is so close to an integer: it is exponentially approxi-
mating the integer value of the j-invariant at a CM point. O

5.5 PM Session 2: Rational Tangles II

We consider the following group actions:

(A1) The free group Fs acts on the set of tangles 7: Fo C T.

(A2) The modular group PSLy(Z) = (R, T | R?,(TR)?) acts on Q u {o0}.
Question: Why should matrices act on tangles?

Answer: Through the theory of braids.

(A3) The braid group Bs acts on tangles: Bs C 7.

Proposition 5.19. If 7 is a rational tangle and B € Bs, then B -7 is also
rational.
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Proof. Tt suffices to check that for 7 € T, we have o1 - 7,00 - T € T. O

Proposition 5.20. The action of Bz on T factors through PSLy(Z):

Bs < T
\O

PSLy(Z)

A32

under the homomorphism Bs — PSLy(Z) given by

(11 (10
=g 1) 2 1 1)

Proposition 5.21. The center Z(Bs) is generated by (c10201)? = (0102)3,
and we have the isomorphism

Bg/Z(B3) = PSLQ(Z),

realized via the same matriz assignment.
Lemma 5.22. The actions satisfy R-a1 T = (010201) *a3 T.
Proof of Proposition. We must verify that Z(B3) = {(010201)?) acts trivially

on 7. But
2 2
(010201)% a3 T =R - 41 7,

and since R? acts trivially, so does the center. O

We have seen that
B; = m1(Conf3(C)) = m (Poly;(C)),

the fundamental group of the space of monic cubic polynomials with distinct
roots.

A map X — Y induces m(X) — 71 (Y). In our case, B3 — PSLy(Z) corre-
sponds to a topological quotient, where

w9 (H/PSLa(Z)) = PSLy(Z).
This motivates viewing Y (1) as the relevant moduli space.

Given f(x) € Confz(C), the equation y? = f(z) defines an elliptic curve of the
form C/A.

This generalizes to higher genus via hyperelliptic curves, but we do not elaborate
further.

We recall the presentation Bz = (z,y | 22 = y3), and note:
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Proposition 5.23. There is a homotopy equivalence
Conf3(C) ~ $3\trefoil.

Proof. Consider the subspace Conf3(C) < Confs(C) of depressed cubics. There
is a deformation retraction from Confs(C) onto this subspace. O

Define Conf3(C) = {(a,b) € C? | 2° + az + b has 3 distinct roots}. The discrim-
inant is
Ala,b) = 4a® — 27b°.

Define an action of C* by

A (a,b) = (\a, \D).

Proposition 5.24. The discriminant A is invariant under the C* -action.

This allows normalization: given (a,b) € Conf3(C), we may rescale so that
[a|? + [|b]? = 1, identifying the image with a subset of S% < C2.

We define
53 A Confy(C) = {(a,b) | 4a® # 27b%} = S3\trefoil.

Indeed, the set {(a,b) € C? | |la|® + [b]|? = 2,a3 = b?} parametrizes the trefoil
knot via the embedding

0 — (621'97637,'9) , fe 517

yielding the (3,2) torus knot.

5.6 PM Problem Session

Problem 5.25. Let G be a group acting on a set X.

1. Let g € G and x € X. Describe the relationship between the stabilizers of
x and of g - .

2. Let H <1 G be a normal subgroup that fizes a point x € X. Prove that H
fixes the entire orbit of x.

3. Let h,g € G be commuting elements. Prove that the set of fixed points of
g, Fiz(g), is invariant under the action of h.

4. Let A and B be commuting diagonalizable linear transformations on a
vector space V. Prove that there exists a basis for V consisting of simul-
taneous eigenvectors for both A and B.

Solution.
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1. The stabilizers of x and g - x are conjugate. Specifically, the stabilizer
of the point g - = is the conjugate of the stabilizer of x by the element
g, i.e.,, Ggp = gG,g~'. To prove this, we show mutual inclusion. First,
let h € Gg.,. By definition, h(g - ) = ¢ - . Applying the action of
g~ ! to both sides gives (g~ *hg) - © = x, which shows that g~'hg € G.,.
Thus, h € ¢gGog~'. Conversely, let k € gGog~'. Then k = ghg™! for some
h € G,. We check its action on g-x: k(g-x) = (ghg™')(g-x) = g(h-z) = g-z.
Thus, ke Gg.,.

2. Let z € X be a point fixed by every element of the normal subgroup H<G.
We must show that any other point in the orbit of x, say y = ¢ - = for
some g € G, is also fixed by H. Let h € H be arbitrary. We compute the
action of h on y:

h-y=h-(g-z)=(hg)- z.

Since H is a normal subgroup, there exists an element A’ € H such that
hg = gh'. Therefore,

(hg) -z = (gh') -z =g- (W -a).

By hypothesis, x is fixed by all elements of H, so b’ - © = . This gives
g- (W -x)=g -x=y. Wehave shown that h-y =y for all h € H, so the
entire orbit of z is fixed by H.

3. Let h,g € G be such that hg = gh. Let Fix(g) = {x € X | g-x = z} be
the set of points fixed by g. We want to show that for any x € Fix(g), its
image h - x is also in Fix(g). We test this by applying ¢ to the point h - z:

g-(h-z) = (gh)- =

Using the commutativity of g and h, this becomes:

(hg) -z =h-(g9- ).

Since z € Fix(g), we have ¢g - ¢ = x. Substituting this gives h - . Thus,
we have shown g - (h - ) = h -z, which means h - z is a fixed point of g.
Therefore, the set Fix(g) is invariant under the action of h.

4. Let A and B be commuting, diagonalizable linear operators on a vector
space V. For any eigenvalue X of A, let V), = ker(A — AI) be the corre-
sponding eigenspace. We first show that V) is an invariant subspace under
the action of B. Let v € V). Then Av = Av. We apply A to the vector
Bu:

A(Bv) = (AB)v = (BA)v = B(Av) = B(Av) = A(Bv).

This shows that Bv is also an eigenvector of A with eigenvalue A, so
Bv e V). Thus, B(V)\) c V.

Since B is diagonalizable on the entire space V, its restriction to any
invariant subspace, such as B|y, , must also be diagonalizable. This means
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that the eigenspace V) admits a basis consisting of eigenvectors of B. Let
this basis be {v1,...,v;}. Each of these vectors is, by construction, an
eigenvector of B. Furthermore, since every vector in V) is an eigenvector
of A with eigenvalue A, each v; is also an eigenvector of A. Therefore,
{v1,..., v} is a basis of simultaneous eigenvectors for A and B within the
subspace V.

Since V is the direct sum of the eigenspaces of A, V' = @, Vi, we can
construct a basis for the entire space V' by taking the union of the bases of
simultaneous eigenvectors from each eigenspace. This proves the existence
of a basis for V' in which both A and B are diagonal.

O

Problem 5.26.

1.

3.

Prove that a complex polynomial f(z) has a repeated root if and only if
f(2) shares a root with its deriwative f'(z).

Describe the condition for the quadratic polynomial az® + bz + ¢ to have a
repeated root.

Show that f(z) = 2> +az+b has a repeated root if and only if 4a>+27b% = 0.

Solution.

1.

A polynomial f(z) has a repeated root at zy if and only if (z — 29)" is a
factor of f(z) for some integer k > 2. First, assume f(z) has a repeated
root at zp. Then we can write f(z) = (2 — 29)¥g(z) with & > 2 and
g(z0) # 0. The derivative is f'(2) = k(z — 20)*"1g(2) + (z — 20)*¢'(2).
Since k > 2, the exponent k—1 > 1, so both terms in the sum are divisible
by (z — z0). Thus, f'(z9) =0, and zg is a common root of f(z) and f'(z).
Conversely, assume zg is a common root, so f(zg) = 0 and f'(z9) = 0.
Since f(zo) = 0, we can write f(z) = (z — zp)h(z) for some polynomial
h(z). Differentiating gives f/'(z) = h(z) + (z — 20)h/(z). Evaluating at
zo gives f'(z0) = h(zp) + 0. Since f'(zp) = 0, we must have h(zy) = 0.
This means (z — zp) is a factor of h(z), so h(z) = (2 — 20)j(z) for some
polynomial j(z). Substituting back gives f(z) = (2 — 20)%j(z), which
shows that zg is a repeated root of f(z).

For the quadratic polynomial f(z) = az? + bz + ¢, its derivative is f/(z) =
2az+b. A repeated root must be a common root of these two polynomials.
The only root of the derivative is zg = —b/(2a) (assuming a # 0). For this
to be a repeated root, it must also be a root of the original polynomial.
We substitute this value into f(z) = 0:

b\2 b b2 b2
- b(—— - S 4c=0.
a( 2a> + < 2a>+c 0:>a4a2 2a+c 0
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This simplifies to % — % + % = 0, which gives the condition —b% +4ac =
0, or b2 — 4ac = 0. This is the familiar discriminant condition.

3. For the depressed cubic f(2) = 23 +az+b, the derivative is f(2) = 322 +a.
For a repeated root, there must be a zp such that both f(zy) = 0 and
f'(20) = 0. From the derivative, 323 + a = 0, which implies 2 = —a/3.
From the original polynomial, we have z§ + azg + b = 0, which can be
rewritten as zo(23) +azo + b = 0. Substituting the expression for 23 gives:

2
zo(—g)—&-azo-i-b:O = §z0+b=0.

3
This yields zg = —3b/(2a). Now we have two expressions for quantities in-
volving 29: 2 = —a/3 and 29 = —3b/(2a). Squaring the second expression

and equating it with the first gives:

3b\° a 9b2 a

R = = — = ——,

2a 3 4a? 3
Cross-multiplying gives 27b%> = —4a>, which is the condition 4a> + 27b% =
0. This expression is the discriminant of the depressed cubic polynomial.

O

Problem 5.27.

1. Let Poly,, be the vector space of complex polynomials of degree at most k.
Given fixed polynomials P € Poly,, and @) € Poly,, show that the map
M : Poly,_, x Poly,,_, — Poly,,,,_, defined by M(A,B) = AP+ BQ is
linear.

2. What is the dimension of Poly, ? And of Poly,, x Poly,, ?

3. Prove that P and QQ have a common root if and only if the map M from
part (1) is non-invertible.

4. By choosing suitable bases, write down the matriz for the map M in the
case where P = az?> + bz + ¢ and Q = P' = 2az + b, and compute its
determinant.

5. Describe a procedure for finding the discriminant of a general polynomial
of degree n.

Solution.

1. The map M : Poly,,_; x Poly,,_; — Poly,, ., is defined by (A, B) —
AP + BQ. To check linearity, we take two pairs (A1, B1) and (Ag, Bs)
from the domain and a scalar ¢ € C. M (c(A1, B1)+ (A2, B2)) = M(cA1 +
As,¢By + Bs) = (cA; + A3)P + (¢B; + B3)Q. By distributivity of poly-
nomial multiplication, this is ¢(A1P) + Ao P + ¢(B1Q) + B2Q = ¢(A1 P +
BlQ) + (AQP + BQQ) = CM(Al,Bl) + M(AQ,BQ). The map is linear.
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2. The vector space Poly, of polynomials of degree at most k has a basis
{1,2,..., 2"}, so its dimension is k+1. The dimension of the product space
Poly,, x Poly,, is the sum of the dimensions, (m+1)+ (n+1) = m+n+2.

3. The map M : Poly,,_; x Poly,,_; — Poly,,,,,_; is a linear map between
two vector spaces of the same dimension, (n—1+1)+(m—1+1) = n+m and
(m+n—141) = m+n. Such a map is non-invertible if and only if it has a
non-trivial kernel. Suppose P and @ have a common root zg. Then P(z) =
(z—20)P1(2) and Q(2) = (2—20)Q1(2), where deg P, = m—1 and deg @ =
n—1. Consider the non-zero pair (A4, B) = (Q1,—P;) € Poly,,_; xPoly,,,_;.
Then M(A,B) = le - PlQ = Ql(Z - Zo)Pl - Pl(Z - ZO)Ql =0. Thus,
the kernel is non-trivial, and M is non-invertible. Conversely, suppose
M is non-invertible. Then there exists a non-zero pair (A, B) such that
AP+BQ =0, or AP = —B(Q. Since C[z] is a unique factorization domain
and deg A < n —1 < deg @, this implies that () must share an irreducible
factor (and thus a root) with P.

4. Let P = az?+bz+c (m = 2) and Q = 2az+b (n = 1). We consider the map
M : Poly, x Poly; — Poly,. A basis for the domain is {(1,0), (0,1), (0, z)}.
A basis for the codomain is {1, z, 2%}.

e M(1,00)=1-P+0-Q=c+bz+az> = (¢,b,a)
e M(0,1)=0-P+1-Q=0>b+2az = (b,2a,0)
e M(0,2)=0-P+2-Q =bz+2az> = (0,b,20a)

The matrix representation of M is formed by these column vectors:

c b 0
b 2a b
0 2a

Its determinant is the resultant of P and Q: det(M) = c(4a? — 0) —
b(2ab — 0) + 0 = 4a®c — 2ab®. This is not the standard discriminant. The
standard Sylvester matrix construction yields a slightly different matrix
for the system. Let’s set up the system correctly: we seek A(z) = Ay and
B(z) = B1z + By such that Ag(az? + bz + ¢) + (B1z + By)(2az + b) = 0.
This gives the linear system in (Ao, B1, Bo):

22 aAy +2aB; =0
2t bAyg +bB1 +2aBy =0
20 cAg+bBy =0
a 2a 0
The matrix of coefficients is [ b b 2a |. Its determinant is a(b?) —
c 0 b
2a(b? — 2ac) = —ab® + 4a’c = a(4ac — b*). For a non-trivial solution to

exist, this determinant must be zero. Since a # 0, this is the condition
b? — 4ac = 0.
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5. The discriminant of a polynomial P of degree n, denoted Disc(P), is a
polynomial in the coefficients of P that is zero if and only if P has a
repeated root. From part (1), this is equivalent to P and its derivative
P’ having a common root. From part (3), this is equivalent to the non-
invertibility of the linear map Mp p/p—1,n—1. This non-invertibility is
equivalent to the vanishing of the determinant of the matrix representa-
tion of this map. This determinant is called the resultant, Res(P, P’). The
procedure is therefore: Given P(z), calculate its derivative P’(z). Con-
struct the Sylvester matrix for the linear map (A, B) — AP + BP’ for
polynomials A and B of appropriate degree. The discriminant is, up to a
sign and a factor depending on the leading coefficient, the determinant of
this Sylvester matrix.

O

Problem 5.28. Let F(x,y) = 0 define a curve in C2. The link of the singularity

at zero is its intersection with a small sphere ||z||* + ||y||* = €.

1. Describe the link of 2P + y9 = 0. Is it always a knot?

2. Can you find a link that gives you a knot different from anything found in
part (a)?

3. Can you find a link that gives you the figure-8 knot?

Solution.

1. The link of the singularity 2P + y? = 0 is the intersection of the algebraic
variety V = {(z,y) € C? | 2P + y? = 0} with the 3-sphere S® = C2. The
resulting space L, , = V n S% is a link in $3. To analyze its structure,
let d = ged(p, q), with p = da and ¢ = db for coprime integers a,b. The
equation can be written as (2%)? = (—®)?. This splits into d components
in C2, each given by 2% = (¥(—yb) for k = 0,...,d — 1, where (; is a
primitive d-th root of unity. Each of these components, when intersected
with the 3-sphere, gives a torus knot of type (a,b). Therefore, the link
L, , consists of d = ged(p, ¢) parallel copies of the (a,b)-torus knot. The
link is a knot (a single component) if and only if d = 1, i.e., if p and ¢ are
coprime. If ged(p, ¢) > 1, it is a multi-component link.

2. I don’t know how to do this.
3. I don’t know how to do this.
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