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1 The Basics

1.1 The Language of Algebraic Geometry

1.1.1 What is Algebraic Geometry?

Algebraic geometry originates from the study of geometric objects described by polynomial equations. To
begin, we introduce the central object of the first part of these notes, the variety, which is, speaking
informally, a set defined locally by the simultaneous vanishing of such equations over a field k. More
precisely, we have the following.

Definition 1.1. Given a field k and a set of polynomials S ⊆ k[x1, . . . , xn], the corresponding affine variety
is the set of common roots of all polynomials in S:

V = {(a1, . . . , an) ∈ kn | f(a1, . . . , an) = 0 for all f ∈ S} ⊆ kn.

Familiar curves from analytic geometry provide elementary examples of this definition.

Example 1.2. Conics in R2 provide familiar examples:

• Ellipse: V1 = {(x, y) ∈ R2 | x2 + 4y2 − 1 = 0}

• Hyperbola: V2 = {(x, y) ∈ R2 | x2 − y2 − 1 = 0}

We can also construct varieties from the intersection of simpler ones.

Example 1.3. Consider the variety in R2 defined by the two polynomials y − x2 and y − 4. Substituting
y = 4 into the first equation yields x2 = 4, so x = ±2. Thus, the variety V3 consists of just two points:
(−2, 4) and (2, 4).

While varieties embedded in an affine space kn are perhaps the easiest to start working with, the power of
algebraic geometry stems from its “dictionary,” which translates geometric properties into the language of
commutative algebra and vice versa. This correspondence, wherein many geometric questions can be reduced
to algebraic ones by analyzing a variety locally, an approach analogous to the study of manifolds via local
charts. With this in mind, what are the fundamental questions we can ask about a variety V ?

1. Singularity Theory: What is the local geometry of V at a given point? A point on a variety may
be “smooth,” or it may be “singular,” exhibiting features like cusps or self-intersections.

How are these geometric differences reflected in the corresponding algebra? This leads to the celebrated
problem of resolution of singularities: if a variety has singular points, can we find a related “smooth
model” that is isomorphic to the original variety everywhere except at the singularities?
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P

Suppose the bottom variety is not smooth. How do we find a ”smooth model” (the top variety) such
that they are isomorphic away from P?

2. Intersection Theory: How do two or more varieties intersect? In the plane, a line and a conic can
intersect in zero, one, or two points.

We will see that in “nice” settings (e.g., in projective space over an algebraically closed field), a line
and a conic always intersect at exactly two points, provided we count these points with appropriate
multiplicity. This is a simple case of a powerful classical result called Bézout’s Theorem.

3. Number Theory: Questions from number theory often translate into more approachable questions
in geometry. For instance, finding integer or rational solutions to Diophantine equations (such as the
famous Fermat equation xn+yn = 1) is equivalent to studying the rational points on the corresponding
variety defined over Q.

4. Embedding Questions: Given an abstract variety V , can it be embedded into an affine space kn

or into a projective space Pn? If so, what is the smallest dimension n for which such an embedding
exists?

5. Interpolation and Constraints: Given a set of points, what varieties pass through them? For
example, a classical result states that a unique conic passes through any set of five points in the plane,
provided they are in general position. For special configurations of points, however, the solution may
not be unique.

1 2 3

1

For instance, consider the five collinear points (0, 0), (1, 0), (2, 0), (3, 0), and (0, 1) in R2. The degenerate
conic V (y), the x-axis, does not contain (0, 1). However, infinitely many conics pass through these five
points. For any a ∈ R, the conic defined by the equation y(y − ax − 1) = 0 passes through all five
points.
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1.1.2 Algebraic Sets, Ideals, and the Zariski Topology

Let k be a field. Throughout this first section in the notes, we will assume that k is algebraically closed,
which helps ensure that polynomials behave predictably.

Definition 1.4. A field k is algebraically closed if every non-constant polynomial in one variable with
coefficients in k has a root in k. That is, for any f ∈ k[x] with deg(f) ≥ 1, there exists some α ∈ k such
that f(α) = 0.

Remark 1.5. An inductive argument shows this is equivalent to the statement that every non-constant
polynomial in k[x] splits completely into linear factors: f(x) = c(x−α1) · · · (x−αn) for some c, α1, . . . , αn ∈
k.

Example 1.6. The Fundamental Theorem of Algebra states that C is algebraically closed. In contrast, R is
not since the polynomial x2 + 1 ∈ R[x] has no root in R.

Definition 1.7. The affine n-space over a field k, denoted Ank or simply An, is the set of n-tuples of
elements of k. We adopt this notation to emphasize that we are considering An as a set of points, rather than
as a vector space with a distinguished origin. For a polynomial f ∈ k[x1, . . . , xn], a point P = (a1, . . . , an) ∈
An is a zero of f if f(P ) = f(a1, . . . , an) = 0.

Example 1.8 (Conics in A2
C). A conic in A2

k is the zero set of a single degree-two polynomial:

g(x, y) = ax2 + bxy + cy2 + dx+ ey + f.

When k = R, we can visualize the real points (the real locus) of these curves, which gives the familiar conic
sections:

• Ellipse

• Parabola

• Hyperbola

• Degenerate cases, such as two intersecting lines (e.g., from xy = 0) or a single point (from x2+y2 = 0).

However, considering only the real locus can be misleading. In A2
R, the polynomial x2+y2 defines just a single

point, (0, 0), while x2+y2+1 defines the empty set. Over the complex numbers, both of these equations define
curves with infinitely many points. The assumption that k is algebraically closed eliminates such pathologies.

More generally, a loci may be defined by the simultaneous vanishing of several polynomials.

Definition 1.9. Let S ⊆ k[x1, . . . , xn] be any set of polynomials. The vanishing set of S is

V (S) := {P ∈ An | f(P ) = 0 for all f ∈ S}.
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A subset X ⊆ An is an algebraic set if X = V (S) for some set of polynomials S.

The use of an arbitrary set of polynomials S is notationally cumbersome. It is more elegant and powerful to
work with the ideal generated by S, as the following proposition justifies.

Proposition 1.10. For any set of polynomials S ⊆ k[x1, . . . , xn], if I = ⟨S⟩ is the ideal generated by S,
then V (S) = V (I).

Proof. (⊇) Since S ⊆ I, any point that is a zero of every polynomial in I must, in particular, be a zero of
every polynomial in S. Thus, V (I) ⊆ V (S).

(⊆) Let P ∈ V (S), so that f(P ) = 0 for all f ∈ S. An arbitrary polynomial g ∈ I can be expressed as a
finite linear combination g =

∑m
i=1 hifi, where each hi ∈ k[x1, . . . , xn] and each fi ∈ S. Evaluating at P

yields

g(P ) =

m∑
i=1

hi(P )fi(P ) =

m∑
i=1

hi(P ) · 0 = 0.

Thus, P is a zero of g. As g was an arbitrary element of I, we conclude that P ∈ V (I).

Corollary 1.11. Every algebraic set is of the form V (I) for some ideal I ⊆ k[x1, . . . , xn].

Example 1.12. If I = (f) is a principal ideal generated by a single non-constant polynomial f , its vanishing
set V (I) = V (f) is called a hypersurface. For example, in k[x, y], the ideal I = (y) corresponds to the
algebraic set V (y), which is the x-axis.

The operator V , which maps ideals in the polynomial ring to subsets of affine space, possesses several
fundamental properties that form the basis for a new topology.

Proposition 1.13. Let I, J, and {Iα}α∈A be a collection of ideals in k[x1, . . . , xn].

1. Inclusion-reversing: If I ⊆ J , then V (J) ⊆ V (I). Intuitively, imposing more polynomial constraints
can only shrink the resulting zero set. For example, in k[x, y], we have the inclusion of ideals (x) ⊆
(x, y), which corresponds to the reverse inclusion of algebraic sets V (x, y) ⊆ V (x) (a point contained
in a line).

V (x, y)

V (x)

2. Arbitrary Intersections: The intersection of any collection of algebraic sets is an algebraic set.
Specifically,

⋂
α∈A V (Iα) = V (

∑
α∈A Iα), where

∑
Iα is the ideal generated by the union

⋃
α Iα.

3. Finite Unions: The union of two algebraic sets is an algebraic set. Specifically, V (I)∪V (J) = V (I ·J),
where I ·J is the product ideal. By induction, any finite union of algebraic sets is also an algebraic set.

Remark 1.14. The union of an infinite collection of algebraic sets is not necessarily algebraic. For example,
in A1

C, the set of integers Z =
⋃
n∈Z V (x− n) is an infinite union of points (which are themselves algebraic

sets). However, Z is not an algebraic set, as any non-zero polynomial in C[x] has only a finite number of
roots.

Example 1.15. The entire space An and the empty set ∅ are algebraic sets, corresponding to the zero ideal
and the unit ideal, respectively: V ((0)) = An and V ((1)) = ∅. A single point P = (a1, . . . , an) is an algebraic
set, as it is the vanishing set V (x1 − a1, . . . , xn − an).
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The properties from the proposition, together with the preceding example, are precisely the axioms for the
closed sets of a topology.

Definition 1.16. The Zariski topology on An is the topology whose closed sets are precisely the algebraic
sets. A set Y ⊆ An is Zariski open if its complement, An \ Y , is Zariski closed.

Example 1.17. In the Zariski topology on A1
k (where k is algebraically closed), the algebraic sets are the

zero sets of ideals in k[x]. Since k[x] is a principal ideal domain, any ideal is of the form (f). If f = 0,
V (f) = A1. If f is a non-zero polynomial, it has a finite number of roots. Thus, the closed sets are A1 itself
and all finite subsets of points. Consequently, the non-empty open sets are the cofinite sets (complements of
finite sets).

Remark 1.18. The Zariski topology on AnC (or AnR) is significantly coarser than the standard Euclidean
(metric) topology. Every Zariski closed set is also closed in the Euclidean topology, because polynomials are
continuous functions and V (S) =

⋂
f∈S f

−1({0}) is an intersection of closed sets. The converse, however,

is false; for instance, the closed unit disk in R2 is closed in the Euclidean topology but is not a Zariski-closed
set.

1.1.3 From Varieties to Ideals

Having established the map V : {Ideals in k[x⃗]} → {Algebraic Sets in An}, which translates algebraic data
into geometric objects, we now construct its counterpart. That is, we need a map from subsets of affine space
back to the world of ideals. Throughout, let k be an algebraically closed field and let R = k[x1, . . . , xn].

Definition 1.19. For any subset X ⊆ An, the ideal of X, denoted I(X), is the set of all polynomials in R
that vanish at every point in X:

I(X) := {f ∈ R | f(P ) = 0 for all P ∈ X}.

Remark 1.20. As its name suggests, I(X) is indeed an ideal in R. The verification is a straightforward
exercise. If f, g ∈ I(X), then for any P ∈ X, (f − g)(P ) = f(P ) − g(P ) = 0 − 0 = 0. If h ∈ R, then
(hf)(P ) = h(P )f(P ) = h(P ) · 0 = 0. Thus f − g ∈ I(X) and hf ∈ I(X).

One might hope that the operators I and V are perfect inverses. The following examples demonstrate that
the relationship is more subtle.

Example 1.21. The composition V ◦ I can enlarge a set. Consider the subset X = Z ⊆ A1
C. A polynomial

that is zero at every integer must be the zero polynomial itself, since a non-zero polynomial in one variable
has only finitely many roots. Thus, I(Z) = (0). Applying V gives V (I(Z)) = V (0) = A1

C, which is the Zariski
closure of Z but is strictly larger than the original set. In general, V (I(X)) ̸= X. Instead, V (I(X)) = X,
the Zariski closure of X.

Example 1.22. The composition I ◦ V can enlarge an ideal. Let J = (y, x2) ⊆ C[x, y]. The variety V (J)
is the intersection of the line V (y) (the x-axis) and the ”double line” V (x2) = V (x) (the y-axis). Their
intersection is the origin, so V (J) = {(0, 0)}.

Now, let us apply I: I(V (J)) = I({(0, 0)}). This is the ideal of all polynomials that vanish at the origin,
which is precisely the maximal ideal (x, y). Observe that (x, y) ⊋ (y, x2). So, in general, I(V (J)) ̸= J .

The previous example showed that J ⊊ I(V (J)). This inclusion always holds: if f ∈ J , then by definition
f vanishes on every point of V (J), so f ∈ I(V (J)). The discrepancy is not arbitrary; it is controlled by a
purely algebraic construction. Notice that the polynomial x is in I(V (J)) = (x, y), but not in J = (y, x2).
However, a power of it, x2, is in J . This suggests that we should take roots.
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Definition 1.23. Let R be a commutative ring and I ⊆ R be an ideal. The radical of I, denoted
√
I, is

the set of elements in R some power of which lies in I:

√
I := {a ∈ R | an ∈ I for some integer n > 0}.

An ideal I is called a radical ideal if I =
√
I.

Lemma 1.24. For any ideal I in a commutative ring R, the set
√
I is itself a radical ideal of R.

Proof. We first prove that
√
I is an ideal. Let a, b ∈

√
I. By definition, there exist positive integers n,m

such that an ∈ I and bm ∈ I. Consider the binomial expansion of (a− b)n+m−1. Each term in the expansion
is of the form c · aibj where c ∈ R is an integer coefficient and i + j = n + m − 1. It is easy to see that
for any such term, either i ≥ n or j ≥ m. If i ≥ n, then ai = ai−nan ∈ I, which implies the entire term
is in I since I is an ideal. Similarly, if j ≥ m, the term is in I. Thus, every term in the expansion is an
element of I, and their sum, (a − b)n+m−1, must also be in I. This implies that a − b ∈

√
I. For closure

under multiplication by elements of the ring, let c ∈ R. Since a ∈
√
I, there is a positive integer n such that

an ∈ I. Then (ca)n = cnan ∈ I, which means ca ∈
√
I. Therefore,

√
I is an ideal.

To show that
√
I is a radical ideal, we must prove that

√√
I =
√
I. The inclusion

√
I ⊆

√√
I is immediate

from the definition. For the reverse inclusion, let a ∈
√√

I. This means that there exists a positive integer
n such that an ∈

√
I. By the definition of the radical, this implies that there exists a positive integer m such

that (an)m ∈ I. Simplifying gives anm ∈ I, which by definition means a ∈
√
I. Thus,

√√
I ⊆
√
I. We have

therefore shown that
√√

I =
√
I, which confirms that

√
I is a radical ideal.

Lemma 1.25. Let R = k[x1, . . . , xn].

1. For any ideal J ⊆ R, we have
√
J ⊆ I(V (J)).

2. For any subset X ⊆ An, we have X ⊆ V (I(X)).

Proof.

1. Let f ∈
√
J . Then fm ∈ J for some m > 0. For any point P ∈ V (J), we have g(P ) = 0 for all g ∈ J .

In particular, fm(P ) = 0. Since f(P ) ∈ k, this means (f(P ))m = 0, which implies f(P ) = 0. As this
holds for all P ∈ V (J), we conclude that f ∈ I(V (J)).

2. Let P ∈ X. By the definition of I(X), every function f ∈ I(X) satisfies f(P ) = 0. This is precisely
the condition for P to be an element of the set V (I(X)).

The operators I and V have the following basic properties:

Corollary 1.26. Let X,Y ⊆ An.

1. If X ⊆ Y , then I(Y ) ⊆ I(X).

2. I(∅) = k[x1, . . . , xn] and, for an infinite field k, I(An) = (0).

3. For a point P = (a1, . . . , an), its ideal is the maximal ideal I({P}) = (x1 − a1, . . . , xn − an).

4. For any X ⊆ An, the ideal I(X) is a radical ideal.

5. For any ideal J ⊆ k[x1, . . . , xn], we have V (J) = V (
√
J).

Let’s apply these ideas on some concrete geometric objects.

Example 1.27.
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1. Cuspidal Plane Curve. Consider the set X = {(t2, t3) | t ∈ C} ⊆ A2
C. Is this an algebraic set? For

any point (x, y) ∈ X, we have x = t2 and y = t3 for some t. Then x3 = (t2)3 = t6 and y2 = (t3)2 = t6,
so every point on the curve satisfies x3 − y2 = 0. This shows that X ⊆ V (x3 − y2).

For the reverse inclusion, let (a, b) ∈ V (x3 − y2), so a3 = b2. Since k = C is algebraically closed,
we can find t ∈ C such that t2 = a. Then a3 = (t2)3 = t6. The equation becomes t6 = b2, which
implies b = ±t3. If b = t3, then (a, b) = (t2, t3) ∈ X. If b = −t3, we may choose t′ = −t, so
(a, b) = ((−t′)2, (−t′)3) ∈ X. Thus, every point of V (x3 − y2) lies on the parameterized curve X. We
conclude that X = V (x3 − y2) and is an algebraic set.

2. Let I = (x2 + y2, x2 − y2) ⊆ C[x, y]. What is V (I)? We can simplify the ideal algebraically. Since I
contains the generators, it must also contain their sum and difference: (x2+ y2)+ (x2− y2) = 2x2 and
(x2+y2)− (x2−y2) = 2y2. Thus (x2, y2) ⊆ I. Conversely, we can recover the original generators from
x2 and y2, so I = (x2, y2). The radical is

√
I = (x, y). Therefore, V (I) = V (

√
I) = V (x, y) = {(0, 0)}.

AB

V (I) = {(0, 0)}

1.2 Decomposition and Dimension

1.2.1 Irreducible Varieties and Decomposition

A central theme in algebra is the decomposition of objects into simpler, indecomposable parts, such as
factoring integers into primes. We now develop the geometric analogue for algebraic sets.

Definition 1.28. An algebraic set X is reducible if it can be written as a union of two proper algebraic
subsets, X = X1 ∪X2, where X1, X2 are algebraic sets with X1 ⊊ X and X2 ⊊ X. If X is not reducible, it
is irreducible. An irreducible algebraic set is often called a variety. A decomposition of an algebraic set
X as X = X1 ∪ · · · ∪Xm, where each Xi is an irreducible algebraic set and no Xi is contained in any Xj

for i ̸= j, is called a decomposition into irreducible components.

Example 1.29. Any line L ⊆ A2 is an irreducible algebraic set. The proper algebraic subsets of a line are
precisely the finite sets of points. Since a line is an infinite set of points, it cannot be expressed as the union
of two of its proper algebraic subsets. Thus, a line is irreducible.

Example 1.30. The algebraic set V (xy) ⊆ A2 is reducible since it is the union of the y-axis (V (x)) and the
x-axis (V (y)), both of which are proper algebraic subsets. In contrast, any single line L ⊆ A2 is irreducible,
as its only proper algebraic subsets are finite sets of points.

The geometric notion of irreducibility has a perfect algebraic counterpart.

Proposition 1.31. An algebraic set X is irreducible if and only if its ideal I(X) is a prime ideal.

Proof. (⇒) Suppose X is reducible, so X = X1 ∪X2 with X1, X2 ⊊ X. Since X1 ̸= X, I(X1) ⊋ I(X). Let
f1 ∈ I(X1) \ I(X). Similarly, let f2 ∈ I(X2) \ I(X). The product f1f2 vanishes on all of X1 (since f1 does)
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and on all of X2 (since f2 does). Therefore, f1f2 vanishes on their union X, which means f1f2 ∈ I(X).
Since neither factor is in I(X), we conclude that I(X) is not a prime ideal.

(⇐) Suppose I(X) is not prime. Then there exist polynomials f, g /∈ I(X) such that their product fg ∈ I(X).
As fg vanishes on all of X, we have X ⊆ V (fg) = V (f)∪ V (g). This implies X = (X ∩ V (f))∪ (X ∩ V (g)).
Let X1 = X∩V (f) and X2 = X∩V (g). These are algebraic sets. Since f /∈ I(X), the set X is not contained
in V (f), so X1 is a proper subset of X. Similarly, X2 ⊊ X. We have thus found a decomposition of X into
two proper algebraic subsets, which means X is reducible.

A major goal is to show the converse: if J is a prime ideal, then V (J) is irreducible. For this to be true, it
is essential that the field k is algebraically closed.

Example 1.32. Consider the polynomial f = y2 + x2(x − 1)2 in R[x, y]. It can be shown that f is an
irreducible polynomial, so the ideal (f) is prime. However, the set of real zeros is V (f) = {(0, 0), (1, 0)},
since a sum of squares is zero in R only if each term is zero. This set is reducible, as it is the union of two
distinct points. This demonstrates a failure of the correspondence over non-algebraically closed fields.

1.2.2 The Noetherian Property

We now show that any algebraic set can be decomposed into a finite union of irreducible components, and
that this decomposition is unique. The proof relies on a fundamental algebraic property of polynomial rings.

Definition 1.33. A commutative ring R is Noetherian if every ideal I ⊆ R is finitely generated.

This condition has several powerful equivalent formulations. We leave the proof as an exercise.

Lemma 1.34. The following are equivalent for a commutative ring R:

1. R is Noetherian (every ideal is finitely generated).

2. R satisfies the ascending chain condition (ACC) on ideals: every chain of ideals I1 ⊆ I2 ⊆ I3 ⊆ . . .
must stabilize, i.e., there exists an N such that In = IN for all n ≥ N .

3. Every non-empty collection of ideals of R has a maximal element with respect to inclusion.

The fact that k[x1, . . . , xn] is Noetherian has an important geometric consequence: every algebraic set can be
defined by a finite number of polynomial equations. That is, for any algebraic set X, there exist f1, . . . , fm
such that

X = V (I(X)) = V ((f1, . . . , fm)) = V (f1) ∩ V (f2) ∩ · · · ∩ V (fm).

This follows from one of the most important theorems in commutative algebra.

Theorem 1.35 (Hilbert Basis Theorem). If R is a Noetherian ring, then the polynomial ring R[x] is also
Noetherian.

Proof Sketch. Let I ⊆ R[x] be an ideal. Assume for contradiction that I is not finitely generated. We
construct an infinite sequence of polynomials {fk}∞k=1 ⊆ I. Let f1 ∈ I be a non-zero polynomial of minimal
degree. Inductively, choose fk+1 to be a polynomial of minimal degree in the ideal I \ (f1, . . . , fk). Let
ak ∈ R be the leading coefficient of fk. By construction, deg(f1) ≤ deg(f2) ≤ . . . .

Consider the ideal of leading coefficients, J = (a1, a2, . . . ) ⊆ R. Since R is Noetherian, this chain of ideals
(a1) ⊆ (a1, a2) ⊆ . . . must stabilize. Thus J is finitely generated, and there exists some m such that
J = (a1, . . . , am). In particular, am+1 ∈ (a1, . . . , am), so we can write am+1 =

∑m
j=1 ujaj for some uj ∈ R.

Now, define the polynomial g =
∑m
j=1 ujx

deg(fm+1)−deg(fj)fj . By construction, g ∈ (f1, . . . , fm) and its

leading term is precisely am+1x
deg(fm+1). The polynomial h = fm+1 − g has three key properties:

• h ∈ I because fm+1 and g are in I.

• h /∈ (f1, . . . , fm), otherwise fm+1 = h+ g would be.

• deg(h) < deg(fm+1) because we designed g to cancel the leading term of fm+1.
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The existence of h contradicts the choice of fm+1 as a polynomial of minimal degree in I \ (f1, . . . , fm).
Thus, our initial assumption must be false, and I is finitely generated.

We briefly mention two corollaries:

Corollary 1.36.

1. A field k is trivially Noetherian. By induction, the Hilbert Basis Theorem implies that the polynomial
ring k[x1, . . . , xn] is Noetherian.

2. The ACC on ideals in k[x1, . . . , xn] implies the descending chain condition (DCC) for algebraic
sets in An. That is, any sequence of algebraic sets X1 ⊇ X2 ⊇ X3 ⊇ . . . must stabilize. This follows
because such a chain gives rise to an ascending chain of ideals I(X1) ⊆ I(X2) ⊆ I(X3) ⊆ . . . , which
must stabilize.

We now have the tools to prove the main decomposition theorem.

Theorem 1.37. Every algebraic set X can be written as a finite union X = X1 ∪ · · · ∪ Xm of irreducible
algebraic sets, such that Xi ̸⊆ Xj for i ̸= j. This decomposition is unique up to the reordering of the
components Xi.

Proof. Existence. Assume for contradiction that there exists an algebraic set X that cannot be written as
a finite union of irreducibles. Such an X must be reducible, so X = Y1 ∪ Z1 for proper algebraic subsets
Y1, Z1. At least one of them, say Y1, must also be non-decomposable into a finite union of irreducibles.
Continuing this process, we write Y1 = Y2∪Z2, where Y2 is again non-decomposable. This yields an infinite,
strictly descending chain of algebraic sets: X ⊋ Y1 ⊋ Y2 ⊋ Y3 ⊋ . . . , which contradicts the DCC. Therefore,
every algebraic set admits such a decomposition.

Uniqueness. Suppose X =
⋃r
i=1Xi and X =

⋃s
j=1 Yj are two such decompositions. Consider a component

Xi. We have Xi ⊆ X =
⋃
j Yj , which implies Xi = Xi ∩ (

⋃
j Yj) =

⋃
j(Xi ∩ Yj). Since each Xi ∩ Yj is an

algebraic set and Xi is irreducible, it must be that Xi = Xi ∩ Yj for some j. This means Xi ⊆ Yj . By a
symmetric argument, for this Yj , we must have Yj ⊆ Xk for some k. This gives Xi ⊆ Yj ⊆ Xk. By the
minimality condition of the decomposition (Xi ̸⊆ Xk for i ̸= k), we must have i = k, which implies Xi = Yj .
This establishes a bijection between the sets of components, proving uniqueness.

1.2.3 Dimension

We conclude by introducing the geometric notion of dimension. Intuitively, this should capture the number
of independent parameters needed to describe a point on the set. We formalize this by considering chains of
irreducible subsets.

Definition 1.38. The dimension of an algebraic set X, denoted dimX, is the supremum of all integers d
for which there exists a strict chain of irreducible algebraic sets of length d:

Xd ⊋ Xd−1 ⊋ · · · ⊋ X0,

where each Xi ⊆ X.

Example 1.39. The chain A2 ⊋ V (y) ⊋ V (x, y) consists of a plane, a line, and a point. This shows
dimA2 ≥ 2. In fact, dimAn = n. Proving this equality, however, requires significant commutative alge-
bra. The algebraic counterpart to geometric dimension is the Krull dimension of the coordinate ring,
defined as the maximum length of a chain of prime ideals. The correspondence ensures that dimX =
Krull dim(k[x1, . . . , xn]/I(X)).

1.3 Hilbert’s Nullstellensatz

The fundamental theorem of algebra establishes a correspondence between the roots of a polynomial in one
variable and the linear factors of that polynomial. Hilbert’s Nullstellensatz (German for ”theorem of zeros”)
is a vast generalization of this idea to multiple variables, and is the most powerful tool for our dictionary.
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Our primary goal is to prove this theorem. The journey will require a background on finiteness conditions
on ring extensions, culminating in Zariski’s Lemma.

1.3.1 Statement of the Theorems

The Nullstellensatz has two primary forms, commonly known as the ”Weak” and ”Strong” versions. Let k
be a field and S = k[x1, . . . , xn] be the polynomial ring in n variables.

Theorem 1.40 (Weak Nullstellensatz). Let k be an algebraically closed field. If J ⊊ S is a proper ideal,
then its vanishing locus V (J) is non-empty.

This theorem asserts that a system of polynomial equations over an algebraically closed field has a common
solution, provided the equations do not generate a trivial contradiction (i.e., the ideal they generate is not
the entire ring).

The Strong Nullstellensatz provides a precise dictionary between ideals and varieties.

Theorem 1.41 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field and let J ⊆ S be an ideal.
Then the ideal of functions vanishing on V (J) is the radical of J . That is,

I(V (J)) =
√
J.

This result is remarkable: it states that if a polynomial g vanishes at every common zero of a set of poly-
nomials {fi}, then some power of g must lie in the ideal generated by the {fi}. The proof of the Weak
Nullstellensatz hinges on a deep algebraic property of field extensions, to which we now turn.

1.3.2 Integral Extensions and Finiteness Conditions

To prove the Nullstellensatz, we must first establish a crucial result concerning the structure of maximal
ideals in a polynomial ring over an algebraically closed field. The proof of this result, in turn, rests upon a
careful distinction between several notions of ”finiteness” for ring extensions.

Let R be a ring and S be a ring containing R as a subring. The ring S naturally possesses the structure of
an R-module.

Definition 1.42. Let S be a ring and R ⊆ S a subring.

1. S is a finitely generated R-module (or module-finite over R) if there exist elements s1, . . . , sn ∈ S
such that S =

∑n
i=1Rsi.

2. S is a finitely generated R-algebra (or ring-finite over R) if there exist elements s1, . . . , sn ∈ S
such that S = R[s1, . . . , sn].

Remark 1.43. Module-finiteness is a substantially stronger condition than ring-finiteness. For example,
the polynomial ring R[x] is a ring-finite extension of R (generated as an algebra by the single element x),
but it is not module-finite. No finite set of polynomials can span all of R[x] as an R-module, as the degrees
of polynomials are unbounded.

A third, related concept is that of integrality, which generalizes the notion of an algebraic number over a
field.

Definition 1.44. An element s ∈ S is integral over R if it is a root of a monic polynomial with coefficients
in R. That is, there exists a polynomial f(t) = tm + rm−1t

m−1 + · · · + r0 ∈ R[t] such that f(s) = 0. The
ring S is an integral extension of R if every element of S is integral over R.

Example 1.45.

1. The polynomial ring R[x] is ring-finite over R but is neither module-finite nor integral.

2. The quotient ring R[x]/(x2) is spanned by {1, x} as an R-module. It is therefore module-finite. Every
element a+ bx is integral over R.
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3. The field extension Q[
√
2, 3
√
2, 4
√
2, . . . ] ⊆ C is an integral extension of Q, but it is neither ring-finite

nor module-finite.

The relationship between these three conditions is fundamental. The following proposition establishes that
for a single element, integrality is equivalent to the module-finiteness of the algebra it generates.

Proposition 1.46. Let R ⊆ S be rings and let v ∈ S. The following are equivalent:

1. The element v is integral over R.

2. The R-algebra R[v] is a module-finite extension of R.

3. There exists a subring S′ ⊆ S containing R[v] that is module-finite over R.

Proof. (1) =⇒ (2): Suppose v is integral over R. Then it satisfies a monic relation vm+ am−1v
m−1 + · · ·+

a0 = 0 for some ai ∈ R. This equation allows us to express vm as an R-linear combination of {1, v, . . . , vm−1}.
By induction, any power vk for k ≥ m can also be expressed as a linear combination of this set. Thus, the
set {1, v, . . . , vm−1} generates R[v] as an R-module.

(2) =⇒ (3): This is trivial. Let S′ = R[v].

(3) =⇒ (1): This is a classic application of the determinant trick, reminiscent of the Cayley-Hamilton
theorem. Suppose S′ is a module-finite extension of R containing R[v], generated as an R-module by
{w1, . . . , wm}. Since v ∈ S′, multiplication by v is an R-linear map from S′ to itself. We can express the
image of each generator under this map as a linear combination of the generators:

vwi =

m∑
j=1

aijwj for some aij ∈ R.

This system of linear equations can be written in matrix form as:

m∑
j=1

(vδij − aij)wj = 0 for each i = 1, . . . ,m.

Let M be the m×m matrix whose (i, j)-entry is vδij − aij . Let w be the column vector of the generators.
The system is Mw = 0. By Cramer’s rule (or multiplying by the adjugate matrix), we have det(M)w = 0.
Since 1 ∈ S′ is a linear combination of the wj , we must have det(M) · 1 = 0, so det(M) = 0. Expanding
det(vI − A), where A is the matrix of coefficients (aij), yields a monic polynomial in v of degree m with
coefficients in R. Thus, v is integral over R.

This proposition has powerful corollaries that illuminate the structure of integral extensions.

Corollary 1.47. Let R ⊆ S be rings. The set of elements in S that are integral over R forms a subring of
S, called the integral closure of R in S.

Proof. Let a, b ∈ S be integral over R. By Proposition 1.46, R[a] is a module-finite extension of R. Since
b is integral over R, it is necessarily integral over the larger ring R[a]. Thus, the ring (R[a])[b] = R[a, b] is
module-finite over R[a]. By the tower property of modules, if R[a, b] is module-finite over R[a] and R[a] is
module-finite over R, then R[a, b] is module-finite over R. The elements a+ b and ab both belong to R[a, b].
By the equivalence (3) =⇒ (1) of Proposition 1.46, they must be integral over R. The elements of R are
trivially integral over R. Thus, the set of integral elements is a subring.

Corollary 1.48. Let S be a ring-finite extension of a ring R. Then S is module-finite over R if and only if
S is integral over R.

Proof. (=⇒) If S is module-finite over R, then for any v ∈ S, the subring R[v] ⊆ S satisfies condition (3) of
Proposition 1.46. Thus, every v ∈ S is integral over R.

(⇐=) Suppose S is integral over R and ring-finite, say S = R[v1, . . . , vn]. We proceed by induction on n.
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• Base Case (n = 1): S = R[v1]. Since v1 is integral over R, S is module-finite over R by Proposition
1.46.

• Inductive Step: Assume that Rk = R[v1, . . . , vk] is module-finite over R for k < n. Consider
Rk+1 = R[v1, . . . , vk+1] = Rk[vk+1]. By hypothesis, vk+1 is integral over R, and hence also over the
larger ring Rk. By the base case, Rk[vk+1] is module-finite over Rk. By the inductive hypothesis, Rk
is module-finite over R. The tower property implies Rk+1 is module-finite over R.

By the principle of induction, S = R[v1, . . . , vn] is module-finite over R.

To state Zariski’s Lemma, we also need some language from the theory of field extensions, which we recall
here. Let K ⊆ L be a field extension. For any elements v1, . . . , vn ∈ L, we denote by K(v1, . . . , vn) the
smallest subfield of L containing both K and the set {v1, . . . , vn}. This field is the field of fractions of the
ring K[v1, . . . , vn].

Definition 1.49. A field extension L of a field K is an algebraic extension if every element of L is
algebraic over K.

Example 1.50. The field Q(
√
5) is an algebraic extension of Q. Note that because

√
5 is algebraic, the ring

Q[
√
5] is already a field, so Q[

√
5] = Q(

√
5). Its elements are of the form α+ β

√
5 for α, β ∈ Q. Every such

element is a root of the quadratic polynomial x2 − 2αx + (α2 − 5β2) = 0, which has rational coefficients.
This extension is also module-finite over Q. In contrast, the extension Q(π) is not algebraic over Q, as π is
a transcendental element.

For a field extension K ⊆ L, the set of all elements in L that are algebraic over K constitutes a subfield of
L.

Proposition 1.51. The field of rational functions k(x) is a finitely generated field extension of k, but it is
not a finitely generated k-algebra (i.e., it is not ring-finite over k).

Proof. Assume for the sake of contradiction that k(x) is ring-finite, so k(x) = k[v1, . . . , vn] for some vi ∈ k(x).
Each vi is a rational function fi(x)/gi(x) for polynomials fi, gi ∈ k[x]. Let b ∈ k[x] be the product of all
denominators, b =

∏n
i=1 gi(x). Then b · vi ∈ k[x] for all i.

Let c ∈ k[x] be an irreducible polynomial that does not divide b. Such a polynomial exists because k[x]
contains infinitely many non-associate irreducibles. The element 1/c is in k(x), so it must be expressible as
a polynomial in the generators vi:

1

c
= P (v1, . . . , vn)

for some polynomial P with coefficients in k. Let N be the total degree of P . If we multiply the equation
by bN , we get:

bN

c
= bNP (v1, . . . , vn) = P (bv1, . . . , bvn)

Since each bvi is in k[x], the right-hand side is a polynomial expression in elements of k[x], and thus is itself
an element of k[x]. This implies that c must divide bN in k[x]. As c is irreducible, it must divide b. This
contradicts our choice of c. Therefore, the initial assumption that k(x) is ring-finite over k must be false.

Proposition 1.52. The polynomial ring k[x] is integrally closed in its field of fractions k(x). That is, its
integral closure in k(x) is k[x] itself.

Proof. Let z ∈ k(x) be an element that is integral over k[x]. By definition, z is a root of a monic polynomial
with coefficients in k[x]:

zn + an−1z
n−1 + · · ·+ a1z + a0 = 0, where ai ∈ k[x].

We can write z as a fraction f/g, where f, g ∈ k[x] are relatively prime polynomials and g ̸= 0. Substituting
this into the equation and multiplying through by gn, we obtain:

fn + an−1f
n−1g + · · ·+ a1fg

n−1 + a0g
n = 0.
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Rearranging the terms gives:

fn = −g(an−1f
n−1 + · · ·+ a1fg

n−2 + a0g
n−1).

This equality shows that g divides fn. Since k[x] is a unique factorization domain and f and g are coprime,
this is only possible if g is a unit in k[x]. The units of k[x] are the non-zero constant polynomials, so
g ∈ k \ {0}. Therefore, z = f/g is an element of k[x]. This shows that any element of k(x) that is integral
over k[x] must already be in k[x].

1.3.3 Zariski’s Lemma

The machinery of integral extensions culminates in a celebrated result of Zariski, which forms the algebraic
core of the Nullstellensatz proof. It clarifies the structure of field extensions that are also finitely generated
as algebras. For a field extension K ⊆ L, being finitely generated as a K-algebra (L = K[v1, . . . , vn]) is a
much stronger condition than being a finitely generated field extension (L = K(v1, . . . , vn)).

Proposition 1.53. The field of rational functions k(x) is a finitely generated field extension of k, but it is
not a finitely generated k-algebra.

Proof. Assume for contradiction that k(x) = k[v1, . . . , vm], where each vi = pi(x)/qi(x) for polynomials
pi, qi ∈ k[x]. Let d(x) ∈ k[x] be the product of all denominators, d(x) =

∏m
i=1 qi(x). Then any polynomial

in the generators vi can be written as a fraction whose denominator is a power of d(x). Specifically, any
element z ∈ k[v1, . . . , vm] can be written as P (x)/d(x)N for some P (x) ∈ k[x] and integer N ≥ 0. Now,
let f(x) ∈ k[x] be an irreducible polynomial that does not divide d(x). Such a polynomial exists because
k[x] contains infinitely many non-associate irreducibles. The element 1/f(x) belongs to k(x), so it must be
expressible in the form described above:

1

f(x)
=

P (x)

d(x)N
=⇒ d(x)N = f(x)P (x).

This implies that f(x) divides d(x)N . Since f(x) is irreducible and k[x] is a UFD, f(x) must divide d(x).
This contradicts our choice of f(x). The initial assumption must be false.

Zariski’s Lemma asserts that this phenomenon is general: a field that is ring-finite over a subfield must in
fact be a finite-degree (and thus algebraic) extension.

Theorem 1.54 (Zariski’s Lemma). Let K ⊆ L be a field extension. If L is finitely generated as a K-algebra,
then L is a finite algebraic extension of K.

Proof. We use induction on the number of algebra generators, n, for L = K[v1, . . . , vn].

Base Case (n = 1): L = K[v]. Since L is a field, for any non-zero element p(v) ∈ L, its inverse exists in L.
If v were transcendental over K, then K[v] would be isomorphic to the polynomial ring K[t], which is not a
field. Thus, v must be algebraic over K. In this case, L = K[v] = K(v) is a finite algebraic extension of K.

Inductive Step: Assume the lemma holds for extensions generated by fewer than n elements. Let L =
K[v1, . . . , vn] and consider the tower of extensions K ⊆ K(v1) ⊆ L. The field L can be viewed as an algebra
over the intermediate field K1 = K(v1), generated by n− 1 elements: L = K1[v2, . . . , vn]. By the inductive
hypothesis, L must be a finite algebraic extension of K1.

We now have two cases for the nature of v1 over K.

Case 1: v1 is algebraic over K. In this case, K1 = K(v1) is a finite algebraic extension of K. We
have a tower K ⊆ K1 ⊆ L where L/K1 is algebraic and K1/K is algebraic. By the transitivity of algebraic
extensions, L/K is algebraic. An extension that is both ring-finite and algebraic is module-finite by Corollary
1.48, so L is a finite algebraic extension of K.

Case 2: v1 is transcendental over K. Let us denote v1 by x. Then K1 = K(x) is the field of rational
functions in x. Since L is algebraic over K(x), each generator vi for i ∈ {2, . . . , n} satisfies a polynomial
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equation with coefficients in K(x). By clearing denominators (multiplying by a suitable polynomial in K[x]),
we find that each vi is integral over some ring K[x][1/di] for a polynomial di ∈ K[x]. Let d =

∏
di. Then

each vi is integral over the localization K[x][1/d]. This implies that L = K[x][1/d][v2, . . . , vn] is an integral
extension of K[x][1/d]. Now, consider any element z ∈ L. The element z is integral over K[x][1/d].

This leads to a contradiction. Let f ∈ K[x] be an irreducible polynomial that does not divide d. The element
1/f is in K(x) ⊆ L. As an element of L, 1/f must be integral over K[x][1/d]. This means it satisfies a
monic equation:

(1/f)m + cm−1(1/f)
m−1 + · · ·+ c0 = 0,

where cj ∈ K[x][1/d]. Multiplying by fm yields 1 = −f(cm−1 + cm−2f + · · · + c0f
m−1). The right side is

an element of K[x][1/d], and the equation shows that f is invertible in this ring. But the units of K[x][1/d]
are of the form c · dk for c ∈ K×. An irreducible polynomial f not dividing d cannot be a unit. This is a
contradiction.

Therefore, Case 2 is impossible. By symmetry, every generator vi must be algebraic over K, and the
conclusion follows as in Case 1.

1.3.4 The Proofs of the Nullstellensätze

With Zariski’s Lemma secured, we can now prove the result that motivates this entire line of inquiry.

Theorem 1.55. Let k be an algebraically closed field. Every maximal ideal m of the polynomial ring S =
k[x1, . . . , xn] is of the form

m = (x1 − a1, . . . , xn − an)
for some point (a1, . . . , an) ∈ Ank .

Proof. Let m be a maximal ideal in S. The quotient ring L = S/m is a field. The canonical projection map
π : S → L gives an embedding of k into L (if the kernel of k → L were non-zero, it would be all of k, making
L the zero ring, which is not a field). The field L is generated as a k-algebra by the images of the variables,
x1, . . . , xn. Thus, L = k[x1, . . . , xn] is a ring-finite extension of k.

By Zariski’s Lemma, L must be a finite algebraic extension of k. Since k is algebraically closed, the only
algebraic extension of k is k itself. Therefore, the inclusion k ↪→ L must be an isomorphism, and L ∼= k.

This isomorphism means that for each generator xi ∈ L, there is a corresponding unique scalar ai ∈ k. This
implies that xi = ai in the quotient ring, which is equivalent to the statement that xi − ai ∈ m for each
i = 1, . . . , n. This containment implies that the ideal J = (x1− a1, . . . , xn− an) is contained in m. However,
the ideal J is itself maximal (the quotient S/J ∼= k is a field). Since J ⊆ m and J is maximal, we must have
J = m.

Proof of the Weak Nullstellensatz (Theorem 1.40). Let J ⊊ S be a proper ideal. By Zorn’s Lemma, J
is contained in some maximal ideal m ⊆ S. The inclusion J ⊆ m implies a reverse inclusion of their
vanishing loci: V (m) ⊆ V (J). By Theorem 1.55, since k is algebraically closed, m must be of the form
(x1 − a1, . . . , xn − an) for some point P = (a1, . . . , an) ∈ Ank . The vanishing locus of this ideal is precisely
the single point P : V (m) = {P}. Since {P} ⊆ V (J), the variety V (J) is non-empty.

The proof of the Strong Nullstellensatz is a famous and ingenious argument known as the Rabinowitsch
Trick.

Proof of Hilbert’s Nullstellensatz (Theorem 1.41). The inclusion
√
J ⊆ I(V (J)) is straightforward from the

definitions. If g ∈
√
J , then gN ∈ J for some N > 0. For any point P ∈ V (J), we have f(P ) = 0 for all

f ∈ J . In particular, g(P )N = 0, which implies g(P ) = 0. Thus, g vanishes on V (J), so g ∈ I(V (J)).

For the reverse inclusion, I(V (J)) ⊆
√
J , let g ∈ I(V (J)). We must show g ∈

√
J . Let J = (f1, . . . , fr).

We introduce a new variable, y, and consider the polynomial ring S[y] = k[x1, . . . , xn, y]. In this larger ring,
define the ideal

J ′ = (f1, . . . , fr, yg − 1).
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Let P ′ = (a1, . . . , an, b) ∈ An+1
k be a point in the vanishing locus V (J ′). The conditions fi(P

′) = 0 mean that
the point P = (a1, . . . , an) is in V (J). By our assumption, g ∈ I(V (J)), so g(P ) = 0. The final generator of
J ′ imposes the condition b · g(P ) − 1 = 0, which becomes b · 0 − 1 = 0, or −1 = 0. This is a contradiction.
Thus, no such point P ′ can exist, which means V (J ′) = ∅.

By the Weak Nullstellensatz, an empty variety implies that the ideal must be the entire ring. So, J ′ = S[y].
This means 1 ∈ J ′, so we can write an identity

1 =

r∑
i=1

Ai(x1, . . . , y)fi +B(x1, . . . , y)(yg − 1)

for some polynomials Ai, B ∈ S[y]. This is a polynomial identity. We can substitute y = 1/g into this
identity, which is a valid operation in the field of fractions k(x1, . . . , xn). The equation becomes:

1 =

r∑
i=1

Ai(x1, . . . , 1/g)fi.

Let N be the highest power of y appearing in any of the polynomials Ai. Multiplying the equation by gN

clears all denominators, yielding an equation in S = k[x1, . . . , xn]:

gN =

r∑
i=1

(
gNAi(x1, . . . , 1/g)

)
fi.

Each term gNAi(. . . , 1/g) is a polynomial in x1, . . . , xn. The right-hand side is therefore an element of the
ideal (f1, . . . , fr) = J . Thus, gN ∈ J , which by definition means g ∈

√
J .

1.4 Consequences and Applications of the Nullstellensatz

The proof of the Nullstellensatz is a landmark achievement, but its true power lies in its consequences. The
theorem unlocks a deep and beautiful correspondence between the geometric world of algebraic sets and the
algebraic world of ideals. In this section, we explore this ”algebra-geometry dictionary,” apply it to classify
the fundamental building blocks of plane geometry, and investigate how the algebraic structure of coordinate
rings encodes geometric properties of varieties.

1.4.1 The Algebra-Geometry Dictionary

The Weak and Strong Nullstellensatz, taken together, establish a remarkable, order-reversing correspon-
dence between the algebraic subsets of affine space Ank and the radical ideals of the polynomial ring S =
k[x1, . . . , xn]. This dictionary allows us to translate geometric problems into the language of commuta-
tive algebra, where powerful tools are available, and to interpret algebraic results geometrically, providing
important intuition.

The fundamental maps are V (·), which takes an ideal to its vanishing locus, and I(·), which takes a set of
points to its vanishing ideal. The Nullstellensatz ensures this correspondence is nearly a bijection. Specifi-
cally, over an algebraically closed field k:

1. There is a one-to-one, inclusion-reversing correspondence between algebraic sets in Ank and radical
ideals in S.

2. Under this correspondence, the irreducible algebraic sets correspond precisely to the prime ideals
of S.

3. The simplest non-trivial irreducible sets, the points of Ank , correspond to the maximal ideals of S.

This dictionary is summarized in the table below.

Remark 1.56. The inclusion-reversing nature of the correspondence is intuitive: adding more functions to
an ideal (making the ideal larger) imposes more constraints, resulting in a smaller vanishing set. Conversely,
requiring a function to vanish on a larger set of points is a stronger condition, so the ideal of such functions
will be smaller.
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Table 1: The Algebra-Geometry Dictionary

Geometry (in Ank) Algebra (in S = k[x1, . . . , xn])
Algebraic set Radical ideal
Irreducible algebraic set Prime ideal
Point (a1, . . . , an) Maximal ideal (x1 − a1, . . . , xn − an)
The empty set ∅ The unit ideal (1) = S
The whole space Ank The zero ideal (0)
Inclusion of sets X ⊆ Y Reverse inclusion of ideals I(Y ) ⊆ I(X)
Union of sets X ∪ Y Intersection of ideals I(X) ∩ I(Y )

Intersection of sets X ∩ Y Radical of the sum of ideals
√
I(X) + I(Y )

Irreducible hypersurface Principal prime ideal (f), f irreducible
Algebraic subsets of a variety V (J) Radical ideals in the quotient ring S/J

1.4.2 The Structure of Irreducible Sets in the Plane

As a first concrete application of the dictionary, we can classify the irreducible algebraic subsets of the affine
plane, A2

k. An irreducible set is one that cannot be written as the union of two proper algebraic subsets. In
the language of ideals, this corresponds to a prime ideal. We seek, therefore, to classify the prime ideals of
k[x, y].

The candidates for irreducible algebraic sets in A2
k are:

1. The entire plane, A2 = V (0), corresponding to the prime ideal (0).

2. Points, {(a, b)} = V (x− a, y − b), corresponding to maximal (and thus prime) ideals.

3. Irreducible plane curves, V (f), where f ∈ k[x, y] is an irreducible polynomial. This corresponds to
a principal prime ideal (f).

The empty set, V (1), is irreducible by convention but corresponds to the entire ring, which is not prime.
What remains is to show that there are no other possibilities. A prime ideal in k[x, y] must have height 0,
1, or 2. These correspond to the cases above. The only other possibility for an algebraic set would be the
vanishing locus of an ideal that is not principal but is also not maximal, such as V (f, g) for two polynomials
f, g with no common factors. The following proposition shows that such a set is a finite collection of points,
and therefore not irreducible (unless it is a single point, which is already classified).

To prove this, we require some standard results from algebra.

Definition 1.57. Let R be an integral domain. The field of fractions of R, denoted Frac(R), is the
smallest field containing R. Its elements are formal fractions{a

b
| a, b ∈ R, b ̸= 0

}
,

with the familiar rules for equality (ab = c
d ⇐⇒ ad = bc) and arithmetic.

Theorem 1.58 (Gauss’s Lemma). If R is a Unique Factorization Domain (UFD), then so is the polynomial
ring R[t]. A key consequence is that a polynomial in R[t] is irreducible if and only if it is irreducible when
viewed as a polynomial over the field of fractions, Frac(R)[t].

Proposition 1.59. Let f, g ∈ k[x, y] be polynomials with no common factors. Then their common vanishing
set V (f, g) is finite.

Proof. We view the ring k[x, y] as (k[x])[y], a ring of polynomials in y whose coefficients are polynomials in
x. Since k[x] is a UFD, Gauss’s Lemma applies. The condition that f and g have no common factors in
k[x, y] implies they remain coprime as elements of k(x)[y], where k(x) = Frac(k[x]).

The ring k(x)[y] is a polynomial ring in one variable over a field, which makes it a Principal Ideal Domain
(PID). In a PID, the ideal generated by two coprime elements is the entire ring. Thus, there exist polynomials
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A(y), B(y) ∈ k(x)[y] such that A(y)f + B(y)g = 1. The coefficients of A and B are rational functions in x.
We can find a common denominator d(x) ∈ k[x] for all these coefficients. Multiplying the equation by d(x)
clears denominators, yielding an equation

Ã(x, y)f + B̃(x, y)g = d(x)

for some polynomials Ã, B̃ ∈ k[x, y] and a non-zero d(x) ∈ k[x].

Now, consider any point (x0, y0) ∈ V (f, g). By definition, f(x0, y0) = 0 and g(x0, y0) = 0. Substituting this
point into our equation gives Ã(x0, y0) · 0 + B̃(x0, y0) · 0 = d(x0), so d(x0) = 0. Since d(x) is a non-zero
polynomial in a single variable, it has only a finite number of roots. This shows that any point in V (f, g)
must have an x-coordinate from a finite set. By a symmetric argument (viewing k[x, y] as (k[y])[x]), the
y-coordinates must also belong to a finite set. Therefore, V (f, g) must be a finite set.

Corollary 1.60. If f ∈ k[x, y] is an irreducible polynomial over an algebraically closed field k, then
I(V (f)) = (f). Consequently, V (f) is an irreducible algebraic set.

Proof. Clearly, (f) ⊆ I(V (f)). For the reverse inclusion, let g ∈ I(V (f)). This means g vanishes everywhere
f does, so V (f) ⊆ V (g), which implies V (f, g) = V (f). Since k is algebraically closed and f is not a constant,
the variety V (f) is an infinite set. (To see this, view f as a polynomial in x with coefficients in k[y]. For the
infinitely many values of y0 ∈ k for which the leading coefficient of f(x, y0) does not vanish, the polynomial
f(x, y0) is a non-zero polynomial in one variable and must have a root x0.) Since V (f, g) is infinite, our
proposition implies that f and g must share a common factor. Because f is irreducible, that common factor
must be f itself (up to a unit). Therefore, f divides g, which means g ∈ (f). Thus, I(V (f)) = (f). Since f
is an irreducible element in a UFD, the principal ideal (f) is prime, and the dictionary tells us that V (f) is
an irreducible algebraic set.

1.4.3 Coordinate Rings and Geometric Finiteness

The Nullstellensatz connects a variety V (J) to its radical ideal
√
J . The quotient ring A(V (J)) = S/

√
J is

called the coordinate ring of the variety. Its elements are equivalence classes of polynomials, representing
the distinct polynomial functions on V (J). A finer algebraic object is the ring S/J itself, sometimes called
the ring of functions on the scheme defined by J . The structure of this ring, particularly its dimension as a
k-vector space, reveals deep geometric information.

Example 1.61 (Dimensions of Coordinate Rings).

1. A ”fat point”: Let I = (x2, y) ⊆ k[x, y]. The variety is V (I) = {(0, 0)}. The ring S/I =
k[x, y]/(x2, y) has relations y = 0 and x2 = 0. Any polynomial reduces to the form a + bx. Thus,
S/I is a 2-dimensional k-vector space with basis {1, x}. The nilpotent element x encodes infinitesimal
information—a ”tangent vector”—at the origin.

2. Two distinct points: Let I = (y, x(x − 1)). The variety is V (I) = {(0, 0), (1, 0)}. The ring is
S/I = k[x, y]/(y, x(x−1)) ∼= k[x]/(x2−x). Since the polynomials x and x−1 are coprime, the Chinese
Remainder Theorem applies:

k[x]/(x(x− 1)) ∼= k[x]/(x)× k[x]/(x− 1) ∼= k × k.

This ring is also 2-dimensional. An element (c1, c2) ∈ k × k corresponds to a function that takes the
value c1 at the point (0, 0) and c2 at (1, 0).

3. A finite set on a line: If f ∈ k[x] is a polynomial of degree d > 0 with distinct roots, then
I = (f) ⊆ k[x] defines d distinct points. The coordinate ring k[x]/(f) is a d-dimensional vector space
with basis {1, x, . . . , xd−1}.

Remark 1.62 (Toward Schemes). The ideals J1 = (x, y) and J2 = (x2, y) have the same variety, V (J1) =
V (J2) = {(0, 0)}, and the same radical,

√
J2 = J1. However, the quotient rings S/J1 ∼= k and S/J2 have

different dimensions. The vector space dimension dimk(S/J) is a finer invariant than the variety itself. It
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is often called the ”length” or ”multiplicity” of the algebraic set defined by J . This extra algebraic structure,
which is lost when passing to the radical, is the central object of study in the modern theory of schemes.
Schemes retain the nilpotent elements of S/J , interpreting them as encoding infinitesimal geometric data
like tangent directions.

The general principle illustrated by these examples is captured in the following corollary.

Corollary 1.63. Let k be an algebraically closed field and J ⊆ S = k[x1, . . . , xn] be an ideal. The variety
V (J) is a finite set of points if and only if the quotient ring S/J is a finite-dimensional k-vector space.

Proof. (⇐=) Assume dimk(S/J) is finite. Let V (J) = {P1, . . . , Pm}. We must show m is finite. For any
two distinct points Pi, Pj , there exists a linear polynomial L such that L(Pi) = 0 and L(Pj) ̸= 0. By
taking products of such linear forms, we can construct, for each i ∈ {1, . . . ,m}, a polynomial gi such that
gi(Pj) = δij (this is a multivariate generalization of Lagrange interpolation).

Consider the images of these polynomials, {g1, . . . , gm}, in the vector space S/J . Suppose they are linearly
dependent, so

∑m
i=1 λigi = 0 for scalars λi ∈ k. This means the polynomial G =

∑
λigi is in the ideal J . As

an element of J , G must vanish at every point in V (J). Let’s evaluate G at an arbitrary point Pj ∈ V (J):

0 = G(Pj) =

(
m∑
i=1

λigi

)
(Pj) =

m∑
i=1

λigi(Pj) = λj · 1 = λj .

This holds for all j = 1, . . . ,m, so all λj must be zero. The set {g1, . . . , gm} is therefore linearly independent
in S/J . The size of a linearly independent set cannot exceed the dimension of the space, so we must have
m ≤ dimk(S/J). Since the dimension is finite, m must be finite.

(⇒) Assume V (J) = {P1, . . . , Pm} is a finite set. Let Pi = (ai1, . . . , ain). We want to show that S/J is a
finite-dimensional vector space. For each coordinate direction j ∈ {1, . . . , n}, construct a polynomial in one
variable, gj(xj), whose roots are precisely the j-th coordinates of the points in our set:

gj(xj) :=

m∏
i=1

(xj − aij).

By construction, for any point Pk ∈ V (J), its j-th coordinate akj is a root of gj(xj), so gj(Pk) = 0. This

means the polynomial gj vanishes on all of V (J). By Hilbert’s Nullstellensatz, gj ∈ I(V (J)) =
√
J . This

implies that for some integer Nj > 0, we have g
Nj

j ∈ J . In the quotient ring S/J , this becomes the relation

gj(xj)
Nj

= 0. This is a monic polynomial equation satisfied by the element xj . This relation allows any
sufficiently high power of xj to be expressed as a k-linear combination of lower powers. Consequently, any
monomial x1

e1 . . . xn
en in S/J can be reduced to an equivalent expression where each exponent ej is bounded.

The set of monomials with bounded exponents is finite. Since these monomials span the entire space S/J ,
it must be finite-dimensional.

1.4.4 The Effective Nullstellensatz

The Strong Nullstellensatz is an existence theorem: it tells us that if a polynomial g vanishes on V (J),
then some power of g must lie in J . It does not, however, tell us which power. This leads to a natural
computational question: given generators for an ideal J and a polynomial g ∈

√
J , can we find an explicit

upper bound on the exponent N such that gN ∈ J?

This question is the subject of the Effective Nullstellensatz. Answering it is crucial for creating algorithms
in computational algebra, as it turns an existence statement into a constructive one with a known search
space. Early bounds were doubly exponential in the number of variables. A major breakthrough provided
much sharper, and more practical, bounds.

Theorem 1.64 (Kollár, 1988). Let k be an algebraically closed field, and let J = (f1, . . . , fr) ⊆ k[x1, . . . , xn]
be an ideal where each polynomial fi has degree at most d ≥ 3. If a polynomial g vanishes on V (J), then
gq ∈ J where q ≤ dn.
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Remark 1.65. This result is important because the bound depends only on the number of variables and
the maximum degree of the generators, not on the number of generators. It provides a concrete stopping
condition for algorithms that need to test for ideal membership in the radical.
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2 Affine Varieties

2.1 Affine Varieties and Regular Maps

We continue our story of making a dictionary between algebraic geometry and commutative algebra.

2.1.1 Affine Varieties and Coordinate Rings

Definition 2.1. An affine variety is an irreducible algebraic set in some affine space An.

By the Nullstellensatz, there is a one-to-one, order-reversing correspondence between algebraic sets in An
and radical ideals in the polynomial ring k[x1, . . . , xn]. Consequently,

Theorem 2.2. The correspondence V (·) and I(·) induces a bijection:

{affine varieties in An} ←→ {prime ideals in k[x1, . . . , xn]}

Having defined our geometric objects, we now turn to the natural class of functions upon them. Just as
continuous functions are central to topology, a special class of functions is fundamental to algebraic geometry.
We seek functions that respect the inherent polynomial structure of a variety.

Definition 2.3. Let V ⊆ An be an algebraic set. A function f : V → k is a polynomial function or
regular function on V if there exists a polynomial F ∈ k[x1, . . . , xn] such that f is the restriction of F to
V . That is, f(p) = F (p) for all p ∈ V .

The set of all functions from V to k, denoted F(V, k), forms a ring under pointwise addition and mul-
tiplication. It is a straightforward exercise to verify that the subset of regular functions is a subring of
F(V, k).

Definition 2.4. The ring of regular functions on an algebraic set V is called the coordinate ring of V . It
is denoted by Γ(V ).

Example 2.5. ,

1. For the entire affine space An, any polynomial function is simply a polynomial. Thus, Γ(An) =
k[x1, . . . , xn].

2. Let V = V (y−x2) ⊆ A2, the parabola. On V , the polynomial y and the polynomial x2 define the exact
same function, since for any point (a, b) ∈ V , we have b = a2. Thus, in Γ(V ), the functions represented
by y and x2 are identical.

3. Consider the hyperbola V = V (xy − 1) ⊆ A2. Is the function f(x, y) = 1/y a regular function on V ?
At first glance, it appears to be a rational function, not a polynomial. However, on V , the defining
equation xy − 1 = 0 implies that x = 1/y. Since x is a polynomial in k[x, y], its restriction to V is
a regular function. Therefore, 1/y is indeed a regular function on V , as it coincides with the regular
function defined by the polynomial x.

The examples suggest that two different polynomials in k[x1, . . . , xn] can give rise to the same regular function
on V . This occurs precisely when their difference vanishes on V . This observation leads to the fundamental
structure theorem for coordinate rings. The natural restriction map from polynomials on An to regular
functions on V is a surjective ring homomorphism:

k[x1, . . . , xn] ↠ Γ(V ) given by F 7→ F |V

The kernel of this map consists of all polynomials F such that F |V = 0, which is by definition the ideal
I(V ). The First Isomorphism Theorem for rings then yields the following canonical description.

Proposition 2.6. Let V be an algebraic set in An. The coordinate ring of V is isomorphic to the quotient
of the polynomial ring by the ideal of V :

Γ(V ) ∼= k[x1, . . . , xn]/I(V )
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Remark 2.7. From this proposition, we deduce several crucial properties of Γ(V ).

• Γ(V ) is a finitely-generated k-algebra (often called an affine k-algebra).

• Since I(V ) is a radical ideal, Γ(V ) is a reduced ring (i.e., its nilradical is trivial).

• If V is an affine variety, then I(V ) is a prime ideal. Consequently, Γ(V ) is an integral domain.

The dictionary extends further. Geometric substructures of a variety V correspond to algebraic substructures
in its coordinate ring Γ(V ).

Definition 2.8. A subvariety of a variety V is a variety W ⊆ An that is contained in V .

The correspondences provided by the Nullstellensatz can now be relativized to V and its coordinate ring
Γ(V ).

Theorem 2.9. Let V be an affine variety. There are canonical bijections:

{subvarieties of V } ←→ {prime ideals in Γ(V )}
{points of V } ←→ {maximal ideals in Γ(V )}

If W ⊆ V is a subvariety, there is a natural restriction map Γ(V ) → Γ(W ) given by f 7→ f |W . The
kernel of this map consists of regular functions on V that vanish on W . This set forms an ideal in Γ(V ),
which we denote IV (W ). It corresponds to the prime ideal I(W )/I(V ) ⊆ k[x1, . . . , xn]/I(V ). We thus have
Γ(W ) ∼= Γ(V )/IV (W ).

Example 2.10. Revisiting V = V (xy − 1) ⊆ A2: we saw that on V , the relation y = 1/x holds. The
coordinate ring is therefore

Γ(V ) = k[x, y]/(xy − 1) ∼= k[x, 1/x]

the ring of Laurent polynomials in one variable. This is an integral domain, as expected, since V is a variety.

2.1.2 Regular Maps Between Varieties

The next step is to define the structure-preserving maps between varieties, analogous to linear transforma-
tions between vector spaces or continuous maps between topological spaces. These are the morphisms of our
category.

Definition 2.11. Let V ⊆ An and W ⊆ Am be algebraic sets. A function φ : V → W is a regular map
(or polynomial map, or morphism) if there exist m polynomials T1, . . . , Tm ∈ k[x1, . . . , xn] such that for
every point p ∈ V ,

φ(p) = (T1(p), T2(p), . . . , Tm(p)).

Each component function Ti|V is an element of Γ(V ).

Example 2.12. Consider the morphism φ : A1 → A2 defined by the map t 7→ (t, t2). The image of this
morphism is the affine variety V = V (y − x2), which is the parabola in the affine plane.

We can also consider a map in the opposite direction, ψ : V → A1. Since any point (x, y) on the variety
V satisfies the relation y = x2, we can define ψ in a couple of ways. For example, we could define it as
ψ1(x, y) = y or as ψ2(x, y) = x2. On the variety V , these two definitions are equivalent.

However, if we consider these maps as morphisms from the entire affine plane A2 to A1, they are no longer
the same. For instance, consider the point (2, 3) ∈ A2, which is not on the variety V . We have ψ1(2, 3) = 3
and ψ2(2, 3) = 22 = 4. This shows that while the two definitions of ψ agree on V , they are different functions
on A2.

Remark 2.13. A regular function f ∈ Γ(V ) is, by this definition, precisely a regular map from V to A1.

Every regular map φ : V → W induces a map on the corresponding coordinate rings, but in the reverse
direction. Given a regular function g ∈ Γ(W ), we can pre-compose it with φ to obtain a regular function on
V :

V
φ−→W

g−→ k

24



The composition g◦φ is a regular function on V . This defines a k-algebra homomorphism φ∗ : Γ(W )→ Γ(V ),
called the pullback map, by the rule φ∗(g) = g ◦ φ.

Remark 2.14. This construction is functorial. Let idV : V → V be the identity morphism. Then id∗V (f) =
f ◦ idV = f , so id∗V is the identity on Γ(V ). Furthermore, if φ : V →W and ψ :W → X are regular maps,
one can check that (ψ ◦ φ)∗ = φ∗ ◦ ψ∗. This means that the assignment V 7→ Γ(V ) and φ 7→ φ∗ defines
a contravariant functor from the category of algebraic sets to the category of reduced, finitely-generated
k-algebras.

Example 2.15.

• Consider the morphism φ : A3 → A2 given by (x, y, z) 7→ (x2y, x − z). This induces a pullback
homomorphism φ∗ : k[u, v]→ k[x, y, z] defined on the generators of the coordinate ring k[u, v] as:

φ∗(u) = x2y

φ∗(v) = x− z

• Let X ⊆ Am be a closed subvariety with the inclusion map i : X ↪→ Am. The pullback i∗ : k[x1, . . . , xm]→
Γ(X) is defined by its action on the generators:

i∗(xj) = xj

for each coordinate function xj. This map is the natural quotient map k[x1, . . . , xm]→ k[x1, . . . , xm]/I(X),
where I(X) is the ideal of X.

Now, we present the central claim for this subsection:

Proposition 2.16. Let V ⊆ An and W ⊆ Am be algebraic sets. The map that sends a regular map
φ : V →W to its pullback φ∗ : Γ(W )→ Γ(V ) is a bijection:

HomAffVar(V,W ) ∼= Homk−alg(Γ(W ),Γ(V ))

Proof. We have already constructed the map φ 7→ φ∗. We must show it is both surjective and injective.

(Surjectivity) Let α : Γ(W ) → Γ(V ) be an arbitrary k-algebra homomorphism. We must construct a
regular map ψ : V → W such that ψ∗ = α. Let Γ(W ) = k[y1, . . . , ym]/I(W ). The coordinate functions on
W are the images ȳj ∈ Γ(W ) of the variables yj . Their images under α, namely α(ȳj), are regular functions
on V . For each j = 1, . . . ,m, let us choose a representative polynomial Tj ∈ k[x1, . . . , xn] for the function
α(ȳj).

Define a map ψ : V → Am by setting ψ(p) = (T1(p), . . . , Tm(p)) for any p ∈ V . By construction, ψ is a map
whose components are polynomial functions, so it is a candidate for a regular map. First, we must verify
that its image lies in W . A point q ∈ Am is in W = V (I(W )) if and only if g(q) = 0 for all polynomials
g ∈ I(W ). Let p ∈ V be arbitrary. For any g(y1, . . . , ym) ∈ I(W ), its image ḡ in Γ(W ) is zero. Then we
evaluate g at the image point ψ(p):

g(ψ(p)) = g(T1(p), . . . , Tm(p)).

Since α is a k-algebra homomorphism and α(ȳj) is the function represented by Tj , the value of the polynomial
g(T1, . . . , Tm) at p is the same as the value of the function α(ḡ) at p. But ḡ = 0 in Γ(W ), so α(ḡ) = α(0) = 0.
The function α(ḡ) is the zero function on V . Thus, g(ψ(p)) = 0. This holds for all p ∈ V and all g ∈ I(W ),
which shows ψ(V ) ⊆W . So ψ is a regular map from V to W .

Finally, we check that ψ∗ = α. It suffices to check this on the generators ȳj of Γ(W ). For any j,

ψ∗(ȳj) = ȳj ◦ ψ.

By definition of ψ, this is the function on V given by the polynomial Tj , which is precisely how we defined
Tj : as a representative for α(ȳj). Thus ψ

∗(ȳj) = α(ȳj), and since they agree on generators, ψ∗ = α.
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(Injectivity) Suppose ψ,φ : V → W are regular maps such that ψ∗ = φ∗. Let the component functions
of ψ be {Tj |V }mj=1 and those of φ be {Sj |V }mj=1. The equality ψ∗ = φ∗ means that for any g ∈ Γ(W ),
g ◦ ψ = g ◦ φ as functions on V . In particular, we may choose g to be the j-th coordinate function on W ,
g = ȳj . Then

ψ∗(ȳj) = ȳj ◦ ψ = Tj |V and φ∗(ȳj) = ȳj ◦ φ = Sj |V .

The condition ψ∗ = φ∗ implies Tj |V = Sj |V for all j = 1, . . . ,m. This means the component functions of
the maps ψ and φ are identical. Therefore, ψ(p) = φ(p) for all p ∈ V , so ψ = φ.

Example 2.17. Let n ≥ r. Consider the projection φ : An → Ar defined by (x1, . . . , xn) 7→ (x1, . . . , xr).
This is a regular map. Its pullback φ∗ : Γ(Ar) → Γ(An) is the homomorphism k[y1, . . . , yr] → k[x1, . . . , xn]
that sends a polynomial g(y1, . . . , yr) to g(x1, . . . , xr). This is the natural inclusion map of polynomial rings.

Example 2.18 (Constructing a Map from a Homomorphism). Let’s construct the geometric map corre-
sponding to the k-algebra homomorphism

α : k[x, y, z]→ k[u, v]/(u− v3)

defined by x 7→ ū, y 7→ 2ū, and z 7→ 3ū. Here, the domain is Γ(A3) and the codomain is Γ(V ) for the
variety V = V (u− v3) ⊆ A2. The map α corresponds to a regular map φ : V → A3. Following the proof of
Proposition 2.16, the components of φ are given by the images of the coordinate functions of the target space
A3.

φ = (α(x̄), α(ȳ), α(z̄)).

Given a point (a, b) ∈ V , so that a = b3, the map is

φ(a, b) = (a, 2a, 3a) = (b3, 2b3, 3b3).

2.1.3 Isomorphisms and Geometric Properties

The notion of equivalence in the category of affine varieties is that of isomorphism.

Definition 2.19. A regular map φ : V →W is an isomorphism if there exists a regular map ψ :W → V
such that ψ ◦ φ = idV and φ ◦ ψ = idW .

Remark 2.20. A bijective regular map is not necessarily an isomorphism. The inverse map, which is
guaranteed to exist as a set map, must also be regular. A classic counterexample is the map φ : A1 → C =
V (y2−x3) given by t 7→ (t2, t3). This map is a bijection, but its inverse is not regular at the origin (0, 0) ∈ C.

The correspondence between maps and homomorphisms immediately gives a criterion for isomorphism.

Corollary 2.21. A regular map φ : V →W is an isomorphism if and only if its pullback φ∗ : Γ(W )→ Γ(V )
is a k-algebra isomorphism.

Proof. This is a direct consequence of the functoriality of the pullback construction. If φ is an isomorphism
with inverse ψ, then φ ◦ ψ = idW and ψ ◦ φ = idV . Applying the contravariant functor Γ yields (φ ◦ ψ)∗ =
ψ∗ ◦ φ∗ = idΓ(W ) and similarly φ∗ ◦ ψ∗ = idΓ(V ). This shows φ∗ is an isomorphism with inverse ψ∗. The
converse follows by applying the correspondence from Proposition 2.16 to the inverse homomorphism.

Example 2.22. The map φ : A1 → V = V (y − x2) given by t 7→ (t, t2) is an isomorphism. Its inverse is
ψ : V → A1 given by (x, y) 7→ x, which is clearly regular. Algebraically, the pullback φ∗ : Γ(V ) → Γ(A1) is
the map

φ∗ : k[x, y]/(y − x2)→ k[t] sending x̄ 7→ t, ȳ 7→ t2.

This is an isomorphism, as k[x, y]/(y−x2) ∼= k[x], and the map becomes the isomorphism k[x]→ k[t] sending
x 7→ t.

26



Example 2.23. Let T : An → An be a regular map where each component Ti is a polynomial of degree 1,
and assume T is a bijection. Such a map is called an affine change of coordinates. Any such map can
be decomposed as T = τ ◦L, where L : An → An is an invertible linear transformation and τ : An → An is a
translation. Both L and τ are regular maps, and their inverses (L−1 and translation by the opposite vector)
are also regular. The composition of isomorphisms is an isomorphism, so any affine change of coordinates
is an isomorphism of An with itself.

Regular maps behave well with respect to topological properties (in the Zariski topology).

Lemma 2.24. Let φ : V →W be a regular map and let X ⊆W be an algebraic set.

1. The preimage φ−1(X) is an algebraic set in V .

2. If X ⊆ φ(V ) and φ−1(X) is irreducible, then X is irreducible.

Proof. 1. Since regular maps are continuous in the Zariski topology, this is immediate. More construc-
tively, let X = V (f1, . . . , fr) for some polynomials fi whose restrictions define functions in Γ(W ). A
point p ∈ V is in φ−1(X) if and only if φ(p) ∈ X, which means fi(φ(p)) = 0 for all i. This is equivalent
to (φ∗(fi))(p) = 0 for all i. Thus,

φ−1(X) = {p ∈ V | (φ∗(fi))(p) = 0 for all i} = V (φ∗(f1), . . . , φ
∗(fr)),

which is an algebraic set in V .

2. Suppose X = A ∪ B for closed subsets A,B ⊆ X. Then φ−1(X) = φ−1(A) ∪ φ−1(B). Since φ−1(X)
is irreducible, we must have φ−1(A) = φ−1(X) or φ−1(B) = φ−1(X). Suppose the former holds.
Since we assumed X ⊆ φ(V ) (i.e., the map is surjective onto X), we can apply φ to both sides to get
φ(φ−1(A)) = φ(φ−1(X)). This implies A = X. Hence X is irreducible.

Remark 2.25. The converse of part 2 is false; the image of an irreducible variety need not be irreducible.
However, this is only possible if the image is not a variety. It is a more advanced result (Chevalley’s Theorem)
that the image of a variety contains a dense open subset of its closure.

2.1.4 Injectivity and Surjectivity

A surjective map of sets f : A→ B implies that any function on B that becomes zero when pulled back to
A must have been zero to begin with. The same holds for regular maps.

Proposition 2.26. If a regular map φ : V → W is surjective, then its pullback φ∗ : Γ(W ) → Γ(V ) is
injective.

Proof. Let f ∈ Γ(W ) be an element in the kernel of φ∗, so φ∗(f) = 0. By definition, this means the
composite function f ◦φ : V → k is the zero function. Since φ is surjective, for any point q ∈W , there exists
some p ∈ V such that φ(p) = q. We may then evaluate f at this point:

f(q) = f(φ(p)) = (f ◦ φ)(p) = 0.

As this holds for all q ∈W , the function f must be the zero function in Γ(W ). Thus, ker(φ∗) = {0}, and φ∗

is injective.

Remark 2.27. The converse to this proposition is false. An injective pullback does not imply a surjective
morphism.

Example 2.28. Consider the hyperbola V = V (xy − 1) ⊆ A2. Define a morphism φ : V → A1 by the
projection onto the first coordinate: φ(x, y) = x. The pullback map on coordinate rings is

φ∗ : Γ(A1)→ Γ(V ) which is k[t]→ k[x, y]/(xy − 1) sending t 7→ x.
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Since Γ(V ) ∼= k[x, 1/x], the map φ∗ is the natural inclusion of the polynomial ring k[x] into the larger ring
of Laurent polynomials k[x, 1/x]. This is clearly an injection.

However, the map φ is not surjective. The point 0 ∈ A1 is not in the image, because if φ(x, y) = x = 0, the
defining equation xy − 1 = 0 would imply −1 = 0, a contradiction. The image is φ(V ) = A1 \ {0}. This
set is not a closed algebraic set in A1. (This phenomenon, where the image of a variety is not necessarily
closed, is specific to the affine setting. As we will see, morphisms between projective varieties always have
closed images.)

The example shows that the correct geometric notion corresponding to an injective pullback is not surjectivity,
but rather that the image is topologically dense.

Definition 2.29. A regular map φ : V → W is dominant if its image is dense in the Zariski topology of
W , i.e., φ(V ) =W .

Proposition 2.30. A regular map φ : V →W between affine varieties is dominant if and only if its pullback
φ∗ : Γ(W )→ Γ(V ) is injective.

Proof. The pullback φ∗ is injective if and only if its kernel is trivial. Let’s identify the kernel. An element
f̄ ∈ Γ(W ) (represented by a polynomial f) is in ker(φ∗) if and only if φ∗(f̄) = f̄ ◦ φ = 0. This means the
function f vanishes on the image set φ(V ). This is precisely the condition that f ∈ I(φ(V )). Therefore,
ker(φ∗) = I(φ(V ))/I(W ).

(⇒) Assume φ∗ is injective. Then ker(φ∗) = {0}, which implies I(φ(V )) = I(W ). By the Nullstellensatz,
taking the vanishing locus of both sides gives V (I(φ(V ))) = V (I(W )). This translates to φ(V ) = W , so φ
is dominant.

(⇐) Assume φ is dominant. This means φ(V ) = W , which by the Nullstellensatz implies I(φ(V )) = I(W ).
Since I(S) = I(S) for any set S, we have I(φ(V )) = I(W ). Now, suppose f̄ ∈ Γ(W ) is in the kernel of φ∗.
This means f ∈ I(φ(V )). But since this ideal is equal to I(W ), we have f ∈ I(W ), which means f̄ = 0 in
Γ(W ) = k[y]/I(W ). Thus, the kernel is trivial and φ∗ is injective.

We now analyze the dual situation: what is the geometric meaning of a surjective pullback? It corresponds
to the map being an isomorphism onto a closed subvariety of the target.

Proposition 2.31. A regular map φ : V → W induces a surjective pullback φ∗ : Γ(W ) → Γ(V ) if and
only if φ is an isomorphism from V onto a closed subvariety of W . Such a map is often called a closed
embedding.

Proof. (⇐) First, assume that φ is an isomorphism from V onto a closed subvariety W ′ ⊆ W . This means
the map φ can be factored as the composition of an isomorphism ψ : V

∼−→ W ′ followed by the inclusion
map i :W ′ ↪→W .

V W

W ′

φ

ψ

∼
i

By the contravariant nature of the coordinate ring functor, the pullback φ∗ : Γ(W ) → Γ(V ) factors as the
composition of the pullbacks of i and ψ:

Γ(W ) Γ(V )

Γ(W ′)

φ∗

i∗ ψ∗

We analyze the two maps in this composition:
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1. The map i :W ′ ↪→W is a closed embedding of an algebraic set. Its pullback i∗ : Γ(W )→ Γ(W ′) is the
natural restriction homomorphism, which sends a function on W to its restriction on W ′. This map is
always surjective.

2. The map ψ : V → W ′ is an isomorphism of varieties. Its pullback ψ∗ : Γ(W ′)→ Γ(V ) must therefore
be a k-algebra isomorphism.

The map φ∗ = ψ∗ ◦ i∗ is the composition of a surjective homomorphism followed by an isomorphism. Such
a composition is always surjective. This completes the first direction.

(⇒) Conversely, assume the pullback φ∗ : Γ(W ) → Γ(V ) is surjective. Let W ′ = φ(V ). As the closure of
the image of an irreducible set, W ′ is a closed subvariety of W . We can view φ as a map from V to W ′,
which we will call ψ : V →W ′.

V W ′ W
ψ

φ

i

By its very construction, the image of ψ is dense in its codomain W ′, meaning ψ is a dominant map. A key
result states that a morphism is dominant if and only if its pullback is injective. Therefore, the pullback
ψ∗ : Γ(W ′)→ Γ(V ) is an injective k-algebra homomorphism.

Now consider the corresponding diagram of pullbacks:

Γ(W ) Γ(V )

Γ(W ′)

i∗

φ∗

ψ∗

This diagram commutes, meaning φ∗ = ψ∗ ◦ i∗. We know the following:

1. φ∗ is surjective by our initial assumption.

2. i∗ is the surjective restriction map from Γ(W ) to Γ(W ′).

Since the total map φ∗ is surjective, and it factors through ψ∗, the map ψ∗ must also be surjective. To see
this, let g ∈ Γ(V ). Since φ∗ is surjective, there exists an f ∈ Γ(W ) such that φ∗(f) = g. Then g = ψ∗(i∗(f)).
The element i∗(f) ∈ Γ(W ′) is a preimage of g under ψ∗, proving its surjectivity.

We have now shown that ψ∗ : Γ(W ′) → Γ(V ) is both injective (from dominance) and surjective. It is
therefore a k-algebra isomorphism. This implies that the corresponding geometric map ψ : V → W ′ is
an isomorphism of varieties. Since W ′ = φ(V ) is a closed subvariety of W , we have shown that φ is an
isomorphism onto a closed subvariety, as required.

2.2 Rational Functions and Local Rings

Having established the global algebraic object associated with a variety (its coordinate ring Γ(V )), we now
turn our attention to functions that may not be defined everywhere. This move from ”polynomial” to
”rational” functions allows for a more local analysis of a variety’s geometry, analogous to the transition from
polynomials to rational functions in single-variable calculus.

2.2.1 Basic Definitions

Let V ⊆ An be an affine variety. Since V is irreducible, its ideal I(V ) is prime, and consequently, the
coordinate ring Γ(V ) = k[x1, . . . , xn]/I(V ) is an integral domain. This algebraic fact allows us to construct
its field of fractions, which we interpret geometrically as the field of rational functions on V .

Definition 2.32. The field of rational functions on a variety V , denoted k(V ), is the field of fractions
of its coordinate ring Γ(V ). An element f ∈ k(V ) is called a rational function on V .

An element f ∈ k(V ) is an equivalence class of fractions g
h , where g, h ∈ Γ(V ) and h ̸= 0. The equivalence

relation is the usual one for fractions: g
h = g′

h′ if and only if gh′ = g′h in Γ(V ).
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Example 2.33. Consider the quadric cone V = V (xy− z2) ⊆ A3. In its coordinate ring Γ(V ), we have the
relation x̄ȳ = z̄2. Consider the rational function f = x̄

z̄ ∈ k(V ). Multiplying the numerator and denominator
by ȳ is not helpful, but we can use the ring relation:

x̄

z̄
=
x̄z̄

z̄2
=
x̄z̄

x̄ȳ
=
z̄

ȳ
.

Thus, x̄z̄ and z̄
ȳ represent the same rational function on V .

Unlike a regular function, a rational function may not be defined at every point of the variety. The ability
to choose different representatives for the same function is important for determining its domain.

Definition 2.34. A rational function f ∈ k(V ) is said to be defined or regular at a point P ∈ V if
there exists a representation f = g

h with g, h ∈ Γ(V ) such that the denominator does not vanish at P , i.e.,
h(P ) ̸= 0.

Example 2.35. Let f = x̄
z̄ = z̄

ȳ on V = V (xy − z2). The representation x̄
z̄ shows that f is defined at any

point where z̄ ̸= 0. The representation z̄
ȳ shows it is also defined where ȳ ̸= 0. Therefore, f is regular at any

point (a, b, c) ∈ V as long as b ̸= 0 or c ̸= 0.

2.2.2 The Pole Set of a Rational Function

The set of points where a rational function is not defined is of fundamental importance.

Definition 2.36. A point P ∈ V is a pole of a rational function f ∈ k(V ) if f is not regular at P . The set
of all poles of f is called the pole set of f .

This means that for a pole P , every possible representation f = g
h has a denominator that vanishes at P ,

i.e., h(P ) = 0.

Remark 2.37. If the coordinate ring Γ(V ) happens to be a Unique Factorization Domain (UFD), the
situation is simpler. Any f ∈ k(V ) has a unique representation f = a

b where a, b ∈ Γ(V ) are coprime. In
this case, the pole set of f is precisely the zero locus of the denominator, V (b) ⊆ V . However, Γ(V ) is not
a UFD in general. For V = V (xy − z2), the coordinate ring Γ(V ) is not a UFD, which is why we needed to
consider multiple representations of f = x̄

z̄ .

Despite this, the pole set always has a nice geometric structure.

Proposition 2.38. The set of poles of a rational function f ∈ k(V ) is a proper algebraic subset of V .

Proof. Let f ∈ k(V ). To identify the pole set, we consider all possible denominators for f . Let Jf ⊆ Γ(V )
be the set of all possible denominators, more formally defined as:

Jf = {h ∈ Γ(V ) | hf ∈ Γ(V )}.

It is a straightforward exercise to verify that Jf is a non-zero ideal of Γ(V ). Now we relate this ideal to the
pole set.

Let P ∈ V . The function f is regular at P if and only if there exists a representation f = g
h with h(P ) ̸= 0.

The condition f = g
h is equivalent to hf = g ∈ Γ(V ), which means h ∈ Jf . Therefore:

P is not a pole of f ⇐⇒ f is regular at P

⇐⇒ ∃h ∈ Γ(V ) s.t. f = g/h and h(P ) ̸= 0

⇐⇒ ∃h ∈ Jf s.t. h(P ) ̸= 0

⇐⇒ P /∈ V (Jf ).

Thus, the pole set of f is precisely the algebraic set V (Jf ). Since Jf is a non-zero ideal (as f must have at
least one denominator), V (Jf ) is a proper subset of V .
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2.2.3 Local Rings of a Variety

The set of all functions regular at a point forms a ring, which allows us to study the ”local” geometry of a
variety near that point.

Definition 2.39. Let V be an affine variety and let P ∈ V be a point. The local ring of V at P , denoted
OP (V ), is the set of all rational functions on V that are regular at P :

OP (V ) = {f ∈ k(V ) | f is regular at P} =
{ g
h
| g, h ∈ Γ(V ), h(P ) ̸= 0

}
.

It is a straightforward verification that OP (V ) forms a subring of the function field k(V ). The inclusions
k ⊆ Γ(V ) ⊆ OP (V ) ⊆ k(V ) are clear, with a regular function g being identified with the fraction g/1.

Example 2.40. It is important to distinguish the local ring OP (V ) from the coordinate ring of the point
itself, Γ(P ). Let P be the origin in A1, so that P = V (x). The point P is itself a variety, and its coordinate
ring is Γ(P ) = k[x]/(x) ∼= k. Its function field is thus also k(P ) ∼= k.

However, the local ring of the ambient space A1 at P is OP (A1). This ring is not a field. For instance, the
function x (represented by x/1) is in OP (A1) since its denominator does not vanish at P . But its inverse,
1/x, is not in OP (A1) because any representation of 1/x must have a denominator divisible by x, which
necessarily vanishes at P . This example gives us two key facts:

• A function can be a non-zero element in OP (V ) even if its evaluation at P is zero. The function
x ∈ OP (A1) is not the zero element, though its value x(P ) is 0.

• The ring OP (V ) contains information about the ambient variety V in a neighborhood of P , not just
about the point P in isolation.

Proposition 2.41. The set OP (V ) is a subring of the function field k(V ) that contains the coordinate ring
Γ(V ).

Proof. Let f1 = a/b and f2 = c/d be two elements of OP (V ), where a, b, c, d ∈ Γ(V ) and b(P ) ̸= 0, d(P ) ̸= 0.
Since Γ(V ) is an integral domain, the product b(P )d(P ) is also non-zero. The difference and product of
these functions are

f1 − f2 =
ad− bc
bd

and f1f2 =
ac

bd
.

In both cases, the denominator bd does not vanish at P , so both f1 − f2 and f1f2 belong to OP (V ). Thus,
OP (V ) is a subring of k(V ). The inclusion Γ(V ) ⊆ OP (V ) is given by identifying any g ∈ Γ(V ) with the
fraction g/1.

While local rings describe local data, they can be aggregated to recover global information. A function that
is regular everywhere must be a global polynomial function.

Proposition 2.42. For any affine variety V , the coordinate ring is the intersection of all its local rings:

Γ(V ) =
⋂
P∈V
OP (V ).

Proof. The inclusion Γ(V ) ⊆
⋂
P∈V OP (V ) is clear. For the reverse inclusion, let f ∈

⋂
P∈V OP (V ). This

means f is regular at every point of V , so its pole set is empty. The pole set is V (Jf ), where Jf = {h ∈
Γ(V ) | hf ∈ Γ(V )}. An empty pole set means V (Jf ) = ∅. By the weak Nullstellensatz, this implies that the
ideal Jf cannot be proper, so Jf = Γ(V ). In particular, the unit element 1 ∈ Jf . By definition of Jf , this
means 1 · f = f ∈ Γ(V ).

For any f ∈ OP (V ), we can define its value at P . If f = g/h with h(P ) ̸= 0, we define f(P ) = g(P )/h(P ).
This value is well-defined, for if f = g′/h′ is another representation with h′(P ) ̸= 0, then gh′ = g′h in
Γ(V ). Evaluating at P gives g(P )h′(P ) = g′(P )h(P ), which implies g(P )/h(P ) = g′(P )/h′(P ) in k. This
evaluation process defines a surjective ring homomorphism evP : OP (V ) → k. The kernel of this map,
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ker(evP ) = {f ∈ OP (V ) | f(P ) = 0}, is therefore a maximal ideal, which we denote by mP (V ). This ideal
consists of precisely the non-units of OP (V ), which justifies the name ”local ring.”

Definition 2.43. A commutative ring R with unity is a local ring if it satisfies one of the following
equivalent conditions:

1. The set of all non-units in R forms an ideal.

2. R has a unique maximal ideal.

Proof. (1) ⇒ (2): Let m be the ideal of non-units. Any other proper ideal I ⊊ R must consist entirely of
non-units (as it cannot contain a unit), so I ⊆ m. This makes m the unique maximal ideal.

(2) ⇒ (1): Let m be the unique maximal ideal. Every non-unit a ∈ R generates a proper principal ideal
(a) ⊊ R. By Zorn’s Lemma, (a) must be contained in some maximal ideal, which must be m. Thus, m
contains all non-units. Since m is a proper ideal, it contains no units, so it is precisely the set of non-
units.

Example 2.44.

1. The ring R = {a/b ∈ Q | a, b ∈ Z, b is odd} is the localization of Z at the prime ideal (2). It is a local
ring whose unique maximal ideal is (2/1), the set of fractions whose numerator is even.

2. The polynomial ring C[x] is not a local ring. The elements x and x− 1 are non-units, but their sum,
1, is a unit. Thus the non-units do not form an ideal.

3. The ring O0(A1) = {g/h ∈ k(x) | h(0) ̸= 0} is a local ring. Its maximal ideal is (x/1), the set of all
rational functions that vanish at the origin.

Proposition 2.45. The local ring OP (V ) is a Noetherian ring.

Proof. Let I ⊆ OP (V ) be an ideal. We aim to show I is finitely generated. Consider the contraction of I to
the coordinate ring, J = I ∩ Γ(V ). This is an ideal of Γ(V ). Since Γ(V ) is a quotient of a polynomial ring,
it is Noetherian, so J must be finitely generated. Let J = (g1, . . . , gr)Γ(V ) for some gi ∈ Γ(V ).

We claim these same elements also generate I as an ideal in OP (V ). The inclusion (g1, . . . , gr)OP (V ) ⊆ I is
clear. For the other direction, take any f ∈ I. Since f ∈ OP (V ), we can write f = a/b for some a, b ∈ Γ(V )
with b(P ) ̸= 0. Then a = b · f . Since f ∈ I and b ∈ Γ(V ) ⊆ OP (V ), their product a lies in the ideal I. As
a is also in Γ(V ), we have a ∈ I ∩ Γ(V ) = J . Since a ∈ J , we can write it as a Γ(V )-linear combination
a =

∑r
i=1 cigi for some ci ∈ Γ(V ). Dividing by b, we find an expression for f :

f =
a

b
=

r∑
i=1

ci
b
gi.

Since b(P ) ̸= 0, each coefficient ci
b is an element of OP (V ). This shows that f is in the ideal generated by

the gi in OP (V ). Thus I = (g1, . . . , gr)OP (V ), proving that I is finitely generated.

Finally, we observe that regular maps between varieties induce homomorphisms on their local rings in a
natural way. Let φ : V →W be a regular map of affine varieties. This induces a pullback φ∗ : Γ(W )→ Γ(V ).
While this map does not generally extend to a map of function fields k(W )→ k(V ) (unless φ is dominant),
it always induces a map on local rings.

Let P ∈ V , and set Q = φ(P ) ∈ W . If a rational function f = g/h is regular at Q, then h(Q) ̸= 0.
The pullback function φ∗(h) therefore has the property that (φ∗(h))(P ) = h(φ(P )) = h(Q) ̸= 0. This

means that the rational function φ∗(g)
φ∗(h) is regular at P . This correspondence defines a ring homomorphism

φ∗
P : OQ(W )→ OP (V ).

This induced map is a local homomorphism, meaning it maps the maximal ideal of the domain into the
maximal ideal of the codomain. Indeed, if f = g/h ∈ mQ(W ), then g(Q) = 0. The image φ∗

P (f) evaluates
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to g(Q)/h(Q) = 0 at P , so φ∗
P (f) ∈ mP (V ). Thus, φ∗

P (mQ(W )) ⊆ mP (V ). This algebraic mapping of local
rings is the consequence of the geometric map φ near the point P .

2.2.4 Affine Plane Curves

We have thus far associated geometry with radical ideals. An irreducible affine plane curve, for instance, cor-
responds to a principal ideal (f) ⊆ k[x, y] where f is an irreducible polynomial. This geometric perspective,
however, is insufficient for studying things like intersection theory, where we must account for multiplicities
and reducible objects. To this end, we shift our perspective slightly, defining a curve not by its locus of
points, but by its defining polynomial itself.

This change is motivated by the fact that different polynomials can define the same set of points. The ideals
(f) and (g) define the same algebraic set if and only if

√
(f) =

√
(g). For principal ideals in k[x, y], this

is equivalent to f and g having the same irreducible factors, possibly with different powers. For example,
V (x) = V (x2) both describe the y-axis in A2. Yet, the curve defined by x2 = 0 should be thought of as a
”double line,” a geometric object carrying more information than the simple line x = 0. To capture this,
we must modify our definition. We note that the ideals (f) and (g) are identical if and only if f and g are
scalar multiples of each other. This leads to the following formulation.

Definition 2.46. An affine plane curve is an equivalence class of non-constant polynomials in k[x, y]
under the equivalence relation f ∼ g if and only if f = λg for some non-zero scalar λ ∈ k.

Two polynomials f and g satisfying this relation are said to be equivalent. The degree of the curve is the
total degree of its defining polynomial f . A curve of degree one is called a line.

Remark 2.47 (Curves vs. Varieties). We are now distinguishing between the curve defined by f and the
curve defined by fn for n > 1. While they correspond to the same variety (since V (f) = V (fn)), they
are now distinct objects using our new terminology. This distinction is caused algebraically in the quotient
ring. The ring k[x, y]/(f) is reduced (if f is square-free), while the ring k[x, y]/(fn) contains non-zero
nilpotent elements. These nilpotents carry the ”infinitesimal” information that corresponds geometrically to
multiplicity.

This framework accommodates reducible curves. Let the prime factorization of a polynomial f in k[x, y] be

f =
∏k
i=1 f

ei
i , where the fi are distinct irreducible polynomials.

• The curves defined by the individual polynomials fi are called the irreducible components of the
curve f .

• The integer ei ≥ 1 is the multiplicity of the component fi.

• If ei = 1, the component fi is called a simple component.

For example:

Example 2.48. The curve f = (x − y)3(x2 + y2 − 1) of degree 5 has two components: the line x − y = 0
with multiplicity 3, and the unit circle x2 + y2 − 1 = 0, which is a simple component.

2.3 Tangent Lines and Homogeneous Polynomials

2.3.1 Tangent Lines via Calculus

Our study of the local geometry of a curve begins with the classical question: how does one define the tangent
line to a plane curve at a point? An approach using differential calculus is to consider the gradient of the
defining polynomial. Given a plane curve defined by the vanishing of a polynomial f(x, y), the gradient of
f provides the normal vector to the level set, from which the tangent line can be determined.

For example, let the curve be the unit circle, defined by f(x, y) = y2 + x2 − 1 = 0. Consider the point

P = (−
√
2
2 ,

√
2
2 ) on the curve. The partial derivatives are fx := ∂f

∂x = 2x and fy := ∂f
∂y = 2y. Evaluating at

P , we have fx(P ) = −
√
2 and fy(P ) =

√
2. The equation of the tangent line at a point (a, b) is given by the
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linear approximation of the curve:

fx(P )(x− a) + fy(P )(y − b) = 0.

Substituting our values gives −
√
2(x+

√
2
2 ) +

√
2(y −

√
2
2 ) = 0, which simplifies to y = x+

√
2.

This method works precisely when the gradient vector is non-zero. This provides the motivation for the
following classification of points on a curve.

Definition 2.49. Let f be an affine plane curve and let P be a point on the curve. P is a simple point (or
smooth, or nonsingular point) of f if the gradient is non-zero at P ; that is, if ∂f

∂x (P ) ̸= 0 or ∂f
∂y (P ) ̸= 0.

In this case, the tangent line to f at P = (a, b) is the line defined by the equation:

∂f

∂x
(P )(x− a) + ∂f

∂y
(P )(y − b) = 0.

A point that is not simple is called a multiple or singular point. A curve is nonsingular or smooth if
all of its points are simple.

Example 2.50. Consider the point (0, 0) for several curves.

1. The Elliptic Curve y2 − x3 + x = 0: Let f = y2 − x3 + x. Then fx = −3x2 + 1 and fy = 2y. A
singular point must satisfy fx = 0 and fy = 0, which implies x = ±1/

√
3 and y = 0. However, these

points do not lie on the curve V (f). Thus, the curve is nonsingular. At the origin (0, 0), the lowest
degree term of f is x. The line x = 0 is the tangent to the curve at the origin.

2. The Cusp y2−x3 = 0: Let g = y2−x3. We have gx = −3x2 and gy = 2y. Both vanish only at (0, 0),
which is a point on the curve. Thus, (0, 0) is a singular point. Here, the lowest degree term is y2. The
line y = 0 is the unique tangent at the origin.

3. The Trefoil Knot (x2+y2)2+3x2y−y3 = 0: Let h = (x2+y2)2+3x2y−y3. The partial derivatives are
hx = 2(x2+y2)(2x)+6xy and hy = 2(x2+y2)(2y)+3x2−3y2. One can verify that both partials vanish
simultaneously only at (0, 0). The lowest degree part of the polynomial is the cubic form 3x2y − y3.
This form factors as y(3x2 − y2) = y(

√
3x − y)(

√
3x + y). As we will see, these three lines are the

tangent lines at the origin.

The examples suggest a relationship between the tangent geometry at the origin and the lowest degree terms
of the defining polynomial. To formalize this, we need a purely algebraic framework that does not rely on
calculus.

2.3.2 Homogenous Polynomials

An important algebraic tool is the decomposition of a polynomial into its homogeneous components.

Definition 2.51. A polynomial F ∈ k[x1, . . . , xn] is homogeneous of degree d, or a form of degree d, if
all of its monomials have total degree d.

Any polynomial f ∈ k[x1, . . . , xn] of degree d can be uniquely written as a sum of forms, f = f0+f1+· · ·+fd,
where fi is a form of degree i. One can convert between homogeneous and non-homogeneous polynomials.

Definition 2.52. Let F ∈ k[x1, . . . , xn] be a form. The dehomogenization of F with respect to a variable,
say xn, is the polynomial f = F (x1, . . . , xn−1, 1) ∈ k[x1, . . . , xn−1].

Conversely, let f ∈ k[x1, . . . , xn] be a polynomial of degree d, written as f =
∑d
i=0 fi where fi are forms.

The homogenization of f with respect to a new variable xn+1 is the form

F (x1, . . . , xn+1) =

d∑
i=0

xd−in+1fi(x1, . . . , xn) = xdn+1f0 + xd−1
n+1f1 + · · ·+ fd.

By construction, F is a homogeneous polynomial of degree d.
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Example 2.53. The operations of homogenization and dehomogenization are not, in general, inverses of each
other. Let F = x2z+y2z+xz2+z3. Dehomogenizing with respect to z yields f = x2+y2+x+1, a polynomial
of degree 2. If we now homogenize f with respect to z, we obtain the form F ′ = z2(x2 + y2) + z(x) + (1) =
x2 + y2 + xz + z2. Clearly F ′ ̸= F . Information is lost because the original form F = z · F ′ was divisible by
the dehomogenizing variable.

Remark 2.54. Homogenization respects multiplication but not addition. That is, for polynomials f, g, the
homogenization of their product fg is the product of their homogenizations FhGh. However, the homoge-
nization of the sum f + g is not generally the sum of the homogenizations Fh +Gh.

An important property of homogeneous polynomials in two variables is their complete factorizability over
an algebraically closed field.

Proposition 2.55. If F ∈ k[x, y] is a homogeneous polynomial and k is algebraically closed, then F factors
into a product of linear forms.

Proof. Let d = deg(F ). We may write F = yrG(x, y) for some r ≥ 0, where y does not divide the form
G. Dehomogenizing G with respect to y gives a polynomial g(x) = G(x, 1) in k[x]. Since k is algebraically

closed, g(x) factors completely: g(x) = α
∏d−r
i=1 (x − λi) for some α, λi ∈ k. Homogenizing this expression

gives back G:

G(x, y) = α

d−r∏
i=1

(x− λiy).

Therefore, the original form F factors completely into linear forms: F (x, y) = αyr
∏d−r
i=1 (x− λiy).

2.3.3 Multiplicities

We now formalize the connection between the lowest degree terms of a polynomial and the tangent geometry
at the origin.

Let f be a plane curve passing through the origin P = (0, 0). We can write f as a sum of its homogeneous
parts, f = fm + fm+1 + · · · + fd, where fi is a form of degree i and fm ̸= 0 is the non-zero form of lowest
degree.

Definition 2.56. Let f be a curve passing through P = (0, 0).

• The form fm is the initial form of f at the origin, denoted inP (f).

• The integer m ≥ 1 is the multiplicity of f at P = (0, 0), denoted mP (f).

Remark 2.57. The condition that the origin (0, 0) is a point on the curve V (f) is equivalent to the constant
term of f being zero, which is equivalent to m(0,0)(f) ≥ 1.

This algebraic definition of multiplicity is consistent with the calculus-based definition of simple points.

Proposition 2.58. A point P = (0, 0) is a simple point of a curve f if and only if its multiplicity at P is
one.

Proof. Let f =
∑
fi be the decomposition of f into forms. The partial derivative of a form fi is either

zero or a form of degree i − 1. Thus, when we evaluate the partial derivatives of f at P = (0, 0), only the
derivatives of the degree-1 form f1 can contribute a non-zero constant. Let f1 = ax+ by. Then ∂f

∂x (P ) = a

and ∂f
∂y (P ) = b. The point P is simple if and only if not both partial derivatives are zero, which is equivalent

to (a, b) ̸= (0, 0). This, in turn, is equivalent to the linear form f1 being non-zero. By definition, this means
the multiplicity mP (f) is 1.

In the case of a simple point, the initial form f1 = ax+ by defines the tangent line. This concept generalizes
to singular points. Since the initial form fm is a homogeneous polynomial in x and y, it factors into m linear
forms Li, counted with multiplicity: fm =

∏
Lrii .
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Definition 2.59. Let f be a curve with multiplicity m = mP (f) at the origin P = (0, 0), and let the initial

form be fm =
∏k
i=1 L

ri
i .

• The lines defined by Li = 0 are the tangent lines to f at P .

• The integer ri is the multiplicity of the tangent line Li.

• The initial form fm is also called the tangent cone to f at the origin.

• If f has m distinct tangent lines at P (i.e., all ri = 1), then P is an ordinary singular point. An
ordinary multiple point of multiplicity 2 is called a node.

Example 2.60. Revisiting our singular examples at P = (0, 0):

1. For h = (x2 + y2)2 + 3x2y − y3, the initial form is inP (h) = 3x2y − y3 = y(
√
3x− y)(

√
3x+ y). The

multiplicity is 3, and there are three distinct tangent lines. The origin is an ordinary triple point.

2. For the curve f = y2 − x2 − x3 = 0, the initial form is inP (f) = y2 − x2 = (y − x)(y + x). The
multiplicity is 2, and the tangents are two distinct lines. The origin is a node.

3. For the cusp g = y2 − x3 = 0, the initial form is inP (g) = y2. The multiplicity is 2, but there is only
one tangent line, y = 0, with multiplicity 2. The origin is a singular point but is not ordinary.

One can verify that these lines are tangent in the standard sense by parameterizing the branches of the curve
near the origin and computing the limiting secant lines.

Remark 2.61. The initial form respects multiplication: inP (fg) = inP (f)inP (g). It follows that multiplicity
is additive over products. If a curve f factors into components f =

∏
heii , then the multiplicity of f at P is

the sum of the multiplicities of its components: mP (f) =
∑
eimP (hi).

To analyze the multiplicity and tangents at an arbitrary point P = (a, b), we perform an affine change of
coordinates that moves P to the origin. Let T : A2 → A2 be the translation T (x, y) = (x + a, y + b). The
pullback map on polynomials is T ∗ : k[x, y] → k[x, y] given by T ∗(f)(x, y) = f(x + a, y + b). The local
geometry of the curve f at P = (a, b) is identical to the geometry of the translated curve T ∗(f) at the origin
(0, 0).

We define mP (f) := m(0,0)(T
∗(f)). If L = αx + βy is a tangent line to T ∗(f) at the origin, then the

corresponding tangent line to f at P is given by applying the inverse translation to the coordinates, resulting
in the line α(x− a) + β(y − b) = 0.

Example 2.62. Let f = x3+y2−3x2−4y+3x+3. The partial derivatives are fx = 3x2−6x+3 = 3(x−1)2

and fy = 2y − 4. Both vanish at P = (1, 2). Since f(1, 2) = 1 + 4 − 3 − 8 + 3 + 3 = 0, the point P is a
singular point on the curve. To analyze it, we translate P to the origin. Let g(x, y) = f(x+ 1, y + 2):

g(x, y) = (x+ 1)3 + (y + 2)2 − 3(x+ 1)2 − 4(y + 2) + 3(x+ 1) + 3 = y2 + x3.

The translated curve is the cusp y2+x3 = 0, which is singular at the origin. We have m(1,2)(f) = m(0,0)(g) =
2. The initial form of g is y2, corresponding to the tangent line y = 0 with multiplicity 2. Translating this
back, the tangent line to f at (1, 2) is y − 2 = 0 with multiplicity 2.

2.3.4 Points On Curves Away From The Origin

So far, our algebraic definitions of multiplicity and the tangent cone were formulated specifically for a curve
at the origin, P = (0, 0). To analyze a curve at an arbitrary point P = (a, b), we use the principle that
local geometric properties are invariant under affine transformations. The simplest such transformation is a
translation of coordinates that moves the point of interest to the origin.

Let P = (a, b) be a point in A2. Consider the translation map T : A2 → A2 defined by

T (x′, y′) = (x′ + a, y′ + b) = (x, y).
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This map sends the origin (0, 0) in the (x′, y′) coordinate system to the point P = (a, b) in the (x, y) system.
To study a curve f(x, y) = 0 at P , we can study the transformed curve at the origin. The equation of the
transformed curve is given by the pullback T ∗(f):

g(x′, y′) := (T ∗f)(x′, y′) = f(x′ + a, y′ + b).

The local behavior of f at P = (a, b) is identical to the local behavior of g at (0, 0). This allows us to extend
our origin-based definitions to any point on the plane.

Definition 2.63. Let f be a plane curve and let P = (a, b) be a point. Let g(x, y) = f(x + a, y + b) be the
translated polynomial.

• The multiplicity of f at P is defined as the multiplicity of g at the origin: mP (f) := m(0,0)(g).

• If L = αx+ βy is a tangent line to g at (0, 0) with multiplicity r, then the line defined by α(x− a) +
β(y − b) = 0 is a tangent line to f at P with multiplicity r.

In other words, we can perform an affine change of coordinates so that the point we are interested in is at
the origin, perform our analysis there, and then translate the results back.

Example 2.64. Consider the curve defined by f(x, y) = x3 + y2 − 3x2 − 4y + 3x+ 3 = 0. First, we find its
singular points. The partial derivatives are:

∂f

∂x
= 3x2 − 6x+ 3 = 3(x− 1)2 and

∂f

∂y
= 2y − 4 = 2(y − 2).

These both vanish simultaneously only at the point P = (1, 2). We check if this point lies on the curve:

f(1, 2) = (1)3 + (2)2 − 3(1)2 − 4(2) + 3(1) + 3 = 1 + 4− 3− 8 + 3 + 3 = 0.

Since P = (1, 2) is on the curve, it is a singular point. To analyze its structure, we translate P to the origin.
Let g(x′, y′) = f(x′ + 1, y′ + 2):

g(x′, y′) = (x′ + 1)3 + (y′ + 2)2 − 3(x′ + 1)2 − 4(y′ + 2) + 3(x′ + 1) + 3

= (x′3 + 3x′2 + 3x′ + 1) + (y′2 + 4y′ + 4)− 3(x′2 + 2x′ + 1)− (4y′ + 8) + (3x′ + 3) + 3

= y′2 + x′3.

The translated curve is the cusp g(x′, y′) = y′2 + x′3, which we have previously analyzed. The multiplicity of
g at the origin is m(0,0)(g) = 2, since the initial form is y′2. The tangent cone is given by y′2 = 0, which
corresponds to the single tangent line y′ = 0 with multiplicity 2.

Translating this information back to the original curve f at the point P = (1, 2):

• The multiplicity is m(1,2)(f) = m(0,0)(g) = 2.

• The tangent line is given by replacing y′ with (y− 2), so the tangent line is y− 2 = 0 with multiplicity
2.

2.3.5 Tangent Spaces and Local Rings

We now introduce the modern algebraic definition of the tangent space. This formulation is immensely
powerful as it is intrinsic to the variety and does not depend on a particular embedding in affine space or
the language of calculus. The key insight is that the ”linear” part of the geometry at a point P is encoded
in the structure of the local ring OP (V ), specifically in the quotient of its maximal ideal mP by the ideal of
functions that vanish to second order, m2

P .

Let f ∈ k[x, y] define a plane curve, let P be a point on the curve, and let (OP (f),mP ) be the local ring of
the curve at P with its unique maximal ideal.

Definition 2.65. The cotangent space of the curve f at the point P is the vector space mP /m
2
P . This is

a vector space over the residue field OP (f)/mP ∼= k.

37



The dimension of this vector space distinguishes between simple and singular points. A simple point will
have a one-dimensional cotangent space, while a singular point will have a cotangent space of dimension
greater than one.

Example 2.66. Let f = x− y3 and P = (0, 0). This is a smooth curve. The coordinate ring is Γ(V (f)) =
k[x, y]/(x− y3) ∼= k[y]. The maximal ideal corresponding to the origin is mP = (x̄, ȳ) in Γ(V (f)). Using the
relation x̄ = ȳ3, this simplifies to mP = (ȳ3, ȳ) = (ȳ). The square of the maximal ideal is m2

P = (ȳ2). The
cotangent space is mP /m

2
P = (ȳ)/(ȳ2). As a vector space over k, this quotient is spanned by the single vector

corresponding to the class of ȳ. Thus, dimk(mP /m
2
P ) = 1.

Example 2.67. Let f = x2 − y3 (a cusp) and P = (0, 0). This is a singular point. The maximal ideal
corresponding to the origin in Γ(V (f)) is mP = (x̄, ȳ). The square of this ideal is m2

P = (x̄2, ȳ2, x̄ȳ). In
the quotient space mP /m

2
P , the generators are the classes of x̄ and ȳ. The relation x2 − y3 = 0 implies

x̄2 = ȳ3. Since ȳ3 = ȳ · ȳ2 ∈ m3
P ⊂ m2

P , the class of x̄2 is zero in mP /m
2
P . However, there are no non-

trivial linear relations between x̄ and ȳ in this quotient. They form a basis for the vector space. Therefore,
dimk(mP /m

2
P ) = 2. The dimension of the cotangent space detected the singularity.

The geometric tangent space is recovered by taking the vector space dual of the cotangent space.

Definition 2.68. The Zariski tangent space of f at P , denoted TP (f), is the dual of the cotangent space
as a k-vector space:

TP (f) = (mP /m
2
P )

∗ = Homk(mP /m
2
P , k).

How does this abstract definition give us a geometric tangent space, i.e., a set of vectors? An element of the
tangent space is a linear map λ : mP /m

2
P → k. Such a map is determined by the values it assigns to the

basis vectors of the cotangent space. These values can be interpreted as coordinates.

Example 2.69. Let f = y−3x+x3 and P = (0, 0). In the local ring OP (f), the maximal ideal is mP = (x̄, ȳ).
The defining equation gives the relation ȳ − 3x̄ + x̄3 = 0. In the cotangent space mP /m

2
P , the term x̄3 is

zero, since it belongs to m3
P ⊂ m2

P . Thus, the relation becomes ȳ = 3x̄. This means the cotangent space is
one-dimensional, spanned by the class of x̄.

Now consider the dual space, the Zariski tangent space. A linear map λ : mP /m
2
P → k is completely

determined by the value it assigns to the basis vector x̄, say λ(x̄) = c for some c ∈ k. Because the map must
be linear and respect the relation ȳ = 3x̄, we must have λ(ȳ) = λ(3x̄) = 3λ(x̄) = 3c. We can identify the
tangent space with the set of all possible coordinate vectors (λ(x̄), λ(ȳ)):

TP (f) = {(c, 3c) ∈ A2 | c ∈ k}.

This is precisely the line y = 3x, which is the tangent line we would compute using calculus. This method
therefore recovers the geometric tangent line as an embedded subspace of A2.

2.4 Discrete Valuation Rings and Order Functions

2.4.1 Basic Definitions

Before we can go into more depth about the geometry of a curve near a point, we need to introduce a key
algebraic structure. The local ring OP (C) of a curve C at a point P is a Discrete Valuation Ring if and only
if P is a smooth point on C. This makes the study of these rings essential for understanding local geometric
properties algebraically.

Definition 2.70. Let R be an integral domain that is not a field. Then R is a Discrete Valuation Ring
(DVR) if it satisfies either of the two following equivalent properties:

1. R is a Noetherian local ring and its maximal ideal is principal.

2. There exists an irreducible element t ∈ R (called a uniformizing parameter) such that every non-zero
element z ∈ R can be written uniquely in the form z = utn for some unit u ∈ R and a unique integer
n ≥ 0.
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Proof. (1) =⇒ (2): Let R be a Noetherian local ring whose maximal ideal m is principal, say m = (t)
for some t ∈ R. First, we prove uniqueness. Suppose utn = vtm where u, v are units and, without loss of
generality, n ≥ m. Since R is an integral domain, we can cancel to get utn−m = v. If n > m, then t divides
the unit v, which would imply t is also a unit. But t generates the maximal ideal m ̸= R, so t cannot be a
unit. Therefore, we must have n = m, which in turn implies u = v.

Next, we prove existence. Let z ∈ R be a non-zero element. If z is a unit, we are done by taking n = 0.
If z is not a unit, then z ∈ m = (t), so z = z1t for some z1 ∈ R. If z1 is a unit, we have found our
representation z = z1t

1. If not, z1 ∈ m, so z1 = z2t, which gives z = z2t
2. We can continue this process,

generating a sequence z, z1, z2, . . . such that zn = zn+1t. This gives rise to a chain of principal ideals
(z) ⊆ (z1) ⊆ (z2) ⊆ . . . . Since R is Noetherian, this chain must stabilize. So, for some n, we have
(zn) = (zn+1). This means zn+1 = vzn for some unit v ∈ R. Substituting into zn = zn+1t gives zn = (vzn)t.
Since zn ̸= 0, we can cancel it to get 1 = vt. This implies t is a unit, which contradicts that m = (t) is a
proper ideal. The only way to avoid this contradiction is if the process terminates, which means some zn
must be a unit. Thus, every non-unit z can be written as z = utn for some unit u and n ≥ 1.

(2) =⇒ (1): Assume every non-zero z ∈ R has the form utn. An element is a non-unit if and only if
n ≥ 1, which is equivalent to saying the element is a multiple of t. The set of non-units is therefore the
principal ideal (t). Since the set of non-units forms an ideal, R is a local ring with maximal ideal m = (t).
The maximal ideal is principal by construction. We only need to show R is Noetherian. Let I ⊆ R be a
non-zero ideal. Let n be the minimum non-negative integer such that there exists an element of the form
utn ∈ I. Then every other element vtm ∈ I must have m ≥ n. If m < n, it would contradict the minimality
of n. Therefore, any element vtm ∈ I can be written as (vtm−n)tn, showing that vtm ∈ (tn). This implies
I ⊆ (tn). Since we know some utn ∈ I, we also have (tn) = (u−1utn) ⊆ I. Thus, I = (tn). Since every ideal
is principal, R is a Principal Ideal Domain, and therefore is Noetherian.

Definition 2.71. The element t in property (2) of the definition is called a uniformizing parameter for
the DVR. It is uniquely determined up to multiplication by a unit.

Remark 2.72. The proof of (2) =⇒ (1) shows that if R is a DVR with uniformizing parameter t, then its
ideals are precisely the principal ideals generated by powers of t. This gives a complete picture of the ideal
structure as a simple descending chain:

R = (t0) ⊃ (t1) ⊃ (t2) ⊃ (t3) ⊃ · · · ⊃ (0).

Example 2.73. Let a ∈ A1. The local ring of A1 at a is Oa(A1) = { fg | f, g ∈ k[x], g(a) ̸= 0}. An element
of this ring is a non-unit if and only if, when written in lowest terms, its numerator vanishes at a. This
is equivalent to the numerator being divisible by (x − a). The maximal ideal is therefore the principal ideal
generated by the function (x− a). Since Oa(A1) is a local ring with a principal maximal ideal (and it can be
shown to be Noetherian), it is a DVR with uniformizing parameter (x− a).

Example 2.74. In contrast, consider the local ring of the affine plane A2 at the origin, O(0,0)(A2). Its
maximal ideal consists of rational functions f/g where f(0, 0) = 0. This ideal is generated by the functions
x and y, so m(0,0)(A2) = (x, y). This ideal is not principal. Therefore, O(0,0)(A2) is a local ring but it is not
a DVR.

The unique factorization property of a DVR allows us to define a valuation on its field of fractions. Let R
be a DVR with uniformizing parameter t, and let K be its field of fractions. Any non-zero element z ∈ K
can be written as a fraction f/g, where f = utn and g = vtm. Thus, z = (u/v)tn−m. Since u, v are units
in R, so is u/v. It is a straightforward exercise to show that every non-zero element z ∈ K has a unique
expression z = utk where u is a unit in R and k ∈ Z.

Definition 2.75. For a non-zero element z = utk ∈ K, the integer k is called the order of z, denoted
ord(z). By convention, we define ord(0) =∞.

The order function provides a concise description of the ring and its maximal ideal.

R = {z ∈ K | ord(z) ≥ 0}
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m = {z ∈ K | ord(z) ≥ 1} = {z ∈ R | ord(z) > 0}

The order function has the following key properties, characteristic of a valuation:

• ord(ab) = ord(a) + ord(b)

• ord(a+ b) ≥ min(ord(a), ord(b))

It can also be shown that the definition of order is independent of the choice of uniformizing parameter.

Now let’s discuss quotients of DVRs.

Example 2.76. Let R = O0(A1). Maximal ideal = m = (x). Let M = (xn)/(xn+1) ⊆ R/(xn+1). This is a
k-vector space since k ⊆ R. Then every z ∈M can be written as xn

f(x) , f(0) ̸= 0. Note that f(x)xn = f(0)xn,

since higher powers of x vanish =⇒ z = xn

f(x) =
(

1
f(0)

)
xn so M is 1-dimensional!

More generally: let R be a DVR containing a field k such that the composition k → R → R/m with

k
α→ R/m is an isomorphism.

Let t ∈ R be a uniformizing parameter. Consider z ∈ mn. Then z = utn, u a unit. Then the image of u in
R/m is nonzero, so ∃λ ∈ k such that α(λ) = α(u). Thus u = λ+ at ∈ R, some α ∈ R =⇒ z = λtn + atn+1.

But then if we look at z ∈ mn/mn+1, we get z = λt
r
. Thus, dim

(
mn/mn+1

)
= 1. Since dim (R/m) = 1, by

induction, we get the following short exact sequence of k-vector spaces:

0→ mn/mn+1 → R/mn+1 → R/mn → 0

with dimensions 1, n+ 1, n, respectively.

Note: ord(z) = n⇐⇒ (z) = mn, so ord(z) = dimk(R/(z)).

2.4.2 Multiplicities, Revisited

We are now prepared to connect the algebraic structure of the local ring of a curve at a point with the
geometric notion of smoothness. Let f be an irreducible plane curve. For brevity, we will denote the
coordinate ring Γ(V (f)) by Γ(f), the local ring OP (V (f)) by OP (f), and the function field k(V (f)) by k(f).

The central question is: under what geometric conditions is the local ring OP (f) a Discrete Valuation Ring
(DVR)?

Example 2.77. Let f = y − x2 be the standard parabola and let P = (0, 0) be the origin. The coordinate
ring is Γ(f) = k[x, y]/(y− x2) ∼= k[x]. The maximal ideal of OP (f) is generated by the images of x and y in
this ring.

mP = (x̄, ȳ) = (x̄, x̄2) = (x̄).

Since the maximal ideal is principal, and OP (f) is a Noetherian local ring, it is a DVR. Note that P is a
smooth point of the parabola.

Example 2.78. Let f = y2 − x3 be the cusp and let P = (0, 0). The maximal ideal of the local ring OP (f)
is mP = (x̄, ȳ). In the ring Γ(f) = k[x, y]/(y2 − x3), the ideal (x̄, ȳ) is not principal. (This is a non-trivial
fact, related to Γ(f) not being integrally closed). Therefore, OP (f) is not a DVR. Note that P is a singular
point of the cusp.

These examples suggest that the DVR property is characteristic of smooth points. To prove this, we state
a result connecting the geometric multiplicity, mP (f), with the algebraic structure of the local ring.

Theorem 2.79. Let P be a point on an irreducible curve f , and let mP be the maximal ideal of the local
ring OP (f). For all sufficiently large integers n, the dimension of the k-vector space mnP /m

n+1
P is constant

and equal to the multiplicity of the curve at P .

mP (f) = dimk(m
n
P /m

n+1
P ) for n≫ 0.
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Proof Sketch. This result follows from the theory of the Hilbert-Samuel function of the local ring (OP ,mP ).
One considers the short exact sequence of finite-dimensional vector spaces:

0→ mnP /m
n+1
P → OP /mn+1

P → OP /mnP → 0.

This implies dimk(m
n
P /m

n+1
P ) = dimk(OP /mn+1

P ) − dimk(OP /mnP ). A theorem of dimension theory (cf.
Fulton, ”Algebraic Curves,” §3.2, Theorem 2) states that for n greater than or equal to the multiplicity
mP (f), the dimension dimk(OP /mnP ) is a linear function of n, specifically n ·mP (f) + s for some constant
s. For n≫ 0, the difference is then

((n+ 1)mP (f) + s)− (nmP (f) + s) = mP (f).

If OP (f) is a DVR, its maximal ideal mP is principal, say mP = (t). Then mnP = (tn) and mn+1
P = (tn+1).

The quotient mnP /m
n+1
P is a one-dimensional vector space over k = OP /mP for all n ≥ 0. By the theorem

above, this implies mP (f) = 1. Since a point has multiplicity 1 if and only if it is a simple point, we have
one direction of the main theorem. The converse also holds.

Theorem 2.80. Let f be an irreducible plane curve and P ∈ V (f). The point P is a simple point of f if
and only if the local ring OP (f) is a DVR.

Proof. (⇐) As argued above, if OP (f) is a DVR, then dimk(m
n
P /m

n+1
P ) = 1 for all n. By the previous

theorem, this implies mP (f) = 1. A point of multiplicity one is a simple point.

(⇒) Assume P is a simple point. By an affine change of coordinates, we can assume P = (0, 0) and that the
tangent line to f at the origin is the line y = 0. This means the initial form of f is cy for some c ∈ k∗. The
polynomial f can therefore be written as

f = cy + (terms of degree ≥ 2).

Because the tangent line is not the line x = 0, we can further write f in the form f = yg(x, y)− x2h(x) for
some polynomials g and h, where g(0, 0) ̸= 0. In the coordinate ring Γ(f), this gives the relation ȳḡ = x̄2h̄.
Since g(0, 0) ̸= 0, the function ḡ is a unit in the local ring OP (f). We can therefore write

ȳ =

(
h̄

ḡ

)
x̄2.

This shows that ȳ is in the ideal generated by x̄ inside the local ring OP (f). The maximal ideal mP = (x̄, ȳ)

thus simplifies to mP = (x̄, ( h̄ḡ )x̄
2) = (x̄). Since the maximal ideal is principal, OP (f) is a DVR.

A consequence of this proof is that if P is a simple point on a curve f , then the image of any line L passing
through P but not tangent to f at P serves as a uniformizing parameter for the DVR OP (f).

Since the local ring OP (f) at a simple point P is a DVR, we can use the order function ordfP defined on
its field of fractions, which is the function field k(f). This function measures the order of vanishing (or the
order of a pole) of any rational function on the curve at the point P . We can apply this to measure the
intersection of the curve with a line.

Let P be a simple point on an irreducible curve f . Let L be the defining polynomial of a line in A2. The
function L̄ ∈ Γ(f) is an element of the local ring OP (f). We can analyze its order. If L is a line through
P that is not tangent to f at P , then as noted above, L̄ is a uniformizing parameter for OP (f). Thus,

ordfP (L) = 1. If L is the tangent line to f at P , we may assume after a change of coordinates that P = (0, 0)
and L = y. From the proof of the previous theorem, we have the relation ȳ = (h̄/ḡ)x̄2 in OP (f). Here, x̄ is a

uniformizing parameter. Since g(P ) ̸= 0, the order of ḡ is 0. Thus, ordfP (y) = ordfP (x
2)+ordfP (h)−ord

f
P (g) =

2 + ordfP (h) ≥ 2.

This leads to a complete geometric characterization of the order of a line at a simple point.
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Theorem 2.81. Let P be a simple point on an irreducible curve f . Let L be a line in the plane, viewed as
a function in OP (f).

1. ordfP (L) = 0 if and only if L does not pass through P .

2. ordfP (L) = 1 if and only if L passes through P and is not tangent to f at P .

3. ordfP (L) ≥ 2 if and only if L is the tangent line to f at P .

2.4.3 Intersection Numbers

Let f and g be two plane curves and let P ∈ A2 be a point. We wish to define an intersection number,
denoted IP (f, g), that quantifies ”how many times” f and g intersect at P . This number should capture the
geometric intuition of tangency and multiplicity. We will take an axiomatic approach: first, we will list seven
properties that this intersection number must satisfy. Then, we will show that these properties uniquely
determine such a number and provide a concrete algebraic definition for it.

Proposition 2.82 (Axioms for the Intersection Number). There exists a unique intersection number IP (f, g)
defined for any two plane curves f, g and any point P ∈ A2, satisfying the following properties:

1. IP (f, g) is a non-negative integer if f and g share no common component passing through P , and
IP (f, g) =∞ otherwise.

2. IP (f, g) = 0 if and only if P is not a common point of the two curves, i.e., P /∈ V (f) ∩ V (g). This
implies that IP (f, g) depends only on the components of f and g that pass through P .

3. The intersection number is invariant under affine changes of coordinates. If T is an affine change of
coordinates on A2 and T (Q) = P , then IP (f, g) = IQ(T

∗f, T ∗g).

4. The intersection number is symmetric: IP (f, g) = IP (g, f).

5. IP (f, g) ≥ mP (f)mP (g), where mP denotes the multiplicity at P . Equality holds if and only if f and
g have no tangent lines in common at P .

6. The intersection number is additive over products. If f =
∏
frii and g =

∏
g
sj
j are factorizations into

irreducible components, then IP (f, g) =
∑
i,j risjIP (fi, gj).

7. IP (f, g) = IP (f, g + af) for any polynomial a ∈ k[x, y]. This means the intersection number depends
only on the ideal (f, g) in the local ring at P .

Definition 2.83. Two curves f and g intersect transversally at P if P is a simple point on both f and g,
and their tangent lines at P are distinct. In this case, Axiom 5 implies IP (f, g) = mP (f)mP (g) = 1 · 1 = 1.

Lemma 2.84. Any function IP (f, g) satisfying properties (1) through (7) is uniquely determined.

Proof. We provide an algorithm that calculates IP (f, g) based only on these properties. By Axiom 3, we
may assume P = (0, 0). By Axiom 1, we assume IP (f, g) is finite. The algorithm proceeds by induction on
the value of the intersection number. Axiom 2 provides the base case: IP (f, g) = 0. Assume we can calculate
IP (a, b) for any pair with intersection number less than n, and we wish to calculate IP (f, g) = n > 0.

Let f(x, 0) and g(x, 0) be the polynomials obtained by restricting to the x-axis, with degrees r and s
respectively. By Axiom 4, we can assume r ≤ s.

Case 1: r = 0. This means f(x, 0) = 0, so y must be a factor of f . Let f = yh. By Axiom 6,
IP (f, g) = IP (y, g) + IP (h, g). Let’s compute the first term. Let g(x, 0) = xm(c0 + c1x + . . . ) with c0 ̸= 0.
Then g = g(x, y) can be written as g = g(x, 0) + yG(x, y) for some polynomial G. By Axiom 7, IP (y, g) =
IP (y, g(x, 0)). By Axiom 6, IP (y, g(x, 0)) = IP (y, x

m) + IP (y, c0 + . . . ). The second term is 0 by Axiom 2
since c0 ̸= 0. The first term is m · IP (y, x). By Axiom 5, IP (y, x) = 1 since they are distinct lines. Thus,
IP (y, g) = m = degx(g(x, 0)). The term IP (h, g) has a smaller intersection number and can be computed by
the induction hypothesis.
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Case 2: r > 0. Let f(x, 0) and g(x, 0) be made monic by scaling (which does not change the intersection
number). Let h = g − xs−rf . By Axiom 7, IP (f, g) = IP (f, h). The degree of h(x, 0) is deg(g(x, 0) −
xs−rf(x, 0)) < s. We can repeat this process, which is analogous to the Euclidean algorithm, reducing
the degree of one of the polynomials’ restrictions to the x-axis at each step. This process must terminate,
eventually leading to Case 1.

Since this procedure gives a determined value, the intersection number is unique.

Theorem 2.85. There is a unique intersection number satisfying properties (1) through (7), given by the
formula:

IP (f, g) = dimk

(
OP (A2)/(f, g)

)
where OP (A2) is the local ring of the plane at P , and (f, g) is the ideal generated by f and g in that ring.

Proof Sketch. Uniqueness has been established. We need only verify that this formula satisfies the axioms.

• Axiom 2a: IP (f, g) = 0 ⇐⇒ dimk(OP /(f, g)) = 0 ⇐⇒ OP /(f, g) = 0 ⇐⇒ (f, g) = OP .
This is equivalent to the ideal (f, g) containing a unit. An element h ∈ OP is a unit if and only if
h(P ) ̸= 0. Thus, IP (f, g) = 0 iff there exists some h ∈ (f, g) such that h(P ) ̸= 0, which is equivalent
to P /∈ V (f) ∩ V (g).

• Axiom 2b: If f = f1f2 and f2(P ) ̸= 0, then f2 is a unit in OP (A2). Thus the ideal (f, g) = (f1f2, g)
is the same as (f1, g) in OP (A2), so their dimensions are equal.

• Axiom 3: An affine change of coordinates T with T (Q) = P induces a k-algebra isomorphism
OP (A2) ∼= OQ(A2) which maps the ideal (f, g) to (T ∗f, T ∗g). Isomorphic structures yield the same
dimension.

• Axioms 4 and 7: These are immediate from the definition, as (f, g) = (g, f) and (f, g) = (f, g + af)
as ideals.

• Axioms 1, 5, 6: These proofs are more involved and can be found in standard texts, e.g., Fulton’s
”Algebraic Curves.”

Example 2.86. Let P = (0, 0), f = (x2 + y2)3 − 4x2y2, and g = (x2 + y2)2 + 3x2y − y3. Let’s compute
IP (f, g). By Axiom 7, we can replace f with f − (x2 + y2)g. f − (x2 + y2)g = −4x2y2 − (x2 + y2)(3x2y −
y3) = −4x2y2 − y(x2 + y2)(3x2 − y2) =: yh. So IP (f, g) = IP (yh, g) = IP (y, g) + IP (h, g) by Axiom 6.
IP (y, g) = IP (y, (x

2 + y2)2 + 3x2y − y3) = IP (y, x
4) = 4IP (y, x) = 4. The new intersection number to

compute is IP (h, g). The initial forms are in(g) = 3x2y − y3 (multiplicity 3) and in(h) = y4 (multiplicity
4). This calculation is still complicated. The algorithmic proof of uniqueness provides a more direct path,
though often tedious. (A full calculation shows the final answer is 14).

Finally, we connect the general intersection number to the order function defined on smooth curves.

Proposition 2.87. If P is a simple point of an irreducible curve f , then IP (f, g) = ordfP (ḡ), where ḡ is the

image of g in the coordinate ring of f , and ordfP is the order function associated with the DVR OP (f).

Proof. Since P is a simple point on f , OP (f) is a DVR. The order of an element ḡ in this ring is given by

ordfP (ḡ) = dimk(OP (f)/(ḡ)). We have a chain of isomorphisms:

OP (f)/(ḡ) ∼= (OP (A2)/(f))/((f, g)/(f)) ∼= OP (A2)/(f, g).

Taking dimensions gives dimk(OP (f)/(ḡ)) = dimk(OP (A2)/(f, g)). By the theorem, the right hand side is
IP (f, g).

43



3 Projective Varieties

3.1 Projective Space

3.1.1 Introduction

Why projective space?

In affine space, many theorems (such as Bézout’s theorem) are complicated by edge cases. For instance, in
the affine plane A2, two distinct lines intersect at a single point, unless they are parallel. Similarly, a line
may intersect a conic section at two points, one point (if tangent), or not at all. This lack of uniformity
suggests that affine space is, in some sense, incomplete.

Projective geometry fixes this by adding ”points at infinity” where parallel lines can meet. The construction
of projective space elegantly formalizes this intuition by ”compactifying” affine space.

Consider the relationship between points in the affine line A1 and lines through the origin in the affine plane
A2. We may identify each point x ∈ A1 with the point (x, 1) ∈ A2. Each such point uniquely determines
a line in A2 passing through the origin (0, 0). This correspondence captures every line through the origin
except for the horizontal axis, the line defined by the equation y = 0. This exceptional line, which has no
corresponding point in our affine chart, can be naturally interpreted as the ”point at infinity.” The set of
all lines through the origin in A2 is our first example of a projective space, the projective line P1. This
motivates the general construction.

Definition 3.1. Let k be a field. Projective n-space over k, denoted Pnk or simply Pn, is the set of all
one-dimensional vector subspaces (lines through the origin) in the affine space An+1.

Any non-zero point (a0, . . . , an) ∈ An+1\{(0, . . . , 0)} determines a unique line through the origin, namely the
set of all scalar multiples {(λa0, . . . , λan) | λ ∈ k}. Two distinct points, a = (a0, . . . , an) and b = (b0, . . . , bn),
determine the same line if and only if they are scalar multiples of each other, i.e., b = λa for some non-zero
λ ∈ k. This naturally defines an equivalence relation.

This leads to an alternative, but equivalent, formulation of projective space.

Definition 3.2. Projective n-space, Pn, is the set of equivalence classes of points in An+1 \ {(0, . . . , 0)}
under the equivalence relation ∼, where a ∼ b if and only if a = λb for some λ ∈ k∗.

We denote the equivalence class of a point (a0, . . . , an) by [a0 : · · · : an]. These are known as the homoge-
neous coordinates of the point in Pn.

Remark 3.3. The individual components ai of a homogeneous coordinate vector are not well-defined for
a point P ∈ Pn. However, whether a given coordinate is zero or non-zero is a well-defined property of the
point P . Consequently, for any two non-zero coordinates ai, aj ̸= 0, the ratio ai/aj is also well-defined, since
(λai)/(λaj) = ai/aj for any λ ∈ k∗.

Example 3.4. In P2, the points [1 : 0 : 2] and [2 : 0 : 4] are identical, because (2, 0, 4) = 2 · (1, 0, 2).

3.1.2 Covering Pn in An’s

An important feature of projective space is that it can be viewed as a union of overlapping copies of affine
space. This structure, known as an affine cover, is the key to transfer concepts from affine to projective
geometry.

For each i ∈ {0, . . . , n}, let us define the subset Ui ⊂ Pn as:

Ui = {[x0 : · · · : xn] ∈ Pn | xi ̸= 0}.

Each point P ∈ Ui has a unique representative in An+1 whose i-th coordinate is 1. By scaling the homoge-
neous coordinates by 1/xi, we can write P uniquely in the form:

P =

[
x0
xi

: · · · : xi−1

xi
: 1 :

xi+1

xi
: · · · : xn

xi

]
.
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This establishes a canonical bijection between the points of Ui and the points of the affine space An, via the
map ϕi : Ui → An:

ϕi([x0 : · · · : xn]) =
(
x0
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
.

The coordinates in An are often called the non-homogeneous coordinates for P with respect to the affine
chart Ui.

Since any point P = [x0 : · · · : xn] ∈ Pn must have at least one non-zero coordinate, it must belong to at
least one Ui. Thus, we have a covering of Pn by n+ 1 sets, each identifiable with An:

Pn =

n⋃
i=0

Ui.

The complement of any such affine chart Ui is also a geometric object of interest. Let us consider the
complement of Un. This set, denoted Hn, consists of all points whose last coordinate is zero:

Hn = Pn \ Un = {[x0 : · · · : xn−1 : 0] ∈ Pn}.

This set is called the hyperplane at infinity (with respect to the chart Un). There is a natural one-to-one
correspondence between points in Hn and points in Pn−1, given by the map:

[x0 : · · · : xn−1 : 0] 7→ [x0 : · · · : xn−1].

This reveals a fundamental recursive structure of projective space. We can decompose Pn into a disjoint
union:

Pn = Un ∪Hn
∼= An ∪ Pn−1.

Geometrically, Un corresponds to the lines through the origin in An+1 that are not contained in the hyper-
plane defined by xn = 0, while Hn corresponds to the lines that are contained within that hyperplane.

Example 3.5.

1. Dimension 0: P0 is the set of lines through the origin in A1. There is only one such line, so P0 is a
single point.

2. Dimension 1: Following the decomposition, P1 ∼= A1 ∪ P0. This is the affine line plus a single point
”at infinity”. This is the projective line.

3. Lines in P2: Consider a line L in A2 defined by y = mx + b. We identify A2 with the affine chart
U2 ⊂ P2 via the map (x, y) 7→ [x : y : 1]. A point on L corresponds to a point [x : y : 1] where
y = mx + b. A naive translation of the equation y = mx + b is not well-defined in homogeneous
coordinates, since for a scalar λ, we have λy = m(λx) + b, which simplifies to λy = λ(mx) + b, an
inconsistency if λ ̸= 1. The correct procedure is to homogenize the polynomial. We introduce a new
variable z (corresponding to x2) and ensure all terms have the same degree. The equation y = mx+ b
becomes y/z = m(x/z) + b, which clears to y = mx + bz. Let L′ = {[x : y : z] ∈ P2 | y = mx + bz}.
This is a well-defined projective set. Its intersection with the affine chart U2 (where z = 1) is precisely
our original line L. Its intersection with the hyperplane at infinity H2 (where z = 0) is given by the
equation y = mx. This yields a single point [x : mx : 0] = [1 : m : 0]. This demonstrates that all lines
of a given slope m in the affine plane meet at the same point at infinity.

4. Conics in P2: Consider the hyperbola in A2 defined by y2 = x2 + 1. To find its closure in P2, we
homogenize the equation to y2z = x2z+z3. If we homogenize to preserve the degree, we get y2 = x2+z2.
The intersection of this projective curve with the hyperplane at infinity (z = 0) is given by y2 = x2,
which implies y = ±x. This yields two points at infinity: [1 : 1 : 0] and [1 : −1 : 0]. These correspond
to the two asymptotes of the hyperbola.
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3.1.3 Projective Algebraic Sets

Having established the geometry of Pn, we now define algebraic subsets within it. The key challenge is that
a polynomial f(x0, . . . , xn) does not have a well-defined value at a point P ∈ Pn, as its value depends on the
choice of homogeneous coordinates.

Definition 3.6. A point P ∈ Pn is a zero of a polynomial f ∈ k[x0, . . . , xn] if f(a0, . . . , an) = 0 for every
choice of homogeneous coordinates [a0 : · · · : an] for P .

Example 3.7. Let f(x, y) = x−y+1 in k[x, y] and consider the point P = [2 : 1] ∈ P1. For the representative
(2, 1), we have f(2, 1) = 2− 1+1 = 2 ̸= 0. For the representative (4, 2), we have f(4, 2) = 4− 2+1 = 3 ̸= 0.
It is clear this is poorly behaved. (Even if one representative gave zero, another might not.)

For the notion of a zero to be meaningful, we must restrict our attention to a special class of polynomials.

Proposition 3.8. Let F ∈ k[x0, . . . , xn] be a homogeneous polynomial of degree d. If F vanishes at one
representative coordinate vector for a point P ∈ Pn, then it vanishes at all representative vectors for P .

Proof. Let P = [a0 : · · · : an] and suppose F (a0, . . . , an) = 0. Any other set of homogeneous coordinates for
P is of the form (λa0, . . . , λan) for some λ ∈ k∗. Since F is homogeneous of degree d, we have:

F (λa0, . . . , λan) = λdF (a0, . . . , an) = λd · 0 = 0.

The proposition follows.

This proposition shows that homogeneous polynomials, also known as forms, are the correct building blocks
for projective algebraic geometry.

If a general polynomial f is written as a sum of its homogeneous components, f =
∑d
i=0 fi where fi is a

form of degree i, then a point P ∈ Pn is a zero of f if and only if P is a zero of each homogeneous component
fi. The proof of this is an exercise based on the Vandermonde determinant.

Definition 3.9. Let S be a set of polynomials in k[x0, . . . , xn]. The projective algebraic set defined by
S, denoted V (S), is the set of all points in Pn that are simultaneous zeros of every polynomial in S.

V (S) = {P ∈ Pn | P is a zero of each f ∈ S}.

Remark 3.10.

1. Let I = ⟨S⟩ be the ideal generated by the set S. Then it is immediate that V (S) = V (I).

2. If I = ⟨f1, . . . , fr⟩ and we decompose each generator into its homogeneous parts, fi =
∑
j Fij, then

V (I) = V ({Fij}i,j). This implies that any projective algebraic set is the zero set of a finite collection
of homogeneous polynomials.

With the notion of algebraic sets established, we define the corresponding algebraic object.

Definition 3.11. Let X ⊆ Pn be any subset. The homogeneous ideal of X, denoted I(X), is the set of
all polynomials in k[x0, . . . , xn] that vanish at every point in X.

I(X) = {f ∈ k[x0, . . . , xn] | every P ∈ X is a zero of f}.

An ideal I ⊆ k[x0, . . . , xn] is said to be homogeneous if for every polynomial f ∈ I, its homogeneous
components fi are also in I.

Remark 3.12. An important and easily verifiable fact is that for any subset X ⊆ Pn, the ideal I(X) is
always a homogeneous ideal.

Proposition 3.13. An ideal I ⊆ k[x0, . . . , xn] is homogeneous if and only if it can be generated by a finite
set of homogeneous polynomials (forms).
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Proof. (⇐) Suppose I = ⟨F1, . . . , Fr⟩, where each Fi is a form of degree di. Let g =
∑s
j=m gj ∈ I, where gj

is a form of degree j. We must show that each gj ∈ I. We can write g =
∑r
i=1AiFi for some polynomials

Ai ∈ k[x0, . . . , xn]. Decomposing each Ai into its homogeneous parts, Ai =
∑
k Aik, we have

g =

s∑
j=m

gj =

r∑
i=1

(∑
k

Aik

)
Fi =

∑
i,k

AikFi.

The term AikFi is a form of degree k+ di. Equating terms of the same degree, the lowest degree component
of g, which is gm, must be a sum of those AikFi for which k + di = m. Specifically, gm =

∑r
i=1Ai,m−diFi,

which implies gm ∈ I. Now consider g − gm =
∑s
j=m+1 gj ∈ I. By induction on the number of non-zero

homogeneous components, we conclude that all gj must be in I.

(⇒) Suppose I is a homogeneous ideal. By Hilbert’s Basis Theorem, I is finitely generated, say I =
⟨f1, . . . , fr⟩. Since I is homogeneous, for each fi, its homogeneous components Fij must also belong to I.
The set of all such components {Fij} is a finite set of forms that also generates I, since each original fi is a
sum of these forms.

This establishes the fundamental correspondence in projective algebraic geometry. We have a relationship
between geometric objects and algebraic objects:

{ projective algebraic sets in Pn } ←→ { homogeneous ideals in k[x0, . . . , xn] }

The map from right to left is given by V , and the map from left to right is given by I. As in the affine case,
this correspondence is inclusion-reversing and will be made more precise by the Projective Nullstellensatz.

Example 3.14. Ideal of a Point in P2. Let P = [a : b : c] ∈ P2. Assume without loss of generality that
c ̸= 0, so we can scale the coordinates to have P = [a : b : 1]. Consider the ideal I = ⟨x− az, y− bz⟩. This is
a homogeneous ideal generated by two forms of degree 1. Any point in V (I) must satisfy x = az and y = bz,
so it must be of the form [az : bz : z]. If z ̸= 0, this is just [a : b : 1] = P . If z = 0, we get [0 : 0 : 0], which is
not a point in P2. Thus V (I) = {P}.

Finally, we introduce the projective analogue of a variety.

Definition 3.15. A projective algebraic set V ⊆ Pn is irreducible if it cannot be expressed as the union of
two proper projective algebraic subsets. An irreducible projective algebraic set is called a projective variety.

Proposition 3.16. A projective algebraic set V ⊆ Pn is irreducible if and only if its homogeneous ideal I(V )
is a prime ideal.

Proof. The proof is identical to the affine case, relying only on the properties V (I ∪ J) = V (I) ∪ V (J)
and I(V ∪W ) = I(V ) ∩ I(W ). One must simply verify that these properties hold for projective sets and
homogeneous ideals.

3.2 Homogeneous Structures

Now, we introduce some projective algebraic objects. To deepen our understanding of projective algebraic
sets, we introduce algebraic structures that are intrinsically linked to their projective nature. A key technique
is to relate a projective set V ⊆ Pn to a corresponding cone in the ambient affine space An+1, which allows
us to leverage the powerful tools of affine geometry, including the classical Nullstellensatz.

3.2.1 Affine Cones

Definition 3.17. Let V ⊆ Pn be a projective algebraic set. The affine cone over V , denoted C(V ), is the
subset of An+1 formed by the union of all lines passing through the origin that correspond to points in V .
Formally,

C(V ) = {(a0, . . . , an) ∈ An+1 | [a0 : · · · : an] ∈ V } ∪ {(0, . . . , 0)}.
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Example 3.18.

1. Let V = {[1 : 0], [0 : 1]} ⊆ P1. The corresponding lines through the origin in A2 are the x-axis (spanned
by (1, 0)) and the y-axis (spanned by (0, 1)). Thus, C(V ) = {(x, 0) | x ∈ k} ∪ {(0, y) | y ∈ k}, which is
the affine variety Va(xy).

2. Let I = ⟨x2+y2−z2⟩ ⊆ C[x, y, z], and let V = VP (I) ⊆ P2. In the affine chart U2
∼= A2 (where z = 1),

this curve is the circle x2 + y2 = 1. The affine cone C(V ) is the affine variety Va(I) ⊆ A3, which is a
standard circular cone. The intersection of V with the hyperplane at infinity (z = 0) is determined by
the equation x2 + y2 = 0. Over C, this factors as (x− iy)(x+ iy) = 0, yielding the two points [1 : i : 0]
and [1 : −i : 0] at infinity.

The connection between projective sets and affine cones is captured by the following relations between their
ideals.

Remark 3.19. Let k be an algebraically closed field.

1. If V ⊆ Pn is a non-empty projective algebraic set, then the affine ideal of its cone is precisely the
homogeneous ideal of the set: Ia(C(V )) = IP (V ).

2. Conversely, if I ⊆ k[x0, . . . , xn] is a homogeneous ideal such that its projective zero locus VP (I) is
non-empty, then the affine cone over this locus is the affine zero locus of the ideal: C(VP (I)) = Va(I).

This correspondence is the key to proving the projective analogue of Hilbert’s Nullstellensatz.

Theorem 3.20 (Projective Nullstellensatz). Let k be an algebraically closed field and let I be a homogeneous
ideal in S = k[x0, . . . , xn].

1. VP (I) = ∅ if and only if I contains the ideal ⟨x0, . . . , xn⟩N for some integer N ≥ 1. This ideal is the
set of all forms of degree at least N .

2. If VP (I) ̸= ∅, then IP (VP (I)) =
√
I.

Proof. The proof proceeds by reduction to the affine case. Let m = ⟨x0, . . . , xn⟩ be the maximal ideal
corresponding to the origin in An+1.

1. The condition VP (I) = ∅ is equivalent to the statement that the only point in the affine variety
Va(I) is the origin, i.e., Va(I) ⊆ {(0, . . . , 0)}. By the affine Nullstellensatz, this is equivalent to√
I ⊇ Ia({(0, . . . , 0)}) = m. Thus, VP (I) = ∅ ⇐⇒ m ⊆

√
I. This means that for each i ∈ {0, . . . , n},

there exists an integer ri such that xrii ∈ I. Let r = max{ri}. Then for any sufficiently large N , any
monomial of degree N will be divisible by some xri , implying that mN ⊆ I.

2. If VP (I) ̸= ∅, then its cone C(VP (I)) is a non-trivial affine variety equal to Va(I). We can then apply
the previous remarks and the affine Nullstellensatz:

IP (VP (I)) = Ia(C(VP (I))) = Ia(Va(I)) =
√
I.

The Nullstellensatz provides the sought-after dictionary between geometry and algebra. The only special
consideration is the ideal m = ⟨x0, . . . , xn⟩ because its projective zero locus is empty.

Corollary 3.21. Let S = k[x0, . . . , xn]. There are the following inclusion-reversing bijections:{
Projective algebraic sets

in Pn
}
←→

{
Homogeneous radical ideals in S not

equal to m

}
{

Projective varieties in
Pn

}
←→

{
Homogeneous prime ideals in S not equal

to m

}
{
Irreducible hypersurfaces

in Pn
}
←→

 Principal ideals ⟨F ⟩, where F is an
irreducible non-constant form, up to

scaling


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Proof. The proof follows directly from the Projective Nullstellensatz and the definitions of radical and prime
ideals. It is a foundational exercise for the reader.

The simplest non-trivial projective algebraic sets are the linear ones. The sets V (xi) for i = 0, . . . , n are
the coordinate hyperplanes. Each V (xi) is the hyperplane at infinity with respect to the standard affine
chart Ui.

Example 3.22. In P2, the coordinate hyperplanes are the lines V (x0), V (x1), and V (x2). These can be
visualized as the three ”axes” of the projective plane. Any pair of these lines intersects at a single point:
V (x0) ∩ V (x1) = {[0 : 0 : 1]}, for instance.

With a characterization of the closed sets, we can define a topology on projective space.

Definition 3.23. The Zariski topology on Pn is the topology whose closed sets are the projective algebraic
sets. A set U ⊆ Pn is Zariski open if its complement Pn \ U is a projective algebraic set.

Exercise 3.24. The reader should verify that this definition is consistent with the Zariski topology on affine
space. Show that for any standard affine chart Ui ∼= An, the subspace topology induced on Ui from Pn is
identical to the Zariski topology on An.

3.2.2 Homogeneous Coordinate Rings

Just as an affine variety has a coordinate ring, a projective variety has an analogous (but more subtle)
algebraic counterpart.

Definition 3.25. Let V ⊆ Pn be a non-empty projective variety. The homogeneous coordinate ring of
V is the quotient ring

S(V ) = k[x0, . . . , xn]/IP (V ).

Remark 3.26. Unlike the affine case, the elements of S(V ) cannot be interpreted as functions on V . A
polynomial F is not well-defined on Pn, and even if F ∈ IP (V ), the value of a representative polynomial
G for a class Ḡ ∈ S(V ) is not well-defined at a point P ∈ V . The ring S(V ) is a fundamental algebraic
invariant, but not a ring of functions.

Because IP (V ) is a homogeneous ideal, the ring S(V ) inherits a natural grading from k[x0, . . . , xn].

Definition 3.27. Let Γ = k[x0, . . . , xn]/I where I is a homogeneous ideal. An element f ∈ Γ is a form of
degree d if it is the image of a homogeneous polynomial F ∈ k[x0, . . . , xn] of degree d.

Remark 3.28. The degree of a non-zero form in Γ is well-defined. Suppose f = F̄ = Ḡ where F and G are
forms. Then F −G ∈ I. If deg(F ) ̸= deg(G), since I is a homogeneous ideal, this implies F ∈ I and G ∈ I.
Thus f = 0̄, contradicting that f is a non-zero form.

Proposition 3.29. Let Γ = k[x0, . . . , xn]/I for a homogeneous ideal I. Every element f ∈ Γ can be written
uniquely as a sum f = f0 + f1 + · · ·+ fd, where each fi is a form of degree i.

Proof. For existence, let g ∈ k[x0, . . . , xn] be a representative of f . We can write g =
∑
gi as a sum of its

homogeneous components. Then f = ḡ =
∑
ḡi.

For uniqueness, suppose
∑
fi =

∑
hi, where fi, hi are forms of degree i. Then

∑
(fi−hi) = 0. Let Fi, Hi be

homogeneous preimages. Then
∑

(Fi −Hi) = 0, which implies
∑

(Fi −Hi) ∈ I. Since I is a homogeneous
ideal, we must have Fi −Hi ∈ I for each i. Therefore, fi = F̄i = H̄i = hi.

This structure means S(V ) is a graded ring, S(V ) =
⊕∞

d=0 S(V )d, where S(V )d is the vector space of
forms of degree d.
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3.2.3 Rational Functions on Projective Varieties

While elements of S(V ) are not functions, we can construct functions on V by taking ratios of its homogeneous
elements.

Definition 3.30. Let V be a projective variety. The homogeneous function field of V , denoted kh(V ),
is the field of fractions of the integral domain S(V ).

The elements of kh(V ) are fractions F/G where F,G ∈ S(V ) with G ̸= 0. In general, these are not functions
on V . However, a special subclass of these elements is well-defined. Let F and G be forms of the same
degree d in k[x0, . . . , xn], and consider a point P = [a0 : · · · : an] ∈ V where G(P ) ̸= 0. For any λ ∈ k∗, we
have:

F (λa0, . . . , λan)

G(λa0, . . . , λan)
=
λdF (a0, . . . , an)

λdG(a0, . . . , an)
=
F (a0, . . . , an)

G(a0, . . . , an)
.

The value of the ratio is independent of the chosen homogeneous coordinates. This motivates the following
definition

Definition 3.31. The field of rational functions on a projective variety V , denoted k(V ), is the subfield
of kh(V ) consisting of elements of degree zero:

k(V ) =

{
F

G
| F,G ∈ S(V ) are forms of the same degree, G ̸= 0

}
.

An element of k(V ) is called a rational function on V .

Remark 3.32. The constant polynomials provide an embedding k ⊆ k(V ). The field k(V ) is a subfield of
the homogeneous function field kh(V ).

Example 3.33. Consider P1 with homogeneous coordinate ring k[x, y]. Its function field k(P1) consists
of ratios F (x, y)/G(x, y) where F,G are homogeneous of the same degree. Let’s restrict to the affine chart
U0
∼= A1 by setting x = 1. A rational function becomes F (1, y)/G(1, y), which is a rational function in the

single variable y. This gives an isomorphism k(P1) ∼= k(y) ∼= k(A1). In general, for any variety V , k(V ) is
isomorphic to the function field of any of its open affine subvarieties.

Definition 3.34. Let V be a projective variety, P ∈ V , and ϕ ∈ k(V ). We say ϕ is defined (or regular) at
P if it can be written as a fraction ϕ = F/G where F,G are forms of the same degree in S(V ) and G(P ) ̸= 0.
The set of all rational functions on V defined at P forms a ring. This is the local ring of V at P , denoted
OV,P .

Remark 3.35. For any P ∈ V , the ring OV,P is a subring of the function field k(V ). It is a local ring, and
its unique maximal ideal, denoted mV,P , consists of all functions that vanish at P :

mV,P = {ϕ ∈ OV,P | ϕ = F/G with F (P ) = 0 and G(P ) ̸= 0}.

Example 3.36. There is a natural isomorphism between the local ring of a projective variety at a point P
and the local ring of an affine chart containing P at that same point. Let P = [0 : 0 : 1] ∈ P2. This point
lies in the affine chart U2

∼= A2, where it corresponds to the origin (0, 0). The local ring OP2,P consists
of fractions F (x, y, z)/G(x, y, z) where F,G are forms of the same degree and G(0, 0, 1) ̸= 0. The map
ψ : OP2,P → OA2,(0,0) given by dehomogenization (setting z = 1),

ψ

(
F (x, y, z)

G(x, y, z)

)
=
F (x, y, 1)

G(x, y, 1)
,

is an isomorphism of rings. This demonstrates that the local geometry of a projective variety is affine.

3.3 Projective Transformations

We have established that projective space Pn is covered by affine charts Ui ∼= An. A central theme in
algebraic geometry is the interplay between local affine properties and global projective structure. We now
formalize the precise relationship between algebraic sets in an affine chart and their closures within the
ambient projective space.
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3.3.1 Converting Between Affine and Projective Varieties

Let V ⊆ An be an affine algebraic set, where we identify An with the standard chart Un ⊂ Pn. Let
I = I(V ) ⊆ k[x1, . . . , xn] be its vanishing ideal. To embed V into Pn, we must work with homogeneous
ideals in k[x1, . . . , xn+1].

For any polynomial f ∈ k[x1, . . . , xn], its homogenization F ∈ k[x1, . . . , xn+1] is given by F = x
deg(f)
n+1 f(x1/xn+1, . . . , xn/xn+1).

We define the homogeneous ideal associated to I as

Ih = ⟨{F | F is the homogenization of some f ∈ I}⟩ ⊆ k[x1, . . . , xn+1].

Definition 3.37. The projective closure of an affine algebraic set V ⊆ An, denoted V , is the projective
algebraic set VP (I

h) ⊆ Pn.

Topologically, the projective closure V is precisely the Zariski closure of V within Pn. By construction, the
part of V in the original affine chart is V itself, i.e., V ∩ Un = V .

Remark 3.38. It is important to note that if I = ⟨f1, . . . , fr⟩, it is not generally true that Ih = ⟨F1, . . . , Fr⟩,
where Fi is the homogenization of fi. Homogenizing the generators of an ideal may not produce a set of
generators for the homogenized ideal.

Example 3.39. Let I = ⟨x2 + y, x⟩ ⊆ k[x, y]. Since x ∈ I, we have y = (x2 + y) − x2 ∈ I, so I = ⟨x, y⟩.
The corresponding affine variety is the origin, V = {(0, 0)} ⊂ A2. The correct homogenized ideal is Ih =
⟨x, y⟩ ⊆ k[x, y, z], and its zero locus is V = VP (x, y) = {[0 : 0 : 1]}. However, if we naively homogenize the
original generators, we get the ideal J ′ = ⟨x2 + yz, x⟩. The zero locus of J ′ is given by x = 0 and yz = 0.
This yields two points: [0 : 0 : 1] and [0 : 1 : 0]. The extra point at infinity, [0 : 1 : 0], is the result of an
incorrect procedure.

The reverse process is more straightforward. Let V ⊆ Pn be a projective algebraic set with homogeneous
ideal I = IP (V ) ⊆ k[x1, . . . , xn+1]. To find the affine part V ∩ Un+1, we simply set the last coordinate to 1.
Algebraically, this corresponds to dehomogenization. The ideal of V ∩ Un+1 in k[x1, . . . , xn] is the image of
I under the map that sets xn+1 = 1. This is equivalent to taking the quotient I = I/⟨xn+1 − 1⟩, which lives
in k[x1, . . . , xn+1]/⟨xn+1 − 1⟩ ∼= k[x1, . . . , xn].

Remark 3.40. This process has a nice geometric interpretation via the affine cone C(V ). The ideal I is
the ideal of C(V ) ⊆ An+1. The quotient map k[x1, . . . , xn+1] → k[x1, . . . , xn+1]/⟨xn+1 − 1⟩ corresponds
algebraically to the geometric intersection with the hyperplane Va(xn+1 − 1). Thus, the ideal I defines the
affine variety C(V ) ∩ Va(xn+1 − 1) = V ∩ Un+1.

3.3.2 Fields of Rational Functions

The geometric correspondence between an affine variety and its projective closure is mirrored by an algebraic
isomorphism of their function fields.

Let V ⊆ An be an affine variety (identified with V ⊆ Un+1) and let W = V ⊆ Pn be its projective closure.
We can define a map α : k(W )→ k(V ) by dehomogenizing:

α

(
F

G

)
=
F (x1, . . . , xn, 1)

G(x1, . . . , xn, 1)
,

where F,G are forms of the same degree in the homogeneous coordinate ring S(W ). This map is a well-defined
field homomorphism.

Proposition 3.41. The map α : k(W )→ k(V ) is an isomorphism of fields.

Proof. Since α is a homomorphism of fields, it is injective. To show surjectivity, take any element a
b ∈ k(V ),

where a, b ∈ k[x1, . . . , xn]. Let A,B be their respective homogenizations in k[x1, . . . , xn+1]. To make them
have the same degree, we can multiply by a suitable power of xn+1. Let da = deg(a) and db = deg(b).
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Consider the element ϕ =
A·xmax(0,db−da)

n+1

B·xmax(0,da−db)

n+1

∈ k(W ). Its image under α is precisely a
b . Thus α is surjective,

hence an isomorphism.

Corollary 3.42. For any point P ∈ V , the map α induces an isomorphism of local rings OW,P ∼= OV,P .

Proof. A rational function F/G ∈ k(W ) is regular at P ∈ V ⊆ Un+1 if G(P ) ̸= 0. After dehomogenizing,
the denominator becomes G(x1, . . . , xn, 1), which is non-zero at P . This shows α(OW,P ) ⊆ OV,P . Injectivity
follows from that of α. Surjectivity follows from reversing the homogenization process in the proof of the
proposition, noting that if b(P ) ̸= 0, its homogenization B(P ) will also be non-zero.

Remark 3.43. The isomorphism of local rings holds at any point P ∈W . If P /∈ Un+1, one simply chooses
a different affine chart Ui containing P and dehomogenizes with respect to the variable xi. This confirms
that the local geometry of a projective variety is everywhere affine.

3.3.3 Morphisms of Projective Varieties

Defining morphisms between projective varieties requires care, as polynomial functions are not well-defined.
The solution is to define morphisms locally using homogeneous polynomials of the same degree.

Let’s motivate this with a key example. Consider the map φ : P1 → P2 given by

[s : t] 7→ [s2 : st : t2].

This map is well-defined because if we rescale the input, [λs : λt], the output becomes [λ2s2 : λ2st : λ2t2] =
[s2 : st : t2]. The coordinates are homogeneous polynomials of the same degree (degree 2). The image of
this map lies in the conic C = V (xz − y2) ⊆ P2, since (s2)(t2)− (st)2 = 0. Locally, this map is a morphism
of affine varieties. For instance, on the chart U0 ⊂ P1 (where s = 1), the map is t 7→ [1 : t : t2], which is the
familiar parabola map A1 → A2 given by α 7→ (α, α2).

Definition 3.44. Let V ⊆ Pn and W ⊆ Pm be projective algebraic sets. A function φ : V → W is a
morphism if for every point P ∈ V , there exists a Zariski open neighborhood U of P in V and m + 1
homogeneous polynomials F0, . . . , Fm ∈ k[x0, . . . , xn] of the same degree, such that:

1. For every Q ∈ U , at least one Fi(Q) is non-zero.

2. The map φ on U is given by Q 7→ [F0(Q) : · · · : Fm(Q)].

Remark 3.45. The choice of representing polynomials Fi may be different on different open sets, although
sometimes a single set of polynomials works globally, as in the example above.

Example 3.46. Let C = V (xz − y2) ⊆ P2. Consider the map φ : C → P1 defined piecewise:

[x : y : z] 7→

{
[x : y] on C \ {[0 : 0 : 1]}
[y : z] on C \ {[1 : 0 : 0]}

On the overlap, where x ̸= 0 and z ̸= 0, we have y2 = xz ̸= 0. The two definitions agree:

[x : y] = [xz : yz] = [y2 : yz] = [y : z].

This defines a global morphism. In fact, it is the inverse of the map [s : t] 7→ [s2 : st : t2].

Definition 3.47. A morphism φ : V → W is an isomorphism if there exists an inverse morphism
ψ :W → V such that ψ ◦ φ = idV and φ ◦ ψ = idW .

The previous example shows that the conic C = V (xz − y2) is isomorphic to the projective line P1.
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3.3.4 Projective Change of Coordinates

The most fundamental morphisms of a projective space onto itself are those induced by linear transformations
of the underlying vector space.

Let T : kn+1 → kn+1 be an invertible linear transformation. Since T maps lines through the origin to lines
through the origin, it induces a well-defined map on Pn, called a projective change of coordinates or
projectivity. If we represent points in kn+1 as column vectors, T can be represented by an (n+1)× (n+1)
invertible matrix M ∈ GL(n+ 1, k).

Remark 3.48. The matrix M and any non-zero scalar multiple λM represent the same projectivity, since
they define the same map on equivalence classes. The group of all such transformations is the Projective
General Linear Group, PGL(n + 1, k) = GL(n + 1, k)/k∗. These are, in fact, all the automorphisms of
Pn.

Definition 3.49. Two projective algebraic sets V,W ⊆ Pn are projectively equivalent if there exists a
projective change of coordinates T : Pn → Pn that restricts to an isomorphism from V to W .

Example 3.50. Any two hyperplanes in Pn are projectively equivalent. For example, in P2, the lines
V = V (x) and W = V (y − x) are projectively equivalent. The change of coordinates T : P2 → P2 defined
by [x : y : z] 7→ [x : y + x : z] is an isomorphism that maps V to W . Its inverse map T−1 sends a point
[x′ : y′ : z′] ∈ W (so y′ − x′ = 0) to [x′ : y′ − x′ : z′] = [x′ : 0 : z′], which is a point in V = V (y). Thus
T−1(W ) = V .

Proposition 3.51. Let T : Pn → Pn be a projective change of coordinates.

1. If V = V (F1, . . . , Fr), then T
−1(V ) = V (F1 ◦ T, . . . , Fr ◦ T ).

2. T induces isomorphisms S(V ) ∼= S(T−1(V )), k(V ) ∼= k(T−1(V )), and OT (P )(V ) ∼= OP (T−1(V )).

3. Any linear subvariety W ⊆ Pn of dimension d is projectively equivalent to the standard subvariety
V (xd+1, . . . , xn).

Remark 3.52. In the affine setting, two varieties are isomorphic if and only if their coordinate rings are
isomorphic. This is false in the projective case. We saw that P1 is isomorphic to the conic C = V (xz−y2) ⊆
P2. However, their homogeneous coordinate rings, k[s, t] and k[x, y, z]/⟨xz − y2⟩, are not isomorphic (the
latter is not a UFD, while the former is). The geometric isomorphism of varieties does not imply an algebraic
isomorphism of their homogeneous coordinate rings, because the rings describe the extrinsic geometry of the
embedding (i.e., the affine cones), which can differ.

3.3.5 Projective Plane Curves

We conclude by applying these concepts to the important case of curves in the projective plane, P2.

Definition 3.53. A projective plane curve is an equivalence class of non-constant homogeneous poly-
nomials F ∈ k[x, y, z] under the relation F ∼ λF for λ ∈ k∗. The degree of the curve is the degree of the
defining polynomial.

Local properties of curves, such as multiplicity and tangents, are defined by dehomogenizing in an appropriate
affine chart.

Remark 3.54. If C = V (F ) is a projective curve and P = [a : b : 1] ∈ C ∩ U2, then the local ring of C at
P is isomorphic to the local ring of the affine curve c = V (f) at the point (a, b), where f = F (x, y, 1). That
is, OC,P ∼= Oc,(a,b).

Remark 3.55. The multiplicity of an affine curve V (f) at the origin P = (0, 0) is the degree of the lowest-
degree homogeneous component of f . If f = fm + fm+1 + · · · + fd, then the multiplicity mP (f) is m. The
multiplicity of a projective curve V (F ) at a point P is defined to be the multiplicity of its dehomogenization
at the corresponding affine point.
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Proposition 3.56. A point P is a singular (multiple) point of the curve V (F ) if and only if it is a simul-
taneous zero of all partial derivatives:

F (P ) =
∂F

∂x
(P ) =

∂F

∂y
(P ) =

∂F

∂z
(P ) = 0.

Proof Sketch. By Euler’s homogeneous function theorem, if F is a form of degree d, then d ·F = xFx+yFy+
zFz. Thus, if all partials vanish at P , so does F . We can assume P ∈ U2, so P = [a : b : 1]. Singularity in
the affine chart means f(a, b) = fx(a, b) = fy(a, b) = 0. Since fx(a, b) = Fx(a, b, 1) and fy(a, b) = Fy(a, b, 1),
this implies Fx(P ) = Fy(P ) = 0. The condition Fz(P ) = 0 then follows from Euler’s theorem.

Definition 3.57. Let F be a projective plane curve and let P be a point on F . Let L be a line through P .
We say that L is tangent to F at P if, upon dehomogenizing in a chart Ui containing P , the corresponding
affine line l is tangent to the affine curve f at the point corresponding to P .

Example 3.58. Let F = xy4 + yz4 + xz4. The singular points are found by solving:

Fx = y4 + z4 = 0

Fy = 4xy3 + z4 = 0

Fz = 4yz3 + 4xz3 = 4z3(y + x) = 0

From Fz = 0, either z = 0 or y = −x. Case 1: z = 0. The equations become y4 = 0 and 4xy3 = 0, which
implies y = 0. The point must be [1 : 0 : 0] (since not all coordinates can be zero). We check F (1, 0, 0) = 0,
so [1 : 0 : 0] is a singular point. Case 2: y = −x. The first equation becomes x4 + z4 = 0. The second
becomes −4x4 + z4 = 0. Together these imply x = z = 0, which implies y = 0, a contradiction. So [1 : 0 : 0]
is the only singular point. To analyze its multiplicity, we dehomogenize with respect to x (by setting x = 1)
to get f(y, z) = y4 + yz4 + z4. The lowest degree term is y4 + z4, so the multiplicity at the origin (0, 0) is 4.
The tangent lines are given by the factors of this term.

Definition 3.59. Let F,G be projective plane curves and P ∈ P2. Choose an affine chart Ui containing P .
The intersection number of F and G at P , denoted IP (F,G), is defined as the intersection number of
their dehomogenizations in that chart: IP (F,G) := IP (f, g). This definition can be shown to be independent
of the choice of chart.

Remark 3.60. The intersection number in the projective plane satisfies the same axioms as in the affine
case, with two modifications:

• The translation invariance axiom is replaced by invariance under projective transformations.

• The axiom IP (F,G) = IP (F,G+AF ) requires A to be a homogeneous polynomial such that deg(G) =
deg(F ) + deg(A), to ensure G+AF is homogeneous.
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4 More on Varieties and Blow-Ups

4.1 The Building Blocks

4.1.1 Linear Systems of Curves

The set of all plane curves of a fixed degree possesses a natural and powerful geometric structure of its own.
By parameterizing the coefficients of the defining polynomials, we can identify this set with a projective
space, allowing us to study families of curves using the techniques of linear algebra and projective geometry.

Let d ≥ 1 be an integer. The space of homogeneous polynomials of degree d in three variables, k[x, y, z]d,
is a vector space over k. The number of monomials of degree d, which form a basis for this space, can be

calculated using a stars-and-bars argument to be N =
(
d+2
2

)
= (d+2)(d+1)

2 .

Any curve of degree d is defined by a non-zero polynomial F =
∑N
i=1 aiMi, where the Mi are the basis

monomials and ai ∈ k. Since two polynomials F and G define the same curve if and only if G = λF for
some λ ∈ k∗, the curve is uniquely determined by the coefficient vector up to scale. This means the point
[a1 : · · · : aN ] in projective space PN−1 determines a unique plane curve. This establishes an important
bijection:

{Projective plane curves of degree d} ←→ PN−1 = P
d(d+3)

2 .

Example 4.1.

1. For d = 1 (lines), N =
(
3
2

)
= 3. A line ax + by + cz = 0 corresponds to a unique point [a : b : c] in

the projective plane P2. This P2 is often called the dual projective space, as its points correspond to
lines in the original P2.

2. For d = 2 (conics), N =
(
4
2

)
= 6. A conic section given by a1x

2+a2xy+a3xz+a4y
2+a5yz+a6z

2 = 0
corresponds to a unique point [a1 : · · · : a6] in P5. The set of all conics in the plane is thus parameterized
by a P5.

Imposing geometric constraints on curves often translates to linear conditions on their coefficients.

Definition 4.2. A linear system of plane curves of degree d is a family of curves corresponding to the
points of a linear subvariety (a sub-projective space) of PN−1.

Example 4.3. Consider the set of all lines in P2 that pass through the point P = [0 : 0 : 1]. A line
ax + by + cz = 0 contains P if and only if c = 0. The corresponding points in the dual P2 are of the form
[a : b : 0]. This set is a line in P2, demonstrating that the family of lines through a point is a linear system
of dimension 1.

This observation generalizes.

Lemma 4.4.

1. Fix a point P ∈ P2. The set of all curves of degree d that pass through P forms a hyperplane in the
parameter space PN−1.

2. A projective change of coordinates on P2 induces a projective change of coordinates on the parameter
space PN−1.

Proof.

1. Let the curve be represented by the coefficient vector [α1 : · · · : αN ] corresponding to the polynomial

F =
∑
αiMi. The curve passes through P if and only if F (P ) = 0, which means

∑N
i=1 αiMi(P ) = 0.

Since not all monomials vanish at any given point, this is a non-trivial linear equation in the coefficients
αi, defining a hyperplane in PN−1.

2. This follows from the fact that a projective transformation acts linearly on the coefficients of the
polynomial.
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Requiring a curve to pass through a set of m distinct points corresponds to intersecting m hyperplanes
in PN−1. The dimension of the resulting linear system depends on whether these linear conditions are
independent.

Example 4.5. Let’s consider the linear system V of conics (d = 2, N = 6,P5) passing through four points
P1, P2, P3, P4. We expect the four linear conditions to be independent, which would imply dim(V ) = 5−4 = 1.
However, consider the case where the four points are collinear, all lying on a line L. If a conic F passes
through these four points, then by Bézout’s Theorem, the intersection number I(F,L) would be at least 4.
Since deg(F ) deg(L) = 2, this implies that L must be a component of F . Thus, F = L · L′ for some other
line L′. The system V is therefore in one-to-one correspondence with the set of all possible lines L′, which
is a P2. In this degenerate case, dim(V ) = 2.

Remark 4.6. A fundamental fact of linear algebra is that the intersection of k hyperplanes in PM is always
non-empty if k ≤M . In our context, M = N − 1. This implies that there exists at least one curve of degree

d passing through any given set of N − 1 = d(d+3)
2 points.

What if we impose conditions on the multiplicity of a curve at a point?

Example 4.7. Let P = [0 : 0 : 1]. For the multiplicity mP (F ) of a conic F to be at least 2, we must analyze
the dehomogenized polynomial f(x, y) = F (x, y, 1). For mP (f) ≥ 2, the constant and linear terms must
vanish. This means the coefficients of z2, xz, and yz in F must all be zero. This imposes three independent
linear conditions on the P5 of conics. The resulting linear system has dimension 5 − 3 = 2. Such a conic
has the form F = ax2 + bxy+ cy2 = (αx+ βy)(γx+ δy), which represents a pair of lines passing through P .

In general, requiring a curve of degree d to have multiplicity at least r at a point P imposes
(
r+1
2

)
linear

conditions. Let P = [0 : 0 : 1]. For mP (F ) ≥ r, all terms xaybzc in F where a + b < r must have a

zero coefficient. There are
(
r+1
2

)
= r(r+1)

2 such terms. This reduces the dimension of the parameter space
accordingly.

We adopt the following notation for such linear systems. Let P1, . . . , Pn ∈ P2 be distinct points and
r1, . . . , rn ∈ Z≥0.

Vd(r1P1, . . . , rnPn) := {Curves F of degree d | mPi(F ) ≥ ri for all i}.

Corollary 4.8.

1. The set V = Vd(r1P1, . . . , rnPn) is a linear subvariety of PN−1 of dimension

dim(V ) ≥ N − 1−
n∑
i=1

ri(ri + 1)

2
.

(Here we use projective dimension, so dimPk = k).

2. If d ≥ (
∑
ri)− 1, then the equality holds.

Proof. The first part of the theorem is a direct consequence of counting linear constraints. The condition

of having a multiplicity of at least ri at a point Pi imposes
(
ri+1
2

)
= ri(ri+1)

2 linear conditions on the
coefficients of the curve’s defining polynomial. Summing these constraints gives the stated lower bound for
the dimension.

The second part, proving that these conditions are independent for sufficiently large d, requires a more
intricate argument. We proceed by induction on m =

∑n
i=1 ri.

Base Case: If m = 1, the system is Vd(1P1). This imposes a single linear condition (passing through P1),
which defines a hyperplane. The dimension is (N − 1)− 1, so the formula holds.
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Inductive Hypothesis: Assume the equality holds for any system defined by points and multiplicities
where the sum of multiplicities is less than m.

Now, let V = Vd(r1P1, . . . , rnPn) with
∑
ri = m > 1 and d ≥ m− 1. We divide the proof into two cases.

Case 1: All multiplicities are one (ri = 1 for all i). In this case, m = n. We must show that
dimproj(Vd(P1, . . . , Pn)) = (N − 1)− n, given d ≥ n− 1. Consider the chain of nested linear systems:

Vd(P1) ⊃ Vd(P1, P2) ⊃ · · · ⊃ Vd(P1, . . . , Pn).

Let Vi = Vd(P1, . . . , Pi). By the inductive hypothesis, since
∑n−1
j=1 rj = n − 1, the dimension of Vn−1 is

dimproj(Vn−1) = (N − 1)− (n− 1). The system Vn is obtained from Vn−1 by imposing one additional linear
condition (passing through Pn). Therefore, its dimension is either dimproj(Vn−1) or dimproj(Vn−1) − 1. To
prove the equality, we must show that the condition is independent, which means demonstrating that Vn
is a proper subvariety of Vn−1. To do this, we construct a curve F ∈ Vn−1 \ Vn. Since the points Pi are
distinct, for each i ∈ {1, . . . , n − 1}, we can choose a line Li that passes through Pi but not through Pn.
Furthermore, let L0 be a line that does not pass through any of the points P1, . . . , Pn. Since d ≥ n− 1, the
integer k = d− (n− 1) is non-negative. Consider the curve of degree d given by the product:

F = L1 · L2 · · ·Ln−1 · Lk0 .

By construction, F (Pi) = 0 for all i ∈ {1, . . . , n− 1}, so F ∈ Vn−1. However, F (Pn) ̸= 0 because none of the
lines L0, L1, . . . , Ln−1 pass through Pn. Thus, F /∈ Vn. This shows Vn ⊊ Vn−1, so the dimension must drop
by exactly one. The formula holds.

Case 2: At least one multiplicity is greater than one. Without loss of generality, assume r1 > 1
and, by a projective transformation, that P1 = [0 : 0 : 1]. Let V = Vd(r1P1, r2P2, . . . , rnPn). We compare
it with the system V0 = Vd((r1 − 1)P1, r2P2, . . . , rnPn). The sum of multiplicities for V0 is m − 1, and the
degree condition d ≥ m − 1 > (m − 1) − 1 is satisfied. Thus, by the inductive hypothesis, we know the
exact dimension of V0. A curve F ∈ V0 has multiplicity at least r1− 1 at P1. Let its dehomogenization with
respect to z be f(x, y). The terms of total degree less than r1− 1 in f are already zero. The terms of degree
r1 − 1 are of the form

fr1−1 =

r1−1∑
j=0

ajx
jyr1−1−j .

For F to be in V , its multiplicity at P1 must be at least r1. This requires that all these coefficients
a0, . . . , ar1−1 must be zero. This imposes r1 additional linear conditions. Our goal is to show these r1
conditions are independent.

To do this, we construct curves that satisfy some of these conditions but not others. Consider the auxiliary
system of curves of degree d− 1:

W = Vd−1((r1 − 2)P1, r2P2, . . . , rnPn).

The sum of multiplicities for W is m − r1 + (r1 − 2) = m − 2. The degree is d − 1. The condition
d ≥ m − 1 implies d − 1 ≥ m − 2, so the inductive hypothesis applies to W . For j = 0, . . . , r1 − 2, we can
impose j additional zero-coefficient conditions on W to get a descending chain of non-empty subspaces. By
the inductive hypothesis on W , for each k ∈ {0, . . . , r1 − 2}, we can find a curve Gk ∈ W such that its
dehomogenization gk has a non-zero xkyr1−2−k term, while all terms of degree r1 − 2 with fewer powers of
x are zero.

Now, construct curves of degree d by multiplying by linear forms:

1. For k ∈ {0, . . . , r1− 2}, consider the curve Fk = y ·Gk. This curve has degree d. Its dehomogenization
is fk = ygk. The lowest-degree terms of fk are of degree r1 − 1, and the term with the fewest powers
of x is a non-zero multiple of xkyr1−1−k. This curve Fk satisfies the conditions a0 = · · · = ak−1 = 0,
but fails the condition ak = 0.
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2. To handle the last condition (ar1−1 = 0), we need a curve whose lowest-degree term in its dehomog-
enization is xr1−1. Let Gr1−1 be a curve in Vd−1((r1 − 1)P1, . . . ) which does not have multiplicity r1
at P1. By induction, such a curve exists. Consider Fr1−1 = x · Gr1−1. Its dehomogenization has a
non-zero xr1−1 term while satisfying a0 = · · · = ar1−2 = 0.

This sequence of constructed curves F0, . . . , Fr1−1 shows that the r1 linear conditions are linearly indepen-
dent. Therefore, dimproj(V ) = dimproj(V0)− r1. The dimension of V0 is given by the inductive hypothesis:

dimproj(V0) = (N − 1)−

(
(r1 − 1)r1

2
+

n∑
i=2

ri(ri + 1)

2

)
.

Subtracting r1 gives:

dimproj(V ) = dimproj(V0)− r1

= (N − 1)−

(
r21 − r1

2
+ r1 +

n∑
i=2

ri(ri + 1)

2

)

= (N − 1)−

(
r21 + r1

2
+

n∑
i=2

ri(ri + 1)

2

)

= (N − 1)−
n∑
i=1

ri(ri + 1)

2
.

This is the required formula, and the induction is complete.

Example 4.9. Let V = V3(3P ) where P = [0 : 0 : 1]. This is the linear system of cubics with a triple point
at P . Since the degree condition d = 3 ≥ (

∑
ri)− 1 = 3− 1 = 2 is met, the dimension is exactly

dim(V ) =

(
3(3 + 3)

2
− 1

)
− 3(3 + 1)

2
= 8− 6 = 2.

(The dimension of the projective space is 2). Geometrically, if a cubic curve F has a triple point at P , any
line L through P must intersect F with multiplicity at least 3. By Bézout’s Theorem, this means L must be
a component of F . Therefore, any curve in V3(3P ) must be a union of three lines (not necessarily distinct)
passing through P . The set of lines through P is a P1. The set of unordered triples of such lines (e.g.
products L1L2L3) is parameterized by a P2.

4.1.2 Bézout’s Theorem

We begin with the central result of this section. The theorem asserts that the number of intersection points
between two projective plane curves, when counted correctly, is precisely the product of their degrees.

Theorem 4.10 (Bézout’s Theorem). Let F and G be projective plane curves over an algebraically closed
field k, having degrees m and n, respectively. If F and G share no common component, then they intersect
in exactly mn points, counted with multiplicity. In symbols,∑

P∈F∩G
IP (F,G) = mn,

where IP (F,G) denotes the intersection multiplicity of F and G at the point P .

Proof. The proof presented here is a sketch of the algebraic argument, which relies on the dimension of
certain quotient rings.

First, since the curves have no common component, their intersection F ∩G is a finite set of points. We may
therefore perform a projective change of coordinates such that none of these intersection points lie on the
line at infinity Z = 0. This allows us to dehomogenize the defining polynomials F (X,Y, Z) and G(X,Y, Z)
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to obtain affine curves defined by f(x, y) = F (x, y, 1) and g(x, y) = G(x, y, 1). The intersection points in P2

now correspond bijectively to the intersection points of the affine curves V (f) and V (g) in A2.

The intersection multiplicity at a point P ∈ A2 is defined via the local ring at P , denoted OP (A2). Specifi-
cally, IP (F,G) = dimk(OP (A2)/(f, g)OP (A2)). The sum over all intersection points is therefore∑

P∈F∩G
IP (F,G) =

∑
P∈V (f,g)

dimk(OP (A2)/(f, g)).

A standard result from commutative algebra, which follows from the Nullstellensatz and the structure theory
of Artinian rings, asserts that if the variety V (I) of an ideal I ⊂ k[x, y] is a finite set {P1, . . . , PN}, then
there is a natural isomorphism of k-algebras:

k[x, y]/I ∼=
N∏
i=1

OPi
(A2)/IOPi

(A2).

Applying this to the ideal I = (f, g), we find that the sum of the local dimensions is the dimension of the
global coordinate ring of the intersection:∑

P∈F∩G
IP (F,G) = dimk(k[x, y]/(f, g)).

Let us denote γ := k[x, y]/(f, g). Let R = k[X,Y, Z] be the homogeneous coordinate ring of P2, and let
Γ = R/(F,G). The ring Γ is a graded ring, and we denote its degree-d homogeneous component by Γd. The
core of the proof lies in relating the dimension of the affine ring γ to the dimensions of the graded pieces Γd.
One can show that for sufficiently large d, dimk(Γd) = dimk(γ). We shall demonstrate that for d ≥ m+ n,
dimk(Γd) = mn.

To compute dimk(Γd), we consider a free resolution of Γ as a graded R-module. Since F and G share no
common component, they form a regular sequence in R. This yields the following short exact sequence of
graded R-modules, known as the Koszul complex for (F,G):

0→ R(−m− n) ψ−→ R(−m)⊕R(−n) φ−→ R
π−→ Γ→ 0,

where the maps are given by ψ(C) = (GC,−FC) and φ(A,B) = AF +BG. The notation R(k) denotes the
twisted module whose degree-d part is Rd+k.

Restricting this sequence to the degree-d components gives an exact sequence of finite-dimensional k-vector
spaces:

0→ Rd−m−n → Rd−m ⊕Rd−n → Rd → Γd → 0.

The dimension of the space of homogeneous polynomials of degree k in three variables is dimk(Rk) =
(
k+2
2

)
=

(k+1)(k+2)
2 . From the exactness of the sequence of vector spaces, the alternating sum of dimensions is zero

(the Euler-Poincaré principle). For any d ≥ m+ n (so that all indices are non-negative), we have:

dimk(Γd)− dimk(Rd) + (dimk(Rd−m) + dimk(Rd−n))− dimk(Rd−m−n) = 0.

Therefore,

dimk(Γd) = dimk(Rd)− dimk(Rd−m)− dimk(Rd−n) + dimk(Rd−m−n)

=
(d+ 1)(d+ 2)

2
− (d−m+ 1)(d−m+ 2)

2
− (d− n+ 1)(d− n+ 2)

2

+
(d−m− n+ 1)(d−m− n+ 2)

2
.
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A direct algebraic simplification of this expression reveals that the terms involving d2 and d cancel, leaving
a constant:

dimk(Γd) =
1

2

[
(d2 + 3d+ 2)− (d2 − 2dm+m2 + 3d− 3m+ 2)

−(d2 − 2dn+ n2 + 3d− 3n+ 2)

+(d2 − 2d(m+ n) + (m+ n)2 + 3d− 3(m+ n) + 2)
]

=
1

2
[2dm−m2 + 3m+ 2dn− n2 + 3n

− 2d(m+ n) + (m2 + 2mn+ n2)− 3(m+ n)]

=
1

2
[2mn] = mn.

This concludes the sketch of the proof.

Bézout’s theorem is a powerful tool with many profound corollaries that shape our understanding of plane
curves.

Corollary 4.11. For any two plane curves F and G without common components,∑
P∈F∩G

mP (F )mP (G) ≤ deg(F ) · deg(G),

where mP (C) is the multiplicity of the curve C at point P .

Proof. This follows immediately from Bézout’s theorem and the well-known inequality IP (F,G) ≥ mP (F )mP (G),
which holds for any point P .

Corollary 4.12. If two curves F and G of degrees m and n meet in exactly mn distinct points, then each
intersection point is a simple point (i.e., nonsingular) on both F and G, and the intersections are transverse.

Proof. If there are mn distinct intersection points, the sum
∑
IP (F,G) = mn implies that IP (F,G) = 1 for

each intersection point P . An intersection multiplicity of 1 occurs if and only if P is a simple point on both
curves and their tangent lines at P are distinct.

Corollary 4.13. If two curves of degrees m and n intersect at more than mn points, they must share a
common component.

Corollary 4.14. A nonsingular projective plane curve is irreducible.

Proof. Suppose, for the sake of contradiction, that a nonsingular curve F is reducible. Then F can be
factored as a product of two polynomials, F = GH, where G and H define curves of smaller degree. By
Bézout’s theorem, G and H must intersect (since deg(G) deg(H) ≥ 1). Let P ∈ G ∩ H. At such a point,
the local equation of F is the product of the local equations of G and H. If we choose coordinates such that
P = (0, 0) in an affine chart, the dehomogenized polynomials g and h both vanish at the origin, implying
they have no constant term. Thus, the polynomial f = gh has no terms of degree 0 or 1. This means the
multiplicity of F at P is mP (F ) ≥ 2, so P is a singular point. This contradicts the assumption that F is
nonsingular.

Remark 4.15. The preceding corollary is specific to the projective setting. An affine curve can be nonsingular
yet reducible. For instance, the affine curve in A2 defined by x(x− 1) = 0 is the disjoint union of two lines
(x = 0 and x = 1) and is nonsingular, yet clearly reducible.

Bézout’s theorem can be masterfully applied to constrain the number and type of singularities an irreducible
curve can possess. Let us explore this application.

Let F be an irreducible curve of degree d.
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• If d = 1 (a line) or d = 2 (a conic), it is a classical result that F must be nonsingular. (An irreducible
conic cannot be a pair of lines, which is the only way a degree 2 curve can be singular).

• If d = 3 (a cubic), suppose P is a singular point. Then its multiplicity mP (F ) must be 2, as a
multiplicity of 3 would imply F is a union of 3 lines through P , contradicting irreducibility. Let L be any
line passing through P and another point Q on the curve. By Bézout’s theorem,

∑
R∈F∩L IR(F,L) =

3 · 1 = 3. We know IP (F,L) ≥ mP (F ) = 2 and IQ(F,L) ≥ mQ(F ) ≥ 1. Thus, we must have
IP (F,L) = 2 and IQ(F,L) = 1, and there can be no other intersection points. If there were a
second singular point P ′, the line through P and P ′ would yield an intersection sum of at least
mP (F ) +mP ′(F ) = 2 + 2 = 4, which is impossible. Therefore, an irreducible cubic can have at most
one singular point, which must be a double point (a node or a cusp).

• If d = 4 (a quartic), how many singular points can F have? We can use an auxiliary curve. Let
P1, . . . , P5 be any five points on F . The space of conics (curves of degree 2) in P2 has dimension(
2+2
2

)
− 1 = 5. Imposing the condition that a conic passes through a point is one linear condition.

Thus, there exists at least one conic C passing through these five points. By Bézout’s theorem, F and
C intersect in 4 · 2 = 8 points, counted with multiplicity. If F and C share no common component,
then 8 ≥

∑5
i=1mPi

(F )mPi
(C) ≥

∑5
i=1mPi

(F ). If we choose the five points to be singular points,
this inequality limits their multiplicities. For instance, a quartic cannot have three singular points of
multiplicity 3, as this would give a sum ≥ 3 + 3 + 3 = 9 > 8. More carefully, using the inequality∑
IP (F,C) ≥

∑
mP (F ), we see that a quartic cannot have four double points, since 2+2+2+2 = 8,

and the conic would have to pass through these points, which is generally not possible. An irreducible
quartic can have at most 3 singular points.

This line of reasoning can be generalized to derive a powerful bound for a curve of any degree d. The method
involves constructing an auxiliary curve, often called an ”adjoint” of F , that is tailored to its singularities.

Theorem 4.16. Let F be an irreducible plane curve of degree d with singular points P1, . . . , Pn of respective
multiplicities m1, . . . ,mn. Then

n∑
i=1

mi(mi − 1) ≤ (d− 1)(d− 2).

Proof. Consider the linear system of curves of degree d− 1. The vector space of homogeneous polynomials

of degree d− 1 in three variables, Rd−1, has dimension dimk(Rd−1) =
(
d−1+2

2

)
= d(d+1)

2 .

We impose conditions on these curves. For each singular point Pi of F , we require our auxiliary curves
to pass through Pi with multiplicity at least mi − 1. The condition of passing through a point P with
multiplicity k imposes

(
k+1
2

)
linear conditions on the coefficients of the curve’s polynomial. Thus, for each

Pi, we impose
(
(mi−1)+1

2

)
=
(
mi

2

)
= mi(mi−1)

2 conditions.

The dimension of the projective linear system L of curves of degree d − 1 satisfying these conditions is at
least

dimL ≥
(
d(d+ 1)

2
− 1

)
−

n∑
i=1

mi(mi − 1)

2
.

Let us pick r = dimL additional simple points Q1, . . . , Qr on F , distinct from the Pi. The condition of
passing through these r additional points ensures that there is at least one curve G ∈ L that passes through
all Pi with multiplicity mi − 1 and also passes through all Qj .

Since F is irreducible and deg(G) = d− 1 < deg(F ), F and G cannot share a component. We may therefore
apply Bézout’s theorem to find their total intersection number:∑

P∈F∩G
IP (F,G) = deg(F ) deg(G) = d(d− 1).

The sum on the left can be bounded from below by considering the known points of intersection:

• At each singular point Pi, IPi
(F,G) ≥ mPi

(F )mPi
(G) ≥ mi(mi − 1).
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• At each simple point Qj , IQj (F,G) ≥ mQj (F )mQj (G) ≥ 1 · 1 = 1.

Combining these gives:

d(d− 1) ≥
n∑
i=1

mi(mi − 1) +

r∑
j=1

1 =

n∑
i=1

mi(mi − 1) + r.

Substituting the lower bound for r = dimL:

d(d− 1) ≥
∑

mi(mi − 1) +

(
d(d+ 1)

2
− 1−

∑ mi(mi − 1)

2

)
.

Rearranging the terms to isolate the sum involving multiplicities:

d(d− 1)− d(d+ 1)

2
+ 1 ≥

∑
mi(mi − 1)−

∑ mi(mi − 1)

2
.

2d(d− 1)− d(d+ 1) + 2

2
≥ 1

2

∑
mi(mi − 1).

2d2 − 2d− d2 − d+ 2 ≥
∑

mi(mi − 1).

d2 − 3d+ 2 ≥
∑

mi(mi − 1).

Factoring the quadratic on the left gives the desired inequality:

(d− 1)(d− 2) ≥
n∑
i=1

mi(mi − 1).

Remark 4.17. This inequality is deeply connected to the genus of a curve. For a plane curve, the arithmetic

genus is given by pa = (d−1)(d−2)
2 , and the geometric genus g of its normalization is given by g = pa −∑ mi(mi−1)

2 . The fact that the geometric genus must be non-negative (g ≥ 0) is precisely the statement of
the theorem.

Finally, we show that this bound is sharp, meaning there exist curves for which equality holds.

Example 4.18. Consider the irreducible curve F defined by the homogeneous polynomial F (X,Y, Z) =
Xd + Y d−1Z. This curve has degree d. Let us find its singularities. The only potential singular point is
where all partial derivatives vanish. In the affine chart Z = 1, we have f(x, y) = xd + yd−1. The partial
derivatives are ∂f

∂x = dxd−1 and ∂f
∂y = (d − 1)yd−2. Both vanish only at (0, 0). The lowest degree term of f

is yd−1, so the origin is a singular point of multiplicity m = d− 1. Checking other charts confirms that the
point [0 : 0 : 1] is the only singularity.

For this curve, the sum of singularities is∑
mi(mi − 1) = (d− 1)((d− 1)− 1) = (d− 1)(d− 2).

This matches the upper bound derived in the theorem, demonstrating that the bound is indeed sharp.

4.1.3 Multiprojective Space

Our study of algebraic geometry has so far defined varieties as subsets of a single ambient space, either affine
An or projective Pn. This approach, where a variety’s definition depends on its embedding, makes it difficult
to work with constructions that are independent of any specific ambient space, such as the product of two
varieties.
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The need for a more general approach is clear when we consider products. The product of two affine spaces,
An × Am, is isomorphic to An+m. An algebraic set in this product is therefore an affine variety in An+m,
and its structure is described by the polynomial ring in n+m variables.

However, the product of projective spaces presents a new challenge. In general, Pn × Pm is not isomorphic
to Pn+m. This means we need a new method for defining algebraic sets within these product spaces, as we
cannot simply appeal to the definition of a projective variety in a single ambient space.

The solution is to use polynomials that are homogeneous in each set of projective coordinates separately.
Let us consider the polynomial ring k[X,Y ] = k[X0, . . . , Xn, Y0, . . . , Ym].

Definition 4.19. A polynomial F ∈ k[X,Y ] is a biform of bidegree (p, q) if it is a homogeneous polynomial
of degree p in the variables {X0, . . . , Xn} and simultaneously a homogeneous polynomial of degree q in the
variables {Y0, . . . , Ym}.

Example 4.20. The polynomial F = X1Y1Y
3
2 +X2Y

4
3 is a biform of bidegree (1, 4) in the ring k[X1, X2, Y1, Y2, Y3].

Every polynomial F ∈ k[X,Y ] can be written uniquely as a sum F =
∑
p,q Fp,q, where each Fp,q is a biform

of bidegree (p, q).

The key property of a biform is that its vanishing is well-defined on Pn×Pm. If F is a biform, the condition
F (X,Y ) = 0 does not depend on the choice of scalar representatives for the homogeneous coordinate vectors
of points in Pn and Pm. This allows us to define algebraic sets.

Definition 4.21. An algebraic set in Pn × Pm is the set of common zeroes of a set of biforms S. This is
denoted

V (S) = {([X], [Y ]) ∈ Pn × Pm | F (X,Y ) = 0 for all F ∈ S}.

We can now define the associated ideals and coordinate rings in a manner analogous to the standard projective
case.

Definition 4.22. Let V ⊆ Pn × Pm be a subset.

1. The ideal of V , denoted I(V ), is the ideal in k[X,Y ] generated by all the biforms that are zero for all
points ([X], [Y ]) ∈ V .

2. The bihomogeneous coordinate ring of V is the quotient ring Γb(V ) = k[X,Y ]/I(V ).

3. The field of rational functions of an irreducible algebraic set V is

k(V ) =

{
F

G
| F,G are biforms of the same bidegree in Γb(V ) and G /∈ I(V )

}
.

Remark 4.23. These definitions can be extended to finite products of projective spaces, such as Pn1 × · · · ×
Pnr , by considering polynomials that are homogeneous in each of the r sets of variables. One can also include
an affine factor, Pn1 × · · · × Pnr ×Am. In this case, a polynomial is required to be homogeneous in each set
of variables corresponding to the projective factors, but there is no restriction on the variables corresponding
to the affine factor.

Fortunately, there is a result that connects this theory of algebraic sets in product spaces back to the familiar
theory of projective varieties. This is achieved by an explicit embedding of the product space into a single,
larger projective space.

Definition 4.24. The map σ : Pn × Pm → P(n+1)(m+1)−1 given by

([X0 : · · · : Xn], [Y0 : · · · : Ym]) 7→ [· · · : XiYj : . . . ]0≤i≤n,0≤j≤m

is called the Segre embedding.

The Segre map is a morphism that is an isomorphism onto its image. Furthermore, its image is a closed
algebraic set in the target projective space. This means that any algebraic set in Pn × Pm corresponds to a
projective variety under this embedding. The important consequence is that the product space Pn × Pm is
itself a projective variety.
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4.2 Morphisms and Properties of Varieties

4.2.1 Varieties: The General Case

Let X = Pn1 × · · · × Pnr × Am. As with affine and projective space, we can define a topology on X
using algebraic sets. A subset is defined to be closed if it is the common zero locus of a set of appropriate
multihomogeneous polynomials.

Definition 4.25. The Zariski topology is defined on X by declaring its closed sets to be the algebraic sets.
A set U ⊆ X is open if and only if its complement X \ U is an algebraic set.

Any subset Y ⊆ X inherits a topology from X (the subspace topology), where the open sets of Y are of the
form Y ∩ U for some open set U ⊆ X.

We can now give a more general definition of a variety. This definition will include not only the affine and
projective varieties we have already studied, but also open subsets of them.

Definition 4.26. Let V be a nonempty, irreducible algebraic set in a product space Pn1 × · · · × Pnr × Am.
Any non-empty open subset X ⊆ V is called a variety.

1. The field of rational functions on X, denoted k(X), is defined to be the function field of its closure,
k(V ).

2. The local ring of X at a point P ∈ X, denoted OP (X), is defined to be the local ring of V at P ,
OP (V ).

The central concept for studying these varieties is the notion of a regular function. A rational function is
regular on an open set if it is well-defined at every point of that set.

Definition 4.27. Let X be a variety and let U ⊆ X be an open subset. A rational function f ∈ k(X) is
said to be regular on U if it is defined at each point P ∈ U . The ring of regular functions on U is the
set of all such functions:

Γ(U,OX) := {f ∈ k(X) | f is regular on U}.

This ring can also be described as the intersection of the local rings of all points in U :

Γ(U,OX) =
⋂
P∈U
OP (X).

Remark 4.28. If X is an affine variety, then the ring of regular functions on X is precisely its coordinate
ring: Γ(X,OX) = Γ(X). This is a foundational result from the theory of affine varieties.

Example 4.29. The situation is very different for projective varieties. Let X = Pn. The ring of regular
functions on all of Pn consists only of the constant functions:

Γ(Pn,OPn) = {F/G | F,G homogeneous of the same degree, G(P ) ̸= 0 for all P ∈ Pn}
= k.

This is because a homogeneous polynomial G that never vanishes on Pn must be a constant (by the Projective
Nullstellensatz). For F/G to be a well-defined rational function, F must then also be a constant. This result
holds for any projective variety X; we have Γ(X,OX) = k.

Each element f ∈ Γ(U,OX) determines a function from U to the field k. The following proposition states
that this correspondence is faithful; distinct elements in the ring of regular functions define distinct functions.

Proposition 4.30. The natural ring map from the ring of regular functions to the ring of all k-valued
functions on U ,

Γ(U,OX)→ F(U, k) := {functions U → k},

is injective.
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Proof. Let γ ∈ Γ(U,OX) be an element that maps to the zero function, meaning γ(P ) = 0 for all P ∈ U .
We need to show that γ is the zero element in the function field k(X).

By definition, k(X) = k(X), where X is the closure of X. So we may assume X is a closed, irreducible
algebraic set in some product space Pn1 × · · · × Pnr ×Am. Since U is a non-empty open set, we can find an
affine chart that intersects it. That is, we can find a standard affine open set A ∼= AN of the ambient space
such that U ′ = U ∩A is non-empty.

Let X ′ = X ∩A. Then X ′ is a non-empty open subset of X, so k(X ′) = k(X). Since X ′ is a closed subset of
an affine space A, X ′ is an affine variety. The set U ′ ⊆ X ′ is a non-empty open subset of an affine variety.

The element γ is in k(X) = k(X ′), so we can write it as a fraction γ = f/g, where f, g are in the coordinate
ring Γ(X ′) and g(P ) ̸= 0 for all P in some open subset of X ′. Since γ ∈ Γ(U,OX), for any point P ∈ U ′, we
can find a representation γ = fP /gP with gP (P ) ̸= 0.

The condition γ(P ) = 0 for all P ∈ U implies fP (P ) = 0 for all P ∈ U ′. This means the numerator of
our rational function vanishes on the non-empty open set U ′. Since X ′ is an irreducible affine variety, its
coordinate ring Γ(X ′) is an integral domain. In such a ring, a function that is zero on a non-empty open set
must be the zero element. Thus, f = 0 in Γ(X ′), which implies that γ = 0 in the function field k(X ′), and
therefore γ = 0 in k(X).

Definition 4.31. Let X be a variety. A closed subset Y ⊆ X is irreducible if it cannot be written as the
union of two proper closed subsets.

Remark 4.32. In many applications, we will be concerned with projective varieties or open subsets of
them. However, the general theory outlined here is the proper context for discussing concepts like dimension,
birationality, and the resolution of singularities.

4.2.2 Morphisms of Varieties

With a general definition of a variety, we must now define the maps between them. A morphism is a function
that is continuous and respects the structure of regular functions.

Definition 4.33. Let X and Y be varieties. A morphism from X to Y is a function φ : X → Y such that:

1. φ is continuous with respect to the Zariski topologies. That is, for every open set U ⊆ Y , the preimage
φ−1(U) is an open set in X.

2. φ preserves regular functions. That is, for every open set U ⊆ Y and for every regular function
f ∈ Γ(U,OY ), the pullback function φ∗(f) := f ◦ φ is a regular function on the open set φ−1(U). So,
φ∗(f) ∈ Γ(φ−1(U),OX).

An isomorphism of X with Y is a morphism φ : X → Y for which there exists an inverse morphism
ψ : Y → X.

Remark 4.34. This definition agrees with the more concrete definitions of morphisms between affine or
projective varieties that are given in terms of polynomial or rational maps.

Remark 4.35. If U ⊆ X is an open subset of a variety and φ : X → Y is a morphism, then the restriction
of φ to U , denoted φ|U : U → Y , is also a morphism.

Example 4.36 (Affine Charts of Projective Space). The standard open sets of projective space are isomorphic
to affine space. Consider the standard affine chart Un = {[X0 : · · · : Xn] ∈ Pn | Xn ̸= 0} and the map
φ : An → Un given by

(x1, . . . , xn) 7→ [x1 : · · · : xn : 1].

This map is a morphism. Its inverse, φ−1 : Un → An, which is given by dehomogenization [X0 : · · · : Xn] 7→
(X0/Xn, . . . , Xn−1/Xn), is also a morphism. Therefore, φ is an isomorphism, and we can identify the open
set Un ⊂ Pn with the affine space An.
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Example 4.37 (An Open Set Isomorphic to an Affine Variety). Consider the hyperbola V = V (xy−1) ⊆ A2.
This is an irreducible closed set in A2, so it is an affine variety. Its coordinate ring is Γ(V ) = k[x, y]/(xy−1).

Now consider the open subset W = A1 \ {0}. Let us show that V is isomorphic to W . Define a morphism
φ : V →W by φ(x, y) = x. This is a morphism because it is given by a polynomial. The image is clearly W ,
since for any x ̸= 0, the point (x, 1/x) is in V . Define a map ψ :W → V by ψ(t) = (t, 1/t). The coordinate
functions of ψ are t and 1/t. While 1/t is not a polynomial in k[t], it is a regular function on the open set
W = A1 \ {0}. Therefore, ψ is a morphism.

The maps φ and ψ are inverse to each other. Thus, V and W are isomorphic. This is a significant example:
the open subset W = A1 \ {0} is an affine variety, even though it is not a closed subset of A1.

The previous example can be generalized. Certain open subsets of affine varieties, known as principal open
sets, are always affine.

Proposition 4.38. Let V be an affine variety and let f ∈ Γ(V ) be a non-zero regular function. Let Vf be
the open set where f does not vanish:

Vf = {P ∈ V | f(P ) ̸= 0} = V \ V (f).

This set is called a principal open set.

1. The ring of regular functions on Vf is the localization of the coordinate ring Γ(V ) at f :

Γ(Vf ) = Γ(V )[
1

f
] =

{
a

fn
∈ k(V ) | a ∈ Γ(V ), n ∈ Z≥0

}
.

2. The variety Vf is an affine variety. That is, Vf is isomorphic to a closed algebraic set in some affine
space.

Proof. 1. This is a standard result from commutative algebra relating localization to the topology of the
spectrum of a ring. (Proof omitted).

2. We can construct the isomorphism explicitly. Suppose V ⊆ An and let I = I(V ) ⊆ k[x1, . . . , xn].
Consider a new ideal I ′ ⊆ k[x1, . . . , xn, xn+1] defined as:

I ′ = (I, xn+1f − 1).

Let V ′ = V (I ′). This is a closed algebraic set in An+1, so it is an affine variety. The claim is that
Vf ∼= V ′. The isomorphism ϕ : Vf → V ′ is given by

ϕ(P ) = (P, 1/f(P )).

Its inverse ψ : V ′ → Vf is the projection onto the first n coordinates. One can verify that these are
mutually inverse morphisms.

This result has a far-reaching consequence. It implies that any variety, as we have defined it, can be covered
by open sets that are themselves affine varieties.

Theorem 4.39. Any variety X has an open cover by subvarieties that are affine varieties.

Sketch. For any point P ∈ X, we can find an open set U containing P that is an open subset of some affine
variety V . We can then find a function f ∈ Γ(V ) such that P ∈ Vf ⊆ U . By the proposition, Vf is an affine
variety. Repeating this for all points in X gives the desired cover.
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4.2.3 Dimension

Our geometric intuition provides a clear, albeit informal, understanding of dimension: a curve is one-
dimensional, a surface is two-dimensional, and the spaces An and Pn are naturally n-dimensional. We
have previously established an algebraic definition for the dimension of an affine variety. We now introduce
an equivalent, and in many ways more intrinsic, definition rooted in the structure of the field of rational
functions on a variety. This perspective conceives of dimension as a measure of the ”number of independent
variables” required to define the function field.

A key feature of this approach is its invariance under birational equivalence. Since the field of rational
functions k(X) of a variety X is identical to that of any of its non-empty open subsets U , i.e., k(U) = k(X),
our definition will immediately imply that dimension is a local property. Consequently, an open subset and
its ambient variety share the same dimension. This aligns with our geometric intuition, as exemplified by
the birational equivalence of affine space An and projective space Pn via the standard open charts Ui ⊂ Pn.

To formalize this, we must first recall some fundamental concepts from field theory. Recall that for a
field extension L ⊆ K, the field L(v1, . . . , vn) denotes the smallest field containing L and the elements
v1, . . . , vn ∈ K; it is precisely the field of fractions of the polynomial ring L[v1, . . . , vn].

Definition 4.40. A field K is said to be a finitely generated field extension of a subfield L if there exist
elements v1, . . . , vn ∈ K such that K = L(v1, . . . , vn).

The notion of dimension is captured by the extent to which such an extension is ”algebraic.”

Definition 4.41. Let K be a finitely generated field extension of a field k. The transcendence degree of
K over k, denoted tr.degkK, is the minimal integer n ≥ 0 for which there exist elements x1, . . . , xn ∈ K such
that K is an algebraic extension of the field k(x1, . . . , xn). The set {x1, . . . , xn} is called a transcendence
basis. A field K with tr.degkK = n is called an algebraic function field in n variables over k.

Example 4.42. Consider the field K = Q(
√
5, π, x), where x is an indeterminate. The elements

√
5 and

π are transcendental over Q, while
√
5 is algebraic over Q(π, x). The field K is an algebraic extension of

Q(π, x), as it is generated by adjoining
√
5, which is a root of the polynomial t2 − 5 ∈ Q(π, x)[t]. Thus,

tr.degQK = 2.

Example 4.43. Let V = V (x2 − y) ⊂ A2
C be the standard parabola. The coordinate ring is Γ(V ) =

C[x, y]/(x2 − y) ∼= C[x]. The field of rational functions is k(V ) = Frac(C[x]) = C(x). This field is a purely
transcendental extension of C of degree one. Alternatively, viewing the function field as a subfield of C(x, y),
we note that y = x2, so the field is generated by x over C. The field k(V ) is algebraic over C(y), since x
satisfies the polynomial T 2 − y = 0 with coefficients in C(y). Hence, tr.degCk(V ) = 1.

We are now prepared to state our main definition.

Definition 4.44. Let X be an algebraic variety over a field k. The dimension of X, denoted dim(X), is
the transcendence degree of its function field over the base field k:

dim(X) := tr.degkk(X).

This definition immediately applies to varieties of dimension one, commonly known as curves. The following
proposition establishes several foundational properties of such fields. Let us assume for simplicity that the
base field k is algebraically closed.

Proposition 4.45. Let K be an algebraic function field in one variable over an algebraically closed field k.
Let x ∈ K be an element that is not in k.

1. The field K is a finite algebraic extension of the purely transcendental extension k(x).

2. If char(k) = 0, the Primitive Element Theorem holds: there exists an element y ∈ K such that
K = k(x, y).

3. Let R be an integral domain with k ⊆ R ⊂ K and Frac(R) = K. If P ⊂ R is a non-zero prime ideal,
then the residue field R/P is isomorphic to k.
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Proof. 1. By definition of K being a function field of one variable, there exists some t ∈ K such that K
is algebraic over k(t). Since x ∈ K, x must be algebraic over k(t). This implies the existence of a
non-zero polynomial relationship f(t, x) = 0 with coefficients in k. As x is transcendental over k (since
x /∈ k and k is algebraically closed), the variable t must appear in this polynomial. We may thus view
f(t, x) = 0 as a polynomial equation for t with coefficients in k[x]. This shows that t is algebraic over
k(x). Consequently, the extension k(x, t) is algebraic over k(x). Since K is algebraic over k(t), and
k(t) is algebraic over k(x), it follows by transitivity of algebraic extensions that K is algebraic over
k(x).

2. This is a standard result from field theory and its proof is omitted.

3. Suppose, for the sake of contradiction, that there exists an element x̄ ∈ R/P that is not in the image
of k. Let x ∈ R be a representative of this class. Since x̄ /∈ k, x must be transcendental over k. Let
y ∈ P be any non-zero element. Since x, y ∈ K and tr.degkK = 1, x and y must be algebraically
dependent over k. Thus, there exists a polynomial f(X,Y ) ∈ k[X,Y ] such that f(x, y) = 0. We may
write this as f(x, y) =

∑m
i=0 ai(x)y

i = 0. By factoring out the highest possible power of y, we may
assume without loss of generality that the constant term a0(x) is non-zero. From the relation, we have
a0(x) = −y

∑m
i=1 ai(x)y

i−1. Since y ∈ P , the right-hand side is in P , which implies a0(x) ∈ P . Passing
to the quotient R/P , we find a0(x̄) = 0. This constitutes a non-trivial polynomial equation for x̄ over
k. However, since k is algebraically closed, any element algebraic over k must lie in k itself. This
implies x̄ ∈ k, contradicting our initial assumption. Therefore, the map k → R/P must be surjective,
and since it is clearly injective, it is an isomorphism.

With this framework, we can now deduce several fundamental geometric properties concerning the dimension
of varieties.

Proposition 4.46. Let X be a variety over an algebraically closed field k.

1. If U ⊆ X is a non-empty open subset, then dimU = dimX. In particular, if X is an affine variety,
its dimension is equal to the dimension of its projective closure X.

2. dimX = 0 if and only if X is a point.

3. Every proper closed subvariety of an irreducible curve C consists of a finite set of points.

4. A closed subvariety of A2 (respectively, P2) has dimension one if and only if it is an affine (respectively,
projective) plane curve.

Proof. 1. This is an immediate consequence of the definition, as k(U) = k(X) for any non-empty open
subset U of an irreducible variety X. The statement about projective closure follows from the fact
that an affine variety is a dense open subset of its closure.

2. If dimX = 0, then its function field k(X) is an algebraic extension of k. Since k is algebraically closed,
this implies k(X) = k. Let U = X ∩An be a non-empty affine open subset of X. Then the coordinate
ring Γ(U) is a subring of k(U) = k(X) = k. As an integral domain that is a finitely generated k-algebra,
Γ(U) must be k itself. By the Nullstellensatz, U must be a single point. Since U is dense in X, X
must also be a single point. The converse is clear.

3. Let C be a curve, so dimC = 1. Let V ⊊ C be a proper closed subvariety. We may assume without
loss of generality that C is affine. Let R = Γ(C) be its coordinate ring and let P = I(V ) ⊂ R be the
prime ideal corresponding to V . Since V is a proper subvariety, P is a non-zero ideal. The coordinate
ring of V is Γ(V ) = R/P . By the result on residue fields of function fields of one variable established in
the previous section, the residue field R/P is isomorphic to k. The function field k(V ) is the fraction
field of Γ(V ) ∼= k, so k(V ) = k. Thus, dimV = tr.degkk = 0. By part (2), V must be a point. If V is
reducible, it is a finite union of points.
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4. This is left as an exercise for the reader. It follows from the fact that the function field of a plane curve
defined by an irreducible polynomial F (x, y) is the fraction field of k[x, y]/(F ), which has transcendence
degree one.

4.2.4 Rational Maps and Birational Equivalence

While morphisms are the natural analogues of continuous functions for varieties, they are often too rigid
for certain geometric investigations. A more flexible notion is that of a rational map, which is a morphism
defined only on a dense open subset of a variety. This concept is central to the classification of varieties up
to birational equivalence, a coarser but profoundly important equivalence relation.

Definition 4.47. Let X and Y be varieties. A rational map f : X 99K Y is an equivalence class of pairs
(U, ϕU ), where U ⊆ X is a non-empty open set and ϕU : U → Y is a morphism. Two pairs (U, ϕU ) and
(V, ϕV ) are considered equivalent if ϕU and ϕV agree on the intersection U ∩ V . The domain of f is the
union of all open sets U for which such a representative (U, ϕU ) exists. A rational map is defined as having
a maximal domain of definition; that is, it cannot be extended to a morphism on any strictly larger open set.

Example 4.48. The map f : A1 99K A1 given by the rational function x 7→ 1/x is a rational map. It defines
a morphism on the open set U = A1 \ {0}. This morphism cannot be extended to the point x = 0, so U is
the maximal domain of definition.

The uniqueness of a rational map is guaranteed by a fundamental property of morphisms.

Proposition 4.49. Let f, g : X → Y be two morphisms of varieties. If f and g agree on a dense subset of
X, then f = g.

Sketch. Consider the product variety Y × Y . The diagonal ∆Y = {(y, y) | y ∈ Y } is a closed subvariety.
This can be seen locally, where if Y is affine with coordinate ring A, then Y × Y is affine with coordinate
ring A⊗k A, and the ideal of the diagonal is generated by elements of the form a⊗ 1− 1⊗ a. Now, consider
the morphism (f, g) : X → Y × Y defined by x 7→ (f(x), g(x)). The set where f and g agree is precisely
the preimage of the diagonal, (f, g)−1(∆Y ). Since ∆Y is closed, this preimage is a closed subset of X. By
hypothesis, this closed set contains a dense subset of X, and therefore must be all of X. Thus, f(x) = g(x)
for all x ∈ X.

Since any non-empty open set in an irreducible variety is dense, this proposition ensures that a rational map
is uniquely determined by its behavior on any open set where it is defined. This allows us to study the
induced maps on function fields.

Definition 4.50. A rational map f : X 99K Y is said to be dominant if for some (and hence any)
representative morphism ϕU : U → Y , the image ϕU (U) is a dense subset of Y .

A dominant map is precisely one for which we can define a pullback homomorphism on function fields.

Proposition 4.51. Let f : X 99K Y be a dominant rational map. Then f induces an injective field
homomorphism f∗ : k(Y )→ k(X).

Proof. Let (U, ϕU ) be a representative for f . Since f is dominant, ϕU (U) is dense in Y . Let V ⊆ Y be an
affine open set. Its preimage ϕ−1

U (V ) is an open subset of U , and hence of X. We may replace U with this
smaller set and assume we have a morphism ϕ : U → V where U and V are affine and ϕ(U) is dense in V .
This morphism induces a ring homomorphism ϕ∗ : Γ(V )→ Γ(U). This homomorphism is injective because
ϕ(U) is dense in V . This injection of integral domains extends to an injection of their fields of fractions,
f∗ : k(V ) → k(U). Since k(V ) = k(Y ) and k(U) = k(X), we obtain the desired injective homomorphism
f∗ : k(Y )→ k(X).

This leads to a central question: what is the geometric significance of an isomorphism of function fields?
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Definition 4.52. A rational map f : X 99K Y is birational if it is dominant and there exists a dominant
rational map g : Y 99K X such that g ◦ f = idX and f ◦ g = idY as rational maps. This is equivalent to the

existence of non-empty open sets U ⊆ X and V ⊆ Y such that f restricts to an isomorphism f |U : U
∼=→ V .

Two varieties X and Y are birationally equivalent if such a map exists.

Example 4.53. The standard inclusion of affine space into projective space, f : An → Pn given by
(x1, . . . , xn) 7→ [x1 : · · · : xn : 1], is a birational map. Its image is the open set U0 = {[z0 : · · · : zn] | zn ̸= 0},
and it is an isomorphism onto this set.

Example 4.54. Consider the map f : P1 → C ⊂ P2, where C = V (Y 3−XZ2), given by [a : b] 7→ [a3 : ab2 :
b3]. The image lies on the cubic curve C, since (ab2)3 − (a3)(b3)2 = a3b6 − a3b6 = 0. The curve C has a
singularity (a cusp) at [1 : 0 : 0]. The map f is a morphism, but it is not an isomorphism because the curve
C is singular while P1 is smooth. However, it is birational. An inverse rational map g : C 99K P1 is given
by [X : Y : Z] 7→ [Y : Z]. This map is well-defined away from the point where Y = Z = 0, which is the point
[1 : 0 : 0].

Remark 4.55. A deep result in the theory of algebraic curves states that a smooth projective cubic curve
(an elliptic curve) is never birational to P1. In general, a projective curve is birational to P1 if and only if
it is a rational curve, which for cubics, corresponds to having a singular point.

The connection between birational maps and function fields is made precise by the following results. To
establish them, we require the algebraic notion of dominance for local rings.

Definition 4.56. Let (A,mA) and (B,mB) be local rings with A ⊆ B. We say that B dominates A if
mA ⊆ mB.

Lemma 4.57. Let f : X 99K Y be a dominant rational map, inducing f∗ : k(Y ) → k(X). Let P ∈ X and
Q ∈ Y be points.

1. If P is in the domain of f and f(P ) = Q, then the local ring OP,X dominates the subring f∗(OQ,Y ).

2. Conversely, if OP,X dominates f∗(OQ,Y ), then P is in the domain of f and f(P ) = Q.

Proof. 1. Let ϕ ∈ OQ,Y . By definition, ϕ = a/b for regular functions a, b in a neighborhood of Q with
b(Q) ̸= 0. Then f∗(ϕ) = (a ◦ f)/(b ◦ f). Since f(P ) = Q, (b ◦ f)(P ) = b(Q) ̸= 0, so f∗(ϕ) is regular at
P . Thus, f∗(OQ,Y ) ⊆ OP,X . If ϕ is in the maximal ideal mQ ⊂ OQ,Y , then a(Q) = 0. This implies
(a ◦ f)(P ) = a(Q) = 0, so f∗(ϕ) ∈ mP . Hence, f∗(mQ) ⊆ mP .

2. LetW be an affine neighborhood of Q with coordinate ring Γ(W ) = k[y1, . . . , yn]/I(W ). The functions
yi are in OQ,Y . By hypothesis, their images f∗(yi) are in OP,X . Thus, for each i, we can write
f∗(yi) = ai/bi where ai, bi are regular in an affine neighborhood V of P and bi(P ) ̸= 0. Let b =

∏
bi.

Then b(P ) ̸= 0, and all f∗(yi) are regular on the distinguished open affine set Vb ⊆ V . This implies
that f∗(Γ(W )) ⊆ Γ(Vb). This inclusion of coordinate rings induces a morphism g : Vb → W which
represents the rational map f . To see that g(P ) = Q, let α ∈ I(Q) ⊂ Γ(W ). Then α ∈ mQ ⊂ OQ,Y .
By the dominance hypothesis, f∗(α) ∈ mP . This means the regular function representing f∗(α) on Vb
vanishes at P . This holds for all generators of I(Q), so g(P ) = Q.

This lemma is the key to showing that the correspondence between dominant rational maps and field homo-
morphisms is a bijection.

Theorem 4.58. Let X and Y be varieties. Any non-zero k-algebra homomorphism φ : k(Y ) → k(X) is
induced by a unique dominant rational map f : X 99K Y .

Sketch. Uniqueness follows from the preceding proposition regarding the uniqueness of morphisms. For
existence, we may replace X and Y with affine open subsets. Let Γ(Y ) be the coordinate ring of Y . Since
Γ(Y ) is a finitely generated k-algebra, its image φ(Γ(Y )) is a finitely generated subalgebra of k(X). For a
finite set of generators of φ(Γ(Y )), we can find a common denominator b ∈ Γ(X) such that all generators
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lie in the localized ring Γ(X)b = Γ(Xb). Thus, we have an inclusion φ(Γ(Y )) ⊆ Γ(Xb), which induces a
morphism f : Xb → Y . This morphism represents a rational map X 99K Y , which is dominant because φ is
injective.

We now arrive at the main theorem of this section, which establishes that the study of varieties up to
birational equivalence is entirely equivalent to the study of their function fields up to k-algebra isomorphism.

Theorem 4.59. Two varieties X and Y are birationally equivalent if and only if their function fields k(X)
and k(Y ) are isomorphic as k-algebras.

Proof. ( =⇒ ) If X and Y are birationally equivalent, there exist open sets U ⊆ X and V ⊆ Y and an
isomorphism f : U → V . An isomorphism induces an isomorphism of coordinate rings Γ(U) ∼= Γ(V ), which
in turn gives an isomorphism of their fraction fields. Thus, k(X) = k(U) ∼= k(V ) = k(Y ).

(⇐=) Suppose φ : k(Y )
∼=→ k(X) is a k-algebra isomorphism. By the preceding theorem, φ is induced by

a dominant rational map f : X 99K Y , and its inverse φ−1 : k(X)
∼=→ k(Y ) is induced by a dominant

rational map g : Y 99K X. The composition g ◦ f induces the homomorphism (φ)−1 ◦ φ = idk(Y ), which
is the identity. The identity map on k(Y ) is induced by the identity rational map on Y . By uniqueness,
g ◦ f = idY . Similarly, f ◦ g = idX . Therefore, f is a birational equivalence.

This powerful theorem motivates a central classification problem in algebraic geometry.

Definition 4.60. A variety X of dimension n is said to be rational if it is birationally equivalent to
projective space Pn. This is equivalent to its function field k(X) being a purely transcendental extension of
k, i.e., k(X) ∼= k(t1, . . . , tn).

Remark 4.61. Determining whether a given variety is rational is a notoriously difficult problem. For
example, it is a long-standing open question whether all smooth cubic hypersurfaces in P5 (known as cubic
fourfolds) are rational.

As a final application, we show that from a birational perspective, all curves are planar.

Corollary 4.62. Every irreducible algebraic curve is birationally equivalent to a plane curve.

Proof. Let C be an irreducible curve. Its function field k(C) has transcendence degree one over k. Assuming
char(k) = 0, by the Primitive Element Theorem established in the previous section, there exist a, b ∈ k(C)
such that k(C) = k(a, b). Consider the k-algebra homomorphism ψ : k[x, y] → k[a, b] ⊆ k(C) defined by
x 7→ a, y 7→ b. The kernel I = ker(ψ) is a prime ideal in k[x, y] because its image k[a, b] is an integral
domain. Therefore, V ′ = V (I) ⊂ A2 is an irreducible affine plane curve. The coordinate ring of V ′ is
Γ(V ′) = k[x, y]/I ∼= k[a, b]. Taking fields of fractions, we get k(V ′) ∼= Frac(k[a, b]) = k(a, b) = k(C). By the
main theorem of this section, it follows that C and V ′ are birationally equivalent.

4.3 Blowing Up and Birational Geometry

4.3.1 Blowing Up A Point in A2

A central theme in the study of algebraic varieties is the management and elimination of singularities. While
singular points are geometrically interesting, they are often the source of technical difficulties, as many
fundamental theorems and constructions require the hypothesis of smoothness. The process of resolving
singularities for a variety C aims to construct a non-singular variety X along with a birational morphism
f : X → C. This process provides a smooth model that is birationally equivalent to the original, allowing us
to study its geometry in a more controlled setting. From an algebraic perspective, for a curve C, the points
on the resolution X correspond to the DVRs of the function field k(C).

The fundamental tool for resolving singularities is the blow-up, a surgical procedure that modifies a variety
locally around a singular point. The geometric intuition is as follows: given a singular point P on a curve
C ⊂ P2, we excise the point P and replace it with a copy of P1. Each point on this new P1 corresponds to
a distinct tangent direction through P in the ambient space. The new curve, living in this modified space,
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will have singularities that are, in a precise sense, ”less severe” than the original. By iterating this process,
one can eventually resolve all singularities of the curve.

We begin by constructing the blow-up of a point in the affine plane, A2. The construction relies on the
concept of the graph of a map.

Definition 4.63 (Graph of a Morphism). If f : X → Y is a morphism of varieties, the graph of f , denoted
G(f), is the subset

G(f) := {(x, y) ∈ X × Y | y = f(x)}.

It is a standard result that the graph G(f) is a closed subvariety of the product variety X×Y . Furthermore,
the projection map πX : G(f)→ X is an isomorphism.

Remark 4.64 (Topology on Product Varieties). It is crucial to note that the Zariski topology on a product of
varieties, such as X×Y , is not the product topology of the respective Zariski topologies. Instead, the topology
is defined by considering an embedding of the product into a single large ambient space. For instance, the
product Pn×Pm is endowed with the topology it inherits as a closed subvariety of P(n+1)(m+1)−1 via the Segre
embedding.

By an appropriate choice of coordinates, any point in A2 can be moved to the origin. Therefore, to understand
the local structure of a blow-up, it suffices to construct the blow-up of A2 at the point (0, 0). This construction
will serve as the local model for all subsequent blowing-up procedures.

4.3.2 Directions For Blowing Up A2 at (0, 0)

The blow-up is constructed by taking the closure of the graph of a rational map that assigns to each point
its direction from the origin.

1. Let P = (0, 0) ∈ A2. Consider the open set U = A2 \ {P}. We can define a rational map from A2 to
P1 by (x, y) 7→ [x : y]. This map is a well-defined morphism from U to P1. The blow-up of A2 at P ,
denoted BP (A2), is defined as the closure of the graph of this morphism in A2 × P1.

2. Let the coordinates on A2 be (x, y) and the homogeneous coordinates on P1 be [u : v]. Then the graph
is the set {((x, y), [u : v]) ∈ U ×P1 | xv = yu}. The blow-up BP (A2) is the closed subvariety of A2×P1

defined by the single homogeneous equation xv − yu = 0.

3. The blow-up comes with a natural projection morphism π : BP (A2) → A2. The fiber over any point
(x, y) ∈ U is a single point. However, the fiber over the origin P = (0, 0) is the set {((0, 0), [u : v]) |
0 · v − 0 · u = 0}, which is {P} × P1. This fiber E = π−1(P ) is called the exceptional divisor.

4. The map π is an isomorphism from BP (A2)\E to A2\{P}. Thus, the blow-up is a birational morphism.

For computational purposes, it is often more convenient to work with affine charts. The space BP (A2) is
covered by two affine charts, corresponding to u ̸= 0 and v ̸= 0 on P1.

Let’s analyze the chart where v ̸= 0. We can dehomogenize by setting v = 1, so the coordinate on this
chart of P1 is z = u/v. The equation becomes x− yz = 0, or x = yz. This chart is an affine plane A2 with
coordinates (y, z). The projection map π in these coordinates is given by π(y, z) = (yz, y).

Similarly, in the chart where u ̸= 0, we set u = 1 and let the coordinate be w = v/u. The equation
is xw − y = 0, or y = xw. This chart is an affine plane with coordinates (x,w), and the projection is
π(x,w) = (x, xw).

Let us focus on the second chart, with the map ψ : A2 → A2 given by ψ(x,w) = (x, xw). This map is
birational and represents one of the two affine pieces of the blow-up. The exceptional divisor in this chart is
given by the equation x = 0.

Example 4.65. Let C = V (y2−x2(x+1)), a nodal cubic. We analyze its behavior under the blow-up. The
preimage ψ−1(C) is the set of points (x,w) such that ψ(x,w) ∈ C. Substituting the defining equations:

(xw)2 − x2(x+ 1) = 0
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x2w2 − x3 − x2 = 0

x2(w2 − x− 1) = 0

The total preimage ψ−1(C) is the union of two components: V (x2) and V (w2 − x− 1).

• The component V (x) is the exceptional divisor E.

• The component V (w2 − x− 1) is the closure of π−1(C \ {P}), and is called the strict transform of
C, denoted C ′.

The curve C is birationally equivalent to the smooth parabola C ′ = V (w2 − x − 1). The points of C ′ lying
over the origin P are the points in the intersection C ′ ∩E. This is given by setting x = 0 in the equation for
C ′, which yields w2 − 1 = 0, so w = ±1. The two points are (0, 1) and (0,−1) in the (x,w)-plane. These
two points correspond to the two distinct tangent directions of the node at the origin.

More generally, let C ⊂ A2 be an irreducible curve defined by g(x, y) = 0. Let g = gr + gr+1 + · · · + gn
be the decomposition of g into homogeneous forms, where gi has degree i and gr ̸= 0. The integer r is the
multiplicity of C at the origin, mP (C). The equation of the strict transform C ′ is given by the following
proposition.

Proposition 4.66. The strict transform C ′ is the variety V (g′), where

g′(x,w) = gr(1, w) + xgr+1(1, w) + · · ·+ xn−rgn(1, w).

Proof. The total preimage is given by g(x, xw) = 0. Using the homogeneity of the forms gi:

g(x, xw) = gr(x, xw) + · · ·+ gn(x, xw) = xrgr(1, w) + · · ·+ xngn(1, w) = xrg′(x,w).

Since gr is the lowest degree form, gr(1, w) is not identically zero, so x does not divide g′. The irreducibility
of g′ follows from the irreducibility of g. Thus, V (g′) is the correct component corresponding to the strict
transform.

The points on the exceptional divisor that lie on the strict transform correspond to the tangent directions
of the original curve at the singular point.

Proposition 4.67. Let the tangent lines to C at P = (0, 0) be given by the factors of the lowest degree
form, gr =

∏s
i=1(y − αix)

ri . Then the points of the strict transform C ′ lying over P are precisely the
points Pi = (0, αi) in the (x,w)-plane. Furthermore, the multiplicity of C ′ at such a point is bounded by the
multiplicity of the corresponding tangent line:

mPi
(C ′) ≤ IPi

(C ′, E) = ri.

In particular, if P is an ordinary multiple point on C (meaning all ri = 1), then each Pi is a simple
(non-singular) point on C ′.

Proof. The points in C ′∩E are found by setting x = 0 in the equation for g′. This yields gr(1, w) = 0. Since
gr(x, y) =

∏
(y− αix)ri , we have gr(1, w) =

∏
(w− αi)ri , whose roots are precisely the αi. The intersection

multiplicity IPi
(C ′, E) is computed by the length of the ring OA2,Pi

/(g′, x). This is

IPi
(g′, x) = IPi

(gr(1, w), x) = IPi
(

s∏
j=1

(w − αj)rj , x) = IPi
((w − αi)ri , x) = ri.

The multiplicity mPi
(C ′) is always less than or equal to the intersection multiplicity with any curve, in

particular with the line E.

Example 4.68. Let C = V (y2 − x3). Here the lowest degree form is g2 = y2, so the origin is a singular
point with a single tangent line y = 0 of multiplicity 2. This is a cusp. The strict transform is given by the
equation (xw)2 − x3 = x2(w2 − x) = 0, so C ′ = V (w2 − x). The point lying over the origin is (0, 0) in the
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(x,w)-plane. The new curve C ′ is a smooth parabola, but it is tangent to the exceptional divisor E = V (x)
at this point. To resolve this tangency and separate the curve from the exceptional divisor, a further blow-up
may be required.

Example 4.69. Consider the curve C defined by g(x, y) = 2x4 − 3x2y + y2 − 2y3 + y4 = 0. This curve has
a singularity at the origin P = (0, 0). The lowest degree homogeneous part of g is g2 = y2. This indicates a
singularity of multiplicity 2 with a single tangent line y = 0 of multiplicity 2. This type of singularity, where
two branches of a curve are tangent, is known as a tacnode.

We perform a blow-up at the origin using the standard chart given by the birational map ψ : A2 → A2, where
ψ(x,w) = (x, xw). The total transform ψ−1(C) is defined by the equation g(x, xw) = 0:

2x4 − 3x2(xw) + (xw)2 − 2(xw)3 + (xw)4 = 0

2x4 − 3x3w + x2w2 − 2x3w3 + x4w4 = 0

Factoring out the highest possible power of x, which corresponds to the exceptional divisor, we get:

x2(2x2 − 3xw + w2 − 2xw3 + x4w4) = 0

The strict transform C ′ is the curve defined by g′(x,w) = 2x2 − 3xw + w2 − 2xw3 + x4w4 = 0.

To analyze the result of the blow-up, we find the points of C ′ that lie over the origin P . These are the points
in the intersection of C ′ with the exceptional divisor E = V (x). Setting x = 0 in the equation for g′ gives
w2 = 0, so w = 0. The only such point is P ′ = (0, 0) in the (x,w)-plane.

Now we examine the nature of the singularity of C ′ at P ′. We find the lowest degree homogeneous part of
g′(x,w) at (0, 0). This is the polynomial w2 − 3xw + 2x2. This quadratic form is not zero and factors into
distinct linear terms:

w2 − 3xw + 2x2 = (w − x)(w − 2x)

This indicates that the new point P ′ is an ordinary double point (a node) on C ′, with two distinct tangent
lines w = x and w = 2x. Thus, the single blow-up has simplified the singularity, transforming the tacnode
on C into a simpler node on C ′. A further blow-up at P ′ would separate these two branches completely.

4.3.3 Blowing Up P2 At A Point

Our previous construction of the blow-up of A2 at a point provides a crucial local model for resolving
singularities. However, to work with projective varieties, such as curves in P2, we require a global construction
that respects the projective structure. We now define the blow-up of the projective plane P2 at a point. This
construction will be seen to agree with the affine blow-up on local charts.

Let us choose coordinates on P2 such that the point to be blown up is P = [0 : 0 : 1]. The core idea is to
define a rational map from P2 to P1 that is undefined precisely at P , and then to define the blow-up as the
closure of the graph of this map. This process effectively replaces the point P with the P1 of all lines passing
through it.

Let U = P2 \ {P}. We define a morphism f : U → P1 by the rule

f([x1 : x2 : x3]) = [x1 : x2].

This map is well-defined because for any point in U , at least one of x1 or x2 must be non-zero. Let G ⊆ U×P1

be the graph of this morphism. The blow-up of P2 at P is the closure of this graph in the product space
P2 × P1.

Let ([x1 : x2 : x3], [y1 : y2]) be coordinates for a point in P2 × P1. A point lies on the graph G if and only if
[x1 : x2] = [y1 : y2], which is equivalent to the condition x1y2 − x2y1 = 0.

Definition 4.70. The blow-up of P2 at the point P = [0 : 0 : 1], denoted BP (P2), is the closed subvariety
of P2 × P1 defined by the bi-homogeneous equation:

V (x1y2 − x2y1) ⊆ P2 × P1.
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Let B = BP (P2). The set-theoretic difference B \ G consists of points where the map f was not originally
defined, namely points over P . If we substitute x1 = 0, x2 = 0 into the defining equation, we get 0·y2−0·y1 =
0, which is always satisfied. Thus, the fiber over P is the set {([0 : 0 : 1], [y1 : y2]) | [y1 : y2] ∈ P1}. This fiber
is isomorphic to P1 and is the exceptional divisor E. The blow-up B is therefore the disjoint union of the
graph G and the exceptional divisor E.

The projection onto the first factor, π : B → P2, is a birational morphism. By construction, it restricts to
an isomorphism from B \ E to U = P2 \ {P}.

We now demonstrate that this global, projective construction is locally identical to the affine blow-up con-
structed previously. To study the blow-up near a point on the exceptional divisor, we may restrict to an
affine neighborhood.

Let Q = ([0 : 0 : 1], [1 : λ]) be a point on the exceptional divisor E. We can study the geometry of B near
Q by working in an affine chart of P2 × P1 that contains Q. A natural choice is the chart where x3 ̸= 0 and
y1 ̸= 0.

Let φ3 : A2 → U3 ⊂ P2 be the standard affine chart map, given by (x, y) 7→ [x : y : 1]. In these coordinates,
the point P corresponds to the origin (0, 0) ∈ A2. Let the affine coordinate on the chart y1 ̸= 0 of P1 be
z = y2/y1.

The defining equation for the blow-up is x1y2 − x2y1 = 0. In our chosen affine chart, we can dehomogenize
by dividing by x3y1:

x1
x3

y2
y1
− x2
x3

y1
y1

= 0

xz − y = 0.

This is precisely the equation y = xz that defined one of the affine charts of the blow-up of A2 at the origin.
The projection map π, when restricted to this chart, sends a point with coordinates (x, z) to the point
[x : xz : 1] in P2. Composing with the inverse of φ3, this corresponds to the map (x, z) 7→ (x, xz) from A2

to A2.

This shows that the global projective blow-up, when viewed locally in an appropriate affine coordinate system,
is identical to the affine blow-up. Therefore, our previous local computations for analyzing singularities of
affine curves are fully justified and can be understood as taking place within a chart of the proper global
construction.

5 Rings and Modules I

5.1 Foundations

5.1.1 Introduction

This text is an advanced introduction to commutative algebra for first year graduate students. While the
material is presented with a view toward applications in algebraic geometry, it also serves as a comprehensive,
self-contained treatment of the subject for those interested in the field in its own right.

Background needed: A strong background in abstract algebra is assumed, equivalent to a year-long
undergraduate sequence: familiarity with the theory of rings, modules, and fields is assumed.

Material covered: The primary goal is to cover the core material corresponding to the first thirteen
chapters of David Eisenbud’s Commutative Algebra with a View Toward Algebraic Geometry. Key topics
will include: Localization and Primary Decomposition, Hilbert’s Nullstellensatz, The Artin-Rees Lemma,
Flat Families and the Tor Functor, Completions of Rings, Noether Normalization, Systems of Parameters,
Discrete Valuation Rings and Dedekind Domains, Dimension Theory, Hilbert-Samuel Polynomials, and more!

Throughout this text, all rings are assumed to be commutative and possess a multiplicative identity element,
denoted by 1, unless explicitly stated otherwise.
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Definition 5.1. A ring homomorphism between rings R and S is a map ϕ : R → S that preserves the
underlying abelian group structure, respects multiplication (i.e., ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ R), and maps
the identity of R to the identity of S (i.e., ϕ(1R) = 1S).

Definition 5.2. Let R be a ring. An ideal I ⊊ R is said to be prime if for any f, g ∈ R, the condition
fg ∈ I implies that f ∈ I or g ∈ I. An ideal I ⊊ R is maximal if it is not properly contained in any other
proper ideal of R.

Definition 5.3. A ring R is a local ring if it contains exactly one maximal ideal.

Commutative algebra is deeply connected with algebraic geometry. The central theme of this connection is
that the algebraic properties of a ring R are reflected in the geometric properties of an associated object,
such as an algebraic variety or a scheme, and vice versa.

The most classical and intuitive examples arise from polynomial rings. Let k be an algebraically closed field,
and consider the ring R = k[x1, . . . , xn]. The zero locus of a set of polynomials in R defines a geometric subset
of affine n-space, Ank . These subsets are the fundamental objects of study in classical algebraic geometry. In
this setting, there is a beautiful correspondence: the prime ideals of k[x1, . . . , xn] correspond bijectively to
the irreducible affine subvarieties of Ank .

More generally, for any commutative ring R, one can associate a geometric space, denoted Spec(R), whose
points are the prime ideals of R. This space, called an affine scheme, is the modern generalization of an
affine variety. Since all varieties and schemes can be constructed by gluing together affine pieces, the study
of commutative rings and their ideals can be viewed as the study of local algebraic geometry.

The concept of a local ring has a direct geometric interpretation. It allows us to study the geometry of
a scheme in the immediate neighborhood of a point. For instance, the geometric distinctions between a
smooth point, a cusp, and a node on a curve are captured algebraically by the distinct structures of their
corresponding local rings. We will develop the tools to make these notions precise in the chapters to come.

5.1.2 Noetherian Rings and Modules

One property of rings that is central to both commutative algebra and algebraic geometry is the finite
generation of ideals. For a polynomial ring over a field, k[x1, . . . , xn], the fact that every ideal is finitely
generated has a profound geometric consequence: every algebraic variety in An can be realized as the
intersection of a finite number of hypersurfaces. That is, the zero locus of any ideal is the zero locus of a
finite subset of its elements. This finiteness condition, which is far from obvious, is captured by the concept
of a Noetherian ring.

Definition 5.4. A commutative ring R is said to be Noetherian if every ideal of R is finitely generated.

An equivalent and often more practical characterization of Noetherian rings is in terms of chains of ideals.

Proposition 5.5. A ring R is Noetherian if and only if it satisfies the ascending chain condition (ACC)
for ideals; that is, every ascending chain of ideals I1 ⊆ I2 ⊆ I3 ⊆ . . . eventually stabilizes, meaning there
exists an integer N such that In = IN for all n ≥ N .

Proof. ( =⇒ ) Assume R is Noetherian. Let I1 ⊆ I2 ⊆ . . . be an ascending chain of ideals. Consider
the set I =

⋃∞
i=1 Ii. It is straightforward to verify that I is an ideal of R. Since R is Noetherian, I

must be finitely generated. Let I = (f1, . . . , fm). Each generator fj must belong to some ideal in the
chain, say fj ∈ Inj . Let N = max{n1, . . . , nm}. Then all generators f1, . . . , fm are contained in IN .
Consequently, I = (f1, . . . , fm) ⊆ IN . But IN ⊆ I by definition. Thus, IN = I, and for any n ≥ N , we have
IN ⊆ In ⊆ I = IN , which implies In = IN . The chain stabilizes.

(⇐= ) Assume R satisfies the ACC. Let I be an ideal of R. Suppose, for the sake of contradiction, that I is
not finitely generated. We can then construct an infinite, strictly ascending chain of ideals. Choose f1 ∈ I.
Since (f1) ̸= I, we can choose f2 ∈ I \ (f1). Continuing this process, having chosen f1, . . . , fn−1, we choose
fn ∈ I \ (f1, . . . , fn−1). This gives rise to a strictly ascending chain of ideals (f1) ⊊ (f1, f2) ⊊ . . . , which
contradicts the ACC. Therefore, I must be finitely generated.
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Example 5.6. Familiar examples of Noetherian rings include any field (which has only the ideals (0) and
(1)), the ring of integers Z (as it is a principal ideal domain), and, as we shall see, polynomial rings over
these.

The property of being Noetherian is preserved under the construction of polynomial rings. This cornerstone
result is due to Hilbert.

Theorem 5.7 (Hilbert Basis Theorem). If R is a Noetherian ring, then the polynomial ring R[x] is also
Noetherian.

Remark 5.8. By a straightforward induction, this theorem implies that if R is Noetherian, then the poly-
nomial ring in any finite number of variables, R[x1, . . . , xn], is also Noetherian. In particular, k[x1, . . . , xn]
is Noetherian for any field k.

Proof. Let I ⊆ R[x] be an ideal. We must show that I is finitely generated. If I = (0), we are done.
Otherwise, let J ⊆ R be the set of leading coefficients of all polynomials in I, together with 0. It is an
exercise to show that J is an ideal of R. Since R is Noetherian, J is finitely generated; let J = (a1, . . . , am)
where each ai is the leading coefficient of some polynomial fi ∈ I.

Let d = max{deg(f1), . . . ,deg(fm)}. For each k ∈ {0, 1, . . . , d−1}, let Jk ⊆ R be the set of leading coefficients
of all polynomials in I of degree k. Each Jk is an ideal and is thus finitely generated; let Jk = (bk1, . . . , bk,mk

),
where bkj is the leading coefficient of some gkj ∈ I of degree k.

We claim that I is generated by the set {f1, . . . , fm} ∪ {gkj}. Let f ∈ I be an arbitrary polynomial of
degree D. We proceed by induction on D. Let a be the leading coefficient of f . If D ≥ d, then a ∈ J , so
a =

∑m
i=1 riai for some ri ∈ R. Consider the polynomial

h =

m∑
i=1

rifix
D−deg(fi).

This polynomial h is in the ideal generated by {f1, . . . , fm}, has degree D, and its leading coefficient is∑
riai = a. Thus, f − h is a polynomial in I of degree strictly less than D. By the inductive hypothesis,

f − h is in the ideal generated by our proposed set of generators, and therefore so is f . If D < d, a similar
argument applies using the generators gDj . The leading coefficient a is in JD, so it can be written as a
combination of the bDj . We can form a polynomial h′ of degree D with leading coefficient a using the gDj ,
and again f − h′ has smaller degree.

The base cases for the induction are trivial. Thus, any polynomial in I is generated by our finite set, and
R[x] is Noetherian.

Corollary 5.9. If R is a Noetherian ring and S is a finitely generated R-algebra, then S is also a Noetherian
ring.

Proof. Since S is a finitely generated R-algebra, there exists a surjective R-algebra homomorphism ϕ :
R[x1, . . . , xn] → S for some n. By the Hilbert Basis Theorem, the ring R[x1, . . . , xn] is Noetherian. Let I
be an ideal in S. Its preimage ϕ−1(I) is an ideal in R[x1, . . . , xn] and is therefore finitely generated. The
images of these generators under ϕ will then generate I. Thus, every ideal in S is finitely generated.

The concept of the ascending chain condition can be extended from rings to modules.

Definition 5.10. An R-module M is Noetherian if every submodule of M is finitely generated. Equiva-
lently, M is Noetherian if it satisfies the ascending chain condition on submodules.

Proposition 5.11. If R is a Noetherian ring andM is a finitely generated R-module, thenM is a Noetherian
module.
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Proof. We proceed by induction on the number of generators of M . Let {m1, . . . ,mn} be a set of generators
for M . Base Case: n = 1. Then M is generated by a single element m1. There is a surjective R-module
homomorphism ϕ : R → M given by r 7→ rm1. Let N be a submodule of M . Its preimage ϕ−1(N) is a
submodule of R, i.e., an ideal. Since R is a Noetherian ring, this ideal is finitely generated. The images of
its generators under ϕ form a finite set of generators for N . Thus M is Noetherian.

Inductive Step: Assume the proposition holds for all modules generated by n − 1 elements. Let M be
generated by {m1, . . . ,mn}. Consider the submodule M ′ = (m1, . . . ,mn−1). By the inductive hypothesis,
M ′ is a Noetherian module. Now consider the quotient module M/M ′. This module is generated by the
single element mn = mn +M ′, so by the base case, M/M ′ is Noetherian.

Let N be any submodule ofM . Consider the submodule N ∩M ′. As a submodule of the Noetherian module
M ′, N∩M ′ is finitely generated. Let {a1, . . . , ak} be its generators. Consider the image of N in the quotient,
N = (N +M ′)/M ′ ⊆M/M ′. As a submodule of the Noetherian module M/M ′, N is finitely generated. Let
its generators be {b1, . . . , bl}, where bj ∈ N .

We claim that N is generated by the set {a1, . . . , ak, b1, . . . , bl}. Let x ∈ N . Its image x ∈ N can be written
as x =

∑
rjbj for some rj ∈ R. This means x−

∑
rjbj is in the kernel of the projection map, which is M ′.

So, x−
∑
rjbj ∈ N ∩M ′. Therefore, x−

∑
rjbj =

∑
siai for some si ∈ R. This gives x =

∑
siai +

∑
rjbj ,

showing that x is in the submodule generated by our finite set. Thus N is finitely generated, and M is
Noetherian.

5.1.3 Graded Modules and Hilbert Functions

We now introduce algebraic structures that are fundamental to the study of projective geometry. The
concept of a graded ring allows us to speak of ”homogeneous” elements, which is the algebraic analogue of
homogeneous polynomials that define varieties in projective space.

Definition 5.12. A graded ring is a ring R that admits a direct sum decomposition into additive subgroups
R =

⊕∞
i=0Ri such that RiRj ⊆ Ri+j for all i, j ≥ 0. An element f ∈ R is said to be homogeneous of

degree i if f ∈ Ri. An ideal I ⊆ R is a homogeneous ideal if it is generated by homogeneous elements.

Example 5.13. The archetypal example of a graded ring is the polynomial ring R = k[x0, . . . , xn]. It has
a standard grading R =

⊕∞
d=0Rd, where Rd is the k-vector space of homogeneous polynomials of total

degree d. Here R0 = k, R1 is the space spanned by the variables x0, . . . , xn, and so on.

This notion extends naturally to modules.

Definition 5.14. Let R =
⊕
Ri be a graded ring. A graded R-module is an R-module M with a direct

sum decomposition M =
⊕

i∈ZMi such that RiMj ⊆Mi+j for all i, j.

Example 5.15. Let R = k[x0, . . . , xn] with the standard grading.

1. If I ⊆ R is a homogeneous ideal, then the quotient ring S = R/I is a graded R-module. Its grading is
given by Sd = Rd/(I ∩Rd).

2. For any integer d, we can form the twisted module M(d). As an R-module, M(d) is isomorphic to
M , but its grading is shifted: M(d)e = Md+e. This seemingly simple device is extremely powerful, as
it allows multiplication by a homogeneous element of degree d to be viewed as a degree-preserving map
from M(−d) to M .

The graded pieces Ms of a finitely generated graded module over a polynomial ring are finite-dimensional
k-vector spaces. Their dimensions encode geometric information.

Definition 5.16. Let M be a finitely generated graded module over the polynomial ring R = k[x0, . . . , xr]
with its standard grading. The Hilbert function of M is the map HM : Z→ Z defined by

HM (s) := dimk(Ms).
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Example 5.17. Let M = R = k[x0, . . . , xr] with the standard grading. The dimension of the space of
homogeneous polynomials of degree s in r + 1 variables is a classical combinatorial result:

HR(s) =

(
s+ r

r

)
for s ≥ 0, and HR(s) = 0 for s < 0.

Example 5.18. Consider the module M = k[x, y]/(x2, y2). The graded pieces are:

• M0 = spank{1}, so HM (0) = 1.

• M1 = spank{x, y}, so HM (1) = 2.

• M2 = spank{xy} (since x2 = 0, y2 = 0), so HM (2) = 1.

• For s ≥ 3, any monomial of degree s must contain x2 or y2 as a factor, so Ms = {0}. Thus HM (s) = 0
for s ≥ 3.

Remarkably, for large values of s, the Hilbert function always behaves like a polynomial.

Theorem 5.19 (Hilbert). If M is a finitely generated graded module over k[x0, . . . , xr], then there exists a
polynomial PM (s) ∈ Q[s] of degree at most r such that HM (s) = PM (s) for all sufficiently large integers s.
This polynomial PM (s) is called the Hilbert polynomial of M .

The proof relies on the following elementary lemma about functions whose differences are polynomial.

Lemma 5.20. Let H : Z≥0 → Z be a function. If the difference function ∆H(s) = H(s)−H(s− 1) agrees
with a polynomial of degree d− 1 for all s≫ 0, then H(s) agrees with a polynomial of degree d for all s≫ 0.

Proof of Theorem. We proceed by induction on the number of variables, r + 1. Base case: r = −1. The
ring is k[x0, . . . , x−1] = k. A finitely generated graded k-module is a finite-dimensional graded vector space
M =

⊕
Ms. Thus, Ms = 0 for s≫ 0, so HM (s) = 0 for large s. The zero polynomial has degree −1 ≤ −1.

Inductive step: Assume the theorem holds for polynomial rings in r variables. Let M be a finitely generated
graded module over R = k[x0, . . . , xr]. Consider the homomorphism ϕ :M →M given by multiplication by
xr. This is not a degree-preserving map. To remedy this, we use a twist, defining ϕ :M(−1)→M . This is
a degree-preserving homomorphism of graded modules. Let K = ker(ϕ) and C = coker(ϕ) = M/xrM . We
have a short exact sequence of graded modules:

0→ K →M(−1) ·xr−→M → C → 0.

Because the dimension function is additive on exact sequences, for each degree s we have:

HK(s)−HM(−1)(s) +HM (s)−HC(s) = 0.

Using the definition of the twisted module, HM(−1)(s) = HM (s− 1), this becomes:

HM (s)−HM (s− 1) = HC(s)−HK(s).

The modules K and C are both annihilated by xr, so they are finitely generated modules over the ring
R/(xr) ∼= k[x0, . . . , xr−1]. By the inductive hypothesis, their Hilbert functions HC(s) and HK(s) agree with
polynomials of degree at most r− 1 for large s. Therefore, their difference, ∆HM (s) = HM (s)−HM (s− 1),
also agrees with a polynomial of degree at most r − 1 for large s. By the lemma, HM (s) must agree with a
polynomial of degree at most r for large s.

Remark 5.21 (Geometric Interpretation). The Hilbert polynomial of the homogeneous coordinate ring
S(X) = k[x0, . . . , xr]/I(X) of a projective variety X ⊆ Pr contains a wealth of geometric information.

• The degree of the Hilbert polynomial PX(s) is equal to the dimension of the variety X.

• If dim(X) = d, the leading term of PX(s) is deg(X)
d! sd. The integer deg(X) is the degree of the variety,

which geometrically corresponds to the number of intersection points with a generic linear subspace of
complementary dimension.
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• The celebrated Riemann-Roch theorem for curves and its generalizations to higher dimensions pro-
vide powerful tools for computing the Hilbert polynomial, connecting it to intrinsic geometric invariants
of the variety.

• In modern algebraic geometry, the coefficients of the Hilbert polynomial are related to the Chern
classes of the coherent sheaf associated with the module, providing a bridge to algebraic topology.

5.1.4 Localization

Many questions in commutative algebra and algebraic geometry are ”local” in nature, meaning they can be
understood by studying the structure of a ring or module in an infinitesimal neighborhood of a point (or
more accurately, a prime ideal). The algebraic tool for this is localization, a process that simplifies a ring
by focusing on a single prime ideal. The resulting ring, a ”local ring,” has a unique maximal ideal, making
its ideal structure much more transparent.

The fundamental idea of localization is to formally adjoin multiplicative inverses for a chosen subset of
elements of a ring, in much the same way that the rational numbers Q are constructed from the integers Z
by adjoining inverses for all non-zero elements.

The first question to address is which elements we can sensibly adjoin inverses for. If we adjoin f−1 and
g−1, to maintain a ring structure we must also include their product, (fg)−1. This leads to the requirement
that the set of elements whose inverses we introduce must be closed under multiplication.

Definition 5.22. A subset U ⊆ R of a ring R is said to be multiplicatively closed if 1 ∈ U and for any
s, t ∈ U , their product st is also in U .

Example 5.23.

1. For any non-zero element t ∈ R, the set {1, t, t2, . . . } is multiplicatively closed.

2. If P ⊆ R is an ideal, the complement R \ P is multiplicatively closed if and only if P is a prime ideal.

3. The set of all non-zero elements, R \ {0}, is multiplicatively closed if and only if R is an integral
domain.

We can now formally define the ring of fractions.

Definition 5.24. Let R be a ring, U ⊆ R a multiplicatively closed subset, and M an R-module. The
localization of M with respect to U , denoted U−1M or M [U−1], is the set of equivalence classes of pairs
(m,u) with m ∈M and u ∈ U . We write such a class as m

u . The equivalence relation is defined by:

m

u
∼ m′

u′
⇐⇒ ∃v ∈ U such that v(u′m− um′) = 0 in M.

The set U−1M forms an R-module with addition m
u + m′

u′ = u′m+um′

uu′ and scalar multiplication r · mu = rm
u .

WhenM = R, the set U−1R is a ring with multiplication r
u
r′

u′ =
rr′

uu′ , and U
−1M is naturally a U−1R-module.

Remark 5.25. The element v in the equivalence relation is crucial for handling torsion. If um = 0 for
some u ∈ U , then m

1 = um
u = 0

u , so
m
1 is equivalent to the zero element in U−1M .

Example 5.26.

1. If R is an integral domain, localizing at the set U = R\{0} yields the field of fractions of R, denoted
K(R).

2. If P ⊆ R is a prime ideal, we localize at the multiplicatively closed set U = R \P . The resulting ring is
denoted RP , and for an R-module M , the localization is MP . The ring RP is a local ring; its unique
maximal ideal consists of the fractions a

b where a ∈ P and b /∈ P .

Localization is not merely a construction; it is a well-behaved operation that respects the structure of module
homomorphisms.
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Proposition 5.27. Localization is an exact functor from the category of R-modules to the category of U−1R-
modules.

Proof Sketch. Given an R-module homomorphism φ : M → N , there is an induced U−1R-module homo-

morphism φ[U−1] : U−1M → U−1N defined by m
u 7→

φ(m)
u . One can verify that this respects composition,

making localization a functor. The key property is that this functor is exact: it transforms short exact
sequences of R-modules into short exact sequences of U−1R-modules.

Localization is also characterized by a universal property, which states that it is the ”most efficient” way to
make the elements of U into units.

Proposition 5.28 (Universal Property of Localization). Let U ⊆ R be a multiplicatively closed set and let
λ : R → U−1R be the natural ring homomorphism r 7→ r

1 . For any ring homomorphism φ : R → S such
that φ(u) is a unit in S for all u ∈ U , there exists a unique ring homomorphism φ′ : U−1R → S such that
φ = φ′ ◦ λ.

R S

U−1R

φ

λ ∃!φ′

There is a close relationship between the ideals of a ring R and its localization U−1R.

Proposition 5.29. There is a one-to-one, inclusion-preserving correspondence between the prime ideals of
U−1R and the prime ideals of R that do not intersect U . The correspondence is given by I 7→ λ−1(I) for a
prime ideal I ⊆ U−1R, and P 7→ U−1P for a prime ideal P ⊆ R with P ∩ U = ∅.

Example 5.30. If P ⊆ R is a prime ideal, the prime ideals of the local ring RP are in one-to-one corre-
spondence with the prime ideals of R that are contained in P . This is a key reason why localization simplifies
the ideal structure so effectively.

Remark 5.31. This correspondence should be compared with the ideal structure of a quotient ring: the prime
ideals of R/I correspond to the prime ideals of R that contain I. Localization and quotienting are thus dual
operations in their effect on the spectrum of prime ideals.

Corollary 5.32. If R is a Noetherian ring, then any localization U−1R is also Noetherian.

Proof. Let I be an ideal in U−1R. Let J = λ−1(I) be its contraction in R. Since R is Noetherian, J is
finitely generated, say J = (r1, . . . , rn). We claim that I is generated by { r11 , . . . ,

rn
1 }. Indeed, any element

of I is of the form r
u where r ∈ J . Then r =

∑
ciri for ci ∈ R, so r

u =
∑ ci

u
ri
1 , which shows that the image

of the generators of J generate I.

5.1.5 Hom and Tensor

Definition 5.33. Let M and N be modules over a ring R. The set of all R-module homomorphisms from
M to N is denoted by HomR(M,N). This set forms an R-module under pointwise addition and scalar
multiplication of functions.

Example 5.34. For any R-module N , we have an isomorphism HomR(R,N) ∼= N . More generally, for a
free module, we have HomR (

⊕n
i=1R,N) ∼=

⊕n
i=1 HomR(R,N) ∼= Nn.

The Hom construction is functorial in each of its arguments.

• For a fixed R-module M , HomR(M,−) is a covariant functor. A homomorphism ψ : A→ B induces
a homomorphism ψ∗ : HomR(M,A) → HomR(M,B) by post-composition: f 7→ ψ ◦ f . This functor
is left-exact: an exact sequence 0 → A → B → C induces an exact sequence 0 → HomR(M,A) →
HomR(M,B)→ HomR(M,C).
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• For a fixed R-module M , HomR(−,M) is a contravariant functor. A homomorphism ψ : A → B
induces a homomorphism ψ∗ : HomR(B,M) → HomR(A,M) by pre-composition: f 7→ f ◦ ψ. This
functor is also left-exact, which for a contravariant functor means that an exact sequence A → B →
C → 0 induces an exact sequence 0→ HomR(C,M)→ HomR(B,M)→ HomR(A,M).

Definition 5.35. Let M and N be modules over a ring R. The tensor product of M and N over R,
denoted M ⊗R N , is the R-module generated by symbols of the form m⊗ n (for m ∈ M,n ∈ N), subject to
the following relations for all m,m′ ∈M , n, n′ ∈ N , and r ∈ R:

• (m+m′)⊗ n = m⊗ n+m′ ⊗ n

• m⊗ (n+ n′) = m⊗ n+m⊗ n′

• (rm)⊗ n = r(m⊗ n) = m⊗ (rn)

Remark 5.36. An arbitrary element of M ⊗R N is a finite sum of ”simple tensors,”
∑
imi ⊗ ni. It is a

notoriously difficult problem in general to determine if a given element is zero or to find the minimal number
of simple tensors needed to write it. This latter question is related to the notion of tensor rank.

Example 5.37. 1. For any R-module M , we have R⊗RM ∼=M .

2. R[x1, . . . , xm]⊗R R[y1, . . . , yn] ∼= R[x1, . . . , xm, y1, . . . , yn].

3. Q⊗Z Z[x] ∼= Q[x].

4. For ideals I, J ⊆ R, we have R/I ⊗R R/J ∼= R/(I + J).

5. If S is an R-algebra and M is an R-module, then S ⊗RM becomes an S-module via scalar extension:
s(t⊗m) = (st)⊗m.

The tensor product is also characterized by a universal property, which formalizes the idea that it is the
most general construction preserving bilinearity.

Proposition 5.38 (Universal Property of the Tensor Product). The canonical map ⊗ :M ×N →M ⊗RN
is R-bilinear. Furthermore, for any R-module P and any R-bilinear map f : M × N → P , there exists a
unique R-module homomorphism f :M ⊗R N → P such that f = f ◦ ⊗.

M ×N M ⊗R N

P

⊗

f
∃!f

The tensor product is a covariant functor in both arguments and is right-exact. An exact sequence A →
B → C → 0 induces an exact sequence A⊗RM → B ⊗RM → C ⊗RM → 0.

Remark 5.39 (Geometric Context). If R and S are coordinate rings of affine varieties X and Y over an
algebraically closed field, then R⊗k S is the coordinate ring of the product variety X × Y .

The process of localization can be elegantly reformulated using the tensor product.

Lemma 5.40. Let U ⊆ R be a multiplicatively closed set. For any R-module M , there is a canonical
isomorphism of U−1R-modules:

U−1R⊗RM
∼=−→ U−1M

given by the map r
u ⊗m 7→

rm
u .

Proof. We construct the inverse map φ : U−1M → U−1R ⊗R M by defining φ(mu ) = 1
u ⊗m. To see this

is well-defined, suppose m
u = m′

u′ . Then there exists v ∈ U such that v(u′m − um′) = 0. In the tensor
product, this implies v(u′m − um′) ⊗ 1 = 0. Using the tensor relations, we have 1 ⊗ v(u′m − um′) = 0, so

1
uu′v ⊗ v(u

′m−um′) = 0. This leads to u′v
uu′v ⊗m−

uv
uu′v ⊗m

′ = 0, which simplifies to 1
u ⊗m = 1

u′ ⊗m′. The
map is thus well-defined. It is routine to check that it is the inverse of the given map.
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This formulation immediately tells us that localization is right-exact. In fact, it is exact, a property known
as flatness.

Definition 5.41. An R-module F is flat if the functor −⊗R F is exact. This is equivalent to requiring that
for every injective R-module map M → N , the induced map M ⊗R F → N ⊗R F is also injective.

Proposition 5.42. For any multiplicatively closed set U ⊆ R, the localized ring U−1R is a flat R-module.

Proof. Let φ : M ′ → M be an injective map of R-modules. We must show that the induced map φ[U−1] :

M ′[U−1] → M [U−1] is injective. Suppose an element m′

u ∈ M
′[U−1] is in the kernel. Then φ(m′)

u = 0 in
M [U−1]. By definition of localization, this means there exists some v ∈ U such that vφ(m′) = 0 in M . Since
φ is a homomorphism, this is φ(vm′) = 0. As φ is injective, we must have vm′ = 0. But this implies that
m′

u = vm′

vu = 0
vu = 0 in M ′[U−1]. Thus, the kernel is trivial and the map is injective.

The power of localization lies in its ability to translate properties of a module into properties of its local-
izations at prime (or maximal) ideals. A property that holds for a module if and only if it holds for all its
localizations is called a ”local property.”

Lemma 5.43. Let M be an R-module. The following are equivalent:

1. M = 0.

2. MP = 0 for all prime ideals P ⊆ R.

3. Mm = 0 for all maximal ideals m ⊆ R.

Proof. The implications (1) =⇒ (2) =⇒ (3) are clear. For (3) =⇒ (1), suppose M ̸= 0 and let a ∈M be
a non-zero element. The annihilator of a, Ann(a) = {r ∈ R | ra = 0}, is a proper ideal of R. Therefore, it
is contained in some maximal ideal m. We claim that a

1 ̸= 0 in Mm. If a1 = 0, then there would exist some
u ∈ R \m such that ua = 0. But this means u ∈ Ann(a) ⊆ m, which is a contradiction. Thus Mm ̸= 0.

Corollary 5.44. A homomorphism of R-modules φ :M → N is injective (resp. surjective, an isomorphism)
if and only if the induced map on localizations φm :Mm → Nm is injective (resp. surjective, an isomorphism)
for all maximal ideals m ⊆ R.

Proof. Consider the kernel, K = ker(φ). The sequence 0 → K → M → N is exact. Since localization
is an exact functor, the sequence 0 → Km → Mm → Nm is also exact for any maximal ideal m. Thus,
Km = ker(φm). Now, φ is injective if and only if K = 0. By the preceding lemma, this is true if and only if
Km = 0 for all m, which is true if and only if φm is injective for all m. A similar argument applied to the
cokernel proves the statement for surjectivity.

5.2 Ideals and Spectrum

5.2.1 Radical Ideals

The relationship between prime ideals and localization leads to a fundamental characterization of the set of
elements in an ideal that have a power lying in the ideal.

Definition 5.45. Let I be an ideal in a ring R. The radical of I, denoted
√
I or rad(I), is the set

{f ∈ R | fn ∈ I for some integer n > 0}. The radical of the zero ideal,
√
(0), is the set of all nilpotent

elements of R and is called the nilradical. An ideal I is a radical ideal if I =
√
I.

It is not immediately obvious that
√
I is an ideal. The following result provides a beautiful characterization

that makes this clear.

Theorem 5.46. For any ideal I ⊆ R, its radical is the intersection of all prime ideals containing it:

√
I =

⋂
P⊇I,P prime

P.
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Proof. (⊆) Let f ∈
√
I. Then fn ∈ I for some n. If P is any prime ideal containing I, then fn ∈ P . Since

P is prime, this implies f ∈ P . As this holds for all such primes, f is in their intersection.

(⊇) Suppose f is in the intersection of all primes containing I. Assume, for contradiction, that f /∈
√
I.

This means that no power of f lies in I. The set U = {1, f, f2, . . . } is a multiplicatively closed set that does
not intersect I (i.e., I ∩ U = ∅). By a standard result using Zorn’s Lemma, there exists an ideal P that
is maximal with respect to the property of containing I and being disjoint from U . Such an ideal must be
prime. But this prime ideal P contains I and does not contain f , which contradicts our assumption that f
was in the intersection of all such primes.

Corollary 5.47. The nilradical of a ring R is the intersection of all prime ideals of R.

Definition 5.48. A ring R is reduced if it has no non-zero nilpotent elements, i.e., if its nilradical is the
zero ideal.

Example 5.49. The ring k[x]/(x2) is not reduced, as the class of x is a non-zero nilpotent element. Its
nilradical is the ideal generated by x.

Remark 5.50. The nilradical itself is not always a prime ideal. For example, in the ring Z/12Z, the
nilpotent elements are 0 and 6. The nilradical is (6), which is not a prime ideal since 2 · 3 ∈ (6) but neither
2 nor 3 are in (6).

5.2.2 The Spectrum of a Ring

A central idea in modern algebraic geometry, pioneered by Grothendieck, is that a commutative ring can
be viewed as a geometric object. This is achieved by associating to each ring a topological space whose
points are the prime ideals of the ring. This construction, known as the spectrum, provides a rich geometric
language for studying commutative algebra.

Definition 5.51. Let R be a commutative ring. The spectrum of R, denoted Spec(R), is the set of all
prime ideals of R.

To endow this set with a geometric structure, we define a topology.

Definition 5.52. The Zariski topology on Spec(R) is defined by specifying its closed sets. For any subset
of elements I ⊆ R, we define the set

V (I) := {P ∈ Spec(R) | I ⊆ P}.

The sets V (I) are the closed sets of the Zariski topology.

Remark 5.53. Note that V (I) = V (⟨I⟩), where ⟨I⟩ is the ideal generated by I. Thus, we may restrict our
attention to ideals when defining closed sets. Furthermore, since an ideal is contained in a prime ideal if and
only if its radical is, we have V (I) = V (

√
I).

We must verify that this definition indeed satisfies the axioms for a topology.

Proposition 5.54. The sets V (I) form the closed sets of a topology on Spec(R).

1. For any collection of ideals {Iλ}λ∈Λ, we have
⋂
λ V (Iλ) = V (

∑
λ Iλ).

2. For any two ideals I, J , we have V (I) ∪ V (J) = V (I ∩ J) = V (IJ).

Proof. The empty set and the whole space are closed, as V (R) = ∅ and V ((0)) = Spec(R).

1. A prime ideal P is in
⋂
λ V (Iλ) if and only if Iλ ⊆ P for all λ. This is equivalent to the condition that the

ideal generated by the union,
∑
λ Iλ, is contained in P . This, in turn, is equivalent to P ∈ V (

∑
λ Iλ).

2. We have the inclusions IJ ⊆ I ∩ J ⊆ I and I ∩ J ⊆ J . These imply the inclusions of closed sets
V (I) ⊆ V (I ∩ J) ⊆ V (IJ) and V (J) ⊆ V (I ∩ J). Thus, V (I) ∪ V (J) ⊆ V (I ∩ J) ⊆ V (IJ). For the
reverse inclusion, suppose P ∈ V (IJ), so IJ ⊆ P . Since P is prime, this implies I ⊆ P or J ⊆ P .
Therefore, P ∈ V (I) or P ∈ V (J), which means P ∈ V (I) ∪ V (J). Thus, V (IJ) ⊆ V (I) ∪ V (J).
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In this topology, a point {P} is closed if and only if P is a maximal ideal. The subset of maximal ideals,
denoted mSpec(R), often corresponds to the classical geometric points of a variety.

Example 5.55. 1. Let R = k[x] where k is an algebraically closed field. The prime ideals are of two
types: the zero ideal (0), and maximal ideals of the form (x − a) for a ∈ k. Thus, Spec(k[x]) =
{(x−a) | a ∈ k}∪{(0)}. The set of maximal ideals, mSpec(k[x]), is in one-to-one correspondence with
the points of the affine line A1

k. The point (0) is not closed; its closure is the entire space.

2. Let R = k[x, y] where k is algebraically closed. By Hilbert’s Nullstellensatz, the maximal ideals are of
the form (x − a, y − b) for (a, b) ∈ k2. These closed points of Spec(k[x, y]) are in bijection with the
points of the affine plane A2

k. The non-maximal prime ideals correspond to irreducible subvarieties of
dimension one (i.e., irreducible curves), such as (f(x, y)) for an irreducible polynomial f , and the zero
ideal (0).

Remark 5.56. More generally, for an algebraically closed field k, we define affine n-space as Ank =
Spec(k[x1, . . . , xn]).

The construction of the spectrum is functorial.

Definition 5.57. The operation Spec is a contravariant functor from the category of commutative rings
to the category of topological spaces. A ring homomorphism φ : R→ S induces a continuous map Spec(φ) :
Spec(S)→ Spec(R) defined by P 7→ φ−1(P ) for any prime ideal P ∈ Spec(S).

Proposition 5.58. The induced map Spec(φ) is continuous.

Proof. To show continuity, we must show that the preimage of any closed set in Spec(R) is a closed set in
Spec(S). Let V (I) be a closed set in Spec(R) for some ideal I ⊆ R. We compute its preimage:

(Spec(φ))−1(V (I)) = {P ∈ Spec(S) | Spec(φ)(P ) ∈ V (I)}
= {P ∈ Spec(S) | φ−1(P ) ⊇ I}
= {P ∈ Spec(S) | P ⊇ φ(I)}
= V (φ(I)S)

where φ(I)S is the ideal in S generated by the image of I. This is a closed set in Spec(S), so the map is
continuous.

5.2.3 Connection to Quotients and Localizations

The functorial nature of Spec provides a geometric interpretation for the algebraic operations of quotienting
and localizing a ring.

Proposition 5.59. 1. The natural projection R→ R/I induces a map Spec(R/I)→ Spec(R) which is a
homeomorphism onto the closed subset V (I) ⊆ Spec(R).

2. The natural map R→ U−1R induces a map Spec(U−1R)→ Spec(R) which is a homeomorphism onto
the subset Y = {P ∈ Spec(R) | P ∩ U = ∅}. This subset Y is an open set in Spec(R) if U is finitely
generated.

Proof. The proofs of these statements follow directly from the correspondence between prime ideals estab-
lished in the study of quotient rings and localizations. The induced maps are bijections onto their respective
images. One must then verify that they are homeomorphisms, which is a standard exercise.
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6 Rings and Modules II

6.1 Associated Primes and Primary Decomposition

6.1.1 Module Length

In the study of modules over a ring R, finiteness conditions provide crucial structural insights. The ascending
chain condition (ACC), which defines Noetherian modules, is central to the theory of finitely generated
modules. We now turn our attention to its dual notion, the descending chain condition (DCC), which leads
to the definition of Artinian modules and the powerful concept of module length.

Definition 6.1. Let M be an R-module. We say that M is Artinian if every strictly decreasing chain of
submodules of M terminates. That is, for any sequence of submodules M0 ⊋ M1 ⊋ M2 ⊋ . . . , there exists
an integer n ≥ 0 such that Mn =Mn+1 = . . . . A ring R is Artinian if it is Artinian as a module over itself.

While the definitions of Artinian and Noetherian modules are dual, their consequences are not. A surprising
result, which we will prove, is that any Artinian ring is necessarily Noetherian. To establish this and other
structural properties, we first introduce a way to measure the ”size” of a module.

Definition 6.2. A chain of submodules of an R-module M is a sequence M =M0 ⊇M1 ⊇ · · · ⊇Mn =
{0}. If all inclusions are strict, i.e., M0 ⊋M1 ⊋ · · · ⊋Mn, the chain is said to have length n.

The most important chains are those that cannot be refined.

Definition 6.3. A chain M = M0 ⊋ M1 ⊋ · · · ⊋ Mn = {0} is a composition series if each quotient
module Mj/Mj+1 for j = 0, . . . , n − 1 is a nonzero simple module. A module S is simple if its only
submodules are {0} and S.

Equivalently, a composition series is a maximal chain of submodules; it is impossible to insert a new sub-
module strictly between Mj and Mj+1 for any j.

Remark 6.4 (Structure of Simple Modules). Let S be a simple R-module. For any nonzero element a ∈ S,
the submodule Ra must be equal to S. This induces a surjective R-module homomorphism ϕ : R → S given
by r 7→ ra. The kernel of this map is the annihilator of S, ann(S) := {r ∈ R | rS = {0}}. By the First
Isomorphism Theorem for modules, S ∼= R/ann(S). Since S is simple, the ideal ann(S) must be a maximal
ideal of R. Consequently, each factor Mj/Mj+1 in a composition series is isomorphic to R/Pj for some
maximal ideal Pj of R.

Definition 6.5. The length of an R-module M , denoted ℓ(M), is the length of a composition series for M .
If M does not possess a finite composition series, its length is defined to be ∞.

This definition presumes that if a module has a finite composition series, then all such series have the same
length. This is a non-trivial fact, established by the Jordan-Hölder theorem. The following theorem and its
proof will substantiate this claim.

Theorem 6.6. An R-module M has a finite composition series if and only if M is both Artinian and
Noetherian.

Proof. (⇐) Suppose M is both Artinian and Noetherian. We construct a composition series as follows. If
M = {0}, the series is trivial. If M ̸= {0}, the set of proper submodules of M is non-empty. Since M is
Noetherian, this set contains a maximal element, say M1. By construction, M/M1 is a simple module. If
M1 ̸= {0}, we repeat the argument. Since M1 is a submodule of a Noetherian module, it is also Noetherian.
Thus, we can find a maximal proper submoduleM2 ⊊M1. This process generates a strictly decreasing chain
of submodules:

M ⊋M1 ⊋M2 ⊋ . . .

SinceM is Artinian, this chain must terminate after a finite number of steps, say atMn = {0}. The resulting
chain M = M0 ⊋ M1 ⊋ · · · ⊋ Mn = {0} is a finite composition series, as each factor Mj/Mj+1 is simple by
construction.
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(⇒) Suppose M has a finite composition series. We will prove the stronger statement that all composition
series for M have the same length, and that any chain of submodules can be refined to a composition series
of that length. This will imply that any strictly increasing or decreasing chain must be finite, hence M is
Noetherian and Artinian.

Lemma 6.7 (Jordan-Hölder Theorem for Modules). Let M be an R-module with a finite composition series
of length n. Then:

1. Any other composition series for M also has length n.

2. Any strictly decreasing chain of submodules of M has length at most n.

Proof of Lemma. We prove both statements by induction on n = ℓ(M).

Base Case: If n = 0, then M = {0}, and the only chain has length 0. If n = 1, then M is a simple module.
The only composition series isM ⊋ {0}, of length 1. Any other strictly decreasing chain must be a sub-chain
of this, so it has length at most 1. The claims hold.

Inductive Step: Assume the lemma holds for all modules of length less than n. Let M have a composition
series M : M = M0 ⊋ M1 ⊋ · · · ⊋ Mn = {0}. Let N : M = N0 ⊋ N1 ⊋ · · · ⊋ Nk = {0} be another
composition series for M . We want to show k = n.

If M1 = N1, then M1 ⊋M2 ⊋ . . . and N1 ⊋ N2 ⊋ . . . are both composition series for the module M1. Since
ℓ(M1) = n− 1 < n, the inductive hypothesis applies to M1. Thus, k − 1 = n− 1, which implies k = n.

If M1 ̸= N1, consider the submodule M1 + N1. Since M1 and N1 are distinct maximal submodules of M ,
their sum must be M itself. Let K =M1 ∩N1. By the Second Isomorphism Theorem for modules:

M/M1 = (M1 +N1)/M1
∼= N1/(M1 ∩N1) = N1/K

M/N1 = (M1 +N1)/N1
∼=M1/(M1 ∩N1) =M1/K

Since M/M1 and M/N1 are simple, so are M1/K and N1/K. This means that K is a maximal submodule
of both M1 and N1.

Let K : K = K0 ⊋ K1 ⊋ · · · ⊋ Kp = {0} be a composition series for K. Then we can form two new
composition series for M :

1. M′ :M ⊋M1 ⊋ K ⊋ K1 ⊋ · · · ⊋ {0}

2. N ′ :M ⊋ N1 ⊋ K ⊋ K1 ⊋ · · · ⊋ {0}

The length ofM′ is 2 + p, and the length of N ′ is 2 + p. Now compare the original seriesM with N ′. Both
are composition series for M starting with a different second term. But we can view them as composition
series for M1 and N1 respectively:

• M1 ⊋M2 ⊋ · · · ⊋Mn = {0} is a series for M1 of length n− 1.

• M1 ⊋ K ⊋ K1 ⊋ · · · ⊋ {0} is another series for M1 of length 1 + p.

Since ℓ(M1) = n − 1 < n, the inductive hypothesis applies to M1, so any two composition series for M1

have the same length. Thus, n − 1 = 1 + p. Similarly, by applying the inductive hypothesis to N1 (which
has length k − 1), we find that k − 1 = 1 + p. Therefore, n − 1 = k − 1, which implies n = k. This proves
statement (1).

For statement (2), let L : M = L0 ⊋ L1 ⊋ · · · ⊋ Lk = {0} be any strict chain. If this chain is not a
composition series, it is because at least one quotient Li/Li+1 is not simple. This means there exists a
submodule N such that Li ⊋ N ⊋ Li+1. We can insert N into the chain to make it longer. We can continue
this refinement process. Since ℓ(M) = n is finite, this refinement process must terminate. It terminates
precisely when all successive quotients are simple, at which point we have a composition series. The length
of this refined series must be n. Since the original chain had length k and was strictly shorter than its
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refinement, we must have k < n. If the original chain was already a composition series, then k = n. In all
cases, k ≤ n.

This concludes the proof of the lemma.

The lemma directly implies that if M has a finite composition series, any strictly increasing or decreasing
chain of submodules must be finite. Therefore, M is both Noetherian and Artinian. This completes the
proof of Theorem 6.6.

We now specialize to the case of rings. When a ring R is viewed as an R-module, its submodules are precisely
its ideals. The results of the previous section thus apply directly. For rings, however, the Artinian condition
has remarkably strong consequences, leading to a complete and elegant structural characterization.

Theorem 6.8. Let R be a commutative ring with unity. The following conditions are equivalent:

1. R is Noetherian and every prime ideal of R is maximal.

2. R has finite length as an R-module.

3. R is an Artinian ring.

Moreover, if these conditions hold, then R has only a finite number of maximal ideals.

Proof. We prove the cycle of implications (1) =⇒ (2) =⇒ (3) =⇒ (1).

(1) =⇒ (2): Assume R is Noetherian and every prime ideal is maximal. Suppose for contradiction that R
does not have finite length. Since R is Noetherian, the set Σ of ideals I ⊂ R for which the module R/I does
not have finite length is non-empty (as (0) ∈ Σ). By the ACC, Σ has a maximal element, say I0. We claim
I0 is prime.

Let a, b ∈ R with ab ∈ I0. Assume a /∈ I0 and b /∈ I0. Consider the ideal I0 + (a). Since a /∈ I0, we have
I0 ⊊ I0 + (a). By the maximality of I0 in Σ, the quotient module R/(I0 + (a)) must have finite length.
Consider the short exact sequence of R-modules:

0→ I0 + (a)

I0
→ R

I0
→ R

I0 + (a)
→ 0

The length of a module is additive over short exact sequences. If both I0+(a)
I0

and R
I0+(a) have finite length,

then so does R
I0
. We know ℓ(R/(I0 + (a))) < ∞. Now consider the first term. There is an isomorphism of

R-modules:
I0 + (a)

I0
∼=

R

(I0 : a)

given by the map x̄ 7→ xa. This map is well-defined and injective because x ∈ (I0 : a) ⇐⇒ xa ∈ I0. It is
surjective by definition. Since b /∈ I0 and ab ∈ I0, we have b ∈ (I0 : a). This shows that I0 ⊊ (I0 : a). By the

maximality of I0 in Σ, the module R/(I0 : a) must have finite length. Consequently, I0+(a)
I0

has finite length.
From the exact sequence, it follows that R/I0 must have finite length, which contradicts the definition of I0.
Thus, our assumption must be false: either a ∈ I0 or b ∈ I0. This proves I0 is a prime ideal.

By our hypothesis (1), every prime ideal is maximal. So I0 is a maximal ideal. But if I0 is maximal,
then R/I0 is a field. A field is a simple R-module, so it has a composition series R/I0 ⊋ {0} of length 1.
This contradicts that R/I0 does not have finite length. Therefore, the set Σ must be empty, which means
R = R/(0) has finite length.

(2) =⇒ (3): If R has finite length as an R-module, then by Theorem 6.6, R is both Artinian and Noetherian
as a module over itself. In particular, R is an Artinian ring.

(3) =⇒ (1): Assume R is an Artinian ring. First, we show that (0) is a product of maximal ideals. Let
S be the set of all ideals that can be written as a finite product of maximal ideals. Since R has maximal
ideals (by Zorn’s lemma), S is non-empty. Since R is Artinian, the set S must have a minimal element under
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inclusion, say J = m1 . . .mk. We claim J = {0}. For any maximal ideal m of R, the ideal mJ is also a
product of maximal ideals. Since mJ ⊆ J , by the minimality of J , we must have mJ = J . This implies that
J is contained in every maximal ideal m of R. Thus J is contained in the Jacobson radical J(R) of R. Since
J = mJ for any maximal ideal, we have J = J(R)J . Now we show J = {0}. Suppose J ̸= {0}. Consider
the set of ideals {I ⊆ R | IJ ̸= {0}}. This set is non-empty (it contains R) and thus has a minimal element
I0 because R is Artinian. Since I0J ̸= {0}, there must be an element f ∈ I0 such that fJ ̸= {0}. The ideal
(f) is contained in I0, so (f)J ̸= {0}. By minimality of I0, we must have (f) = I0. Now, since I0J = I0,
we have (f)J = (f). This means there exists an element g ∈ J such that f = fg. This can be rewritten as
f(1−g) = 0. Since g ∈ J ⊆ J(R), the element 1−g is a unit in R. (If u is not a unit, it is contained in some
maximal ideal m. But if g ∈ J(R) ⊆ m, then 1 = u+g would be in m, a contradiction). Because f(1−g) = 0
and 1 − g is a unit, we must have f = 0. This implies I0 = (f) = {0}, which contradicts I0J ̸= {0}. This
final contradiction forces our assumption J ̸= {0} to be false. Thus J = {0}, and we have shown that (0) is
a product of maximal ideals, say (0) = m1 . . .mt.

Now we build a composition series for R. Consider the chain:

R ⊃ m1 ⊃ m1m2 ⊃ · · · ⊃ m1 . . .mt = {0}

Each quotient module Ms = (m1 . . .ms)/(m1 . . .ms+1) is annihilated by ms+1, so it is a module over the field
R/ms+1, i.e., a vector space. Any chain of submodules in Ms corresponds to a chain of ideals in R. Since
R is Artinian, Ms must satisfy the DCC on subspaces, which means it must be a finite-dimensional vector
space. A finite-dimensional vector space has a finite composition series (given by a basis). By refining the
chain above with composition series for each vector space factor, we obtain a finite composition series for R.
By Theorem 6.6, if R has a finite composition series, it is both Artinian and Noetherian.

Finally, we show every prime ideal is maximal. Let P be a prime ideal. Then P ⊇ (0) = m1 . . .mt. Since P
is prime, it must contain one of the factors, so P ⊇ mi for some i. Since mi is a maximal ideal, we must have
P = mi. Thus every prime ideal is maximal. In particular, this shows that the only prime ideals are the
maximal ideals m1, . . . ,mt appearing in the product for (0). Therefore, R has only finitely many maximal
ideals.

The powerful algebraic characterization of Artinian rings has a direct and intuitive geometric interpretation
through the language of algebraic geometry, specifically via the prime spectrum of a ring, Spec(R).

Corollary 6.9. Let R be a commutative ring. If R is Artinian, then its prime spectrum Spec(R) is a finite
set of closed points.

Proof. By Theorem 6.8, an Artinian ring R has only finitely many maximal ideals, and every prime ideal of
R is maximal. The points of Spec(R) are the prime ideals of R. Thus, Spec(R) is a finite set. In the Zariski
topology on Spec(R), points corresponding to maximal ideals are always closed points.

The converse is also true: a Noetherian ring R with a finite spectrum is Artinian. The Artinian condition
thus forces the geometry to be zero-dimensional and finite. A particularly rich source of examples comes
from finite-dimensional algebras over a field.

Remark 6.10 (Artinian k-algebras). Let R be a finitely generated algebra over an algebraically closed field
k, e.g., R = k[x1, . . . , xn]/I. If R is Artinian, then by Theorem 6.8, it is a finite-dimensional vector space
over k. Its length as an R-module is equal to its dimension as a k-vector space: ℓ(R) = dimk(R). In this
setting, Spec(R) corresponds to a finite set of points, and the length ℓ(R) is the total number of these points,
counted with multiplicity. This ”multiplicity” captures non-reduced structure, such as tangent directions or
infinitesimal neighborhoods, at the geometric points.

Example 6.11. Let k be an algebraically closed field.

1. Let R = k[x, y]/(x, y). Here Spec(R) consists of a single point, the maximal ideal (x, y). We have
an isomorphism R ∼= k, so dimk(R) = 1. The composition series is R ⊋ {0}, so ℓ(R) = 1. This
corresponds to a simple point in the plane.
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2. Let R = k[x]/(x(x − 1)). The prime ideals are (x) and (x − 1), so Spec(R) consists of two distinct
points. By the Chinese Remainder Theorem, R ∼= k[x]/(x)× k[x]/(x− 1) ∼= k× k. Thus dimk(R) = 2.
A composition series is R ⊋ (x) ⊋ {0}, showing ℓ(R) = 2. The length equals the number of geometric
points.

3. Let R = k[x, y]/(x, y2). The only prime ideal is (x, y), so Spec(R) is a single point. However, as a
k-vector space, R is generated by {1, y} (since x = 0 and y2 = 0), so dimk(R) = 2. A composition
series is R ⊋ (y) ⊋ {0}, so ℓ(R) = 2.

Here, the length (2) is greater than the number of geometric points (1). The ring R is not a field;
it contains the nilpotent element y. Geometrically, this represents a ”thickened” point, or a point
equipped with a tangent direction (in this case, along the y-axis). This is a fundamental example in
scheme theory of a non-reduced structure, which can be visualized as the limit of two distinct points on
a line colliding and merging into one.

6.1.2 Associated Primes

We begin with motivation via an analogy from number theory: The Fundamental Theorem of Arithmetic
provides a canonical decomposition of any integer n ∈ Z. This decomposition can be recast in the language
of ideals. For an integer n = ±pd11 · · · p

dt
t with distinct primes pi, the corresponding principal ideal (n) has

a decomposition as an intersection of ideals:

(n) = (pd11 ) ∩ · · · ∩ (pdtt )

This is a primary decomposition of the ideal (n). The set of prime ideals {(p1), . . . , (pt)} associated with
this decomposition is uniquely determined by (n). The ideals (pdii ) are called the primary components.
The theory of associated primes and primary decomposition aims to generalize this structural result from
the ring of integers to modules over general commutative rings.

Additionally, a powerful motivation for this theory comes from algebraic geometry. Let R = k[x1, . . . , xn] be
the polynomial ring over a field k, and let I ⊆ R be an ideal. The vanishing set of I, denoted V (I), is the
set of points in affine space kn where all polynomials in I evaluate to zero. A central goal is to decompose
the geometric object V (I) into its fundamental, indivisible pieces.

Definition 6.12. A closed algebraic set V (I) is reducible if it can be written as a union of two proper
closed subsets, i.e., V (I) = V (I ′)∪ V (I ′′) where V (I) ̸= V (I ′) and V (I) ̸= V (I ′′). Otherwise, V (I) is called
irreducible.

The algebraic counterpart to the geometric notion of irreducibility is the primality of an ideal. Specifically,
it relates to the radical of the ideal.

Proposition 6.13. Let I be an ideal in R = k[x1, . . . , xn]. The algebraic set V (I) is irreducible if and only
if its corresponding radical ideal radI is a prime ideal.

Proof. Recall that for any ideals I ′ and I ′′, we have V (I ′) ∪ V (I ′′) = V (I ′ ∩ I ′′). Also, V (I) = V (radI).

(⇐) Assume radI is a prime ideal. Suppose for contradiction that V (I) is reducible, so V (I) = V (I ′)∪V (I ′′)
for some ideals I ′, I ′′ such that V (I ′) ⊊ V (I) and V (I ′′) ⊊ V (I). This implies V (radI) = V (I ′ ∩ I ′′), and by
Hilbert’s Nullstellensatz, radI = radI ′ ∩ I ′′ = radI ′radI ′′. The inclusions V (I ′) ⊊ V (I) and V (I ′′) ⊊ V (I)
imply radI ⊊ radI ′ and radI ⊊ radI ′′. Let f ∈ radI ′ such that f /∈ radI, and let g ∈ radI ′′ such that
g /∈ radI. The product fg is in radI ′radI ′′, so fg ∈ radI. Since radI is prime, this implies either f ∈ radI
or g ∈ radI, which is a contradiction. Therefore, V (I) must be irreducible.

(⇒) Assume V (I) is irreducible. Suppose for contradiction that radI is not prime. Then there exist
polynomials f, g ∈ R such that fg ∈ radI but f /∈ radI and g /∈ radI. Let I ′ = I + (f) and I ′′ = I + (g).
Then fg ∈ radI implies that V (I) ⊆ V (fg) = V (f) ∪ V (g). Thus, V (I) = (V (I) ∩ V (f)) ∪ (V (I) ∩ V (g)) =
V (I + (f))∪ V (I + (g)) = V (I ′)∪ V (I ′′). Since f /∈ radI, there exists a point P ∈ V (I) such that f(P ) ̸= 0.
This means P /∈ V (I ′), so V (I ′) ⊊ V (I). Similarly, since g /∈ radI, V (I ′′) ⊊ V (I). We have written V (I) as
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a union of two proper closed subsets, which contradicts its irreducibility. Therefore, radI must be a prime
ideal.

This proposition suggests that the irreducible components of V (I) correspond to a special set of prime ideals
related to I. For a general Noetherian ring, any radical ideal can be written uniquely as a finite, irredundant
intersection of prime ideals, radI = P1 ∩ · · · ∩ Pt. This corresponds to a unique decomposition of V (I)
into irreducible components: V (I) = V (P1) ∪ · · · ∪ V (Pt). These primes P1, . . . , Pt are precisely the primes
minimal over I.

However, the ideal I itself contains more information than its radical radI (e.g., multiplicities, embedded
structures). The theory of associated primes aims to identify the correct set of primes to describe the
structure of the module R/I, not just the geometry of V (I).

Example 6.14. Let I = (x2, xy) ⊆ k[x, y]. The radical is radI = (x), which is prime. Thus V (I) = V (x)
is the y-axis, which is irreducible. Algebraically, however, I has a more intricate structure. We can write I
as an intersection of ideals:

I = (x) ∩ (x2, y) or I = (x) ∩ (x, y)2

Notice that the radicals of the ideals in the intersection are (x) and (x, y). The prime (x, y) corresponds to the
origin, a geometric point embedded within the y-axis. As we will see, the ”correct” set of primes associated to
I is {(x), (x, y)}, which captures both the main component (the line) and the embedded structure (the point).
The description of I as an intersection of ideals whose radicals are these associated primes is not unique,
which motivates the more refined theory of primary decomposition.

We now formalize the algebraic notion of primes ”belonging” to a module.

Definition 6.15. Let R be a commutative ring and M be an R-module. A prime ideal P ⊂ R is associated
to M if there exists an element x ∈M such that P is the annihilator of x. That is,

P = ann(x) := {r ∈ R | rx = 0}

The set of all associated primes of M is denoted AssR(M), or simply Ass(M) when the ring is clear. For
an ideal I ⊆ R, the associated primes of I are defined as Ass(R/I).

Remark 6.16. An immediate and powerful consequence of the definition is the following equivalence:

P ∈ Ass(M) ⇐⇒ R/P is isomorphic to a submodule of M.

Indeed, if P = ann(x), the submodule Rx ⊆ M is isomorphic to R/P via the map r 7→ rx. Conversely, if
there is an embedding ϕ : R/P ↪→M , then the image of 1̄ ∈ R/P , say x = ϕ(1̄), has annihilator precisely P .
This viewpoint reveals that the associated primes ofM are precisely the prime ideals that arise as annihilators
of cyclic submodules of M .

For finitely generated modules over a Noetherian ring, the set of associated primes is well-behaved and
captures essential information about the module.

Theorem 6.17. Let R be a Noetherian ring and let M be a non-zero, finitely generated R-module. Then:

1. The set Ass(M) is finite and non-empty.

2. Every prime ideal minimal among those containing ann(M) is in Ass(M).

3. The set of zero-divisors on M is precisely the union of the associated primes:

{r ∈ R | ∃m ̸= 0 ∈M, rm = 0} =
⋃

P∈Ass(M)

P

4. For any multiplicatively closed subset U ⊆ R, the associated primes of the localized module MU =
M [U−1] are the localized associated primes of M that do not meet U :

AssRU
(MU ) = {PU | P ∈ Ass(M) and P ∩ U = ∅}
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Proof. The proof of this theorem requires several preliminary lemmas and is deferred. A key first step is to
show that in a Noetherian ring, any ideal maximal among annihilators of non-zero elements is prime, which
guarantees that Ass(M) is non-empty.

Remark 6.18. The existence of prime ideals minimal over any given ideal I is guaranteed by Zorn’s Lemma
and does not require the ring to be Noetherian. Let Σ be the set of prime ideals containing I. Consider a
chain of primes {Qj} in Σ. Their intersection Q = ∩Qj is an ideal containing I. If ab ∈ Q, then ab ∈ Qj
for all j. Since each Qj is prime, for each j, either a ∈ Qj or b ∈ Qj. Since {Qj} is a chain, this implies
that either a is in all Qj or b is in all Qj. Thus, either a ∈ Q or b ∈ Q, proving that Q is prime. Every
chain in Σ has a lower bound in Σ, so by Zorn’s Lemma, Σ has minimal elements.

The set of associated primes often contains inclusion relations, which have important geometric meaning.
This leads to a crucial distinction.

Definition 6.19. Let M be an R-module. An associated prime P ∈ Ass(M) is said to be a minimal (or
isolated) prime of M if it is minimal with respect to inclusion in the set Ass(M). An associated prime that
is not minimal is called an embedded prime of M .

If M = R/I, the minimal primes of R/I are precisely the minimal prime ideals containing I. Geometrically,
if P is a minimal prime, V (P ) is an irreducible component of the support of the module. If Q is an embedded
prime, then it properly contains some minimal prime P , so geometrically V (Q) is a subvariety contained
within the component V (P ).

Example 6.20. Let us revisit the ideal I = (x2, xy) ⊆ R = k[x, y]. We compute the associated primes of
the module M = R/I. The elements of M are residue classes of polynomials, which we denote by f̄ .

• Consider the element ȳ ∈M . What is its annihilator? We need f ∈ R such that fȳ = 0, which means
fy ∈ I = (x2, xy) = x(x, y). This requires f to be a multiple of x. Thus, ann(ȳ) = (x). Since (x) is a
prime ideal, we have (x) ∈ Ass(R/I).

• Consider the element x̄ ∈M . What is its annihilator? We need f ∈ R such that fx̄ = 0, which means
fx ∈ I = (x2, xy). We can write fx = g(x)x2 + h(x, y)xy = x(gx+ hy). This is satisfied if f ∈ (x, y).
Thus, ann(x̄) = (x, y). Since (x, y) is a maximal (and hence prime) ideal, we have (x, y) ∈ Ass(R/I).

It can be shown that these are the only associated primes. So, Ass(R/I) = {(x), (x, y)}. Since (x) ⊊ (x, y),
we have:

• (x) is a minimal associated prime. It corresponds to the isolated component V (x) (the y-axis),
which is the geometric support of the module.

• (x, y) is an embedded associated prime. It corresponds to the embedded component V (x, y)
(the origin). This component is ”embedded” in the sense that it lies on the isolated component. The
existence of this embedded prime reveals the special ”thicker” structure of our scheme at the origin,
which is lost when we only consider the radical radI = (x).

6.1.3 Prime Avoidance

A recurring theme in commutative algebra is the ability to find an element in an ideal that simultaneously
avoids a finite collection of other ideals, particularly prime ideals. This notion is formalized by the Prime
Avoidance Theorem.

Theorem 6.21 (Prime Avoidance). Let R be a commutative ring, and let J, I1, . . . , In be ideals in R.
Suppose that J ⊆

⋃n
j=1 Ij.

1. If R contains an infinite field k and J is a k-subspace, then J ⊆ Ij for some j.

2. If at most two of the ideals Ij are not prime, then J ⊆ Ij for some j.

Remark 6.22. The name of the theorem comes from its contrapositive statement: if an ideal J is not
contained in any of the prime ideals P1, . . . , Pn, then there exists an element x ∈ J that is not in any of the
Pj. In short, x “avoids” all the primes.
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Proof. (1) This is a standard result from linear algebra. A vector space over an infinite field cannot be the
union of a finite number of proper subspaces. Suppose J ̸⊆ Ij for all j. Then J ∩ Ij is a proper subspace of
J for each j. Since J ⊆

⋃
Ij , we have J =

⋃
(J ∩ Ij), which is a contradiction.

(2) We proceed by induction on n. The base case n = 1 is trivial: if J ⊆ I1, the conclusion holds. For the
inductive step, assume n > 1 and the theorem holds for unions of fewer than n ideals. We may assume without
loss of generality that the union is irredundant, i.e., J ̸⊆

⋃
j ̸=k Ij for any k ∈ {1, . . . , n}. This assumption

allows us to choose, for each k, an element xk ∈ J such that xk /∈
⋃
j ̸=k Ij . Since xk ∈ J ⊆

⋃n
j=1 Ij , it must

be that xk ∈ Ik.

Case n = 2: We have J ⊆ I1 ∪ I2. We have chosen x1 ∈ J with x1 ∈ I1, x1 /∈ I2, and x2 ∈ J with
x2 ∈ I2, x2 /∈ I1. Consider the element y = x1 + x2. Since x1, x2 ∈ J , we have y ∈ J . Suppose y ∈ I1. Since
x1 ∈ I1, it follows that x2 = y − x1 ∈ I1, which contradicts our choice of x2. Suppose y ∈ I2. Since x2 ∈ I2,
it follows that x1 = y − x2 ∈ I2, which contradicts our choice of x1. Thus, y is not in I1 ∪ I2. But y ∈ J ,
so this contradicts J ⊆ I1 ∪ I2. Therefore, our initial assumption must be false, and J must be contained in
either I1 or I2. Note that this case requires no primality assumption.

Case n > 2: By hypothesis, at most two of the ideals Ij are not prime. By relabeling, we may assume that
In is a prime ideal. As before, we have elements xj ∈ J ∩ Ij such that xj /∈ Ik for j ̸= k. Consider the
element y = xn + (x1x2 · · ·xn−1). Since xj ∈ J for all j, we have y ∈ J . Let’s check for its membership in
the ideals Ij .

• Suppose y ∈ In. Since xn ∈ In, this implies x1x2 · · ·xn−1 ∈ In. As In is prime, this means xj ∈ In for
some j ∈ {1, . . . , n− 1}. This contradicts the choice of xj . Thus, y /∈ In.

• Now consider Ik for some k ∈ {1, . . . , n − 1}. By construction, xk ∈ Ik, so the product x1x2 · · ·xn−1

is in Ik. If y ∈ Ik, then xn = y − (x1 · · ·xn−1) must be in Ik. This contradicts the choice of xn. Thus,
y /∈ Ik.

We have constructed an element y ∈ J such that y /∈
⋃n
j=1 Ij , which is a contradiction. Therefore, our

assumption that the union was irredundant is false, and J must be contained in some Ij .

Remark 6.23. If R is a graded ring, J is an ideal generated by homogeneous elements of positive degree,
and all the Ij are prime ideals, then it is sufficient to assume that the set of homogeneous elements of J is
contained in

⋃
Ij. The proof is modified by ensuring the constructed element is homogeneous. For example,

one can replace xk with suitable powers to make the degrees match in the element y = xdn + (x1 · · ·xn−1).
The primality of all Ij ensures that if xk /∈ Ij, then xdk /∈ Ij for j ̸= k.

A crucial application of Prime Avoidance relates an ideal to the zero-divisors of a module.

Corollary 6.24. Let R be a Noetherian ring, M ̸= 0 a finitely generated R-module, and I ⊆ R an ideal.
Then either I contains a non-zero-divisor on M , or I is contained in the annihilator of some non-zero
element of M .

Proof. The set of zero-divisors on M is the union of its associated primes, Z(M) =
⋃
P∈Ass(M) P . Since

M is a finitely generated module over a Noetherian ring, the set Ass(M) is finite. If I ⊆ Z(M), then I ⊆⋃
P∈Ass(M) P . By the Prime Avoidance Theorem, I must be contained in some associated prime P ∈ Ass(M).

By definition of an associated prime, P = ann(x) for some non-zero x ∈M . Thus, I ⊆ ann(x). Conversely,
if I is not contained in any associated prime, then by Prime Avoidance, I ̸⊆

⋃
P∈Ass(M) P = Z(M). This

means there exists an element in I which is not a zero-divisor on M .

We now provide the proofs for the fundamental properties of associated primes stated in the previous section.
We begin by establishing their existence.

Proposition 6.25. Let R be a ring and M ̸= 0 be an R-module. If I ⊆ R is an ideal that is maximal
among all annihilators of non-zero elements of M , then I is a prime ideal. In particular, if R is Noetherian,
Ass(M) is non-empty.
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Proof. Let I = ann(x) for some x ̸= 0 ∈M . To show I is prime, let a, b ∈ R with ab ∈ I and suppose b /∈ I.
We must show a ∈ I. Since ab ∈ I = ann(x), we have (ab)x = a(bx) = 0. Since b /∈ I, the element bx ∈M is
non-zero. The annihilator of bx is ann(bx) = {r ∈ R | r(bx) = 0}. We see that I ⊆ ann(bx) (since for r ∈ I,
r(bx) = b(rx) = b · 0 = 0), and also a ∈ ann(bx). Thus, the ideal I + (a) is contained in ann(bx). Since I is
maximal in the set of annihilators and I ⊆ ann(bx), we must have either I = ann(bx) or ann(bx) = R. The
latter is impossible since bx ̸= 0. Thus I = ann(bx). Since I + (a) ⊆ ann(bx) = I, we must have a ∈ I. This
proves that I is prime.

If R is Noetherian, the set of ideals Σ = {ann(x) | x ∈ M,x ̸= 0} is non-empty (as M ̸= 0). By the ACC,
this set has a maximal element. By the first part of the proposition, this maximal element is a prime ideal
and is in Ass(M). Thus Ass(M) ̸= ∅.

This proposition, combined with the definition of a zero-divisor, immediately proves part of the main theorem.

Proof of Theorem 6.17 (3). The set of zero-divisors on M is Z(M) = {r ∈ R | ∃x ̸= 0, rx = 0} =⋃
x ̸=0 ann(x). If P ∈ Ass(M), then P = ann(x) for some x ̸= 0, so every element of P is a zero-divisor. This

shows
⋃
P∈Ass(M) P ⊆ Z(M). Conversely, let r ∈ Z(M). Then r ∈ ann(x) for some x ̸= 0. In a Noetherian

ring, the ideal ann(x) is contained in a maximal annihilator ideal, which by Proposition 6.25 is an associated
prime P . Thus r ∈ P ⊆

⋃
Q∈Ass(M)Q. This shows Z(M) ⊆

⋃
P∈Ass(M) P .

We can refine the classical result that an element is zero if and only if it is zero in all localizations at maximal
ideals.

Corollary 6.26. Let R be a Noetherian ring and M be an R-module. An element x ∈M is zero if and only
if its image x/1 is zero in the localization MP for every maximal associated prime P of M .

Proof. (⇒) This direction is clear. (⇐) Suppose x ̸= 0. Let I = ann(x), which is a proper ideal of R. The
submodule Rx ⊆ M is non-zero, so Ass(Rx) is non-empty. Let P ∈ Ass(Rx). Then P = ann(sx) for some
s ∈ R. By definition, P ⊇ ann(Rx) = ann(x) = I. Since Ass(Rx) ⊆ Ass(M), P is an associated prime of M .
There exists a maximal element Pmax in the set Ass(M) such that P ⊆ Pmax. We claim the image of x in
MPmax

is non-zero. If x/1 = 0 in MPmax
, then there exists some u ∈ R \Pmax such that ux = 0. This means

u ∈ ann(x) = I ⊆ P ⊆ Pmax. This is a contradiction, as u /∈ Pmax. Therefore, x/1 ̸= 0 in MPmax
.

The following lemma describes the behavior of associated primes in short exact sequences and is key to
proving their finiteness.

Lemma 6.27. Let R be a Noetherian ring. For any short exact sequence of R-modules 0 → M ′ → M →
M ′′ → 0, we have

Ass(M ′) ⊆ Ass(M) ⊆ Ass(M ′) ∪Ass(M ′′).

Proof. The inclusion Ass(M ′) ⊆ Ass(M) is immediate, since any submodule of M ′ isomorphic to R/P is
also a submodule of M . For the second inclusion, let P ∈ Ass(M). Then there is a submodule N ⊆M with
N ∼= R/P . If N ∩M ′ ̸= {0}, then since every non-zero element of N ∼= R/P has annihilator P , any non-zero
element in N ∩M ′ has annihilator P . This implies P ∈ Ass(M ′). If N ∩M ′ = {0}, then the composition
N ↪→ M → M ′′ is injective. So N is isomorphic to a submodule of M ′′. This implies P ∈ Ass(M ′′). In
either case, P ∈ Ass(M ′) ∪Ass(M ′′).

The final piece needed is the existence of a prime filtration for any finitely generated module.

Proposition 6.28. If R is a Noetherian ring andM is a finitely generated R-module, thenM has a filtration
0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M such that each quotient Mi+1/Mi is isomorphic to R/Pi for some prime
ideal Pi ⊆ R.
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Proof. If M = 0, the filtration is trivial. If M ̸= 0, since R is Noetherian, Ass(M) is non-empty. Let
P1 ∈ Ass(M). Then there exists a submodule M1 ⊆ M with M1

∼= R/P1. Now consider the quotient
module M/M1. If it is non-zero, it also has an associated prime P2 ∈ Ass(M/M1), giving a submodule
M2/M1 ⊆ M/M1 with M2/M1

∼= R/P2. We build a chain 0 ⊆ M1 ⊆ M2 ⊆ . . . . Since M is a finitely
generated module over a Noetherian ring, it is a Noetherian module. This ascending chain of submodules
must terminate, i.e., Mn =M for some n. This gives the desired filtration.

We are now equipped to prove the remaining parts of the main theorem.

Proof of Theorem 6.17 (1): Finiteness and Minimal Primes. LetM have a prime filtration as in Proposition
6.28. We prove that Ass(M) is finite by induction on the length n of the filtration. If n = 1, then M ∼=
R/P1. Any non-zero element x ∈ M generates the entire module as a submodule, and ann(x) = P1. Thus
Ass(M) = {P1}, which is finite. For n > 1, consider the short exact sequence 0→Mn−1 →M → R/Pn → 0.
By Lemma 6.27, Ass(M) ⊆ Ass(Mn−1) ∪ Ass(R/Pn). By the inductive hypothesis, Ass(Mn−1) is finite. As
we just saw, Ass(R/Pn) = {Pn}. Therefore, Ass(M) is a subset of a finite set, and is itself finite.

Now, let P be a prime ideal minimal over ann(M). We must show P ∈ Ass(M). Localize at P . The module
MP over the local ring RP is non-zero, otherwise there would be an s ∈ R \ P with sM = 0, implying
ann(M) ̸⊆ P . Since RP is Noetherian and MP ̸= 0, AssRP

(MP ) is non-empty. Let Q′ ∈ AssRP
(MP ). Any

such prime must contain the annihilator annRP
(MP ) = (ann(M))P . The prime ideals of RP containing

(ann(M))P correspond to prime ideals of R containing ann(M) and contained in P . Since P is minimal over
ann(M), the only such prime is P itself. Thus, the only prime in RP containing (ann(M))P is PP . So we
must have Q′ = PP . This shows AssRP

(MP ) = {PP }. By the localization property (part 4), AssRP
(MP )

consists of primes QP where Q ∈ Ass(M) and Q ⊆ P . Since AssRP
(MP ) is non-empty and equal to {PP },

there must be some Q ∈ Ass(M) with Q ⊆ P such that QP = PP . This implies Q = P . Therefore,
P ∈ Ass(M).

Proof of Theorem 6.17 (4): Localization. (⇒) Suppose P ∈ Ass(M) and P ∩ U = ∅. Then there is an
injective map R/P → M . Localization is an exact functor, so applying (·)U yields an injective map
(R/P )U → MU . Since P ∩ U = ∅, (R/P )U ∼= RU/PU , and PU is a prime ideal of RU . Thus RU/PU
embeds into MU , which means PU ∈ AssRU

(MU ).

(⇐) Suppose Q ∈ AssRU
(MU ). Any prime in RU is of the form PU for some prime P ⊂ R with P ∩ U = ∅.

So we have an embedding ϕ : RU/PU ↪→MU . This embedding is a map in HomRU
(RU/PU ,MU ). For finitely

presented modules over a Noetherian ring, Hom commutes with localization. Specifically, there is a natural
isomorphism:

HomRU
((R/P )U ,MU ) ∼= (HomR(R/P,M))U

So our map ϕ corresponds to an element f/u for some f ∈ HomR(R/P,M) and u ∈ U . This means that
after localizing, the map f becomes ϕ. Since ϕ is injective, for any a/1 ∈ RU/PU , if ϕ(a/1) = 0 then a/1 = 0.
We have ϕ(a/1) = (f/u)(a/1) = f(ā)/u. For this to be zero in MU , there must be some v ∈ U such that
vf(ā) = 0. So f(vā) = 0. Consider the kernel of f . Let ā ∈ ker f . Then f(ā) = 0, so ϕ(a/1) = 0, which
implies a/1 = 0 in (R/P )U . This means there is some w ∈ U such that wa ∈ P . Since P ∩ U = ∅ and P
is prime, this implies a ∈ P , so ā = 0 in R/P . Therefore, ker f = {0} and f : R/P → M is injective. This
implies P ∈ Ass(M).

6.1.4 Introduction to Primary Decomposition

The theory of associated primes provides the foundation for a powerful generalization of prime factorization
known as primary decomposition. Throughout this section, we assume that R is a Noetherian ring and M
is a non-zero, finitely generated R-module. While the theory is often first developed for ideals, we define it
more generally for submodules.

Definition 6.29. A proper submodule N ⊊ M is called primary if the set of associated primes of the
quotient module M/N consists of a single element. If Ass(M/N) = {P}, we say that N is a P -primary
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submodule. An R-module M is coprimary if the zero submodule {0} ⊆ M is primary, i.e., if Ass(M)
consists of a single element. If Ass(M) = {P}, we say M is P -coprimary.

An important property is that the intersection of submodules that are primary to the same prime is again
primary to that prime.

Proposition 6.30. If N1, . . . , Nt ⊆ M are P -primary submodules for a given prime ideal P , then their
intersection N =

⋂t
i=1Ni is also a P -primary submodule.

Proof. By induction, it suffices to prove the case t = 2. Let N = N1 ∩N2. There is a canonical injection of
M/N into the direct sumM/N1⊕M/N2 given by the map m+N 7→ (m+N1,m+N2). Using the properties
of associated primes for submodules and direct sums, we have:

Ass(M/N) ⊆ Ass(M/N1 ⊕M/N2) = Ass(M/N1) ∪Ass(M/N2)

By hypothesis, Ass(M/N1) = {P} and Ass(M/N2) = {P}. Therefore, Ass(M/N) ⊆ {P}. SinceN is a proper
submodule, M/N ̸= 0, so its set of associated primes is non-empty. We conclude that Ass(M/N) = {P},
and thus N is P -primary.

The modern definition of a primary module can be connected to more classical characterizations involving
zero-divisors and annihilators.

Proposition 6.31. Let M be a finitely generated R-module and P ⊆ R be a prime ideal. The following are
equivalent:

1. M is P -coprimary (i.e., Ass(M) = {P}).

2. P is the unique minimal prime ideal over ann(M), and every zero-divisor on M is in P .

3. There exists an integer n > 0 such that Pn ⊆ ann(M), and every element of R\P is a non-zero-divisor
on M .

Proof. (1) =⇒ (2): If Ass(M) = {P}, then P is the only associated prime. Since the minimal primes over
ann(M) are a subset of Ass(M), P must be the unique minimal prime. The set of zero-divisors on M is the
union of the associated primes, which in this case is just P .

(2) =⇒ (3): The second condition states that every element of R \ P is a non-zero-divisor on M . We only
need to show that Pn ⊆ ann(M) for some n. Let’s localize at P . The ring is RP and the module is MP .
The annihilator is annRP

(MP ) = (ann(M))P . Since P is the unique minimal prime over ann(M), the ideal
PP is the unique minimal prime over (ann(M))P in the local ring RP . In a local ring, the unique minimal
prime over an ideal is precisely its nilradical. Thus, PP = rad(annRP

(MP )). Since RP is Noetherian, its
maximal ideal PP is finitely generated. The radical property implies that some power of PP is contained in
annRP

(MP ), say (PP )
n ⊆ annRP

(MP ). This means (Pn)P ⊆ (ann(M))P . This implies that for any x ∈ Pn
and any m ∈ M , we have xm/1 = 0 in MP . By definition of localization, there exists u ∈ R \ P such that
uxm = 0. By hypothesis, every element of R\P is a non-zero-divisor onM , so we can conclude that xm = 0.
Since this holds for all m ∈M , we have x ∈ ann(M). Thus, Pn ⊆ ann(M).

(3) =⇒ (1): Let Q ∈ Ass(M). Then Q ⊇ ann(M). Since Pn ⊆ ann(M), we have Q ⊇ Pn, which
implies Q ⊇ P because Q is prime. On the other hand, the set of zero-divisors on M is

⋃
Q′∈Ass(M)Q

′. By

hypothesis, every element of R \ P is a non-zero-divisor, so the set of zero-divisors is contained in P . Thus,⋃
Q′∈Ass(M)Q

′ ⊆ P . This implies that every associated prime Q must be contained in P . Combining Q ⊇ P
and Q ⊆ P , we get Q = P . Thus, any associated prime must be equal to P , which means Ass(M) = {P}.

Remark 6.32. If we apply the proposition to a module M = R/I for a proper ideal I ⊂ R, we find that I
is a P -primary ideal if and only if Pn ⊆ I for some n and for any r, s ∈ R, if rs ∈ I and r /∈ P , then s ∈ I.
This is equivalent to the classical definition: an ideal I is P -primary if rad(I) = P and for any r, s ∈ R with
rs ∈ I, if r /∈ I then s ∈ P . For example, in R = k[x, y], the ideal I = (x2, y) has radical rad(I) = (x, y).
This is not (x, y)-primary since, for instance, (x)-primary since rad(I) ̸= (x).
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Remark 6.33. An important consequence of the characterizations above is that if a submodule N is P -
primary in M , then the radical of the annihilator of the quotient is P . That is, rad(ann(M/N)) = P .
This follows because if Ass(M/N) = {P}, then P is the unique minimal prime over ann(M/N), so P =
rad(ann(M/N)).

The previous remark shows that if I is P -primary, then rad(I) = P . However, the converse is false: an ideal
whose radical is prime is not necessarily primary. For instance, I = (x2, xy) ⊆ k[x, y] has rad(I) = (x),
which is prime. But we have seen that Ass(R/I) = {(x), (x, y)}, so I is not primary. This motivates the
need for a decomposition into an intersection of primary ideals.

Theorem 6.34 (Lasker-Noether). Let M be a finitely generated module over a Noetherian ring R. Any
proper submodule N ⊊M can be written as a finite intersection of primary submodules, N =

⋂n
i=1Ni.

Furthermore, if this decomposition is minimal (meaning the associated primes Pi are all distinct and the
intersection is irredundant, i.e.,

⋂
j ̸=iNj ̸⊆ Ni for all i), then:

1. The set of primes {P1, . . . , Pn} is uniquely determined by N ; it is precisely the set of associated primes
Ass(M/N).

2. The primary submodules Ni corresponding to the minimal primes in Ass(M/N) are uniquely deter-
mined by N .

Proof of Existence. A submodule N ⊊ M is called irreducible if it is not the intersection of two strictly
larger submodules. Since M is a Noetherian module, any proper submodule N can be written as a finite
intersection of irreducible submodules. So we can write N =

⋂n
i=1Ni with each Ni irreducible. The existence

of a primary decomposition then follows from the fact that in a finitely generated module over a Noetherian
ring, every irreducible submodule is primary.

Let N ⊊ M be irreducible. Suppose for contradiction that Ass(M/N) has at least two distinct primes, say
P1, P2. Then there exist submodules L1/N and L2/N ofM/N with L1/N ∼= R/P1 and L2/N ∼= R/P2. Since
every non-zero element in L1/N has annihilator P1 and every non-zero element in L2/N has annihilator
P2, their intersection must be trivial: (L1/N) ∩ (L2/N) = {0}. In M , this means L1 ∩ L2 = N . Since
L1/N ̸= 0 and L2/N ̸= 0, we have L1 ⊋ N and L2 ⊋ N . This expresses N as the intersection of two strictly
larger submodules, contradicting its irreducibility. Thus Ass(M/N) must contain only one element, so N is
primary.

Proof of Uniqueness Properties. Let N =
⋂n
i=1Ni be a minimal primary decomposition. By factoring out

N , we may assume N = {0}. The decomposition is 0 =
⋂
Ni where Ni is Pi-primary.

(1) The set of primes is unique. The canonical map ϕ : M →
⊕n

i=1M/Ni is injective, since Ker(ϕ) =⋂
Ni = {0}. This implies Ass(M) ⊆ Ass(

⊕
M/Ni) =

⋃
Ass(M/Ni) = {P1, . . . , Pn}. For the reverse

inclusion, let Lj =
⋂
i̸=j Ni. Since the decomposition is irredundant, Lj ̸= {0}. Also, Lj ∩Nj = {0}. Thus,

Lj ∼= Lj/(Lj ∩ Nj), which embeds into M/Nj . Since M/Nj is Pj-coprimary, its non-zero submodule Lj is
also Pj-coprimary. Hence Ass(Lj) = {Pj}. As Lj ⊆ M , we have Ass(Lj) ⊆ Ass(M), so Pj ∈ Ass(M). This
shows {P1, . . . , Pn} ⊆ Ass(M), establishing equality.

(2) The minimal components are unique. Let Pi be a minimal prime in Ass(M). We claim the
corresponding primary component Ni is unique. We show it can be constructed directly from M and Pi as
Ni = Ker(M → MPi

). Let’s analyze the localization of the intersection 0 =
⋂n
j=1Nj at the minimal prime

Pi.

{0} = {0}Pi
=

 n⋂
j=1

Nj


Pi

=

n⋂
j=1

(Nj)Pi

For any j ̸= i, since Pi is minimal, Pj ̸⊆ Pi. Thus we can choose an element u ∈ Pj \ Pi. Since M/Nj
is Pj-coprimary, some power uk annihilates M/Nj . Since u /∈ Pi, u is a unit in RPi

, so uk is also a
unit. This means (M/Nj)Pi

= MPi
/(Nj)Pi

= 0, so (Nj)Pi
= MPi

. The intersection thus collapses to
{0} = (Ni)Pi

∩
⋂
j ̸=iMPi

= (Ni)Pi
. So, (Ni)Pi

= {0}. This means for any m ∈ Ni, its image m/1 is zero
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in MPi , so m ∈ Ker(M → MPi). Conversely, let m ∈ Ker(M → MPi). This means there exists u ∈ R \ Pi
such that um = 0. Consider the image m̄ of m in M/Ni. Then um̄ = 0. Since M/Ni is Pi-coprimary and
u /∈ Pi, u is a non-zero-divisor on M/Ni. Thus we must have m̄ = 0, which means m ∈ Ni. This shows
Ni = Ker(M →MPi

), proving its uniqueness.

Example 6.35.

1. Let I = (x2y) ⊆ k[x, y]. The minimal primes over I are (x) and (y). A minimal primary decomposition
is I = (x2) ∩ (y). Here, (x2) is (x)-primary and (y) is (y)-primary. Since both associated primes are
minimal, both components are unique. We can recover them as:

(x2) = Ker(R/I → (R/I)(x)), (y) = Ker(R/I → (R/I)(y))

2. Let I = (x2, xy) ⊆ k[x, y]. The associated primes are (x) (minimal) and (x, y) (embedded). The (x)-
primary component is unique: N(x) = Ker(R/I → (R/I)(x)) = (x). However, (x) ̸= I. The primary
decomposition I = (x) ∩ (x, y)2 shows how the embedded component is needed to recover the full ideal.

Primary decomposition behaves predictably under localization; it filters the decomposition, keeping only the
components corresponding to primes that survive the process.

Proposition 6.36. Let N =
⋂n
i=1Ni be a minimal primary decomposition of N ⊆ M . Let U ⊆ R be a

multiplicatively closed set. Let the indices be ordered such that Pi ∩ U = ∅ for i = 1, . . . , t and Pi ∩ U ̸= ∅
for i = t+ 1, . . . , n. Then the localization of N in MU has the minimal primary decomposition:

NU =

t⋂
i=1

(Ni)U

over the ring RU .

Proof. By factoring out N , we can assume N = {0}. Localization commutes with finite intersections of
submodules, so we have:

0 = {0}U =

(
n⋂
i=1

Ni

)
U

=

n⋂
i=1

(Ni)U

If Pi ∩ U ̸= ∅ for i > t, there is an element u ∈ Pi ∩ U . Since M/Ni is Pi-coprimary, some power uk

annihilates it. In RU , u/1 is a unit, so uk/1 is a unit. Since uk/1 annihilates (M/Ni)U = MU/(Ni)U ,
this module must be zero. This implies (Ni)U = MU . These terms are redundant in the intersection,
which becomes 0 =

⋂t
i=1(Ni)U . For i ≤ t, since Pi ∩ U = ∅, (Ni)U is a (Pi)U -primary submodule of MU .

The associated primes {(P1)U , . . . , (Pt)U} are distinct, and it can be verified that the intersection remains
irredundant. This gives the minimal primary decomposition of {0} in MU .

6.1.5 Primary Decomposition and Localization

A key strength of primary decomposition is its compatibility with localization. This property provides a
powerful tool for studying modules locally and then assembling the information to understand their global
structure. It demonstrates that the decomposition of a module into its primary components behaves pre-
dictably when we restrict our attention to an open subset of Spec(R).

Throughout this section, we maintain the standing assumption that R is a Noetherian ring and M is a
finitely generated R-module.

Proposition 6.37. Let N =
⋂n
i=1Ni be a minimal primary decomposition of a submodule N ⊆ M , with

Ni being a Pi-primary submodule for each i. Let U ⊆ R be a multiplicatively closed set. After reindexing,
let P1, . . . , Pt be the associated primes that do not intersect U (i.e., Pi ∩U = ∅), and let Pt+1, . . . , Pn be the
primes that do intersect U (i.e., Pi ∩ U ̸= ∅).
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Then the localization of N in the RU -module MU , denoted NU , has the minimal primary decomposition:

NU =

t⋂
i=1

(Ni)U

Proof. To simplify the notation, we can factor out the submodule N . Consider the quotient module M =
M/N . The zero submodule {0} ⊆ M has the minimal primary decomposition {0} =

⋂n
i=1(Ni/N). Proving

the proposition for N ⊆M is equivalent to proving it for the zero submodule {0} ⊆M . Thus, without loss
of generality, we assume N = {0} and we have a minimal primary decomposition 0 =

⋂n
i=1Ni in the module

M .

Localization is an exact functor, so it commutes with finite intersections of submodules. Applying the functor
(·)U to the decomposition gives:

{0} = {0}U =

(
n⋂
i=1

Ni

)
U

=

n⋂
i=1

(Ni)U

This provides a decomposition of the zero submodule of MU as an intersection of the localized submodules
(Ni)U . We must now analyze each of these components.

1. Case 1: Consider a prime Pi such that Pi ∩ U ̸= ∅, for i ∈ {t + 1, . . . , n}. By definition, Ni is
a Pi-primary submodule of M , which means the quotient module M/Ni is Pi-coprimary. From our
characterization of coprimary modules (Proposition 6.31), this implies that there exists an integer k > 0
such that P ki ⊆ ann(M/Ni). Since Pi ∩ U ̸= ∅, let u be an element in this intersection. Then u ∈ Pi,
so uk ∈ P ki ⊆ ann(M/Ni). This means uk annihilates every element of M/Ni. When we localize, the
element u/1 ∈ RU is a unit because u ∈ U . Since uk/1 annihilates the localized module (M/Ni)U , and
uk/1 is a unit, the module must be the zero module. Therefore, (M/Ni)U =MU/(Ni)U = {0}, which
implies that (Ni)U =MU .

2. Case 2: Consider a prime Pi such that Pi ∩U = ∅, for i ∈ {1, . . . , t}. We know that Ni is Pi-primary
in M . The associated primes of the localized module (M/Ni)U = MU/(Ni)U over the ring RU are
given by

AssRU
(MU/(Ni)U ) = {QU | Q ∈ AssR(M/Ni) and Q ∩ U = ∅}

Since AssR(M/Ni) = {Pi} and we are in the case where Pi ∩ U = ∅, it follows that

AssRU
(MU/(Ni)U ) = {(Pi)U}

This shows that (Ni)U is a (Pi)U -primary submodule of the RU -module MU .

Now, we substitute these findings back into our localized intersection:

{0} =
n⋂
i=1

(Ni)U =

(
t⋂
i=1

(Ni)U

)
∩

(
n⋂

i=t+1

(Ni)U

)
=

(
t⋂
i=1

(Ni)U

)
∩

(
n⋂

i=t+1

MU

)

The intersection with MU is redundant, so we are left with:

{0} =
t⋂
i=1

(Ni)U

This is a primary decomposition of the zero submodule in MU . To show that it is minimal, we must
verify that the primes {(P1)U , . . . , (Pt)U} are distinct and that the intersection is irredundant. The map
P 7→ PU is a bijection between primes of R disjoint from U and primes of RU . Since the original primes
P1, . . . , Pt were distinct, their localizations (P1)U , . . . , (Pt)U are also distinct. The irredundancy of the
localized decomposition can also be shown to be inherited from the irredundancy of the original. Thus, we
have obtained the minimal primary decomposition of {0} in MU , as desired.
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6.2 Integrality and Other Important Lemmas

6.2.1 Cayley-Hamilton Theorem

The classical Cayley-Hamilton Theorem states that a square matrix over a field satisfies its own characteristic
polynomial. This powerful result can be generalized from vector spaces to finitely generated modules over
any commutative ring, where it becomes a foundational tool.

Theorem 6.38 (Cayley-Hamilton Theorem for Modules). Let R be a commutative ring, I ⊆ R an ideal,
and M an R-module generated by n elements. Let φ : M → M be an R-module homomorphism such that
φ(M) ⊆ IM . Then φ satisfies a monic polynomial equation of the form:

p(x) = xn + p1x
n−1 + · · ·+ pn

where each coefficient pj ∈ Ij. As an endomorphism of M , p(φ) = φn + p1φ
n−1 + · · ·+ pn · idM = 0.

Proof. Let m1, . . . ,mn be a set of generators for M . The condition φ(M) ⊆ IM means that for each
generator mi, its image can be written as an I-linear combination of the generators. That is, for each
i ∈ {1, . . . , n},

φ(mi) =

n∑
j=1

aijmj

for some coefficients aij ∈ I.

We can view M as an R[x]-module where the indeterminate x acts on M via the endomorphism φ; that is,
for any m ∈M , x ·m := φ(m). The above equations can then be rewritten as:

n∑
j=1

(δijx− aij)mj = 0

where δij is the Kronecker delta. Let m be the column vector of generators and let A be the n× n matrix
(aij). The system of equations can be expressed in matrix form as (xI−A)m = 0.

Let B be the adjugate (classical adjoint) matrix of (xI−A). Standard linear algebra shows that B(xI−A) =
det(xI−A)I. Multiplying the matrix equation on the left by B, we get:

det(xI−A)Im = B(xI−A)m = B · 0 = 0

This means that the endomorphism ofM corresponding to multiplication by the polynomial p(x) = det(xI−
A) annihilates each generator mi. Since the mi generate M , the endomorphism p(φ) must be the zero map
on all of M .

Finally, we check the coefficients of p(x). The determinant is a sum of products of entries of the matrix
(xI−A). The coefficient pj of xn−j is, up to sign, the sum of the principal j × j minors of A. Since every
entry aij of A is in the ideal I, any product of j such entries must lie in Ij . Therefore, pj ∈ Ij for each j,
as required.

While stated for general modules, this theorem has particularly strong consequences for free modules, which
are the closest analogues of vector spaces over fields.

Definition 6.39. An R-module F is free if it has a free basis, which is a subset B ⊆ F such that every
element of F can be written uniquely as an R-linear combination of elements of B. This is equivalent to
saying that for any distinct elements b1, . . . , bn ∈ B, the relation

∑
aibi = 0 implies all coefficients ai are

zero. A free module with a finite basis of size n is isomorphic to Rn.

Corollary 6.40. Let R be a ring and M a finitely generated R-module.

1. A surjective R-module homomorphism α :M →M is an isomorphism.

100



2. If M ∼= Rn is a free module of rank n, then any set of n elements that generate M is a free basis. In
particular, the rank of a free module is well-defined.

Proof. (1) We view M as an R[t]-module, where t acts as α. Since α is surjective, we have α(M) =M . Let
I = (t) ⊆ R[t]. Then IM =M . We apply the Cayley-Hamilton theorem to the identity map φ = idM :M →
M . Since idM (M) =M = IM , there exists a polynomial p(x) = xn + p1x

n−1 + · · ·+ pn with pj ∈ Ij = (tj)
such that p(idM ) = 0. So, pj = cjt

j for some cj ∈ R[t]. Evaluating the polynomial at idM and remembering
that t acts as α, we get:

(idM + c1α+ c2α
2 + · · ·+ cnα

n)(m) = 0 for all m ∈M.

Factoring out α, we can write this as (idM + α ◦ q(α)) = 0, where q(α) = c1idM + c2α+ · · ·+ cnα
n−1. This

gives α ◦ (−q(α)) = idM , showing that α has a right inverse and is therefore an isomorphism.

(2) Let m1, . . . ,mn be a set of generators for M . We can define a surjective homomorphism β : Rn →M by
sending the i-th standard basis vector of Rn to mi. Since M is free of rank n, there is also an isomorphism
γ :M → Rn. The composition γ ◦β : Rn → Rn is a surjective endomorphism of a finitely generated module,
so by part (1), it is an isomorphism. This implies that its kernel is trivial. The kernel of γ ◦ β is precisely
the kernel of β, since γ is an isomorphism. Therefore, β is an isomorphism, which means that the generators
m1, . . . ,mn must be linearly independent and thus form a free basis.

To see that the rank is well-defined, suppose Rm ∼= Rn and, without loss of generality, m < n. Let
{e1, . . . , em} be a free basis for Rm. Under the isomorphism, these map to m elements in Rn which generate
Rn. We can form a set of n generators for Rn by taking these m elements and augmenting the set with
n−m copies of the zero vector. This gives a set of n generators for Rn which is manifestly not a free basis,
contradicting what we just proved. Hence, we must have m = n.

Remark 6.41. The process of creating a new ring by imposing a polynomial relation on an element is
fundamental. For a polynomial p ∈ R[x], the quotient ring R[x]/(p) can be thought of as adjoining an
element to R that is a ”root” of p. A related construction is localization: adjoining an inverse to an element
a ∈ R is equivalent to forming the quotient ring R[x]/(ax− 1), where x represents the inverse of a.

The Cayley-Hamilton theorem gives a precise characterization of when such quotient rings are finite over
the base ring.

Proposition 6.42. Let R be a ring, J ⊆ R[x] an ideal, and let S = R[x]/J . Let s be the image of x in S.

1. S is generated by at most n elements as an R-module if and only if J contains a monic polynomial of
degree n. In this case, S is generated by {1, s, . . . , sn−1}.

2. S is a finitely generated free R-module of rank n if and only if J can be generated by a single monic
polynomial of degree n. In this case, {1, s, . . . , sn−1} is a free basis.

Proof. (1) (⇐) Suppose J contains a monic polynomial p(x) = xn + r1x
n−1 + · · · + rn. In S, this relation

becomes p(s) = 0, so sn = −(r1sn−1 + · · ·+ rn). Any higher power sd for d ≥ n can be inductively reduced
to an R-linear combination of {1, s, . . . , sn−1}. Since {1, s, s2, . . . } generates S as an R-module, this shows
that {1, s, . . . , sn−1} is a generating set.

(⇒) Suppose S is generated by n elements as an R-module. Let φ : S → S be the R-module homomorphism
given by multiplication by s. Since φ(S) = sS ⊆ S, we can apply the Cayley-Hamilton theorem with
I = R. This guarantees the existence of a monic polynomial p(x) of degree n with coefficients in R such
that p(φ) = 0. Acting on 1 ∈ S, we get p(s) · 1 = p(s) = 0. This means p(x) ∈ J .

(2) (⇐) Suppose J = (p) where p is monic of degree n. By (1), S is generated by {1, s, . . . , sn−1}. To

show this is a free basis, suppose there is a relation
∑n−1
i=0 ais

i = 0 for ai ∈ R. This means the polynomial
q(x) =

∑
aix

i is in J . So q(x) must be a multiple of p(x). But deg(q) < n = deg(p), so this is only possible
if q(x) = 0, which means all ai = 0.
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(⇒) Suppose S is a free R-module of rank n. By (1), there is a monic polynomial p ∈ J of degree n.
This implies that {1, s, . . . , sn−1} generates S. Since S is free of rank n, this set must be a free basis. We
claim J = (p). Let f ∈ J be any polynomial. By the division algorithm for monic polynomials, we can
write f = qp + r where deg(r) < n. Since f ∈ J and p ∈ J , the remainder r must also be in J . But if
r(x) =

∑
cix

i is in J , then r(s) =
∑
cis

i = 0 in S. As {1, s, . . . , sn−1} is a basis, this implies all ci = 0, so
r = 0. Thus f = qp, which shows J = (p).

6.2.2 R-Algebras and Integrality

The appearance of monic polynomials in the Cayley-Hamilton theorem motivates the study of a special class
of ring extensions defined by such polynomials. This leads to the fundamental concept of integrality.

Definition 6.43. An R-algebra is a ring S equipped with a ring homomorphism ϕ : R→ S. This structure
makes S an R-module where the action is defined by r · s := ϕ(r)s.

Definition 6.44. An element s ∈ S is integral over R if it is a root of a monic polynomial with coefficients
in R. If every element of S is integral over R, then S is an integral extension of R. The set of elements
in S integral over R is the integral closure of R in S. If R is an integral domain, its integral closure in
its field of fractions is called the normalization of R.

Geometrically, normalizing a ring corresponds to resolving singularities of the associated algebraic variety.
For instance, the normalization of an algebraic curve is always a smooth curve.

Definition 6.45. An R-algebra S is finite over R if it is finitely generated as an R-module.

The following examples illustrate the distinctions between these concepts.

Example 6.46. 1. The polynomial ring R[x] is a finitely generated R-algebra, but it is not a finite R-
module, and the element x is not integral over R. This is the canonical example of an algebra that is
finitely generated but not finite.

2. The quotient ring R[x]/(x2) is finite over R (generated as a module by {1, x̄}) and every element is
integral over R.

3. The ring Q[
√
2, 3
√
2, 4
√
2, . . . ] is an integral extension of Q (as each generator is integral), but it is not

a finite Q-module.

The relationship between finiteness and integrality is captured precisely in the following proposition.

Proposition 6.47. An R-algebra S is finite over R if and only if S is generated as an R-algebra by a finite
number of integral elements.

Proof. (⇒) If S is finite over R, let s ∈ S. Multiplication by s is an R-linear map φs : S → S. By the
Cayley-Hamilton theorem, s is integral over R. Since this holds for all s ∈ S, S is generated by integral
elements (namely, its finite set of module generators). (⇐) Let S = R[s1, . . . , sn] where each si is integral.
We proceed by induction on n. The base case n = 1, S = R[s1], is finite over R because the monic relation
for s1 allows any power of s1 to be reduced to a linear combination of lower powers. For the inductive step,
let R′ = R[s1, . . . , sn−1]. By induction, R′ is finite over R. Then S = R′[sn]. Since sn is integral over R, it
is also integral over R′. By the base case, S is finite over R′. Since a finite extension of a finite extension is
finite, S is finite over R.

The next result gives another powerful criterion for checking integrality, which will be used to show that
integral elements form a subring.

Proposition 6.48. If S is an R-algebra and s ∈ S, then s is integral over R if and only if there exists a
faithful S-module N and a finitely generated R-submodule M ⊆ N such that sM ⊆ M . In particular, s is
integral over R if and only if R[s] is a finitely generated R-module.
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Proof. The final sentence follows from the main statement by taking S = R[s] and M = N = R[s]. If s is
integral, we have shown R[s] is finite over R. If R[s] is finite over R, we can take M = R[s], which is faithful
as an R[s]-module, and sM ⊆M .

Now we prove the main statement. (⇒) Assume s is integral. Take N = S andM = R[s]. Since s is integral,
R[s] is a finite R-module. Also sM = sR[s] ⊆ R[s] =M . As 1 ∈M , M is faithful as an S-module. (⇐) Let
φ :M →M be multiplication by s. Since sM ⊆M , this is a well-defined R-linear map. By Cayley-Hamilton
with I = R, there is a monic polynomial p(x) with coefficients in R such that p(s) annihilates M . Since M
is a faithful S-module, we must have p(s) = 0. Thus s is integral.

This criterion makes the proof that integral elements form a subring almost immediate.

Theorem 6.49. Let S be an R-algebra. The set of all elements of S integral over R is a subalgebra of S.

Proof. Let a, b ∈ S be integral over R. We want to show a + b and ab are integral. The ring R[a, b] is an
R-algebra generated by two integral elements, so by Proposition 6.47 it is a finite R-module. Let s = a+b or
s = ab. In either case, s ∈ R[a, b]. Let M = R[a, b] and N = S. Then M is a finitely generated R-submodule
of N , it is faithful as an S-module (since 1 ∈ M), and sM ⊆ M . By the previous proposition, s is integral
over R.

6.2.3 Nakayama’s Lemma

We conclude with one of the most versatile and important results in commutative algebra. It is a direct and
powerful consequence of the Cayley-Hamilton theorem. We first isolate the key ingredient.

Corollary 6.50 (of Cayley-Hamilton). Let M be a finitely generated R-module and I an ideal of R. If
IM =M , then there exists an element r ∈ I such that (1− r)M = 0.

Proof. Apply the Cayley-Hamilton theorem to φ = idM : M → M . The hypothesis IM = M allows this.
The theorem yields p1, . . . , pn with pj ∈ Ij ⊆ I such that (idn + p1id

n−1 + · · · + pnid)M = 0. This is
equivalent to (1+ p1 + · · ·+ pn)M = 0. Let r′ = p1 + · · ·+ pn ∈ I. Then (1+ r′)M = 0. Setting r = −r′ ∈ I
gives (1− r)M = 0.

This result is most powerful when the ideal I is contained in the Jacobson radical.

Definition 6.51. The Jacobson radical of a ring R, denoted J(R), is the intersection of all maximal
ideals of R.

Remark 6.52. The Jacobson radical contains the nilradical (the intersection of all prime ideals), but they
need not coincide. For example, in the local ring R = k[x, y](x,y), the Jacobson radical is the maximal ideal
(x, y)R, but the nilradical is {0}.

Lemma 6.53 (Nakayama’s Lemma). Let I be an ideal contained in the Jacobson radical of R, and let M
be a finitely generated R-module.

1. If IM =M , then M = 0.

2. If m1, . . . ,mn ∈M have images in M/IM that generate it as an R-module, then m1, . . . ,mn generate
M as an R-module.

Proof. (1) If IM = M , Corollary 6.50 gives an element r ∈ I such that (1− r)M = 0. Since r ∈ I ⊆ J(R),
r belongs to every maximal ideal of R. Therefore, 1− r cannot belong to any maximal ideal, so 1− r must
be a unit. Multiplying (1− r)M = 0 by (1− r)−1 yields M = 0.

(2) Let N be the submodule of M generated by {m1, . . . ,mn}. The hypothesis means M = N + IM .
Consider the quotient module M = M/N . Then M = (N + IM)/N = I(M/N) = IM . Since M is finitely
generated, so isM . By part (1), since IM =M , we must haveM = 0. This meansM/N = 0, soM = N .
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Remark 6.54. The hypothesis that M is finitely generated is essential. Part (2) cannot be used to prove
that a module is finitely generated. It only allows one to lift a generating set from the quotient M/IM to M
itself.

Corollary 6.55. Let R be a ring, and let M,N be finitely generated R-modules. If M ⊗R N = 0, then
ann(M) + ann(N) = R. If R is a local ring, this implies that either M = 0 or N = 0.

Proof. First, assume R is a local ring with maximal ideal m = J(R). Suppose M ̸= 0 and N ̸= 0. Since M
is finitely generated, Nakayama’s Lemma implies M/mM ̸= 0. This quotient is a non-zero vector space over
the field R/m. Similarly, N/mN ̸= 0. We have a surjection of R/m-vector spaces:

(M ⊗R N)⊗R (R/m) ∼= (M/mM)⊗R/m (N/mN) ↠ 0.

Since the tensor product of two non-zero vector spaces over a field is non-zero, this contradicts the hypothesis
that M ⊗R N = 0. Thus, either M = 0 or N = 0.

Now, let R be any ring. Suppose for contradiction that ann(M) + ann(N) ̸= R. Then this sum is contained
in some maximal ideal P . Let’s localize at P . The localized modules MP and NP are modules over the local
ring RP . We have (M ⊗R N)P ∼= MP ⊗RP

NP = 0. If we can show that MP ̸= 0 and NP ̸= 0, the local
case will give a contradiction. Suppose MP = 0. Since M is finitely generated, this implies there exists an
element s ∈ R \ P such that sM = 0. This means s ∈ ann(M). But we assumed ann(M) ⊆ P , which is a
contradiction to s /∈ P . Thus MP ̸= 0. Similarly, NP ̸= 0. This completes the proof.

6.3 Normality and its Consequences

6.3.1 Normal Rings and Normalization

We now focus on an important class of rings that arise naturally in both number theory and geometry.
The concept of normality provides an algebraic abstraction of the desirable property of a space having no
”unnecessary” singularities. Recall the following definition:

Definition 6.56. An integral domain R is said to be normal if it is integrally closed in its field of fractions.
That is, any element of the fraction field of R that is a root of a monic polynomial with coefficients in R
must itself be an element of R.

A large and important class of normal rings comes from rings with unique factorization.

Proposition 6.57. Every Unique Factorization Domain (UFD) is a normal ring.

Proof. Let R be a UFD and let K be its field of fractions. Consider an element α = r/s ∈ K, with r, s ∈ R
and s ̸= 0. Since R is a UFD, we can cancel common factors and assume that r and s are relatively prime.
Suppose that α is integral over R. Then it satisfies a monic polynomial equation:

(r/s)n + a1(r/s)
n−1 + · · ·+ an = 0

for some a1, . . . , an ∈ R. Multiplying by sn to clear the denominators, we obtain:

rn + a1r
n−1s+ · · ·+ an−1rs

n−1 + ans
n = 0

We can rearrange this equation to solve for rn:

rn = −s(a1rn−1 + · · ·+ ans
n−1)

The right-hand side is a multiple of s, so we conclude that s divides rn. However, we assumed that r and s
were relatively prime. In a UFD, if s divides a product and shares no common factors with one term (r), it
must divide the other. By induction, if s divides rn and is relatively prime to r, s must be a unit in R. If
s is a unit, then its inverse s−1 is in R, which means the element α = rs−1 is an element of R. This shows
that any element of K integral over R is already in R, so R is normal.
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Since the ring of integers Z is a UFD, we immediately have a classical result from number theory.

Corollary 6.58 (Rational Root Theorem). The ring of integers Z is normal. Consequently, the only rational
numbers that are roots of a monic polynomial with integer coefficients are the integers themselves.

Normality is also well-behaved with respect to forming polynomial rings, a much deeper result.

Corollary 6.59. If R is a normal domain, then the polynomial ring R[x1, . . . , xn] is also a normal domain.

Sketch. The proof is non-trivial. One typically proves by induction that if R is normal, then R[x] is normal.
The key step involves showing that if an element f/g ∈ Frac(R[x]) is integral over R[x], it must also be
integral over R, which then implies it must be in R[x] since R is normal. This step often relies on a version
of Gauss’s Lemma for monic polynomials.

6.3.2 Normality and Polynomial Rings

The connection between integrality and polynomial factorization is deep. Suppose we have rings R ⊆ S. If
a monic polynomial f ∈ R[x] has a root α ∈ S, we know that (x − α) divides f in S[x]. A more general
statement holds for factors of any degree.

Proposition 6.60 (Gauss’s Lemma for Monic Polynomials). Let R ⊆ S be an extension of rings and let
f ∈ R[x] be a monic polynomial. If f factors in S[x] as a product of monic polynomials, f = gh, then the
coefficients of the factors g and h are integral over R.

Remark 6.61. This proposition is a powerful generalization of the classical Gauss’s Lemma. If we take
R = Z and S = Q, the proposition states that if a monic polynomial in Z[x] factors into monic polynomials
in Q[x], then the coefficients of the factors must be integral over Z. But since Z is normal, these coefficients
must be integers. This recovers the result that if a monic integer polynomial is reducible in Q[x], it is reducible
in Z[x].

Proof. Let f = gh, where f ∈ R[x] and g, h ∈ S[x] are all monic. There exists a larger ring extension T of
S in which g and h split into linear factors:

g(x) =
∏

(x− αi) and h(x) =
∏

(x− βj) in T [x].

The roots {αi} and {βj} are also the roots of f(x). Since f is a monic polynomial with coefficients in R,
all of its roots are integral over R by definition. The coefficients of g and h are the elementary symmetric
polynomials in their respective roots (up to sign). For instance, the coefficient of xk in g(x) is a polynomial
with integer coefficients in the αi. The set of elements integral over R forms a subring. Since each αi and
βj is integral over R, any polynomial expression in them is also integral over R. Therefore, the coefficients
of g and h are integral over R.

This has an important consequence for the ideal structure of polynomial rings over normal domains.

Corollary 6.62. If R is a normal domain, then any monic irreducible polynomial f ∈ R[x] generates a
prime ideal.

Proof. Let R be a normal domain with field of fractions Q. Let f ∈ R[x] be a monic irreducible polynomial.
First, we claim that f is also irreducible in Q[x]. Suppose for contradiction that f = gh for some g, h ∈ Q[x]
of smaller degree. Since f is monic, we can scale g and h to be monic as well. By the previous proposition
(with S = Q), the coefficients of g and h must be integral over R. But R is normal, so these coefficients
must lie in R. This means f = gh is a factorization in R[x], which contradicts the irreducibility of f in R[x].
Thus, f is irreducible in Q[x].

Since Q is a field, the polynomial ring Q[x] is a UFD. In a UFD, irreducible elements generate prime ideals.
Therefore, the ideal (f) is prime in Q[x], which means the quotient ring Q[x]/(f) is an integral domain.
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Now consider the quotient ring R[x]/(f). Because f is monic of degree n, this is a free R-module with basis
{1, x̄, . . . , x̄n−1}. Consider the natural map:

ϕ : R[x]/(f)→ Q⊗R (R[x]/(f)) ∼= Q[x]/(f)

This is a map from an R-module to a Q-vector space. Since R[x]/(f) is a free R-module, it is torsion-free.
The kernel of the map M → Q⊗RM consists of the R-torsion submodule of M . As R[x]/(f) is torsion-free,
the map ϕ is injective. We have shown that R[x]/(f) is a subring of the integral domain Q[x]/(f). Therefore,
R[x]/(f) must itself be an integral domain. This means that the ideal (f) is a prime ideal in R[x].

6.3.3 Normalization and Geometry

An essential property of normalization is that it is a ”local” property: a ring is normal if and only if all of its
localizations at prime ideals are normal. More generally, the process of taking the integral closure commutes
with localization.

This is geometrically significant. In algebraic geometry, localizing a ring at a multiplicative set corresponds
to restricting attention to an open subset of the associated scheme. The following proposition says that we
can normalize a scheme by normalizing the affine patches that cover it and then gluing them back together,
and the gluing maps will remain compatible.

Proposition 6.63. Let R ⊆ S be an extension of rings, and let U ⊆ R be a multiplicatively closed subset.
Let S′ be the integral closure of R in S. Then S′

U = S′[U−1] is the integral closure of RU = R[U−1] in
SU = S[U−1].

Proof. First, we show that S′
U is integral over RU . Let s′/u ∈ S′

U , where s
′ ∈ S′ and u ∈ U . By definition,

s′ satisfies a monic polynomial equation with coefficients in R:

(s′)n + r1(s
′)n−1 + · · ·+ rn = 0

Dividing by un, we get:
(s′/u)n + (r1/u)(s

′/u)n−1 + · · ·+ (rn/u
n) = 0

This is a monic polynomial equation for s′/u with coefficients in RU . Thus every element of S′
U is integral

over RU .

Conversely, we must show that any element of SU that is integral over RU is contained in S′
U . Let s/u ∈ SU

(with s ∈ S, u ∈ U) be integral over RU . It satisfies an equation:

(s/u)n + (r1/u1)(s/u)
n−1 + · · ·+ (rn/un) = 0

where ri ∈ R, ui ∈ U . Let v = u1u2 · · ·un ∈ U . We can multiply the entire equation by (uv)n to clear all
denominators:

(sv)n + (r1uv/u1)(sv)
n−1 + · · ·+ (rnu

nvn/un) = 0

Each coefficient (riu
ivi/ui) is an element of R. This equation shows that the element sv ∈ S is a root of

a monic polynomial with coefficients in R. Therefore, sv is integral over R, so sv ∈ S′. Then the original
element s/u can be written as:

s/u = (sv)/(uv)

Since sv ∈ S′ and uv ∈ U , this shows that s/u ∈ S′
U . This completes the proof.

The geometric meaning of normalization is best understood through an example.

Example 6.64. Consider the nodal cubic curve defined by the polynomial f = y2−x2(x+1) in C[x, y]. The
coordinate ring of this curve is R = C[x, y]/(f). This ring consists of polynomial functions restricted to the
curve. Geometrically, the curve V(f) has a self-intersection (a ”node”) at the origin.
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This ring R is not normal. To see this, consider the element t = y/x in the field of fractions of R. On the
curve, we have y2 = x2(x+ 1), so (y/x)2 = x+ 1. Rearranging this gives:

t2 − (x+ 1) = 0

This is a monic polynomial equation for t with coefficients in R. Thus, t = y/x is integral over R. However,
t is not an element of R itself (it’s not a polynomial function), so R is not integrally closed and hence not
normal.

What is the geometric meaning of the element y/x? Away from the origin (x, y) = (0, 0), it is a well-defined
rational function. Near the origin, the curve has two distinct branches. The tangent lines at the origin are
given by y2 − x2 = 0, or y = ±x. If we approach the origin along the branch where y ≈ x, the limit of the
function y/x is 1. If we approach the origin along the branch where y ≈ −x, the limit of y/x is −1. The
function y/x does not have a single well-defined value at the singular point.

The normalization of R is the ring R′ = R[y/x] ∼= C[x, y, t]/(y2 − x2(x+ 1), t− y/x). One can show this is
isomorphic to C[t2−1, t(t2−1)] ∼= C[t]. The ring C[t] is the coordinate ring of a simple line, which is smooth.
The normalization process has ”separated” the two branches of the curve at the node. Geometrically, the
normalization creates a new smooth curve that maps to the original singular curve. This map is a bijection
everywhere except at the singular point, where two points on the smooth curve map to the single node on the
original curve. The integral element y/x becomes a coordinate function on this new smooth curve, and its
two different limiting values correspond to its values at the two distinct points lying over the singularity.

6.3.4 The Lying Over and Going Up Theorems

Given an integral ring extension R ⊆ S, we wish to understand the relationship between their respective
prime ideal spectra, SpecS and SpecR. This relationship is described by a series of fundamental results,
beginning with the Lying Over and Going Up theorems.

Theorem 6.65 (Lying Over Theorem). Suppose R ⊆ S is an integral extension of rings. For any prime
ideal p ⊆ R, there exists a prime ideal q ⊆ S such that q ∩R = p.

A more general version of this theorem, often called the Going Up theorem, allows us to lift chains of prime
ideals.

Theorem 6.66 (Going Up Theorem). Suppose R ⊆ S is an integral extension. Let p ⊆ R be a prime ideal.
Then for any ideal I ⊆ S satisfying I∩R ⊆ p, there exists a prime ideal q ⊆ S such that q ⊇ I and q∩R = p.

Proof. By passing to the quotient rings R/(I ∩ R) and S/I, we can reduce to the case where I = {0} and
I ∩ R = {0}. Our goal is then to prove the Lying Over theorem: for a prime p ⊆ R, there exists a prime
q ⊆ S with q ∩R = p.

Let U = R\p be the multiplicative set. We consider the localized rings Rp and SU = S[U−1]. The extension
Rp ⊆ SU is still integral. Now, Rp is a local ring with maximal ideal pRp. We need to show that there exists
a prime ideal in SU that lies over pRp. Let m be any maximal ideal of SU . Then m ∩Rp is a prime ideal of
Rp, which must be pRp since it is the unique maximal ideal.

It suffices to show that SU is not the zero ring, which is equivalent to showing that pS ̸= S. Suppose for
contradiction that pS = S. Then we can write 1 =

∑n
i=1 pisi for some pi ∈ p and si ∈ S. Let S′ ⊆ S be the

R-subalgebra generated by {s1, . . . , sn}. Since S′ is generated by elements integral over R, S′ is a finitely
generated R-module. We have 1 ∈ pS′, which implies pS′ = S′. By Nakayama’s Lemma, since S′ is a finitely
generated R-module, this implies S′ = {0}, a contradiction. Thus pS ̸= S, and the theorem holds.

The Lying Over theorem implies that the induced map on spectra, SpecS → SpecR, is surjective. However,
we do require integrality for this:

Example 6.67. Consider the ring homomorphism φ : k[t]→ k[x, y]/(xy− 1) defined by t 7→ x. This makes
k[t] a subring of S = k[x, y]/(xy − 1) ∼= k[x, x−1]. This extension is not integral. The corresponding map
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SpecS → Speck[t] is not surjective. For example, the maximal ideal (t) ⊆ k[t] is not in the image. Any prime
in the image is of the form (x− a) ∩ k[t] = (t− a) for a ∈ k×, so (t) is missed.

A direct application of the Going Up theorem allows us to lift chains of prime ideals.

Corollary 6.68 (Classical ”Going Up”). Let R ⊆ S be an integral extension. If p0 ⊆ p1 ⊆ · · · ⊆ pd is
a chain of prime ideals in R, then there exists a chain of prime ideals q0 ⊆ q1 ⊆ · · · ⊆ qd in S such that
qi ∩R = pi for all i.

Proof. We construct the chain inductively. By the Lying Over Theorem (6.65), there exists a prime q0 in
S with q0 ∩ R = p0. Now, assume we have constructed a chain q0 ⊆ · · · ⊆ qi−1 lying over p0 ⊆ · · · ⊆ pi−1.
Consider the integral extension R/pi−1 ⊆ S/qi−1. Applying the Lying Over theorem to the prime ideal
pi/pi−1 ⊆ R/pi−1, we find a prime ideal in S/qi−1 lying over it. Its preimage in S is a prime ideal qi ⊇ qi−1

such that qi ∩R = pi.

Remark 6.69. A corresponding ”Going Down” theorem, which allows for the downward lifting of prime
ideal chains, holds under stronger hypotheses (e.g., if R is a normal domain and S is a domain).

We can now deduce several important structural consequences of integral extensions.

Lemma 6.70. Let R ⊆ S be an extension of integral domains. If S is integral over R, then any nonzero
ideal of S has a nonzero intersection with R.

Proof. Let b ∈ S, b ̸= 0. Since S is integral over R, b satisfies a monic polynomial equation with coefficients
in R:

bn + an−1b
n−1 + · · ·+ a1b+ a0 = 0, ai ∈ R.

We can choose this polynomial to be of minimal degree, which ensures a0 ̸= 0 (otherwise, we could factor out
b and get a smaller degree polynomial, since S is a domain). Rearranging, we have a0 = −b(bn−1+ · · ·+a1).
This shows that 0 ̸= a0 ∈ (b) ∩ R. Thus, the principal ideal (b) has a nontrivial intersection with R, which
suffices to prove the lemma.

Corollary 6.71. Let R ⊆ S be an integral extension of domains. Then S is a field if and only if R is a
field.

Proof. (⇒) Suppose R is a field. Let b ∈ S, b ̸= 0. Since S is integral over R = k, k[b] is a finite-dimensional
k-vector space. As k[b] is a domain, it must be a field. Thus b has an inverse in k[b] ⊆ S. So, S is a field.

(⇐) Suppose S is a field. Let m ⊆ R be a maximal ideal. By the Lying Over theorem, there exists a prime
ideal q ⊆ S such that q ∩R = m. Since S is a field, its only prime ideal is {0}. Thus q = {0}, which implies
m = {0}. A ring whose only maximal ideal is the zero ideal must be a field. Thus R is a field.

Remark 6.72. If p ⊆ S is a prime ideal in an integral extension R ⊆ S, then R/(p ∩ R) ⊆ S/p is also an
integral extension. By Corollary 6.71, S/p is a field if and only if R/(p ∩R) is a field. This means a prime
ideal p ⊆ S is maximal if and only if its contraction p ∩R is maximal in R.

Finally, we show that distinct prime ideals in an integral extension cannot lie over the same prime ideal.

Corollary 6.73 (Incomparability). Let R ⊆ S be an integral extension. If q ⊆ q′ are prime ideals of S such
that q ∩R = q′ ∩R, then q = q′.

Proof. Let p = q ∩ R = q′ ∩ R. We pass to the quotient rings R′ = R/p and S′ = S/q. The extension
R′ ⊆ S′ is an integral extension of domains. The ideal q′/q is a prime ideal in S′ and its intersection with R′

is (q′ ∩ R)/p = p/p = {0}. By Lemma 6.70, any nonzero ideal in S′ must have a nonzero intersection with
R′. Since the intersection is zero, we must have q′/q = {0}, which implies q′ = q.
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6.4 The Nullstellensatz

The classical Nullstellensatz establishes a correspondence between geometric objects (algebraic sets in affine
space) and algebraic objects (radical ideals in a polynomial ring). We will prove a more general version of
this theorem, from which the classical form follows as a corollary.

Definition 6.74. A ring R is a Jacobson ring if every prime ideal of R is an intersection of maximal
ideals.

Example 6.75.

1. A local ring (R,m) is Jacobson if and only if m is its only prime ideal.

2. A Principal Ideal Domain (PID) is Jacobson. Its nonzero prime ideals are all maximal. The zero ideal
is the intersection of all maximal ideals, provided the ring has infinitely many primes (e.g., Z or k[x]).

Theorem 6.76 (General Nullstellensatz). Let R be a Jacobson ring. If S is a finitely generated R-algebra,
then:

1. S is also a Jacobson ring.

2. If n ⊆ S is a maximal ideal, then m := n ∩ R is a maximal ideal of R, and the residue field extension
S/n over R/m is finite.

This theorem can fail if R is not Jacobson.

Example 6.77. Let R = k[t](t) be the localization of a polynomial ring at the origin. R is not Jacobson. Let
S = R[x]. The ideal n = (xt− 1) ⊆ S is maximal, since S/n ∼= k(t), which is a field. However, n∩R = {0},
which is not a maximal ideal of R.

The proof of the theorem relies on the following characterization of Jacobson rings.

Lemma 6.78. A ring R is Jacobson if and only if for every prime ideal p ⊆ R, if the domain S = R/p
contains an element b ̸= 0 such that S[b−1] is a field, then S is itself a field.

Proof of Theorem 6.76. We proceed by induction on the number of generators of S as an R-algebra.

Base Case: S = R[t]. First, we prove statement (1), that S is Jacobson. Using Lemma 6.78, let p ⊆ S be a
prime ideal and set S′ = S/p. Assume there is some b ∈ S′, b ̸= 0 such that S′[b−1] is a field. We must show
S′ is a field. Let R′ = R/(R ∩ p), so R′ ⊆ S′. Since S′[b−1] is a field and integral over R′[b−1], Corollary
6.71 implies that R′[b−1] is a field. But R′ is an image of the Jacobson ring R, so it is Jacobson. By Lemma
6.78, R′ must be a field. Now S′ is a domain that is generated by one element over a field R′, and S′[b−1]
is a field. If S′ is not a field, it must be isomorphic to R′[t], but R′[t][b−1] is a field only if b is a constant,
which means S′ was already a field. So S′ is a field.

Next, we prove statement (2). Let n ⊆ S = R[t] be a maximal ideal. Set m = n ∩ R. The extension
R/m ⊆ S/n is a field extension where S/n is generated by one element (the image of t) over R/m. Let
S′ = S/n and R′ = R/m. We just showed that if S′[b−1] is a field, then R′ must be a field. Here S′ is already
a field, so we can take b = 1. It follows that R′ must be a field, so m is maximal. Since S/n is an algebraic
extension of R/m generated by one element, it is a finite extension.

Inductive Step. Assume the theorem holds for all algebras generated by r − 1 elements. Let S be an
R-algebra generated by r elements, say t1, . . . , tr. Let S′ = R[t1, . . . , tr−1]. By the inductive hypothesis, S′

is a Jacobson ring. Now, S = S′[tr] is generated by one element over the Jacobson ring S′. By our base case:

1. S is a Jacobson ring.

2. If n ⊆ S is a maximal ideal, then n ∩ S′ is a maximal ideal of S′. By the inductive hypothesis applied
to S′ over R, m = (n∩ S′)∩R = n∩R is a maximal ideal of R. Furthermore, the extensions S/n over
S′/(n ∩ S′) and S′/(n ∩ S′) over R/m are both finite. By the tower law, the extension S/n over R/m
is finite.

This completes the induction.
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Now, we move onto discuss the classical Nullstellensatz. Let k be a field and let Ank denote the affine n-space
over k.

Definition 6.79. For a set of polynomials F ⊆ k[x1, . . . , xn], the algebraic set (or variety) defined by F
is

Z(F ) := {(a1, . . . , an) ∈ Ank | f(a1, . . . , an) = 0 for all f ∈ F}.
If I is the ideal generated by F , then Z(F ) = Z(I).

Definition 6.80. For a subset X ⊆ Ank , the ideal of X is

I(X) := {f ∈ k[x1, . . . , xn] | f(p) = 0 for all p ∈ X}.

The ideal I(X) is always a radical ideal.

These two operations form a Galois connection between subsets of Ank and ideals of k[x1, . . . , xn]. A point
p = (a1, . . . , an) ∈ Ank corresponds to the maximal ideal mp = (x1 − a1, . . . , xn − an). The Nullstellensatz
provides a precise description of this correspondence when the field k is algebraically closed.

Corollary 6.81 (Weak Nullstellensatz). Let k be an algebraically closed field and S = k[x1, . . . , xn]. Every
maximal ideal of S is of the form mp = (x1 − a1, . . . , xn − an) for some point p = (a1, . . . , an) ∈ Ank .

Proof. Let n ⊆ S be a maximal ideal. We apply the General Nullstellensatz (Theorem 6.76) with R = k.
Since a field is Jacobson, S is Jacobson. The theorem states that n ∩ k = {0} is maximal in k, and S/n is
a finite field extension of k/{0} ∼= k. Since k is algebraically closed, the only finite extension is k itself. So,
S/n ∼= k. Let π : S → S/n ∼= k be the quotient map. Let ai = π(xi) ∈ k. Then for each i, π(xi − ai) = 0, so
(xi − ai) ∈ ker(π) = n. This implies that mp = (x1 − a1, . . . , xn − an) ⊆ n. Since mp is a maximal ideal, we
must have n = mp.

Theorem 6.82 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field. If I ⊆ k[x1, . . . , xn] is an
ideal, then

I(Z(I)) = rad(I).

This establishes a one-to-one, order-reversing correspondence between algebraic sets in Ank and radical ideals
in k[x1, . . . , xn].

Proof. The inclusion rad(I) ⊆ I(Z(I)) is straightforward: if fm ∈ I, then for any point p ∈ Z(I), f(p)m = 0,
so f(p) = 0. Thus f ∈ I(Z(I)).

For the reverse inclusion, I(Z(I)) ⊆ rad(I), we use the famous ”Rabinowitsch trick”. Let f ∈ I(Z(I)).
Consider the polynomial ring S[y] = k[x1, . . . , xn, y] and the ideal J = IS[y] + (1 − yf) ⊆ S[y]. Any point
in Z(J) ⊆ An+1

k must satisfy all equations in I and also 1 − yf = 0. If (a1, . . . , an, b) is such a point, then
(a1, . . . , an) ∈ Z(I). Since f ∈ I(Z(I)), we have f(a1, . . . , an) = 0. But then the equation 1 − yf = 0
becomes 1 − b · 0 = 1 = 0, a contradiction. Therefore, Z(J) is empty. By the Weak Nullstellensatz, if an
ideal has an empty zero set, it must be the entire ring. So J = S[y]. This means 1 ∈ J , so we can write:

1 =
∑
i

gi(x, y)pi(x) + h(x, y)(1− yf(x))

where pi ∈ I. In the field of fractions k(x1, . . . , xn)(y), we can substitute y = 1/f(x). This yields:

1 =
∑
i

gi(x, 1/f)pi(x).

Clearing denominators by multiplying by a sufficiently high power of f , say fN , we get:

fN =
∑
i

(fNgi(x, 1/f))pi(x).

The term fNgi(x, 1/f) is a polynomial in S = k[x1, . . . , xn]. Since each pi ∈ I, the right-hand side is in I.
Thus fN ∈ I, which means f ∈ rad(I).
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7 Homological Methods

7.1 Filtrations and Graded Constructions

7.1.1 Filtrations and Associated Graded Rings and Modules

This section introduces several fundamental definitions from commutative algebra that are instrumental
in constructing important geometric objects such as the blowup algebra and the tangent cone. These
constructions often begin with a multiplicative filtration of a ring R. This is a sequence of ideals R =
I0 ⊃ I1 ⊃ I2 ⊃ · · · such that IiIj ⊂ Ii+j for all i, j ≥ 0.

A particularly important case is the I-adic filtration, where I ⊆ R is an ideal and the filtration is given
by the powers of I: R ⊃ I ⊃ I2 ⊃ I3 ⊃ · · · . This concept can be extended to modules: for an R-module M ,
the sequence M ⊃ IM ⊃ I2M ⊃ · · · is the I-adic filtration of M .

Definition 7.1. Let I ⊆ R be an ideal and M be an R-module. A filtration of M is a sequence of submodules
M =M0 ⊃M1 ⊃M2 ⊃ · · · .

• The filtration is called an I-filtration if IMn ⊂Mn+1 for all n ≥ 0.

• An I-filtration is stable if IMn =Mn+1 for all sufficiently large n (i.e., for n≫ 0).

Later, we will prove the Artin-Rees Lemma, which states that for a finitely generated module over a Noethe-
rian ring, the I-adic filtration induces a stable filtration on any submodule.

Definition 7.2. Let I ⊆ R be an ideal. The associated graded ring of R with respect to I is the direct
sum

grI(R) :=

∞⊕
n=0

In/In+1 = R/I ⊕ I/I2 ⊕ I3/I4 ⊕ · · ·

The multiplication is defined as follows: for homogeneous elements ā ∈ Im/Im+1 and b̄ ∈ In/In+1, repre-
sented by a ∈ Im and b ∈ In, their product āb̄ ∈ Im+n/Im+n+1 is the image of ab.

To see this is well-defined, let a′ = a + x and b′ = b + y be other representatives, where x ∈ Im+1 and
y ∈ In+1. Then a′b′ = ab + ay + bx + xy. Since ay ∈ ImIn+1 ⊂ Im+n+1, bx ∈ InIm+1 ⊂ Im+n+1, and
xy ∈ Im+1In+1 ⊂ Im+n+2, the term ay + bx + xy is in Im+n+1. Thus, a′b′ and ab have the same image
modulo Im+n+1.

Definition 7.3. More generally, if M : M = M0 ⊃ M1 ⊃ M2 ⊃ · · · is an I-filtration of an R-module M ,
the associated graded module is

grM(M) :=

∞⊕
n=0

Mn/Mn+1 =M/M1 ⊕M1/M2 ⊕ · · ·

This is a graded module over grI(R). The action of ā ∈ Im/Im+1 on b̄ ∈ Mn/Mn+1 (with lifts a ∈ Im,
b ∈ Mn) is given by the image of ab in Mn+m/Mn+m+1. The condition ImMn ⊆ Mn+m ensures this is
well-defined.

The stability of a filtration has a important consequence.

Proposition 7.4. Let I ⊆ R be an ideal and M a finitely generated R-module. IfM :M =M0 ⊃M1 ⊃ · · ·
is a stable I-filtration where each Mi is a finitely generated R-module, then grM(M) is a finitely generated
grI(R)-module.

Proof. Since the filtration is stable, there exists an integer N such that IMn = Mn+1 for all n ≥ N . The
module action implies that for n ≥ N , the graded piece (I/I2) · (Mn/Mn+1) generates Mn+1/Mn+2. This
means that the higher graded components of grM(M) are generated by the lower ones. Specifically, the
entire module grM(M) is generated as a grI(R)-module by the first N + 1 components:

M0/M1 ⊕M1/M2 ⊕ · · · ⊕MN/MN+1
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Since eachMi is a finitely generated R-module, each quotientMi/Mi+1 is also a finitely generated R-module,
and thus a finitely generated R/I-module. The union of the finite sets of generators for these first N + 1
components forms a finite generating set for grM(M) over grI(R).

While there is no natural homomorphism M → grM(M), we can define a map on elements. LetM : M =
M0 ⊃ M1 ⊃ · · · be a filtration. For an element f ∈ M , if there exists an integer m such that f ∈ Mm but
f /∈ Mm+1, we define the initial form of f to be in(f) := f̄ ∈ Mm/Mm+1 ⊂ grM(M). If f ∈

⋂∞
m=0Mm,

we define in(f) = 0.

Example 7.5. Let R = k[x, y], I = (x, y), and consider the I-adic filtration of R. Let J = (xy+y3, x2) ⊆ R.
Define in(J) to be the ideal in grI(R) generated by the initial forms of all elements in J . We have in(x2) =
x2 ∈ I2/I3 and in(xy+y3) = xy ∈ I2/I3. However, the ideal in(J) is not necessarily generated by just these
two initial forms. Consider the element y5 ∈ J , which can be seen from the combination y2(xy+y3)−x(y3) =
y5. Oops, this does not show y5 ∈ J . Let’s check the original argument: x(xy + y3) − y(x2) = xy3 ∈ J .
Then y2(xy + y3) − x(xy3) = y5 ∈ J . Since y5 ∈ I5 \ I6, we have in(y5) = y5 ∈ in(J). The ideal in
grI(R) ∼= k[x, y] generated by in(x2) = x2 and in(xy + y3) = xy is (x2, xy). The element y5 is not in this
ideal. This illustrates that to find a generating set for in(J), one cannot simply take the initial forms of a
generating set for J .

The construction of the associated graded ring allows us to apply techniques from the theory of graded rings
to arbitrary local rings. If (R,m) is a Noetherian local ring, then grm(R) is a graded ring generated over
the field R/m by the finite-dimensional vector space m/m2. It is therefore a finitely generated algebra over
a field.

Definition 7.6. If (R,m) is a local ring, the Hilbert function of R is

HR(n) = dimR/m(m
n/mn+1)

If M is a finitely generated R-module, its Hilbert function is

HM (n) = dimR/m(m
nM/mn+1M)

These are the Hilbert functions of the graded ring grm(R) and the graded module grm(M), respectively. From
the theory of graded rings, we know that for large n, these functions agree with polynomials PR(n) and
PM (n).

To ensure that no information is lost when passing from R to grI(R), we need to know that distinct elements
of R have distinct initial forms in some sense. This is guaranteed if

⋂∞
j=0 I

j = {0}. The Krull Intersection
Theorem, which we will prove later, states that this condition holds in most reasonable cases (e.g., for
Noetherian local rings).

7.1.2 The Blowup Algebra and The Tangent Cone

Definition 7.7. Let R be a ring and I ⊆ R be an ideal. The Rees algebra (or blowup algebra) of I in
R is the graded ring

BI(R) := R⊕ I ⊕ I2 ⊕ · · · =
∞⊕
n=0

In

Remark 7.8. The Rees algebra can be realized as a subring of the polynomial ring R[t] by identifying the
n-th graded component In with Intn. Thus,

BI(R) ∼=
∞⊕
n=0

Intn ⊆ R[t]

An element is a polynomial a0 + a1t+ a2t
2 + · · · where ak ∈ Ik for each k.
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The associated graded ring can be recovered from the Rees algebra. The ideal IBI(R) is I ⊕ I2 ⊕ I3 ⊕ · · · .
Taking the quotient, we find:

BI(R)/IBI(R) = (R⊕ I ⊕ I2 ⊕ · · · )/(I ⊕ I2 ⊕ I3 ⊕ · · · ) ∼= R/I ⊕ I/I2 ⊕ · · · = grI(R)

Example 7.9. Let R = k[x1, x2] and I = (x1, x2). The Rees algebra BI(R) is the subring of k[x1, x2, t]
generated by x1, x2, x1t, x2t. Consider the surjective homomorphism

ϕ : k[x1, x2, y1, y2]→ BI(R) ⊂ k[x1, x2, t]

given by xi 7→ xi and yi 7→ xit. The kernel of this map is generated by relations among the generators.
For instance, x1(x2t) − x2(x1t) = 0, which corresponds to the element x1y2 − x2y1 ∈ ker(ϕ). In fact,
ker(ϕ) = (x1y2 − x2y1). Geometrically, this corresponds to the blowup of the affine plane A2 at the origin.
The map of rings corresponds to a morphism of varieties Z → A2, where Z = V (x1y2 − x2y1) ⊂ A2 × P1.
The fiber over a point (a1, a2) ∈ A2 other than the origin is the single point in P1 defined by a2y1−a1y2 = 0.
The fiber over the origin (0, 0) consists of all points satisfying 0 = 0, which is the entire P1. Thus, the blowup
replaces the origin with a projective line, where each point on the line corresponds to a direction through the
origin.

Definition 7.10. The exceptional set of the blowup is the fiber over the point corresponding to the ideal
I. Algebraically, this corresponds to the ring BI(R)/IBI(R), which is isomorphic to grI(R).

If X = V (J) ⊆ An is an affine variety defined by an ideal J ⊆ k[x1, . . . , xn], and p ∈ X is a point, we can
blow up X at p. If p is the origin, corresponding to the maximal ideal I = (x1, . . . , xn), we are interested in
the geometry of X near p. This local geometry is captured by the tangent cone.

Definition 7.11. Let R = k[x1, . . . , xn]/J and let I ⊆ R be the ideal corresponding to the origin. The
tangent cone of V (J) at the origin is the affine scheme defined by the ideal of initial forms inI(J) ⊆
grI(k[x1, . . . , xn]). It is the spectrum of the ring

grI(k[x1, . . . , xn])/inI(J) ∼= grI(R)

Geometrically, it consists of the limits of secant lines to the variety through the origin.

Example 7.12.

• Let J = (y2 − x2(x + 1)) = (y2 − x3 − x2). With respect to I = (x, y), the initial form is the lowest
degree part, in(y2−x3−x2) = y2−x2 = (y−x)(y+x). The tangent cone is Spec(k[x, y]/(y−x)(y+x)),
which is the union of two lines through the origin.

• Let J = (y2 − x3). The initial form is in(y2 − x3) = y2. The tangent cone is Spec(k[x, y]/(y2)), which
is the x-axis counted with multiplicity two (a ”double line”).

When blowing up a curve in the plane at the origin, each line in its tangent cone corresponds to a distinct
point in the fiber over the origin.

7.1.3 The Artin-Rees Lemma and the Krull Intersection Theorem

The blowup construction can be generalized for modules. LetM be an R-module andM :M =M0 ⊃M1 ⊃
· · · be an I-filtration. Then BM(M) :=M ⊕M1 ⊕M2 ⊕ · · · is a graded BI(R)-module.

Proposition 7.13. Assume R is a Noetherian ring, I ⊆ R is an ideal, and M is a finitely generated R-
module. Let M : M = M0 ⊃ M1 ⊃ · · · be an I-filtration where each Mi is finitely generated. Then the
filtrationM is I-stable if and only if BM(M) is a finitely generated BI(R)-module.

Proof. (⇒) IfM is stable, there is an N such that Mn+1 = IMn for all n ≥ N . Then the module BM(M)
is generated over BI(R) by the elements in M0 ⊕ · · · ⊕MN . Since each Mi is finitely generated over R, this
is a finite set of generators.
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(⇐) If BM(M) is finitely generated over BI(R), let the generators be in
⊕N

i=0Mi for some N . Then for
any n ≥ N , an element in Mn+1 can be written as a sum of products of generators of BI(R) (which are in
I) and the chosen generators of BM(M). This implies that Mn+1 ⊆ IMn. Since IMn ⊆Mn+1 by definition
of an I-filtration, we have equality. Thus, the filtration is stable.

This result provides a surprisingly simple proof of the Artin-Rees Lemma.

Lemma 7.14 (Artin-Rees Lemma). Let R be a Noetherian ring, I ⊆ R an ideal, M a finitely generated
R-module, and M ′ ⊆M a submodule. The I-adic filtration on M , given by Mn = InM , induces a filtration
on M ′ defined by M ′

n =M ′ ∩ InM . This induced filtration is I-stable.

Proof. Since R is Noetherian and I is an ideal, I is finitely generated. Thus the Rees algebra BI(R) is
a finitely generated R-algebra, and by the Hilbert Basis Theorem, it is Noetherian. The filtration Mn =
InM is stable by construction (IMn = In+1M = Mn+1). Since M is a finitely generated R-module,
BI(M) :=

⊕
InM is a finitely generated BI(R)-module. Because BI(R) is Noetherian, the submodule

B(M ′) :=
⊕

(M ′ ∩ InM) ⊆ BI(M) is also a finitely generated BI(R)-module. By the previous proposition,
this implies that the filtration M ′

n = M ′ ∩ InM is I-stable. That is, there exists an integer k such that for
all n ≥ k, I(M ′ ∩ InM) =M ′ ∩ In+1M .

Theorem 7.15 (Krull Intersection Theorem). Let R be a Noetherian ring, I ⊆ R an ideal, and M a finitely
generated R-module. Let M ′ =

⋂∞
j=1 I

jM . There exists an element r ∈ I such that (1− r)M ′ = 0.

Furthermore, if R is an integral domain and I is a proper ideal, or if R is a local ring and I is a proper ideal
contained in its Jacobson radical, then

⋂∞
j=1 I

j = {0}.

Proof. Let M ′ =
⋂∞
j=1 I

jM . As R is Noetherian and M is finitely generated, M is a Noetherian module,
so the submodule M ′ is finitely generated. Applying the Artin-Rees Lemma to the submodule M ′ ⊆ M
with the I-adic filtration, we know there exists a k such that for all n ≥ k, M ′ ∩ In+1M = I(M ′ ∩ InM).
Since M ′ ⊆ InM for all n, this simplifies to M ′ = IM ′. Since M ′ is finitely generated, Nakayama’s Lemma
implies that there is an element r ∈ I such that (1− r)M ′ = 0.

For the second statement, let M = R. Then we have
⋂
Ij = M ′. If R is an integral domain and I is a

proper ideal, then I ̸= R, so 1 /∈ I, which means 1− r ̸= 0. Since R is a domain, 1− r is a non-zero-divisor,
so (1 − r)M ′ = 0 implies M ′ = 0. If R is a local ring and I is a proper ideal, then I is contained in the
maximal ideal (the Jacobson radical). Any element of the form 1− r for r ∈ I is a unit. Thus (1− r)M ′ = 0
implies M ′ = 0.

Example 7.16. The conclusion of the theorem may fail if R is not an integral domain. Let R = k[x]/(x2−x).
Let I = (x). Then I2 = (x2) = (x) = I. Thus, Ij = I for all j ≥ 1, and

⋂
j I

j = I ̸= {0}. Geometrically,
R is the coordinate ring of two points, {0, 1}. The ideal I corresponds to the point {1}. The function x
vanishes to arbitrarily high order at the point {0} but is not the zero function.

Corollary 7.17. Let (R,m) be a Noetherian local ring. If grm(R) is an integral domain, then so is R.

Proof. Suppose f, g ∈ R are non-zero elements such that fg = 0. By the Krull Intersection Theorem,⋂
mn = {0}. Thus, there exist integers m,n ≥ 0 such that f ∈ mm \ mm+1 and g ∈ mn \ mn+1. This

means their initial forms in(f) ∈ mm/mm+1 and in(g) ∈ mn/mn+1 are non-zero. Since grm(R) is an integral
domain, the product in(f)in(g) is non-zero. The product in(f)in(g) is the image of fg in mm+n/mm+n+1.
For this image to be non-zero, we must have fg ̸= 0, which is a contradiction. Therefore, R must be an
integral domain.
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7.2 Flatness and Tor

7.2.1 Flat Families

Definition 7.18. An R-module M is flat if for every injective map of R-modules N ′ ↪→ N , the induced
map M ⊗R N ′ →M ⊗R N is also injective. (The functor M ⊗R − is exact.)

For example, localization is an exact functor, which means S−1R is a flat R-algebra for any multiplicative
set S. The concept of flatness provides the correct algebraic framework for studying how geometric objects,
such as varieties or schemes, vary in a continuous family.

Example 7.19. The set of plane curves of degree d is parameterized by the coefficients of the defining
polynomials f =

∑
i+j≤d aijx

iyj. Varying the coefficients (aij) varies the curve V (f). Algebraically, we
have a family of rings k[x, y]/(f). The coefficients live in a ”parameter space,” and for each point in this
space, we have a corresponding curve, which is the fiber of a map.

A naive definition of a family as simply the fibers of a morphism is too general. Consider the family of curves
defined by xy − a = 0. As the parameter a approaches 0, the hyperbola degenerates into the union of the
two coordinate axes. This is a well-behaved degeneration. However, if we consider the map B → A2 which
is the blowup of the plane at the origin, the fiber over any point is a single point, except for the fiber over
the origin, which is an entire projective line. Such a ”jump” in dimension is undesirable. Flatness is the
condition that rules out such pathological behavior.

A morphism of varieties ϕ : X → B is a flat family if, locally, the corresponding map of rings R→ S makes
S a flat R-module.

We consider some examples where R = k[t] with k algebraically closed.

Example 7.20. Let S = R[x]/(x− t). Here S ∼= R as an R-module. Since R is a free R-module, it is flat.
The corresponding geometric object is the line x = t in the plane A2 = Speck[x, t]. The fiber over a point
(t− a) ∈ SpecR is Speck[x]/(x− a), a single point.

Example 7.21. Let S = R[x]/(x2 − t). As an R-module, S is free with basis {1, x}, since x2 − t is monic.
Free modules are flat. The fiber over (t− a) is Spec(k[x]/(x2 − a)). For a ̸= 0, this consists of two distinct
points. For a = 0, it is Spec(k[x]/(x2)), a single point with multiplicity two. Note that the dimension of the
fiber as a k-vector space, dimk(k[x]/(x

2 − a)), is 2 for all a.

Example 7.22. Let S = R[x]/(t(x − 1)). In S, we have the relation tx = t. The fiber over (t − a) for
a ̸= 0 is Spec(k[x]/(a(x − 1))) = Spec(k[x]/(x − 1)), which is one point. The fiber over the ideal (t) is
Spec(R[x]/(t)) ∼= Spec(k[x]) = A1. The dimension of the fiber jumps from 0 to 1. This is not a flat family,
and as we will see, S is not a flat R-module.

7.2.2 Free Resolutions and Tor

To better understand flatness, we introduce some tools from homological algebra.

Definition 7.23. Let M be an R-module. A free resolution of M is an exact sequence

· · · → F2
d2−→ F1

d1−→ F0
d0−→M → 0

where each Fi is a free R-module.

Any module has a free resolution. We can construct one by taking a set of generators for M , which gives
a surjection d0 : F0 → M from a free module F0. Then we take generators for ker(d0) to get a surjection
d1 : F1 → ker(d0), and so on.

Example 7.24. Let R = k[x, y] and M = k ∼= R/(x, y). A free resolution is given by the Koszul complex:

0→ R
d2−→ R2 d1−→ R

d0−→M → 0

where d0(1) = 1k, d1(a, b) = ax+ by, and d2(c) = (−cy, cx).
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Definition 7.25. Let M and N be R-modules. Let F• → M → 0 be a free resolution of M . The complex
obtained by tensoring with N is

· · · → F1 ⊗R N → F0 ⊗R N → 0

The i-th Tor module, denoted TorRi (M,N), is the i-th homology of this complex:

TorRi (M,N) =
ker(di ⊗ 1N )

im(di+1 ⊗ 1N )

7.2.3 Properties of Tor

The Tor modules have several fundamental properties.

1. They are well-defined, i.e., independent of the choice of free resolution.

2. TorRi (M,N) ∼= TorRi (N,M). We can compute them by resolving N instead of M .

3. TorR0 (M,N) ∼=M ⊗R N . This follows from the right-exactness of the tensor product.

4. If M is a free (or more generally, flat) module, then TorRi (M,N) = 0 for all i > 0.

5. For any short exact sequence of R-modules 0 → A → B → C → 0, there is a long exact sequence in
homology:

· · · → TorR1 (C,N)→ A⊗N → B ⊗N → C ⊗N → 0

6. If S is a flat R-algebra (base change), then S ⊗R TorRi (M,N) ∼= TorSi (S ⊗RM,S ⊗R N).

Example 7.26. Let R be a ring and x ∈ R be a non-zero-divisor. Consider the module R/(x). It has a

simple free resolution: 0 → R
·x−→ R → R/(x) → 0. To compute TorRi (R/(x),M) for any R-module M , we

tensor this resolution with M :

0→ R⊗M ·x⊗1−−−→ R⊗M → 0 ∼= 0→M
·x−→M → 0

The homology of this complex gives:

TorR0 (R/(x),M) = coker(·x) =M/xM

TorR1 (R/(x),M) = ker(·x) = {m ∈M | xm = 0}
TorRi (R/(x),M) = 0 for i ≥ 2.

7.2.4 Tor and Flatness

An R-module M is flat if and only if TorR1 (M,N) = 0 for all R-modules N . In this case, all higher Tor
modules also vanish. While checking this for all modules N is impractical, a stronger criterion simplifies the
task.

Proposition 7.27 (Ideal Criterion for Flatness). An R-module M is flat if and only if TorR1 (R/I,M) = 0
for all ideals I ⊆ R. Equivalently, M is flat if and only if for every ideal I ⊆ R, the natural map I⊗RM →M
(given by i⊗m 7→ im) is injective.

Proof. The equivalence of the two conditions follows from the long exact sequence for Tor associated to the
short exact sequence 0→ I → R→ R/I → 0:

· · · → TorR1 (R,M)→ TorR1 (R/I,M)→ I ⊗M → R⊗M → · · ·

Since R is free, TorR1 (R,M) = 0. Thus, the map I ⊗ M → R ⊗ M ∼= M is injective if and only if
TorR1 (R/I,M) = 0. The fact that this condition for all ideals I is sufficient for flatness follows from a
reduction argument, showing that injectivity for N ′⊗M → N ⊗M can be deduced from this ideal criterion.
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Definition 7.28. An R-module M is torsion-free if for any non-zero-divisor r ∈ R, the map M
·r−→M is

injective. That is, rm = 0 implies m = 0 for m ∈M .

Corollary 7.29.

1. If an R-module M is flat, then it is torsion-free.

2. If R is a PID, then an R-module M is flat if and only if it is torsion-free.

Proof.

1. Let a ∈ R be a non-zero-divisor. The map R
·a−→ R is injective. Since M is flat, tensoring with M

preserves this injection, so M ⊗ R 1⊗(·a)−−−−→ M ⊗ R is injective. This is the map M
·a−→ M , so a is a

non-zero-divisor on M .

2. (⇒) Follows from part 1. (⇐) Assume R is a PID and M is torsion-free. By the ideal criterion, we
must check that TorR1 (R/I,M) = 0 for all ideals I. Since R is a PID, any ideal is principal, so I = (a)
for some a ∈ R. By the previous example, TorR1 (R/(a),M) = {m ∈ M | am = 0}. If a ̸= 0, it is
a non-zero-divisor (since PIDs are integral domains), so this set is {0} because M is torsion-free. If
a = 0, I = (0), then R/I ∼= R is flat, so Tor vanishes. Thus M is flat.

Example 7.30. Let R = k[t] and S = R[x]/(t(x − 1)). Since R is a PID, we can check for flatness by
checking if S is torsion-free. The element t ∈ R is a non-zero-divisor. However, in S, t · (x − 1) = 0, but
x− 1 ̸= 0 in S. Therefore, S has t-torsion and is not a flat R-module.

An important property of flatness is that it is a local property. Geometrically, this means flatness can be
verified by examining the infinitesimal neighborhood of each point. Algebraically, this translates to the
ability to check for flatness by localizing at each prime ideal of the base ring.

Proposition 7.31. An R-module M is flat over R if and only if the localization MP is a flat module over
the local ring RP for every prime ideal P ⊂ R.

Proof. (⇒) Suppose M is a flat R-module. Let 0→ N ′ → N be an injective map of RP -modules. Since M
is flat over R, the sequence obtained by tensoring over R is also exact:

0→M ⊗R N ′ →M ⊗R N

Localization is an exact functor, so applying the functor (−)P preserves exactness:

0→ (M ⊗R N ′)P → (M ⊗R N)P

There is a canonical isomorphism of RP -modules (M ⊗R A)P ∼=MP ⊗RP
AP for any R-module A. Since N ′

and N are already RP -modules, we have N ′
P
∼= N ′ and NP ∼= N . The sequence thus becomes:

0→MP ⊗RP
N ′ →MP ⊗RP

N

This shows that the functor MP ⊗RP
− is exact, so MP is a flat RP -module.

(⇐) We prove the contrapositive. Assume M is not a flat R-module. Then there exists an injective map
of R-modules ϕ : N ′ → N such that the induced map 1 ⊗ ϕ : M ⊗R N ′ → M ⊗R N is not injective. Let
K = ker(1⊗ ϕ). Since the map is not injective, K is a non-zero R-module.

A fundamental result states that an R-module is zero if and only if its localization at every prime ideal is
zero. Since K ̸= 0, there must exist a prime ideal P ⊂ R such that KP ̸= 0.

Because localization is an exact functor, it commutes with taking kernels. Therefore, KP is the kernel of the
localized map:

(1⊗ ϕ)P : (M ⊗R N ′)P → (M ⊗R N)P
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Using the isomorphism mentioned earlier, this is the map:

MP ⊗RP
N ′
P →MP ⊗RP

NP

Since KP ̸= 0, the kernel of this map is non-zero, which means the map is not injective. The existence of
such a map shows that MP is not a flat RP -module. This contradicts the hypothesis that MP is flat for all
prime ideals P .

Remark 7.32. In the statement of the proposition, the condition ”for every prime ideal P” can be replaced
with the seemingly weaker condition ”for every maximal ideal P .”

Example 7.33. Recall the example of S = k[t][x]/(t(x−1)) as a module over the ring R = k[t]. We observed
that this was not a flat family. We can see this now by checking the local conditions. The prime ideals of R
are (0) and the maximal ideals (t− a) for a ∈ k.

Let’s consider a maximal ideal P = (t− a) where a ̸= 0. Upon localizing at P , the element t ∈ R becomes a
unit in RP . In the localized module SP , the relation t(x− 1) = 0 implies x− 1 = 0. Therefore,

SP ∼= RP [x]/(x− 1) ∼= RP

Since RP is a free module over itself, SP is a flat RP -module for all P = (t− a) with a ̸= 0.

Now, consider the ”problem point,” the maximal ideal P = (t). When we localize at P , the element t is not
a unit. The relation t(x− 1) = 0 persists in S(t), showing that S(t) has t-torsion over the ring R(t). Since t
is a non-zero-divisor in the local ring R(t), a flat R(t)-module must be torsion-free. As S(t) has torsion, it is
not flat over R(t).

Since we have found a prime ideal P = (t) for which SP is not flat over RP , we conclude that S is not a
flat R-module.

7.3 Completions of Rings

7.3.1 Completions

In algebraic geometry, the localization of a ring R at a prime ideal m, denoted Rm, provides information
about the Zariski open neighborhoods of the corresponding point in Spec(R). The concept of completion,
which we introduce here, allows us to study infinitesimally smaller neighborhoods. For algebras over a field
k, the completion can be thought of as providing information about Euclidean neighborhoods.

A key example to keep in mind is the polynomial ring R = k[x1, . . . , xn] and the maximal ideal m =

(x1, . . . , xn). The completion of R with respect to m, denoted R̂m, is isomorphic to the ring of formal power
series k[[x1, . . . , xn]]. Consequently, for an ideal I ⊂ R, the completion of the quotient ring is given by

(R̂/I)m ∼= k[[x1, . . . , xn]]/Ik[[x1, . . . , xn]].

Example 7.34. Consider the ring R = k[x, y]/(y2 − x − 1), which is the coordinate ring of the parabola
x = y2 − 1. The inclusion k[x] ↪→ R induces a projection morphism π : Spec(R) → A1

k = Spec(k[x]). The
point (0,−1) on the curve is mapped to the origin 0 ∈ A1

k. In the affine plane k2, this corresponds to the
projection onto the x-axis.

In the standard Euclidean topology (if k = R or C), the projection π has a non-zero derivative at (0,−1).
By the Inverse Function Theorem, there exists a neighborhood U of 0 on the x-axis and a neighborhood V of
(0,−1) on the curve such that π has an analytic inverse map U → V , given by x 7→ (x,−

√
x+ 1).

This inverse is not algebraic, as −
√
x+ 1 is not a polynomial. However, it can be expressed as a formal

power series:

−
√
x+ 1 = −1− x

2
+
x2

8
− . . .

This series converges for |x| < 1. Thus, while an algebraic inverse does not exist, an inverse exists at the level
of formal power series. This illustrates the transition from the algebraic setting to the setting of completions.
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To formally define the completion of a ring, we first need the concept of an inverse limit.

Definition 7.35. An inverse system of groups (or rings) is a collection of groups {Ai}i∈J indexed by a
partially ordered set J , together with a set of homomorphisms {φij : Aj → Ai}i≤j satisfying:

1. φii is the identity map on Ai for all i ∈ J .

2. φik = φij ◦ φjk for all i ≤ j ≤ k. This is the commutativity condition illustrated by the diagram:

Ak

Aj Ai

φjk
φik

φij

Definition 7.36. The inverse limit (or projective limit) of an inverse system {Ai, φij} is the subgroup of
the direct product

∏
i∈J Ai defined as:

lim←−
i∈J

Ai :=

{
(ai)i∈J ∈

∏
i∈J

Ai | ai = φij(aj) for all i ≤ j in J

}
.

We now apply this construction to a ring R and an ideal m ⊆ R. The set of quotient rings {R/mi}i∈Z+ forms
an inverse system. For any j > i, the natural quotient map φij : R/m

j → R/mi serves as the homomorphism.

Definition 7.37. The m-adic completion of a ring R with respect to an ideal m is the inverse limit of the
system of quotient rings {R/mi}:

R̂m := lim←−
i∈Z+

R/mi.

An element of R̂m is a sequence g = (g1, g2, . . . ) where gi ∈ R/mi and gj ≡ gi (mod mi) for all j > i.

The completion R̂m forms a ring under coordinate-wise addition and multiplication. For each n ∈ Z+, we
can define an ideal

m̂n := ker(R̂m → R/mn) =
{
g = (g1, g2, . . . ) ∈ R̂m | gj = 0 for all j ≤ n

}
.

This gives a filtration m̂1 ⊃ m̂2 ⊃ . . . on R̂m. The quotient rings are R̂m/m̂n ∼= R/mn.

If m is a maximal ideal, then R̂m is a local ring. The ideal m̂1 is maximal because R̂m/m̂1
∼= R/m, which

is a field. To see that it is the unique maximal ideal, consider an element g = (g1, g2, . . . ) ∈ R̂m \ m̂1.
Then g1 ̸≡ 0 (mod m), so g1 is a unit in R/m. Since gi ≡ g1 (mod m) for all i > 1, each gi is a unit in
R/mi. The compatibility condition gj ≡ gi (mod mi) ensures that the sequence of inverses (g−1

1 , g−1
2 , . . . ) is

a well-defined element of R̂m and is the inverse of g. Thus, every element not in m̂1 is a unit, proving that
R̂m is local with maximal ideal m̂1.

Note that the completion of R at m is the same as the completion of the localization Rm at its maximal ideal
mRm, since R/m

i ∼= Rm/(mRm)
i.

Example 7.38 (Formal Power Series Rings). Let R = S[x1, . . . , xn] be a polynomial ring over a ring S,

and let m = (x1, . . . , xn). We claim that the completion R̂m is isomorphic to the formal power series ring
S[[x1, . . . , xn]].

First, observe that R/mi ∼= S[[x1, . . . , xn]]/m
iS[[x1, . . . , xn]]. This provides a natural homomorphism

Φ : S[[x1, . . . , xn]]→ R̂m, f 7→ (f (mod m), f (mod m2), . . . ).

To construct an inverse map, consider an element (f1 + m, f2 + m2, . . . ) ∈ R̂m. The condition fi ≡ fj
(mod mj) for i > j implies that fi − fi−1 consists of terms of degree at least i− 1. We can form the series

f1 + (f2 − f1) + (f3 − f2) + · · · ∈ S[[x1, . . . , xn]].
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This map is well-defined (independent of the choice of representatives fi) and serves as the inverse to Φ,
establishing the isomorphism.

Example 7.39 (The Ring of p-adic Integers). A basic example from number theory is the completion of the
integers Z with respect to a prime ideal (p). The resulting ring, denoted Zp, is the ring of p-adic integers.

Zp = Ẑ(p) = lim←−
i∈Z+

Z/(pi).

An element of Zp is a sequence (a1, a2, . . . ) where ai ∈ Z/(pi) and aj ≡ ai (mod pi) for j > i.

Any p-adic integer can be uniquely represented by a formal power series in p, known as its p-adic expansion.
Given (a1, a2, . . . ), we may choose representatives such that 0 ≤ ai < pi. The compatibility condition
ai+1 ≡ ai (mod pi) implies ai+1 − ai = bip

i for some integer bi. We can uniquely choose bi such that
0 ≤ bi < p. Then we can write

a1 = b0, a2 = b0 + b1p, a3 = b0 + b1p+ b2p
2, . . .

This gives rise to the expansion
∑∞
i=0 bip

i. The partial sums of this series recover the sequence (a1, a2, . . . ).

Addition in Zp is defined coordinate-wise, but this does not correspond to term-by-term addition of the power
series coefficients. Instead, it involves a ”carrying” operation, analogous to standard integer arithmetic. For
example, in Z2, let x = (1, 1, 1, 9, . . . ) and y = (1, 1, 1, 1, . . . ). Then

x+ y = (1 + 1 (mod 2), 1 + 1 (mod 4), 1 + 1 (mod 8), 9 + 1 (mod 16), . . . ) = (0, 2, 2, 10, . . . ).

The corresponding power series for x is 1 + 0 · 2 + 0 · 22 + 1 · 23 + . . . and for y is 1. The sum is not found
by simply adding coefficients. Another example, in Z3:

(1 + 2 · 3 + 2 · 32) + (1 + 2 · 3 + 1 · 32) = 2 + 4 · 3 + 3 · 32 = 2 + (1 + 3) · 3 + 33 = 2 + 1 · 3 + 1 · 32 + 1 · 33.

There is a natural embedding Z ↪→ Zp. For any non-zero integer r, if pa is the highest power of p dividing r,
then r ̸≡ 0 (mod pa+1), so the image of r in Zp is non-zero. For example, in Z2, the integer 1 corresponds
to the constant sequence (1, 1, 1, . . . ). The power series 1+2+22+ . . . corresponds to the element whose n-th

term is
∑n−1
i=0 2i = 2n − 1 ≡ −1 (mod 2n). Thus, (1, 3, 7, 15, . . . ) represents −1. This leads to the famous

identity in Z2:
1 + 2 + 4 + 8 + · · · = −1.

The ring Zp is much larger than Z. The bijection between elements of Zp and their p-adic expansions
∑
aip

i

(where 0 ≤ ai < p) shows that the cardinality of Zp is that of the continuum. In particular, Zp is uncountable.

7.3.2 Properties of Completion

Definition 7.40. Let R be a ring and m ⊂ R an ideal. The natural map ϕ : R → R̂m sends r 7→ (r
(mod m), r (mod m2), . . . ). If ϕ is an isomorphism, we say R is complete with respect to m. If m is a
maximal ideal and R is complete with respect to m, we call R a complete local ring.

Remark 7.41. The kernel of the natural map ϕ : R → R̂m is
⋂∞
j=1 m

j. Therefore, if R is complete with

respect to m, it must be the case that
⋂∞
j=1 m

j = {0}.

Let R̂ = R̂m. Recall the ideals m̂n = ker(R̂ → R/mn). We can also consider the ideals mnR̂ generated by

the image of mn in R̂. An element of mnR̂ is a finite sum of elements of the form a · r̂ where a ∈ mn and
r̂ ∈ R̂. This implies that for any such element, its i-th coordinate (for i ≤ n) is zero, so ar̂ ∈ m̂n. Thus, we

always have the inclusion mnR̂ ⊆ m̂n. If R is Noetherian, this inclusion becomes an equality, but in general,
the ideals may differ.

Proposition 7.42. The ring R̂ is complete with respect to the filtration given by the ideals {m̂n}.
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Proof. By definition, the completion of R̂ with respect to the filtration {m̂n} is the inverse limit lim←−n R̂/m̂n.
As we have seen, R̂/m̂n ∼= R/mn. Therefore,

Completion of R̂ = lim←−
n

(R̂/m̂n) ∼= lim←−
n

(R/mn) = R̂.

Thus, R̂ is complete with respect to this filtration.

When the base ring R is Noetherian, the completion R̂ inherits several important properties.

Theorem 7.43. Let R be a Noetherian ring and m ⊂ R an ideal. Let R̂ be the m-adic completion of R.
Then:

1. R̂ is a Noetherian ring.

2. R̂ is complete with respect to the ideal mR̂.

3. R̂ is a flat R-module.

Proof. For a proof of these basic results, see, for example, Eisenbud, Commutative Algebra with a View
Toward Algebraic Geometry.

7.3.3 Limits and Topology

The structure of a completion can be understood topologically. The ideals mn (or m̂n in the completion)
define a system of neighborhoods of 0, endowing the ring with a topology. In this context, elements of the
completion can be viewed as limits of sequences from the original ring.

Example 7.44. In the polynomial ring R[x], the sequence of polynomials a0, a0 + a1x, a0 + a1x+ a2x
2, . . .

can be said to ”converge” to the formal power series
∑∞
i=0 aix

i ∈ R[[x]].

Example 7.45. In Z2, the sequence of integers 1, 3, 7, 15, . . . (i.e., 2n − 1) converges to the element −1.
This corresponds to the series 1 + 2 + 22 + . . . .

This notion of convergence can be made precise. Let R̂ be a completion with filtration {m̂n}.

Definition 7.46. A sequence (aj)j∈Z+ in R̂ converges to an element a ∈ R̂ if for every n ∈ Z+, there
exists an integer N(n) such that for all j ≥ N(n), we have a− aj ∈ m̂n.

A sequence (aj) is a Cauchy sequence if for every n ∈ Z+, there exists an integer N(n) such that for all
i, j ≥ N(n), we have ai − aj ∈ m̂n.

The completeness of R̂ means that every Cauchy sequence converges to a unique limit in R̂.

Exercise 7.47. Show that in a complete ring R̂, every Cauchy sequence converges to a unique limit.

This topology is the same as the one generated by the basis of open sets {a+ m̂n | a ∈ R̂, n ∈ Z+}.

7.3.4 Hensel’s Lemma

Complete rings possess a property for finding roots of polynomials, analogous to Newton’s method in analysis.
This property is encapsulated in Hensel’s Lemma. The underlying idea is that an approximate solution to a
polynomial congruence modulo an ideal can be ”lifted” to an exact solution in the completion.

In the p-adic integers, a congruence a ≡ b (mod pn) signifies that a and b are ”close,” agreeing in their first
n coefficients in the p-adic expansion. Hensel’s Lemma specifies when a solution modulo p can be refined to
a true solution in Zp.

For instance, consider f(x) = x2 − 5 in Z2. We have 5 ≡ 12 (mod 2) and 5 ≡ 12 (mod 4). However, 5 ̸≡ a2
(mod 8) for any integer a. This failure to lift the solution indicates that 5 is not a square in Z2.
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Now consider f(x) = x2 − 7 in Z3. We can find approximate solutions modulo powers of 3:

7 ≡ 12 (mod 3) (since 1− 7 = −6)
7 ≡ 42 (mod 9) (since 16− 7 = 9)

7 ≡ 132 (mod 27) (since 169− 7 = 162 = 6 · 27)

Here, 1 ≡ 1 (mod 3), 4 ≡ 1 (mod 3), and 13 ≡ 4 (mod 9). This suggests a sequence of approximations that
converges to a root of x2 − 7 in Z3. Hensel’s Lemma provides the precise conditions for this lifting to be
possible.

We first state the classical version for the p-adic integers.

Theorem 7.48 (Hensel’s Lemma). Let f(x) ∈ Zp[x] be a polynomial. If there exists an integer a ∈ Zp that
is an approximate root in the sense that

f(a) ≡ 0 (mod p) and f ′(a) ̸≡ 0 (mod p),

then there exists a unique root b ∈ Zp such that f(b) = 0 and b ≡ a (mod p).

Example 7.49. For f(x) = x2 − 5 in Z2, the derivative is f ′(x) = 2x. For any integer a, f ′(a) = 2a ≡ 0
(mod 2). The condition f ′(a) ̸≡ 0 (mod 2) is never met, so this version of the lemma is inconclusive.

Example 7.50. For f(x) = x2 − 7 in Z3, let’s test a = 1. We have f(1) = 1− 7 = −6 ≡ 0 (mod 3). The
derivative is f ′(x) = 2x, so f ′(1) = 2 ̸≡ 0 (mod 3). By Hensel’s Lemma, there is a unique root b ∈ Z3 such
that b ≡ 1 (mod 3). Similarly, testing a = 2, we have f(2) = 4−7 = −3 ≡ 0 (mod 3), and f ′(2) = 4 ≡ 1 ̸≡ 0
(mod 3). Thus, there is also a unique root c ∈ Z3 such that c ≡ 2 (mod 3).

We can use this to characterize the square elements in Zp. Let c ∈ Zp be non-zero. We can write c = pnb
where p ∤ b. Then c is a square in Zp if and only if n is even and b is a square. To determine if b is a square,
we consider the polynomial f(x) = x2 − b. Its derivative is f ′(x) = 2x.

Case 1: p ̸= 2. If b is a quadratic residue modulo p, there exists an integer a such that a2 ≡ b (mod p).
Since p ∤ b, we have a ̸≡ 0 (mod p). As p ̸= 2, it follows that f ′(a) = 2a ̸≡ 0 (mod p). By Hensel’s Lemma,
there exists a root of f(x) in Zp. Therefore, for p ̸= 2, an element c = pnb is a square in Zp if and only if n
is even and b is a quadratic residue modulo p.

Case 2: p = 2. The condition f ′(a) ̸≡ 0 (mod p) is never satisfied. A more general version of the lemma is
needed.

Theorem 7.51 (Generalized Hensel’s Lemma). Let R be a ring that is complete with respect to an ideal m.
Let f(x) ∈ R[x] be a polynomial. If there exists a ∈ R such that

f(a) ∈ f ′(a)2m,

then there exists a root b of f such that f(b) = 0 and b − a ∈ f ′(a)m. If f ′(a) is a non-zero-divisor in R,
then this root b is unique.

Example 7.52. We return to the question of which elements are squares in Z2. Let c = 2nb with b odd. For
c to be a square, n must be even and b must be a square. Let us determine the condition for an odd integer
b to be a square. A simple calculation shows that the square of any odd integer is congruent to 1 (mod 8).

(1 + 2k)2 = 1 + 4k + 4k2 = 1 + 4k(k + 1) ≡ 1 (mod 8).

Thus, a necessary condition for b to be a square in Z2 is b ≡ 1 (mod 8). We now show this is sufficient.

Let f(x) = x2 − b. The ring is R = Z2, which is complete with respect to m = (2). The derivative is
f ′(x) = 2x. Let’s choose the approximate root a = 1. Then f(a) = 1− b and f ′(a) = 2. The condition from
the Generalized Hensel’s Lemma is

f(a) ∈ f ′(a)2m =⇒ 1− b ∈ (2)2(2) = (8).

This is precisely the condition b ≡ 1 (mod 8). If this holds, the lemma guarantees the existence of a root in
Z2. Thus, an odd integer b is a square in Z2 if and only if b ≡ 1 (mod 8).
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8 Dimension Theory

8.1 Preliminaries

8.1.1 Introduction to Dimension Theory

Definition 8.1. The Krull dimension of a ring R, denoted dimR, is the supremum of lengths of chains
of prime ideals in R. A chain of prime ideals Pr ⊋ Pr−1 ⊋ · · · ⊋ P0 is said to have length r.

Example 8.2. In the polynomial ring C[x1, . . . , xn], the chain of prime ideals

(x1, . . . , xn) ⊋ (x1, . . . , xn−1) ⊋ · · · ⊋ (x1) ⊋ (0)

has length n. We will later see that this is a chain of maximal length, which implies that dimC[x1, . . . , xn] =
n.

Definition 8.3. Let I ⊊ R be a proper ideal.

1. The dimension of I is defined as dim I := dim(R/I).

2. If I is a prime ideal, its codimension (or height) is the supremum of lengths of chains of prime ideals
descending from I. We denote this by codim I. Note that this is equivalent to the dimension of the
localization, i.e., codim I = dimRI .

3. If I is not prime, its codimension is defined as the minimum of the codimensions of the prime ideals
containing it:

codim I := min{codim P | P ⊇ I is prime}.

The notion of dimension can also be extended to modules.

Definition 8.4. Let M be an R-module. The dimension of M is defined in terms of its annihilator:

dimM := dim(annM) = dim(R/annM).

Remark 8.5. This definition can lead to ambiguity. For instance, if I is an ideal in an integral domain
R, its dimension as an R-module is dimR I = dim(R/ann(I)). Since R is a domain, ann(I) = (0), so
dimR I = dimR. However, its dimension as an ideal is dim I = dim(R/I). When we write dim I, we will
mean its dimension as an ideal unless specified otherwise. The context should make the intended meaning
clear.

Problem 8.6. Let I ⊆ R be an ideal. Why is it not always possible to define the codimension of I as
codim I = dimR− dim I?

While this formula holds in many well-behaved cases (e.g., for ideals in a domain that is a finitely generated
k-algebra), it fails in general.

Example 8.7. Consider the variety in A3 defined by the ideal (x)(y, z) = (xy, xz). This variety is the union
of the plane x = 0 and the line y = z = 0.

x = 0

y = z = 0

y = z = 0

Let R = k[x, y, z]/(xy, xz). The chain of prime ideals corresponding to (x, y, z) ⊃ (x, y) ⊃ (x) shows that
dimR ≥ 2. In fact, dimR = 2.
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Now consider the ideal I = (x − 1, y, z)R. Geometrically, this corresponds to the point (1, 0, 0), which lies
only on the component defined by y = z = 0. The ideal I is maximal in R, so its dimension as an ideal is
dim I = dim(R/I) = 0.

However, its codimension is codim I = dimRI .

RI =

(
k[x, y, z]

(xy, xz)

)
(x−1,y,z)

=
k[x, y, z](x−1,y,z)

(y, z)k[x, y, z](x−1,y,z)

∼= k[x](x−1).

The dimension is therefore dim k[x](x−1) = 1. So, we have codim I = 1. In this case, dim I + codim I =
0 + 1 = 1 ̸= 2 = dimR.

The intuition here is that dimR measures the dimension of the largest irreducible component of the corre-
sponding variety, while codim I provides the ”local” codimension of the subvariety V (I) within the compo-
nent on which it lies.

8.1.2 Connection to Artinian Rings

Recall that a ring R is Artinian if every strictly decreasing chain of ideals terminates. We have previously
established the following key result.

Theorem 8.8. A ring R is Artinian if and only if it is Noetherian and every prime ideal of R is maximal.

This algebraic characterization has a geometric counterpart for the prime spectrum of the ring.

Corollary 8.9. If R is a Noetherian ring, then R is Artinian if and only if Spec(R) is a finite set of points.

The condition that every prime ideal is maximal is equivalent to the statement that there are no prime ideal
chains of length 1 or greater. This allows us to rephrase the above results in the language of dimension
theory.

Corollary 8.10. If R is a Noetherian ring, the following are equivalent:

1. dimR = 0.

2. R is Artinian.

3. Spec(R) is a finite, discrete space.

8.1.3 Dimension and Morphisms

Recall the ”going-up” and ”incomparability” theorems for integral extensions. The going-up theorem allows
us to lift an ascending chain of prime ideals from a ring R to a ring S that is integral over R. The
incomparability theorem states that if two prime ideals in S, one contained in the other, contract to the
same prime ideal in R, then they must be equal. These theorems allow us to relate the dimensions of rings
and their integral extensions.

Proposition 8.11. Let ψ : R → S be a ring homomorphism that makes S an integral extension of ψ(R).
Let I ⊆ S be an ideal. Then

dim I = dimψ−1(I).

Proof. First, observe that we can reduce to the case of an inclusion. The homomorphism ψ induces an
isomorphism R/ kerψ ∼= ψ(R). The ring S is integral over ψ(R). The ideal ψ−1(I) in R corresponds to the
ideal ψ(R) ∩ I in ψ(R). The dimension formula is dimψ−1(I) = dim(R/ψ−1(I)) = dim(ψ(R)/(ψ(R) ∩ I)).
The dimension of I is dim(S/I). Since S/I is integral over ψ(R)/(ψ(R) ∩ I), we can replace R with ψ(R),
S with S/I, and assume R ⊆ S is an integral extension of domains, and we wish to show dimS = dimR.

Let P0 ⊊ P1 ⊊ · · · ⊊ Pr be a chain of prime ideals in R. By the going-up theorem, there exists a chain of
prime ideals Q0 ⊊ Q1 ⊊ · · · ⊊ Qr in S such that Qi ∩R = Pi. This implies dimS ≥ dimR.
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Conversely, let Q0 ⊊ Q1 ⊊ · · · ⊊ Qs be a chain of prime ideals in S. Let Pi = Qi∩R. By the incomparability
theorem, the chain P0 ⊆ P1 ⊆ · · · ⊆ Ps must be a strictly increasing chain of prime ideals in R. Thus,
dimR ≥ dimS. Combining these inequalities, we conclude dimR = dimS.

This proposition has a powerful geometric interpretation.

Corollary 8.12. Let ϕ : S → R be a ring homomorphism such that R is a finite S-algebra. Let ϕ∗ :
Spec R→ Spec S be the corresponding morphism of spectra.

1. The fibers of ϕ∗ are finite sets. (A finite morphism has finite fibers).

2. If X = V (I) ⊆ Spec R is a closed subscheme, then its image ϕ∗(X) ⊆ Spec S is a closed subscheme of
the same dimension as X.

Proof. Let’s prove them in reverse order:

(2) Let X = V (I). The image ϕ∗(X) is the set of prime ideals in S that are preimages of primes in X. This
is V (ϕ−1(I)). So the image is closed. By the previous proposition, dimX = dim(R/I) = dim(S/ϕ−1(I)) =
dimϕ∗(X).

(1) Let P ∈ Spec S be a point. The fiber over P is Spec(R ⊗S k(P )), where k(P ) is the residue field at P .
The ring R⊗S k(P ) is a finite-dimensional algebra over the field k(P ). Such a ring is Artinian, and therefore
has dimension 0. A Noetherian scheme of dimension 0 is a finite set of points.

8.2 Main Theorems and Applications

8.2.1 Krull’s Principal Ideal Theorem

Assume all rings are Noetherian.

Problem 8.13. If an ideal I is generated by n elements, I = (a1, . . . , an), how does its codimension relate
to n? As a starting point, what is the codimension of a principal ideal (a)?

We begin with a simple observation about primes contained within a principal ideal.

Lemma 8.14. Let (x) be a proper principal ideal in a domain R. Any prime ideal P properly contained in
(x) has codimension 0.

Proof. Suppose for contradiction that there is a chain of prime ideals Q ⊊ P ⊊ (x). By passing to the
quotient ring R/Q, we may assume Q = (0) and R is a domain. Let y ∈ P . Since y ∈ (x), we can write
y = ax for some a ∈ R. Because P is prime and x /∈ P (as P ⊊ (x)), it must be that a ∈ P . This holds for
all y ∈ P , which implies P ⊆ xP . Since xP ⊆ P is always true, we have P = xP . As R is Noetherian, P is
finitely generated, so by Nakayama’s Lemma, there exists an element r ∈ (x) such that (1− r)P = 0. Since
R is a domain and P ̸= (0), we must have 1− r = 0, so r = 1. But this implies 1 ∈ (x), meaning (x) = R,
which contradicts the assumption that (x) is a proper ideal. Therefore, no such prime Q can exist, and P
must be a minimal prime, i.e., codim P = 0.

Krull’s Principal Ideal Theorem (PIT) generalizes this idea to primes that are minimal over a principal ideal.

Theorem 8.15 (Krull’s Principal Ideal Theorem). If x is an element of a Noetherian ring R, and P is a
prime ideal minimal over (x), then codim P ≤ 1.

To prove this, we first recall a useful characterization of minimal primes.

Corollary 8.16. Let R be a Noetherian ring and I ⊆ R an ideal. For a prime ideal P ⊇ I, the following
are equivalent:

1. P is minimal among primes containing I.

2. The ring RP /IRP is Artinian.
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3. For some n > 0, (PRP )
n ⊆ IRP in the ring RP .

Proof. See Eisenbud, Corollary 2.19. The proof relies on properties of primary decomposition and localiza-
tion.

We also introduce the concept of symbolic powers of a prime ideal.

Definition 8.17. Let Q ⊆ R be a prime ideal. The n-th symbolic power of Q is

Q(n) := QnRQ ∩R = {r ∈ R | sr ∈ Qn for some s ∈ R \Q}.

It is clear that Qn ⊆ Q(n). The containment can be strict.

Example 8.18. Let R = k[x, y, z]/(xy − z2) and let P = (x, z), which is a prime ideal in R. The relation
xy = z2 holds in R. Since y /∈ P , y is a unit in RP . In R, we have xy = z2 ∈ P 2. This means x ∈ P (2).
However, x /∈ P 2 = (x2, xz, z2), so P 2 ⊊ P (2).

Proof of the Principal Ideal Theorem. Let P be a prime ideal minimal over (x). We want to show codim P ≤
1. This is equivalent to showing that for any prime ideal Q ⊊ P , there is no prime ideal strictly between Q
and P .

By localizing at P , we may assume R is a local ring with unique maximal ideal P . Suppose there exists a
prime ideal Q such that Q ⊊ P . We must show that Q is a minimal prime of R (i.e., codim Q = 0).

Since P is minimal over (x), the ring R/(x) is Artinian by the corollary above. Consider the descending
chain of ideals in R/(x):

Q+ (x)

(x)
⊇ Q(2) + (x)

(x)
⊇ Q(3) + (x)

(x)
⊇ . . .

Since R/(x) is Artinian, this chain must stabilize. So for some n ≫ 0, we have Q(n) + (x) = Q(n+1) + (x).
This implies Q(n) ⊆ Q(n+1) + (x). For any f ∈ Q(n), we can write f = g + ax where g ∈ Q(n+1) and a ∈ R.
Then ax = f − g ∈ Q(n). Since P is minimal over (x), we have x /∈ Q. As Q is prime, this means a ∈ Q(n).
Therefore, Q(n) ⊆ Q(n+1) + (x)Q(n). Since the reverse inclusion is trivial, we have equality.

Now consider the module M = Q(n)/Q(n+1). We have M = (x)M . Since x ∈ P = J(R) (the Jacobson
radical), by Nakayama’s Lemma, we must have M = 0, which means Q(n) = Q(n+1).

Localizing at Q, this equality becomes (QRQ)
n = (QRQ)

n+1. Again, by Nakayama’s Lemma (applied to
the local ring RQ), this implies (QRQ)

n = (0). By the corollary, this means the ring RQ/(0) is Artinian, so
dimRQ = 0. This shows that Q is a minimal prime, and thus codim P ≤ 1.

This theorem generalizes to ideals generated by multiple elements.

Theorem 8.19 (Krull’s Height Theorem). If an ideal I in a Noetherian ring R can be generated by c
elements, and P is a prime ideal minimal over I, then codim P ≤ c.

Sketch of Proof. The proof proceeds by induction on c. The base case c = 1 is the Principal Ideal Theorem.
For the inductive step, assume the theorem holds for ideals generated by c− 1 elements. Let P be minimal
over I = (x1, . . . , xc). We may assume R is local with maximal ideal P . Let P1 be any prime ideal such that
P1 ⊊ P . We need to show that codim P1 ≤ c− 1. By passing to R/P1 and avoiding the minimal primes, we
can find an element y ∈ P such that P1 is minimal over an ideal generated by c− 1 elements. The inductive
hypothesis then gives the result.

Krull’s theorem provides a fundamental upper bound on the lengths of chains of prime ideals.

Corollary 8.20. In a Noetherian ring, any strictly descending chain of prime ideals has finite length.
Specifically, if P is a prime ideal generated by c elements, any chain of primes descending from P has length
at most c.
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Corollary 8.21. The ideal (x1, . . . , xc) in the polynomial ring k[x1, . . . , xn] has codimension c.

Proof. The chain (x1, . . . , xc) ⊋ (x1, . . . , xc−1) ⊋ · · · ⊋ (x1) ⊋ (0) shows codim(x1, . . . , xc) ≥ c. Krull’s
Height Theorem provides the reverse inequality, codim(x1, . . . , xc) ≤ c.

There is a useful partial converse to Krull’s Height Theorem.

Corollary 8.22. If P is a prime ideal of codimension c in a Noetherian ring, then P is a minimal prime
ideal over some ideal generated by c elements.

Proof. We construct the generators inductively. Let r = 0. A prime of codimension 0 is minimal over the
ideal (0), which is generated by 0 elements. Now, assume we have found x1, . . . , xr ∈ P with r < c such
that any prime minimal over (x1, . . . , xr) has codimension r. Let {Qi} be the set of minimal primes over
(x1, . . . , xr). Since codim P = c > r = codim Qi, P cannot be equal to any Qi. By prime avoidance,
P ̸⊆

⋃
Qi. So we can choose xr+1 ∈ P \

⋃
Qi. Any prime minimal over (x1, . . . , xr+1) must properly contain

some Qi, and thus has codimension at least r+1. By Krull’s theorem, it has codimension exactly r+1. We
continue this process until r = c, at which point P must be a minimal prime over (x1, . . . , xc).

Finally, we connect these results to unique factorization domains.

Corollary 8.23. Let R be a Noetherian domain. Then R is a UFD if and only if every prime ideal of
codimension 1 is principal.

Proof. A standard result states that a Noetherian domain is a UFD if and only if every minimal prime over
a non-zero principal ideal is itself principal. Let P be a prime minimal over (x) for some x ̸= 0. By the
Principal Ideal Theorem, codim P ≤ 1. Since x ̸= 0, P ̸= (0), so codim P = 1. By hypothesis, P is principal.
Thus, R is a UFD. The converse is a standard property of UFDs.

8.2.2 Systems of Parameters

Assume all rings are Noetherian.

Using the Principal Ideal Theorem along with the corollary about primes minimal over an ideal in a local
ring, we get the following characterization of the dimension of a local ring:

Corollary 8.24. If (R,m) is a local ring, then dimR is the smallest number d such that there exist d
elements x1, . . . , xd ∈ m with mn ⊆ (x1, . . . , xd) for n≫ 0.

Proof. If mn ⊆ (x1, . . . , xd) ⊆ m, then m is a minimal prime over (x1, . . . , xd), so dimR ≤ d by the Principal
Ideal Theorem.

For the other inequality, let e = dimR. By the converse of the Principal Ideal Theorem, we can find
x1, . . . , xe ∈ m such that m is a minimal prime over (x1, . . . , xe). Then the ring R/(x1, . . . , xe) has only one
prime ideal (the image of m). Thus, its maximal ideal must be nilpotent. This implies mn ⊆ (x1, . . . , xe)
for some n≫ 0. Since d is the minimum such number of elements, we must have d ≤ e = dimR.

Definition 8.25. If (R,m) is a local ring with d = dimR, a sequence of elements x1, . . . , xd as in the
corollary is called a system of parameters for R.

If (R,m) is a local ring of dimension d, the following are equivalent for elements x1, . . . , xd ∈ m:

1. The set {x1, . . . , xd} is a system of parameters.

2. rad(x1, . . . , xd) = m.

3. m is a minimal prime ideal over (x1, . . . , xd).
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Recall that for a local ring (R,m), the following are equivalent: it has finite length, it is Artinian, m is the
only prime ideal, and mn = 0 for some n≫ 0.

Thus, for an ideal q in a local ring R, mn ⊆ q for n≫ 0 if and only if R/q has finite length. Such an ideal q
is said to have finite colength.

More generally, if M is a finitely generated module over a local ring (R,m), then an ideal q ⊆ m has finite
colength on M if the module M/qM has finite length. This is true if and only if a power of m annihilates
M/qM , i.e., mn ⊆ ann(M/qM) for some n≫ 0. This implies m ⊆ rad(ann(M/qM)). Since m is maximal,
we must have m = rad(ann(M/qM)).

Proposition 8.26. If R is any ring,M a finitely generated R-module, and q ⊆ R an ideal, then rad(ann(M/qM)) =
rad(q + annM).

Proof. It suffices to show that a prime ideal P of R contains ann(M/qM) if and only if P contains q+annM .

A prime P ⊇ ann(M/qM) if and only if (M/qM)P ̸= 0. Note that (M/qM)P ∼=MP /qPMP . By Nakayama’s
Lemma, MP /qPMP ̸= 0 if and only if MP ̸= 0 and qP ⊆ PP (the maximal ideal of RP ). These conditions
are equivalent to P not containing annM (so MP ̸= 0) and P ⊇ q. Thus, P must contain both q and annM ,
which means P ⊇ q + annM .

Proposition 8.27. Let (R,m) be a local ring and M a finitely generated R-module. Let q ⊆ m be an ideal.
Then:

1. q has finite colength on M if and only if m = rad(q + annM), which is equivalent to q having finite
colength on the ring R/annM .

2. If 0 → M ′ → M → M ′′ → 0 is a short exact sequence of R-modules, then q has finite colength on M
if and only if q has finite colength on both M ′ and M ′′.

3. dimM is the least number d such that there exists an ideal of finite colength on M generated by d
elements.

Proof.

1. An ideal q has finite colength on M ⇐⇒ rad(ann(M/qM)) = m. By the previous proposition, this is
equivalent to rad(q + annM) = m. The annihilator of the R/annM -module (R/annM)/(q(R/annM))
is precisely q + annM . Thus, q has finite colength on R/annM ⇐⇒ rad(q + annM) = m.

2. Suppose q has finite colength on M . Then rad(q + annM) = m. Since annM ⊆ annM ′ ∩ annM ′′, we
have q + annM ⊆ q + annM ′ and q + annM ⊆ q + annM ′′. Taking radicals, m = rad(q + annM) ⊆
rad(q+annM ′) and m ⊆ rad(q+annM ′′). Since these radicals must be proper ideals, they must equal
m. Thus q has finite colength on M ′ and M ′′.

For the converse, tensoring the short exact sequence with R/q yields the exact sequence

M ′/qM ′ →M/qM →M ′′/qM ′′ → 0.

If M ′/qM ′ and M ′′/qM ′′ have finite length, then any submodule and quotient module of M/qM have
finite length, implying M/qM itself has finite length.

3. By definition, dimM = dim(R/annM). By the first corollary, this is the smallest number d such that
there exists an ideal q = (x1, . . . , xd) having finite colength on R/annM . By part (1), this is equivalent
to q having finite colength on M .

Corollary 8.28. If (R,m) is a local ring and M is a finitely generated R-module, then for any x ∈ m, we
have

dimM − 1 ≤ dim(M/xM) ≤ dimM.
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Proof. The second inequality is clear since annM ⊆ ann(M/xM). For the first, set d = dim(M/xM). Then
there exists an ideal q = (x1, . . . , xd) of finite colength on M/xM . Thus, M/(x, q)M = (M/xM)/q(M/xM)
has finite length. This means the ideal (x, x1, . . . , xd) has finite colength on M . Therefore, dimM ≤ d+ 1,
which implies dimM − 1 ≤ d = dim(M/xM).

8.2.3 The Going-Down Theorem

Assume all rings are Noetherian.

Proposition 8.29. Let (R,m) be a local ring and S be an R-algebra such that mS ̸= S. Then codim(mS) ≤
dimR.

Proof. Let x1, . . . , xd be a system of parameters in R, where d = dimR. Then rad(x1, . . . , xd) = m. Any
prime minimal over mS is also minimal over the ideal I = (x1, . . . , xd)S. To see this, let P be a prime
minimal over mS. Suppose I ⊆ Q ⊆ P for some prime Q. Let φ : R → S be the algebra map. Then
(x1, . . . , xd) ⊆ φ−1(I) ⊆ φ−1(Q) ⊆ φ−1(P ) = m. Since rad(x1, . . . , xd) = m, we must have φ−1(Q) = m.
This implies mS ⊆ Q, so by minimality P = Q. The inequality follows from the Principal Ideal Theorem,
as mS is contained in the radical of an ideal generated by d elements.

Theorem 8.30. Let φ : (R,m)→ (S, n) be a homomorphism of local rings such that φ(m) ⊆ n. Then

dimS ≤ dimR+ dim(S/mS).

Proof. Set d = dimR and e = dim(S/mS). Let x1, . . . , xd ∈ m be a system of parameters for R, and let
y1, . . . , ye ∈ n be elements whose images in S/mS form a system of parameters for S/mS. For α ≫ 0, we
have nα ⊆ (y1, . . . , ye)S +mS. For β ≫ 0, we have mβ ⊆ (x1, . . . , xd)R. Then, considering the images in S,
we have (mS)β ⊆ (φ(x1), . . . , φ(xd))S. Combining these,

nαβ ⊆ ((y1, . . . , ye)S +mS)β

⊆ (y1, . . . , ye)S + (mS)β

⊆ (y1, . . . , ye)S + (φ(x1), . . . , φ(xd))S.

Thus, n is in the radical of an ideal generated by d+ e elements. By the Principal Ideal Theorem, dimS ≤
d+ e.

Geometrically, this theorem suggests that if f : X → Y is a map of varieties (or schemes), the dimension of
X is at most the sum of the dimension of Y and the dimension of a typical fiber of f .

Example 8.31. Define φ : C[x] → C[x, y]/(x(y − 1)) and consider the induced map on local rings at the
relevant maximal ideals.

C[x](x) → (C[x, y]/(x(y − 1)))(x,y).

Let R = C[x](x) and S = (C[x, y]/(x(y−1)))(x,y). Then dimR = 1. The target ring is S ∼= (C[x, y](x,y))/(x(y−
1)) ∼= (C[x, y](x,y))/(x) ∼= C[y](y). So dimS = 1. The fiber ring is S/mS = S/(x)S ∼= S. Thus dim(S/mS) =
1. Here, dimS = 1 and dimR+ dim(S/mS) = 1 + 1 = 2, so the inequality dimS ≤ dimR+ dim(S/mS) is
strict.

For flat R-algebras, equality holds. To prove this, we need the following theorem.

Theorem 8.32 (Going-Down Theorem for Flat Extensions). Let φ : R→ S be a ring homomorphism such
that S is a flat R-module. If P ′ ⊂ P are prime ideals of R and Q is a prime of S with φ−1(Q) = P , then
there exists a prime Q′ of S contained in Q such that φ−1(Q′) = P ′. In fact, Q′ may be taken to be any
prime of S contained in Q and minimal over P ′S.

Proof. Since P ′S ⊆ φ(P )S ⊆ Q, we can find a prime Q′ ⊆ Q minimal over P ′S. We may replace R with
R/P ′ and S with S/P ′S. The module S/P ′S ∼= S⊗RR/P ′ is flat over R/P ′, so the hypotheses are preserved.
This reduces the problem to the case where R is an integral domain and P ′ = (0).
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We need to show that φ−1(Q′) = (0). Since S is flat over R, every non-zero-divisor in R maps to a non-zero-
divisor in S. As R is a domain, every non-zero element of R is a non-zero-divisor. Now, Q′ is a minimal
prime of S (since P ′ = (0)), so it is an associated prime of S. Thus, every element of Q′ is a zero-divisor in
S. Therefore, no non-zero element of R can map into Q′, which means φ−1(Q′) = (0), as desired.

Corollary 8.33. Let φ : (R,m)→ (S, n) be a homomorphism of local rings such that S is a flat R-module.
Then

dimS = dimR+ dim(S/mS).

Proof. We have already shown dimS ≤ dimR + dim(S/mS). We need to prove the reverse inequality. Let
Q ⊆ S be a prime ideal minimal over mS such that dim(S/Q) = dim(S/mS). The dimension formula for
domains gives

dimS ≥ dim(S/Q) + ht(Q) = dim(S/mS) + ht(Q).

Thus, it suffices to show that ht(Q) ≥ dimR.

Since Q contains mS, we have φ−1(Q) ⊇ m. As n is the unique maximal ideal of S containing Q, we must
have φ−1(n) = m, and thus φ−1(Q) = m. Let P0 ⊊ P1 ⊊ · · · ⊊ Pd = m be a chain of prime ideals in R
of length d = dimR. Since φ−1(Q) = Pd, by the Going-Down Theorem for flat extensions, there exists a
prime Qd−1 ⊊ Q such that φ−1(Qd−1) = Pd−1. Applying the theorem repeatedly, we can construct a chain
of primes Q0 ⊊ Q1 ⊊ · · · ⊊ Qd = Q such that φ−1(Qi) = Pi. Thus, ht(Q) ≥ d = dimR.

Corollary 8.34. If R is a ring, then dimR[x] = 1+dimR. In particular, if k is a field, dim k[x1, . . . , xr] = r.

Proof. The second statement follows from the first by induction. For the first statement, if P0 ⊊ · · · ⊊ Pd
is a chain of primes in R, then P0R[x] ⊊ · · · ⊊ PdR[x] ⊊ PdR[x] + (x) is a chain of primes in R[x] of length
d+ 1. Thus, dimR[x] ≥ dimR+ 1.

For the other inequality, it suffices to show that for any maximal ideal Q ⊂ R[x], ht(Q) ≤ dimRP +1, where
P = Q∩R. Let Q ⊂ R[x] be a maximal ideal and let P = Q∩R. The ring R[x]Q is a localization of RP [x].
The map of local rings RP → R[x]Q is flat. The fiber ring is R[x]Q/PR[x]Q ∼= (RP /PRP )[x]Q ∼= k(P )[x]Q,
where k(P ) is the residue field of RP . This is a localization of a polynomial ring in one variable over a field,
so its dimension is 1. Applying the previous corollary,

dimR[x]Q = dimRP + dim(k(P )[x]Q) = dimRP + 1.

Since ht(Q) = dimR[x]Q, we have ht(Q) ≤ dimR + 1. As this holds for any maximal ideal Q, we conclude
dimR[x] ≤ dimR+ 1.

8.2.4 Regular Local Rings

All rings are Noetherian. Let (R,m) be a local ring of dimension d. By the Principal Ideal Theorem, the
minimal number of generators for m, denoted µ(m), is at least d.

Definition 8.35. A local ring (R,m) is called regular if µ(m) = dimR. A system of parameters that
generates m is called a regular system of parameters.

Example 8.36. Let R = (C[x, y]/(y2 − x3))(x,y). The maximal ideal m = (x̄, ȳ) is not principal. However,
m2 = (x̄2, x̄ȳ, ȳ2) = (x̄2, x̄ȳ, x̄3) ⊆ (x̄). Thus, rad(x̄) = m, so dimR = 1. Since µ(m) = 2 > dimR = 1, the
ring R is not regular. This corresponds to the singularity (a cusp) at the origin of the curve y2 = x3.

In algebraic geometry, a point on a scheme (or variety) is smooth if and only if its corresponding local ring
is regular.

Proposition 8.37. A regular local ring is an integral domain.
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Proof. Let (R,m) be a regular local ring. We proceed by induction on d = dimR. If d = 0, then m = (0),
so R is a field and thus an integral domain. Assume d > 0. By Nakayama’s Lemma, m ̸= m2. By prime
avoidance, we can find an element x ∈ m \m2 that is not in any minimal prime of R. Let S = R/(x) with
maximal ideal n = m/(x). Since x is not in any minimal prime, dimS = dimR− 1 = d− 1. The number of
generators for n is µ(n). We have the map m/m2 ↠ n/n2. Since x ∈ m\m2, its image in m/m2 is non-zero.
The kernel of this map contains the image of x. Thus, dimR/m(n/n2) = dimR/m(m/m2) − 1 = d − 1. By
Nakayama’s Lemma, µ(n) = d − 1 = dimS. So S is a regular local ring. By the induction hypothesis,
S = R/(x) is an integral domain. This means (x) is a prime ideal in R. Since x was chosen not to be in
any minimal prime of R, the prime ideal (x) must properly contain some minimal prime Q of R. Let y ∈ Q.
Then y ∈ (x), so y = ax for some a ∈ R. Since y ∈ Q and x /∈ Q (as (x) is not a minimal prime), we must
have a ∈ Q. Thus Q = mQ. By Nakayama’s Lemma, Q = (0). Therefore, (0) is the unique minimal prime
ideal, and R is an integral domain.

Definition 8.38. A sequence of elements x1, . . . , xd in a ring R is an R-sequence or regular sequence
if (x1, . . . , xd) is a proper ideal and for each i = 1, . . . , d− 1, xi+1 is a non-zero-divisor in R/(x1, . . . , xi).

In general, whether a sequence is regular can depend on the order of the elements.

Example 8.39. In C[x, y, z], the sequence x, y(1−x), z(1−x) is a regular sequence. However, the sequence
y(1− x), z(1− x), x is not, because z(1− x) is a zero-divisor on C[x, y, z]/(y(1− x)) (since z(1− x) · y = 0
in the quotient).

However, for a regular system of parameters in a local ring, the order does not matter.

Corollary 8.40. Any regular system of parameters in a regular local ring is a regular sequence.

Proof. Let x1, . . . , xd be a regular system of parameters for a regular local ring R. For each i, the ring
Ri = R/(x1, . . . , xi) is a local ring of dimension d − i, and its maximal ideal is generated by the images of
xi+1, . . . , xd. Thus, Ri is a regular local ring for each i. By the previous proposition, each Ri is an integral
domain. The image of xi+1 in Ri is non-zero (by minimality of generators), and since Ri is a domain, xi+1

is a non-zero-divisor. This holds for all i, so the sequence is regular.

8.2.5 Discrete Valuation Rings

Regular local rings of dimension one correspond to smooth points on curves. These rings have a special
name.

Definition 8.41. A discrete valuation ring (DVR) is a regular local ring of dimension one.

IfR is a DVR, its maximal ideal is principal,m = (π) for some π ∈ R. The element π is called a uniformizing
parameter.

Proposition 8.42. Let R be a DVR with uniformizing parameter π and field of fractions K. Then every
non-zero element t ∈ K can be uniquely written as t = uπn where u ∈ R is a unit and n ∈ Z. (The map
v : K× → Z defined by t 7→ n is the corresponding valuation). In particular, every non-zero ideal of R is of
the form (πn) for some n ≥ 0, and R is a PID.

Proof. By the Krull Intersection Theorem,
⋂∞
i=1(π

i) = (0). For any non-zero s ∈ R, we can choose the
largest integer n ≥ 0 such that s ∈ (πn). So, s = uπn for some u ∈ R. By maximality of n, u /∈ (π), which
means u is a unit.

If t ∈ K×, we can write t = s1/s2 for s1, s2 ∈ R \ {0}. Write s1 = u1π
n1 and s2 = u2π

n2 . Then
t = (u1/u2)π

n1−n2 . The element u1/u2 is a unit in R. For uniqueness, if uπn = vπm with u, v units, then
u/v = πm−n. Since u/v is a unit, we must have m− n = 0, so m = n and thus u = v.
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