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1 Affine Lie Algebras and their Finite-Dimensional
Representations

1.1 The Big Goal

Definition 1.1. Let g be a finite-dimensional simple Lie algebra. The affine
Lie algebra ĝ is defined as the algebra of Laurent polynomials in the variable t
with coefficients in g:

ĝ := g[t±1],

with the Lie bracket given by:

[a(t), b(t)] = [a, b](t) + Rest=0(a(t), b(t))
dt

t
K,

where a(t), b(t) ∈ g[t±1], and K is a central element of the algebra.

This construction sets the stage for our main question of interest:

Problem 1.2. What are the finite-dimensional representations of ĝ?

The central element K acts trivially on all finite-dimensional representations of
ĝ, as shown in the following lemma:

Lemma 1.3. K = 0 on every finite-dimensional representation of ĝ.

Proof. The affine Lie algebra ĝ = ⟨ei, fi, hi⟩, where i = 0, . . . , r, is equipped
with the central element K =

∑
kihi. For each root sl2-triple ⟨ei, hi, fi⟩, the

commutation relation [ei, fi] = hi implies that the trace of hi is zero on any
finite-dimensional representation V , i.e., trV hi = 0. Thus, TrV (K) = 0. More-
over, K is nilpotent on any indecomposable finite-dimensional representation.
Since K is also semisimple, it follows that K|V = 0.

Thus, we reduce the problem to studying the finite-dimensional representations
of the algebra Lg = g[t±1].

1.2 Tensor Products of Irreducible Representations

For each z ∈ C×, define the evaluation map:

evz : Lg → g, a(t) 7→ a(z),

which is surjective. For each finite-dimensional representation V of g, the cor-
responding representation of Lg is given by the pullback:

V (z) = ev∗zV.

In particular, the action of a ∈ g on V (z) is given by:

πV (z)(a⊗ tn) = πV (a)z
n.
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Thus, for each dominant weight λ ∈ P+, there are irreducible representations
Vλ(z).

Thus, the problem reduces to studying the finite-dimensional representations of
the algebra Lg = g[t±1].

For each z ∈ C×, we define the evaluation map:

evz : Lg → g, a(t) 7→ a(z),

which is surjective. For each finite-dimensional representation V of g, the cor-
responding representation of Lg is given by the pullback:

V (z) = ev∗zV.

In particular, the action of a ∈ g on V (z) is given by:

πV (z)(a⊗ tn) = πV (a)z
n.

Thus, for each dominant weight λ ∈ P+, there are irreducible representations
Vλ(z).

Proposition 1.4. The tensor product Vλ1
(z1) ⊗ · · · ⊗ Vλn

(zn) is irreducible if
and only if the zi’s are pairwise distinct.

Proof. =⇒ : This reduces to the statement that if X,Y are irreducible repre-
sentations of g and both are nontrivial, then X ⊗ Y is reducible. To show this,
we compute:

dimHomg(X ⊗ Y,X ⊗ Y ) = dimHomg(X ⊗X∗, Y ⊗ Y ∗),

where X ⊗X∗ = C⊕ g⊕ · · · and Y ⊗ Y ∗ = C⊕ g⊕ · · · . Thus, dimHom ≥ 2,
implying that X ⊗ Y is reducible.

Let a ∈ g. Then:

a⊗ tm 7→ a1z
m
1 + a2z

m
2 + · · ·+ anz

m
n = A(a)m.

The Vandermonde determinant is:

det

á
1 1 · · · 1
z1 z2 · · · zn
...

...
...

...
zn−1
1 zn−1

2 · · · zn−1
n

ë
=
∏
i<j

(zi − zj) ̸= 0,

so a1, a2, . . . , an are linear combinations of A(a)m, where m = 0, . . . , n − 1.
Therefore, V1(z1)⊗ · · · ⊗ Vn(zn) is irreducible.

⇐=: Exercise. Hint: Lg ↠ g⊕k via (evz1 , . . . , evzn).

Problem 1.5. Which tensor products in Proposition 1.2 are isomorphic?
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Proposition 1.6. These tensor products are pairwise non-isomorphic.

Proof. For h ∈ h ⊂ g, define h+(z) := −
∑∞
n=0(h ⊗ t−n−1)zn. We can apply

h+(z) to the vector v := vλ1
⊗ · · · ⊗ vλn

∈ Vλ1
(z1)⊗ · · · ⊗ Vλn

(zn). This vector
is unique up to scaling and has weight λ1 + · · ·+ λn for g ⊂ Lg. Thus, we find:

h+(z)v =
∑
K,n

−λK(h)

Å
z

zk

ãn
=
∑
k

λK(h)

z − zk
,

which has poles at zk with residues −λk(h).

Let nik := λk(hi) ∈ Z≥0. Then, we have:

hi+(z)v =

(∑
k

nik
z − zk

)
v =

P ′
i (z)

Pi(z)
v,

where Pi(z) :=
∏
k(z − zk)

nik is the Drinfeld polynomial.

As a consequence of these results, the highest weight of Vλ1
(z1)⊗ · · · ⊗ Vλn

(zn)
with respect to h⊗ C[t−1] is captured by the Drinfeld polynomials P1, . . . , Pr.

Finally, we conclude with a significant result that characterizes the finite-dimensional
irreducible representations of Lg:

Proposition 1.7. These are the only irreducible finite dimensional representa-
tions of Lg.

Proof. Claim: I is an ideal.

Proof of Claim: Let a, b ∈ g, q ∈ I, and p ∈ C[t, t−1]. Then, we have the
following calculation:

πV ([a, b]⊗pq) = [πV (ap), πV (bq)] = πV ([a⊗p, b⊗q]) = [πV (a⊗p), πV (b⊗q)] = 0.

Since elements of the form [a, b] span g, we conclude that for all c ∈ g, πV (c⊗
pq) = 0, which implies that pq ∈ I. Therefore, I = (q), where q =

∏α
i=1(t−ti)ni .

The map g[t, t−1] → EndC(V ) factors through a := g⊗ (C[t±1]/(q)), which is a
finite-dimensional Lie algebra. This can be decomposed as:

a = asemisimple ⋉ Rad(a),

where asemisimple =
⊕α

i=1 g and Rad(a) = t1g[t]/t
m1 ⊕ · · · ⊕ tng[t]/t

mn .

We now use the following standard fact:

Fact: In a finite-dimensional irreducible representation, Rad = 0.

This implies that mi = 1, so V is an irreducible representation of g⊕· · ·⊕g.

Remark 1.8.
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• The classification of irreducible representations extends to the case of g⊗C
A for any finitely generated commutative C-algebra A.

• The tensor product of simple representations is semisimple.

• Indecomposable representations of Lg remain an interesting topic of study.
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2 Introduction to Quantum Groups

2.1 The Basics

Consider the presentation of Kac-Moody Lie algebras, where aij ∈ Z satisfy
aii = 2, aij = 0 ⇐⇒ aji = 0, and aij ≤ 0 for i ̸= j. We assume that the
Kac-Moody Lie algebras are symmetrizable, meaning there exist αi such that
diaij = djaji, which we fix.

The generators hi, ei, fi satisfy the relations:

[hi, hj ] = 0, [hi, ej ] = aijej , [hi, fj ] = −aijfj , [ei, fj ] = δijhi,

along with the Serre relations:

(ad ei)
1−aij (ej) = 0, (ad fi)

1−aij (fj) = 0.

Alternatively, the Serre relations can be omitted, and we can define g̃(A) as
the same Lie algebra without the Serre relations. This gives the triangular
decomposition g̃(A) = ñ+ ⊕ h⊕ ñ−, where ñ+ and ñ− are free in the generators
ei and fi, respectively, and h = span(hi).

There exists a unique ideal I ⊂ g̃(A), the largest graded ideal with I ∩ h = {0},
such that the degree of fi is −1, the degree of ei is 1, and the degree of h is 0.
This ideal decomposes as I = I+ ⊕ I−, where I± ⊂ ñ±.

We define g(A) := g̃(A)/I, which admits a triangular decomposition:

g(A) = ñ+ ⊕ h⊕ ñ−,

where ñ±/I± corresponds to the respective subalgebras of g(A).

Theorem 2.1 (Gabber-Kac Theorem). The ideals I+ and I− generate the Serre
relations for ei and fi, respectively.

Next, we discuss Drinfeld’s quantization: Let q ∈ C× (not a root of unity) or
work over C(q). We define qi = qαi and Ki = qhi

i . Then, the quantum group
Uq(g(A)) is generated by K±1

i , ei, fi with the following relations:

[Ki,Kj ] = 0, KiejK
−1
i = q

aij
i ej , KifjK

−1
i = q

−aij
i fj ,

[ei, fj ] = δij
Ki −K−1

i

qi − q−1
i

, (adqiei)
1−aijej = 0, (adqifi)

1−aijfj = 0.

The last two relations are the quantum Serre relations, with (adqx)(y) = xy −
qyx. Using the same method as before, we can bypass the Serre relations:

U(g̃(A)) = Uq(h̃+)⊗ Uq(h)⊗ Uq(h̃−).

We quotient by the same ideal I to get Uq(g(A)).

One important observation: Uq(g(A)) is almost the Drinfeld double of Uq(b+) =
⟨Ki, ei⟩ where b = h⊕ h. This leads to the universal R-matrix.
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Proposition 2.2. The algebra Uq(g(A)) is a Hopf algebra, with comultiplication
given by:

∆(ei) = ei ⊗Ki + 1⊗ ei, ∆(fi) = fi ⊗ 1 +K−1
i ⊗ fi, ∆(Ki) = Ki ⊗Ki,

and the antipode given by:

S(ei) = −eiK−1
i , S(fi) = −Kifi, S(Ki) = K−1

i .

2.2 The Quantum Double

Recall the concept of the quantum double. Let H be a finite-dimensional Hopf
algebra. Its Drinfeld double D(H) is defined as:

D(H) = H ⊗H∗,co,

where H∗,co is the dual Hopf algebra with the opposite coproduct. The algebras
H and H∗,co are subalgebras of D(H), but they do not generally commute.
Drinfeld’s commutation law states that for b ∈ H∗,co and a ∈ H, the product
is given by ba. In terms of the coproducts, we have ∆3a = a1 ⊗ a2 ⊗ a3 and
∆3b = b1 ⊗ b2 ⊗ b3. The product ba is then given by:

ba := (S−1(a1), b1)(a3, b3)a2b2.

Proposition 2.3. The category Rep(D(H)) is braided.

Definition 2.4. If C is a monoidal category, its Drinfeld center Z(C) is the
category whose objects are pairs (X,φX), where X ∈ C and φX : X⊗• ∼→ •⊗X
is an isomorphism satisfying the hexagonal identity:

X ⊗M ⊗N

M ⊗X ⊗N M ⊗N ⊗X

φX,M⊗1
φX,M⊗N

1M⊗φX,N

The hexagonal relation must hold for all objects in C.

Then, Z(C) is a monoidal category, and in fact, it is a braided monoidal category
with the braiding maps cX,Y : X ⊗ Y → Y ⊗X.

Theorem 2.5 (Drinfeld). The Drinfeld center of the representation category of
a Hopf algebra is equivalent to the representation category of its Drinfeld double:

Z(Rep(H)) ∼= Rep(D(H)),

where the braiding in Rep(D(H)) is given by the universal R-matrix
∑
i ai⊗ ai,

where ai is a basis of H and ai is the dual basis. The braiding is explicitly given
by:

cX,Y = φX,Y = P ◦R|X⊗Y : X ⊗ Y → Y ⊗X,

where P denotes the permutation.
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Proposition 2.6. For all x ∈ D(H), we have:

R∆(x) = ∆op(x)R.

Proposition 2.7. The hexagon relations imply the hexagon relations for the
braiding:

(∆⊗ 1)(R) = R13R23,

(1⊗∆)(R) = R13R12.

2.3 Extension to Infinite Dimensional Cases

The Drinfeld double construction can be extended to infinite-dimensional cases,
where the universalR-matrixR now belongs to the tensor productD(H)“⊗D(H).

Example 2.8 (Uq(sl2) as an almost Drinfeld double). Let H := Uq(h+) =
⟨K±1, e⟩. The relations are KeK−1 = q2e, and the comultiplication ∆(K),∆(e)
are as usual. Consider the restricted dual H∗ = Uq(b−) = ⟨K̃, f⟩, where

K̃fK̃−1 = q−2f , and the comultiplication ∆(K̃) = K̃ ⊗ K̃,∆(f) = f ⊗ 1 +
K̃−1 ⊗ f . The Drinfeld double is given by:

D(H) = H ⊗H∗,co = ⟨e, f,K, K̃⟩.

However, the element C := K̃K−1 is central, so the quotient algebra D(H) =
D(H)/(C − 1) is isomorphic to Uq(sl2).

The Drinfeld commutation relation is:

[e, f ] =
K −K−1

q − q−1
.

The universal R-matrix can be written as:

R = q
h⊗h

2

∞∑
k=0

q
k(k−1)

2
(q − q−1)k

[k]q!
ek ⊗ fk,

where [k]q =
qk−q−k

q−q−1 and [k]q! = [1]q[2]q · · · [k]q.

Remark 2.9. The universal R-matrix gives the braiding on the category O of
Uq(sl2)-representations.

The Drinfeld double construction can be extended to all Kac-Moody algebras,
starting with Uq(b+).
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3 Representations of Uq(ĝ)

3.1 Algebra Uq(ŝl2)

We begin by defining the algebra Uq(ŝl2). Let q ∈ C× be not a root of unity,
and let g = sl2 with Cartan matrixÅ

2 −2
−2 2

ã
.

The generators of the algebra are ei, fi, and K
±1
i where i = 0, 1, subject to the

following relations:

KieiK
−1
i = q2ei,

KifiK
−1
i = q−2fi,

KiejK
−1
i = q−2ej for i ̸= j,

KifjK
−1
i = q2fj for i ̸= j,

KiKj = KjKi,

[ei, fi] =
Ki −K−1

i

q − q−1
,

[ei, fj ] = 0 for i ̸= j,

plus the quantum Serre relations.

Set K = K0K1 to be central. We focus on finite-dimensional type 1 represen-
tations, where informally, Ki = qhiw, with hi acting with integral eigenvalues.

Exercise 3.1. In any finite-dimensional representation, K = 1.

3.2 Evaluation and Twists by Loop Rotations

Consider the evaluation homomorphism Uq(ŝl2)
φ−→ Uq(ŝl2) of algebras, defined

by

φ(e1) = φ(f0) = e, φ(f1) = φ(e0) = f, φ(K1) = φ(K−1
0 ) = K.

Note that this is not a Hopf algebra homomorphism.

For any g, there exists a Z-grading on Uq(ĝ) (by energy), which gives rise to a
loop rotation action Cm on Uq(ĝ), denoted by z 7→ τz.

For sl2 (and sln), define φz := φ ◦ τz. The induced map

φ∗
z : Rep Uq(sl2) → Rep Uq(ŝl2)

acts on a representation Y as Y (z) = φ∗
zY for Y ∈ Rep Uq(sl2).

Remark 3.2. For a general g, if W is a Uq(ĝ)-representation, then W (z) :=
τ∗zW .
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Proposition 3.3. For all W ∈ Rep Uq(g), the following relations hold:

W (z)(u) = w(zu),

(X ⊗ Y )(z) = X(z)⊗ Y (z),

Y (z)∗ = Y ∗(z).

3.3 Failure of Braiding/Semisimplicity

We now observe that if V,W ∈ Rep Uq(sl2), then (V ⊗W )(z) ̸≃ V (z) ⊗W (z)
because φ is not a Hopf algebra homomorphism. Similarly, V (z) ̸≃ V ∗(z).

Remark 3.4. The irreducible representations of Uq(sln) are of the form Va with
dimVa = a+ 1, where a ∈ Z≥0, and give rise to Va(z).

For a = 1, the representation Va(z) is expressed in matrices as:

e0 7→
Å
0 0
z 0

ã
,

e1 7→
Å
0 1
0 0

ã
,

f0 7→
Å
0 z−1

0 0

ã
,

f1 7→
Å
0 0
1 0

ã
,

K0 7→
Å
q−1 0
0 q

ã
,

K1 7→
Å
q 0
0 q−1

ã
.

Exercise 3.5. Any 2-dimensional nontrivial Uq(sl2) representation is of the
form V1(z) for a unique z.

Corollary 3.6. V1(z)
∗ ≃ V1(w) for a unique w.

Remark 3.7. We have the relations:

z = trV1(t)(e0e1)

and

w = trV1(z)∗(S(e0)
∗S(e1)

∗)

= tr(S(e1)S(e0))

= tr(−e1K−1
1 · (−e0K0))

= q2tr(e1e0)

= q2z.

This implies that V (z)∗∗ = V (q4z), so Rep Uq(ĝ) is not braided.
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In any rigid tensor category C, if X ∈ C, then the evaluation map evX : X∗ ⊗
X → 1 and coevaluation map coev : 1 ↪→ X ⊗X∗ exist.

Proposition 3.8. If X is simple and either of these maps splits, then X∗∗ ≃ X.

Proof. Suppose evX splits. Then X∗⊗X ≃ Y ⊗1, and if 1
i
↪→ X∗⊗X, we have

the commutative diagram:

∗X X∗ ⊗X ⊗∗ X X∗i⊗1

αi

Exercise 3.9. This defines an isomorphism:

Hom(1, X∗ ⊗X)
∼→ Hom(∗X,X∗),

i 7→ αi.

Since ∗X and X∗ are isomorphic by Schur’s lemma, we have ∗X ≃ X∗.

Exercise 3.10.
1

coev
↪→ V1(z)⊗ V1(q

2z) → Vz(qz) → 0 (*)

is nonsplit. If Y ∈ Rep Uq(ŝl2), then Y |Uq(sl2) is irreducible, so Y ≃ Va(z) for
some z.

Dualize (∗): 0 → Vz(qz) → V (q2z) ⊗ V (z) → C → 0, so V (q2z) ⊗ V (z) ̸≃
V (z)⊗ V (q2z).

However, if w ̸= q2z, then V (z)⊗V (w) is irreducible and isomorphic to V (w)⊗
V (z). This is defined by an R-matrix.

Remark 3.11. For general g and for all irreducible X,Y , X(z)⊗Y is irreducible
and isomorphic to Y ⊗X(z) for all but finitely many z.

3.4 Double Dual

For a general g, if Y is a finite-dimensional representation of Uq(ĝ), then Y ∗∗ =

Y (q2h
∨
), where h∨ is the dual Coxeter number (for sl2, Y

∗∗ ≃ Y (z∗)).

Why h∨? For a q-triangular Hopf algebra (H,R) with R =
∑
i ai ⊗ bi and R

invertible, the relations

R∆(x) = ∆op(x)R, (∆⊗ 1)(R) = R12R23, (1⊗∆)(R) = R13R12

lead to this structure.

Theorem 3.12 (Drinfeld). For u =
∑
i S(bi)ai, we have uxu−1 = S2(x), where

u : X ≃ X∗∗.

For Uq(g), u = vq2p, where v is the central ribbon element. For an affine Lie

algebra, p̂ = p+ h∨α gives q2p̂ − q2pq2h
∨α. This shifts z.
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3.5 Classification of Finite Dimensional Representations
for Uq(ŝl2)

Proposition 3.13. All irreducible representations of Uq(ŝl2) are of the form
Va1(z1)⊗ · · · ⊗ Van(zn).

The key question is: when is this representation irreducible?

We can rule out cases such as ai = ai+1 = 1, with zi
zi+1

= q±z, and similarly for

ai = aj = 1 when i− j > 1.

To answer this question, we need a combinatorial construction: associate to
each Va(z) a q

2-string (q−a+1z, q−a+3z, . . . , qa−1z).

Definition 3.14. A collection of strings S1, . . . , Sn is in special position if there
exist indices i, j such that Si∪Sj ⊋ Si, Sj and Si∪Sj is a q2-string. Otherwise,
we say that S1, . . . , Sn is in general position.

Theorem 3.15. The tensor product Va1(z1)⊗· · ·⊗Van(zn) is irreducible if and
only if the strings of factors are in general position. The product is independent
of the order of the strings.

This result generalizes the case V (z)⊗ V (w), as the strings are z and w.

Proposition 3.16. Any finite multi-subset of C× can be uniquely written as a
union of strings in general position (up to permutation).

Conclusion: the irreducible representations of Uq(ŝl2) correspond to multisub-
sets of C×, which can be identified with polynomials with a nonzero constant
term (up to scaling). These are called Drinfeld polynomials, usually normal-
ized to have constant term 1.

3.6 R-Matrices With Spectral Parameter

The quotient Uq(ŝl2)/(K − 1) has a universal R-matrix, given by

R =
∑
i

ai ⊗ ai,

where ai ∈ U+ and ai ∈ U−. But can we understand R|X⊗Y more clearly? Not
in general.

Now, consider the tensor product X(z)⊗ Y for a formal variable z:

R(z) =
∑
i

τz(ai)⊗ ai,

where τ contains only nonnegative powers of z. This implies that R(z)|X⊗Y ∈
End(X ⊗ Y )JzK.

Theorem 3.17 (Drinfeld). For all g, this gives a convergent series in a neigh-
borhood of 0, i.e., for |z| < r, where r = rXY .
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The operator RXY (z) : X(z)⊗ Y → X(z)⊗ Y extends meromorphically to C.

Proposition 3.18. This operator extends meromorphically to C.

For irreducible X and Y , the tensor product X(z)⊗Y is irreducible for generic
z.

Proposition 3.19. RXY (z) = RXY fXY (z), where RXY is a rational matrix
function and fXY is a scalar function. This RXY (z) can be normalized to satisfy
the following relations:

R(z)R(z−1) = 1⊗ 1,

RXZ(z)RY Z(z) = RX⊗Y,Z(z),

RXZ(z)RXY (z) = RX,Y⊗Z(z).

This implies the braid relation:

R
12

XX

Å
z1
z2

ã
R

13

XX

Å
z1
z3

ã
R

23

XX

Å
z2
z3

ã
= R

23

XX

Å
z2
z3

ã
R

13

XX

Å
z1
z3

ã
R

12

XX

Å
z1
z2

ã
.

Remark 3.20. This structure can be thought of as commutative, similar to a
vertex algebra.
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4 The BGG Category O and Highest Weight
Structures

Notation: Let the base field be C, G a connected reductive group, and g =
Lie(G). Let H ⊂ B ⊂ G denote the Cartan and Borel subgroups, and let
Λ = Hom(H,C×).

Definition 4.1. Let ν ∈ h∗, and view ν as an element of b∗ via the embedding
h∗ ↪→ b∗. The subcategory Oν is the full subcategory in U(g)-modfg consisting
of all modules M such that the action of b on M, given by x ·m = xm−⟨ν, x⟩m,
integrates to a B-action.

Standard consequences:

• Weight decomposition: For M ∈ Oν , we have M =
⊕

λ∈ΛMλ, where
Mλ = {m ∈M | xm = ⟨λ+ ν, x⟩m ∀x ∈ h} and dimMλ <∞.

• The set {λ | Mλ ̸= 0} is bounded from above with respect to the usual
order: λ1 ≤ λ2 if λ2 − λ1 ∈ SpanZ≥0

(i.e., λ2 − λ1 is a linear combination

of positive roots).

• One can form the Verma module ∆ν(λ) = U(g)⊗U(b)Cλ+ν and its simple
quotient Lν(λ), establishing an isomorphism Λ ∼= Irr(Oν), where λ 7→
Lν(λ).

• For µ ∈ Λ, there is an equivalence Oν
∼= Oν+µ, with Lν(λ) 7→ Lµ+ν(λ−µ).

4.1 And It’s Siblings

The category Oν is a ”finite type” category, controlled by the Hecke category
associated with a subgroup of W , the Weyl group of G. There are also ”affine”
and potentially ”double affine” analogs, which will be briefly mentioned now
and hopefully elaborated on later.

Affine world: The affine world is populated by:

• Categories O over affine Lie algebras, which exhibit three possible behav-
iors: ”negative”, ”positive”, and ”critical” level.

• Modular/quantum categories O at a root of unity.

Most of these (except for the critical affine category) are directly controlled by
the affine Hecke category. Additionally, there are various geometric relatives of
these categories.

Double affine world: While we haven’t encountered many categories in this
setting, one family that should be included is quantum categories at a root of
unity, affine categories O at rational levels, and their modular counterparts.
There are likely many more, though all of them, including the quantum affine
ones, are very complicated.
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4.2 Goals and Tools

Categories O (and their siblings) decompose into direct sums of blocks. Our
goal is to establish derived equivalences between blocks of different categories O.
The most fundamental and crucial tool for this is the notion of highest weight
structures, which will be discussed in the main part of this lecture.
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4.3 Highest Weight Structures

Let F be a field and C be an F-linear abelian category.

Definition 4.2. The structure of a highest weight category with finite
poset on C is given by a finite poset J and a collection of standard objects
∆(t) ∈ C, indexed by τ ∈ J , satisfying the following conditions:

• dimF HomC(∆(τ),M) <∞ for all τ ∈ J and M ∈ C.

• HomC(∆(τ),∆(τ ′)) ̸= 0 =⇒ τ ≤ τ ′.

• F ∼= EndC(∆(τ)) for all τ ∈ J .

• For every M ∈ C, M ̸= 0, there exists τ ∈ J such that HomC(∆(τ),M) ̸=
0.

• For every τ ∈ J , there exists a projective Pτ ∈ C such that Pτ ↠ ∆(τ),
and the kernel of the map Pτ → ∆(τ) admits a finite filtration by objects
∆(τ ′) with τ ′ > τ .

Exercise 4.3.

1. Let A := EndC (
⊕

τ Pτ ) be finite. Then, the functor HomC (
⊕

τ Pτ , ·) :
C → Aopp-modfd is an equivalence.

2. Each ∆(τ) has a unique simple quotient, L(τ), and the map τ 7→ L(τ) is
a bijection J ∼= Irr(C).

4.4 Infinitesimal Blocks of O
The category Oν itself is not a highest weight category in the sense defined
above, but it is the direct sum of such categories. Recall the Harish-Chandra
isomorphism:

HC : Z(U(g)) ∼= C[h∗](w,·),

where w · λ = w(λ + p) − p, and z ∈ Z(U(g)) acts on ∆ν(λ) by HCz(λ + ν).
Consider the equivalence relation ∼ν on Λ: λ1 ∼ν λ2 if λ1 + ν = w · (λ2 + ν).

This gives the decomposition Oν =
⊕

Ξ Oν,Ξ, where Ξ runs over the equivalence
classes for ∼ν .

Exercise 4.4. Each Oν,Ξ is a highest weight category with standard objects
∆ν(λ), where λ ∈ Ξ, and the order on Ξ is inherited from the usual order.

4.5 Deformation

Let R be a Noetherian ring, and let CR be an R-linear abelian category. For
M ∈ CR, we define a right exact functor M⊗R? : R-modfg → CR. We say that
M is R-flat if this functor is exact.

The definition of a highest weight category can be generalized to CR. We require
that ∆R(τ) are flat over R and modify (1) and (5) from Definition 3.2 as follows:
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• HomCR
(∆R(τ),M) is finitely generated over R.

• The kernel of the map Pτ ↠ ∆R(τ) is filtered by objects of the form
Rτ

′ ⊗R ∆R(τ
′) for τ ′ > τ , where Rτ

′
is a finitely generated projective

R-module.

Exercise 4.5. EndCR
(
⊕

τ Pτ ) is a finitely generated projective R-module.

Example 4.6. Let R := C[h∗]ˆ be the completion at O. Let ι be the composition
h ↪→ S(h) = C[h∗] ↪→ R. Then Oν,R is the full subcategory in U(g) ⊗ R-modfg
consisting of all M such that the action of b on M is given by

x ·m = xm− (⟨λ, ν⟩+ ι(x))m,

and this integrates to a B-action.

The same properties hold for Oν as for Oν,R: the weight decomposition M =⊕
λMλ with finitely generated R-modulesMλ and weights bounded from above.

Verma modules ∆ν,R(λ) = U(g)⊗U(b)Rλ+ν can also be formed, where Rλ+ν ≃ R
with h acting on R by x 7→ ι(x) + ⟨λ+ ν, x⟩.

Exercise 4.7. Oν is identified with the full subcategory of Oν,R consisting of
all objects where R acts via R↠ C.

Remark 4.8. Informally, one can view R as the algebra of functions on a
tiny neighborhood around ν. Then, Oν,R is a family of categories over this
neighborhood, with the fiber at a point ν′ being Oν′ (note that, strictly speaking,
Spec(R) only has one C-point).

We can extend the infinitesimal block decomposition for Oν =
⊕

Ξ Oν,Ξ to Oν,R.
Let m ⊂ R denote the maximal ideal, and define:

Oν,R,Ξ := {M ∈ Oν,R |M/m∗M is filtered by objects in Oν,Ξ for all R} .

Exercise 4.9.

1. Oν,R =
⊕

Ξ Oν,R,Ξ.

2. Oν,R,Ξ is a highest weight category with standard objects ∆ν,R(λ), where
λ ∈ Ξ.

Definition 4.10. An object in CR is called standardly filtered if it admits a
finite filtration by Rτ

′ ⊗R ∆R(τ
′), where τ ′ ∈ J and Rτ

′
is a finitely generated

projective R-module. The full subcategory of standardly filtered objects will be
denoted by C∆

R .

The following propositions require introducing ”costandard” objects, which we
leave for the reader to explore.

Proposition 4.11.

• Every projective in CR is in C∆
R .
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• If M,N ∈ C∆
R and φ :M ↠ N , then Kerφ ∈ C∆

R .

Corollary 4.12. For M ∈ C∆
R , the following are equivalent:

• M is projective.

• Ext1CR
(M,N) = 0 for all N ∈ C∆

R .

• Ext1CR
(M,∆R(τ)) = 0 for all τ ∈ J .

The importance of this corollary is as follows: C∆
R is an exact category (an

additive category with a good notion of short exact sequences). The first point
of Proposition 3.11 shows that the additive category of projectives CR-proj is
contained within C∆

R , and the corollary allows us to recover CR-proj inside C∆
R .

Once we know CR-proj, we can recover the abelian category CR.

4.6 What’s Next?

Here’s the ”lazy approach” to understand the categories Oν,Ξ (the most in-
teresting case is ν = 0). We will construct a ”nice” right exact functor V :
Oν,R,Ξ → CR, where CR is a ”simplified” category that roughly depends on the
combinatorics of Oν,R,Ξ. We will show that V is acyclic on the standard objects
and fully faithful on O∆

ν,R,Ξ. Therefore, we only need to understand the local-
izations of the categories and functors around prime ideals (which corresponds
to understanding cases when ν is generic on a root hyperplane).

This approach, while implicit, provides a path to proving equivalences between
different such categories.
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5 The Quantum Group Uq(ŝl2)
5.1 Drinfeld-Jimbo Presentation

Cartan Matrix:

A =

Å
2 −2
−2 2

ã
Generators: E0, E1, K0, K1, F0, F1

Relations:

[Ei, Fj ] = δij
Ki −K−1

i

q − q−1

KiEj = qaijEjKi

KiFj = q−aijFjKi

KiK
−1
i = K−1

i Ki = 1

KiKj = KjKi

E3
i Ej − (q−2 + q2)E2

i EjEi + (q−2 + 1 + q2)EiEjE
2
i − EjE

3
i = 0

F 3
i Fj − (q−2 + 1 + q2)F 2

i FjFi + (q−2 + 1 + q2)FiFjF
2
i − FjF

3
i = 0

Coproduct:

∆(Ei) = Ei ⊗Ki + 1⊗ Ei

∆(Ki) = Ki ⊗Ki

∆(Fi) = Fi ⊗ 1 +K−1
i ⊗ Fi

The element K = K0K1 is central.

One can introduce an element d or q2d with the following commutation relations:

[d,E1] = [d, F1] = [d,K1] = 0, [d,E0] = E0, [d, F0] = −F0

In the non-q-deformed setting, there are two main presentations:

1. Kac-Moody presentation: f0, h0, e0, f1, h1, e1

2. Loop presentation: X−
n , X

0
n, X

+
n , x for n ∈ Z, where X+ = e, X0 = h,

and X− = f , with the commutation relation:

Xϵ
n, X

ϵ′

n′ = [Xϵ, Xϵ′ ]n+n′ + n(Xϵ, Xϵ′)Kδn+n′,0

3. Presentation P2 by hi, ei, fi

The advantage of this formulation is that it provides a PBW basis.
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5.2 Braid Group Action

Definition 5.1 (Lusztig’s Braid Group). The braid group action on the gener-
ators is defined as follows:

Ti(Ei) = −FiKi

Ti(Fi) = −K−1
i Ei

Ti(Kj) = KjK
−aij
i

Ti(Ej) =

−aij∑
r=0

(−1)r−aijq−ri E
(−aij−r)
i EjE

(r)
i

Ti(Fj) =

−aij∑
r=0

(−1)r−aijqri F
(r)
i FjF

(−aij−r)
i

where E
(r)
i =

Er
i

[r]q !
.

Remark 5.2. The braid group action can also be expressed as:

Ti(Ej) = ad
∆op,E

−aij
i

Ej =
1

[−aij ]q!
ad

−aij
q,Ei

Ej

where adq,x(y) = xy − q⟨wt X,wt Y ⟩yx.

For example, in the case of T1 acting on E0, we have:

T1(E0) = E
(2)
1 E0 − qE1E0E1 + q2E0E

(2)
1 .

Theorem 5.3. The operators Ti define automorphisms of the quantum group,
and they satisfy the braid group relations as an algebra.

The following additional transformation is introduced:

τ : E0 7→ E1, K0 7→ K1, F0 7→ F1

E1 7→ E0, K1 7→ K1, F1 7→ F0

This defines the braid group relation:

Brae = ⟨T0, T1, τ | τT0τ−1 = T1, τT1τ
−1 = T0, τ

2 = e⟩.

(Note that the braid relation does not hold here.)

The braid group is generated by the elements {T0, T1}, with the relation E1T0E1 =
T0E1T0 (again, without the braid relation).
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Inverse Map: The inverse map for Ti is given by:

T−1
i (Ei) = −K−1

i Fi,

T−1
i (Fi) = −EiKi,

T−1
i (Kj) = KjK

−aij
i ,

T−1
i (Ej) =

−aij∑
r=0

(−1)r−aijq−ri E
(r)
i EjE

(−aij−r)
i ,

T−1
i (Fj) =

−aij∑
r=0

(−1)r−aijqri F
(−aij−r)
i FjF

(r)
i .

Weyl Group: Consider the Weyl group generated by the elements s0, s1, and
τ , with the following defining relations:

⟨s0, s1, τ | τs0τ−1 = s1, τs1τ
−1 = s0, s

2
1 = s20 = τ2 = e⟩.

Translations:

• s0s1 corresponds to a root translation.

• τs0 and τs1 correspond to weight translations.

5.3 Definition and Relations

Definition 5.4. For n ≥ 0, define the following elements:

E2+nδ = (τT1)
−nE1,

E−2+(n+1)δ = (τTn)
nE0.

Question: How do we define Eδ, the q-analog of [e1, e0]?

Natural choices:

adq,E1(E0) = E1E0 − q−2E0E1,

adq,E0
(E1) = E0E1 − q−1E1E0.

Lemma 5.5.

(τT1)(E0E1 − q−2E1E0) = E0E1 − q−2E1E0.

Definition 5.6. Define Enδ by the following relation:

Enδ = E−2+δE2+(n−1)δ − q−2E2+(n−1)δE−2+δ.

Lemma 5.7. The commutation relations for Eδ are:

[Eδ, E2+nd] = [2]qE2+(n+1)δ,

[Eδ, E−2+nd] = −[2]qE−2+(n+1)δ.
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Proof. For n = 0, the computation uses τT1.

Let Uq(n̂+) denote the subalgebra generated by E0, E1.

Corollary 5.8. The elements E2+nδ, E(n+1)δ, E−2+(n+1)δ lie in Uq(n̂+) for n ≥
0.

Relations:

Lemma 5.9. The following relation holds:

E2+(n+1)δE2+mδ−q2E2+nδE2+(m+1)δ+E2+(m+1)δE2+nδ−q2E2+mδE2+(n+1)δ = 0.

Definition 5.10 (Half-current). Define the half-current e+(z) by the series:

e+(z) =
∑
n≥0

E2+nδz
−n.

The relation for e+(z) is:

e+(z)e+(w)(z − q2w) + e+(w)e+(z)(w − q2z) = (1− q2)(ze+(w)2 + we+(z)2).

Definition 5.11 (Half-currents). Define the half-currents e−(z) and eδ as:

e−(z) =
∑
n≥0

E−2+nδz
−n,

eδ = (q − q−1)
∑
n>0

Enδz
−n.

The following relations hold:

(z − q2w)eδ(z)e
+(w) = (z − q−2w)e+(w)eδ(z),

(z − q−2w)eδ(z)e
−(w) = (z − q2w)e+(w)eδ(z).

Additionally, the relation for e−(z) is:

e−(z)e−(w)(z−q−2w)+e−(w)e−(z)(w−q−2z) = (1−q−2)(ze−(w)2−we−(z)2).

The commutation relation [Enδ, Emδ] = 0 holds, and the following identity is
true:

E−2+(p−r)δE2+rδ − q−1E2+rδE−2+(P−r)δ = Epδ.

Theorem 5.12 (PBW). The elements

{Ea1−2+δE
a2
−2+2δ · · ·E

b1
δ E

b2
2δ · · ·E

c2
2+2δE

c1
2+δE

c0
2 }

form a basis in Uq(n̂+).
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Remark: The elements are arranged in convex order:

−2− δ < −2 + 2δ < · · · < 2δ < · · · < 2 + δ < 2.

Proof. The generating set follows from the relations, and linear independence
follows from the limit q → 1.

Next, consider Uq(n̂−) with an automorphism ϕ such that:

ϕ(Ei) = Fi,

ϕ(Fi) = Ei,

ϕ(Ki) = Ki,

ϕ(q) = q−1.

Definition 5.13. The following relations hold for τϕ:

τϕ(E2+nδ) = (τT1)
nF0 = F2−(n+1)δ,

τϕ(E−2+(n+1)δ) = (τT1)
−nF1 = F−2−nδ,

τϕ(Enδ) = F−nδ.

These imply the PBW property.

5.4 Full Currents

Definition 5.14. Define the full currents X+
n and X−

n by:

X+
n = (τT1)

−nE1,

X−
n = (τT1)

nF1, for n ∈ Z.

Remark 5.15. For n ≥ 0, we have:

X+
n = E2+nδ, X−

−n = F−2−nδ.

However, for n > 0, the following expressions do not belong to Uq(n̂−) or Uq(n̂+):

X+
n = −(F2−nδK

n)K−1
n , X+

n = −K1K
−nE−2+nδ.

Definition 5.16. The full currents in z-representation are defined as:

X+(z) =
∑
n∈Z

X+
n z

−n = e+(z)− f+(Kz)K−1
1 ,

X−(z) =
∑
n∈Z

X−
n z

−n = −K1e
−(Kz)− f−(z).
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where

K−1
1 ψ+(z) = 1 + (q − q−1)

∑
n>0

Enδz
−n = exp

(∑
n>0

(q − q−1)hnz
−n

)
,

K1ψ
−(z) = 1 + (q−1 − q)

∑
n>0

F−nδz
n = exp

(∑
n>0

(q−1 − q)h−nz
n

)
.

Theorem 5.17. The algebra Uq(ŝl2) has the following presentation:

Uq(ŝl2) = ⟨X+
n , X

−
n , hr, h−r,K

±1,K±1
1 | n ∈ Z, r ∈ Z>0⟩,

with the following relations:

• K is central.

• K1X
+
n = qxX+

nK1.

• K1X
−
n = q−2X−

n K1.

• [hr, hs] =
[2r]
r

Kr−K−r

q−q−1 δr+s,0.

• [hr, X
+(w)] = [2r]

r w
rX+(w).

• [h−r, X
+(w)] = [2r]

r K
−rw−rX

+(w).

• [hr, X
−(w)] = −Kr [2r]

r w
rX−(w).

• [h−r, X
−(w)] = − [2r]

r w
−rX−(w).

• [X+(z), X−(w)] = 1
q−q−1

(
ψ+(z)δ

(
Kw
z

)
− ψ−(w)δ

(
w
Kz

))
.

• X+(z)X+(w)(z − q2w) +X+(w)X−(z)(w − q2z) = 0.

• X−(z)X−(w)(z − q−2w) +X−(w)X−(z)(w − q−2z) = 0.

where δ(x) =
∑
n∈Z x

n.

Remark 5.18. This construction works for q a root of unity (possibly for q4 ̸=
1).

In general, the affine KM algebra is related to the x
(K)
n structure. Let I be the

set of vertices of Xn.

5.5 General Affine KM Algebra

Definition 5.19. The algebra UD(X(K)
n ) (for simplicity, let k = 1, X = ADE)

is the C(q)-algebra with:

Generators: X+
i,n, X

−
i,n, hi,r, hi,−r, K

±1
i , K±1 where i ∈ I, n ∈ Z, r ∈ Z≥0,

and i ∈ I, n ∈ Z.
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Relations:

KiKj = KjKi (K is central),

KiX
+
2,n = qaijX+

2,nKi,

KiX
−
2,n = q−aijX−

2,nKi,

[hr, X
+(w)] =

[raij ]

r
wrX+(w),

[h−r, X
+(w)] =

[raij ]

r
K−rw−rX+(w),

[hr, X
−(w)] = −Kr [raij ]

r
wrX−(w),

[h−r, X
−(w)] = − [raij ]

r
w−rX−(w),

[hi,r, h2,s] =
[raij ]

r

Kr −K−r

q − q−1
δr+s,0,

[X+
i (z), X

−
j (w)] =

δij
q − q−1

Å
ψ+
i (z)δ

Å
Kw

z

ã
− ψ−

i δ
( w

Kz

)ã
,

X+
i (z)X

+
j (w)(z − qaijw) +X+

j X
+
i (z)(w − qaijz) = 0,

X−
i (z)X

−
j (w)(z − q−aijw) +X−

j X
−
i (z)(w − q−aijz) = 0.

Finally, the symmetrization over n1, . . . , n1−aij is given by:

Sym

[
1−aij∑
p=0

(−1)p
ï
1− aij
p

ò
q

X+
in1

· · ·X+
inp
X+

2mX
+
inp+1

· · ·X+
in1−aij

]
.

Theorem 5.20 (Drinfeld, Beck, Damiani).

UDJq ≃ UDq .

Corollary 5.21. Let J ⊂ I, then there is an embedding Uq(ĝa) ↪→ Uq(ĝI).

In particular, if i ∈ I, then:

Uq(ŝl2)i ↪→ Uq(ĝ).
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6 Lazy approach to categories

6.1 Recap

Let ν ∈ h∗. We define R := C[h∗]0, the completion at 0. Let ι denote the
composition

h ↪→ S(h) = C[h∗] ↪→ R.

The category Oν,R is the full subcategory of U(g) ⊗ R-modfg consisting of all
M such that the action of b on M is given by

x ·m = xm− (⟨ν, x⟩+ ι(x))m,

and integrates to a B-action.

Remark 6.1. Let S be an R-algebra. Analogous to the definition of Oν,R,
we can define the category Oν,S, which is the full subcategory of U(g) ⊗ S-mod
with the same integrability condition, where we replace ι by the composition

h
ι
↪→ R→ S.

Recall the equivalence ∼ν on the root lattice Λ: λ1 ∼ν λ2 if λ1+ν ∈W ·(λ2+p)
for some p ∈ Λ. Then, we have the decomposition

Oν,R =
⊕
Ξ

Oν,R,Ξ,

where Oν,R,Ξ is the Serre span of the standard modules ∆ν,R(λ) for λ ∈ Ξ.
Later, we will explore the possibility that each Oν,R,Ξ may decompose further.

Additionally, recall that Oν,R,Ξ is the highest weight category with poset Ξ and
standards ∆ν,R(λ) for λ ∈ Ξ.

Our goal is to describe the category O∆
ν,R,Ξ of standardly filtered objects.

6.2 Sub-Generic Behavior

Exercise 6.2.

1. If Oν is not semisimple, then there exists a root α such that ⟨ν, α∨⟩ ∈ Z.

2. Let K = Frac(R). Then Oν,K is semisimple.

Next, consider a very generic element ν on the hyperplane ⟨ν, α∨⟩ = n (for
n ∈ Z). We require that each equivalence class Ξ for ∼ν contains at most two
elements, and the corresponding locus is the complement of countably many
hyperplanes.

• If |Ξ| = 1, then Oν,Ξ ≃ Vect.

• If |Ξ| = 2, then Ξ = {λ− < λ+}.
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Proposition 6.3 (Chapter 4 in Humphreys).

dimHom(∆ν(λ−),∆ν(λ+)) = 1.

Proposition 6.4. BGG reciprocity holds: the indecomposable projective P (λ−)
fits into the short exact sequence

0 → ∆ν(λ+) → Pν(λ−) → ∆ν(λ−) → 0.

Exercise 6.5. Use the previous results and observations to establish an equiv-
alence of highest weight categories between Oν,Ξ and the principal block of the
category O for sl2.

Remark 6.6. A similar but more technical statement holds in a deformed setup.
Very informally, near a point generic with ⟨ν, α∨⟩ = n, as described above, the
category O behaves like the category O for sl2 near 0.

6.3 Whittaker Coinvariants

6.3.1 Construction of the Functor

Let n− denote the opposite maximal nilpotent subalgebra. Fix a non-degenerate
character ψ : n− → C, given by

ψ(x) =

(
rank g∑
i=1

ei, x

)
.

Definition 6.7. For M ∈ U(g)-mod, we define its Whittaker coinvariants
as

Wh(M) =M/{x− ψ(x) | x ∈ n−}M.

Note that the center Z(g) of U(g) acts on Wh(M), giving a right exact functor

Wh : U(g)-mod → Z(g)-mod.

ForM ∈ Oν,R, we have commuting R-actions, so the Whittaker functor extends
to

Wh : Oν,R → Z(g)⊗R-mod.

Exercise 6.8.

1. Show that Wh(∆ν(λ)) ≃ C as a vector space (hint: ∆ν(λ)
n−

≃ U(h−)),
with the action of Z(g) = C[h](W,·) given by evaluation at λ+ ν.

2. Show that Wh(∆ν,R(λ)) ≃ R as right R-modules, with Z(g) = C[h+](W,·)

acting via C[h∗](W,·) ↪→ S(h)
(∼)
↪→ R = S(h)Λ0 , with the map

(∗) : x ∈ h 7→ ι(x) + ⟨λ+ ν, x⟩ ∈ R.

3. Show that Wh is acyclic on ∆1(λ) and ∆ν,R(λ).
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6.3.2 Faithfulness

We now aim to prove the following result:

Theorem 6.9.

1. The functor Wh : Oν → Vect is faithful (injective on Homs between stan-
dardly filtered objects).

2. The functor Wh : O∆
ν,R → Z(g)⊗R-mod is fully faithful (bijective on Homs

between standardly filtered objects).

There are two main approaches to proving (1): geometric and representation-
theoretic. We will adopt the geometric approach, which requires a connection
between category O and Whittaker modules.

Proof of (1). Consider the algebra Uℏ(g) = T (g)[ℏ]/(x ⊗ y − y ⊗ x − ℏ[x, y]),
which is the Rees algebra of U(g) under the PBW filtration. This is a graded
flat C[ℏ]-algebra, with the quotient map Uℏ(g)/(ℏ)

∼→ S(g).

Next, consider the category Oν,ℏ of graded finitely generated Uℏ(g)-modules
that are equipped with a rational B-action such that:

• The map Uℏ(g)⊗M →M is B-equivariant.

• For each x ∈ b, we write xM ∈ End(M) for the element corresponding to
the differential of the B-action. Then we have ℏxMm = xm − ℏ⟨v, x⟩m
for all x ∈ b and m ∈M .

In particular, M/(ℏ− 1)M ∈ Oν , while M/ℏM ∈ CohB×Gm [(g/b)∗].

We still have the functor Wh : Oν,ℏ → C[ℏ]-mod, as defined earlier. Moreover,
Wh(M) is naturally graded. Namely, let g =

⊕
i∈Z g(i) be the principal grading.

We can define a modified grading on U(g) by putting g(i) in degree i+1 (while
ℏ is still in degree 1). Then {x−ψ(x) | x ∈ h−} is homogeneous, and we modify
the grading on any T -equivariant graded Uℏ(g)-module, N , to make it graded
with respect to this modified grading.

This upgrades Wh to a functor

Oν,ℏ → C[ℏ]-grmod.

Consider the full subcategory of Oν,ℏ consisting of objects where ℏ acts by 0.

This subcategory is identified with CohB×Gm((g/b)∗). The restriction of Wh to
this subcategory is given by

Wh(N) 7→ Nψ,

the fiber at ψ, where we view ψ as a point of (g/b)∗.

Exercise 6.10.
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1. Show that Bψ is dense in (g/b)∗.

2. Deduce that the functor M 7→ Mψ is fully faithful on the full subcategory

of CohB×Gm((g/b)∗) consisting of torsion-free modules.

Now, for λ ∈ Λ and m ∈ Z, we consider the Verma module ∆ν,ℏ(λ,m) = Oℏ
with highest weight vector of weight λ in degree m. The following exercise
completes the proof:

Exercise 6.11.

1. Use (2) of Exercise 1 to show that Wh is faithful on the full subcategory
of Oν,ℏ whose objects are ∆ν,ℏ(λ,m).

2. Deduce that Wh is faithful on the full subcategory of Oν with objects ∆ν(λ)
(hint: use the Rees construction) and hence on O∆

ν .

Sketch of proof of (2). Let K = Frac(R). As noted in Section 0, we can consider
the K-linear categoryOν,K, which is semisimple by Exercise 1 in Section 1. Next,
it is straightforward to show that Wh : Oν,K → Z(g)⊗K-mod is fully faithful.
The following formal exercise completes the proof:

Exercise 6.12. Deduce that Wh : Oν,R → Z(g) ⊗ R-mod is fully faithful from
the facts:

• Wh : O∆
ν → Vect is faithful,

• Wh : O∆
ν,K → Z(g)⊗K-mod is fully faithful.

Hint: Prove that Wh : Oν,S → Z(g) ⊗ S-mod is faithful for S being any local-
ization of any quotient of R.

Remark 6.13. The category CohB×Gm((g/b)∗), which appeared in the proof of
(1), is an example of a category from the affine world.

Exercise 6.14 (Premium). Show that Wh : Oν → Vect is exact.
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7 Description of O∆
ν,R,Ξ

7.1 Recap

Let ν ∈ b∗, R = C[h∗]Λ0 , K = Frac(R), and ι : h ↪→ R be the natural inclusion.
Earlier, we constructed a functor Wh : Oν,R → Z(g)⊗R-mod, and demonstrated
that it is faithful on O∆

ν and fully faithful on O∆
ν,R.

Our goal now is to describe the full subcategory Wh(O∆
ν,R,Ξ) ⊂ Z(g) ⊗ R-

mod. An additional ingredient is the analysis of subgeneric behavior, which was
discussed earlier.

7.2 Target Category

Recall that Wh(∆ν,R(λ)) ≃ R, where Z(g) acts via the following diagram:

Z(g) ≃ C[h∗](W,·) S(h) R

∪ ∈

h ∈ x ι(x) + ⟨λ+ ν, x⟩

In particular, let mΞ ⊂ Z(g) denote the maximal ideal corresponding to λ + ν
for λ ∈ Ξ (which is the same for all such λ). We see that

mΞ Wh(∆ν,R(λ)) ⊂ Wh(∆ν,R(λ)) ·m.

Since every object M ∈ Oν,R,Ξ has a finite filtration by quotients of ∆ν,R(λ) for
λ ∈ Ξ, it follows that mR

Ξ Wh(M) ⊂ Wh(M) ·m, where k is the length of the
filtration.

Hence, Z(g) acts on Wh(M) canonically, and this action extends to the com-
pletion Z(g)ΛΞ at mΞ.

Now, consider the structure of Ξ = W · (λ + ν) ∩ ν + Λ, where Λ is the root
lattice. Note that for λ ∈ Λ, we have the following equivalence:

w · (λ+ ν) ∈ ν + Λ ⇔ wν − ν ∈ Λ ⇔ w ∈ im[StabW⋉Λ(ν)] ⊂W.

SinceW ⋉Λ is a reflection group, the stabilizer Stab and its image are reflection
subgroups, which we denote byW[ν]. Every Ξ is aW[ν]-orbit, and hence contains

a unique element λ− = λ−Ξ such that λ− + ν is anti-dominant for W[ν] with
respect to the positive root system of W . Let W 0 = SpanW[ν]

(λ− + ν).

It follows that Z(g)ΛΞ is isomorphic to RW
0

. More precisely, we have the fol-
lowing important elementary result:
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Exercise 7.1. 1. The action of Z(g)ΛΞ on Wh(∆ν,R(λ
−)) ≃ R is via an

embedding Z(g)ΛΞ ↪→ R whose image is RW
0

. Denote this embedding by
η.

2. The action of Z(g)ΛΞ on Wh(∆ν,R(wλ
−)) for w ∈W[ν] is via w ◦η, where

w is viewed as an automorphism of R.

Next, we must shrink the target category, which involves a technical step:

Exercise 7.2. Use (2) and the fact that Oν,R,Ξ is a highest weight category to

show the existence of an ideal I ⊂ RW
0 ⊗R such that:

1. Wh(Oν,R,Ξ) ⊂ (RW
0 ⊗R)/I-mod,

2. RW
0⊗R/

√
I = RW

0⊗RW R, implying that RW
0⊗R/I is finitely generated

over R, and that I is generically radical. This implies that [RW
0⊗R/I]⊗R

K ≃ K⊗|Wν/W
0|.

A more precise and elegant statement can be made (especially by Soergel):

Proposition 7.3. We can take (RW
0 ⊗R)/I = RW

0 ⊗RW R.

Conclusion: We have established that the target category for Wh, as well as
the images of standard modules, are determined by a reflection group W[ν] and
its parabolic subgroup W 0 (and the corresponding reflection representation of
W[ν]).

Later, we will demonstrate that a similar result holds for Wh(O∆
ν,R,Ξ).

7.3 Abstract nonsense

Suppose:

• R is a regular complete Noetherian local ring F := R/m.

• CR is a highest weight category over R.

• CR is an R-linear abelian category equivalent to AR-modfg, where AR is
an associative R-algebra that is a finitely generated R-module.

• πR : CR → CR is a right exact R-linear functor.

Note that πR is given by BR ⊗AR
·, where BR is an AR-AR-bimodule (with

CR ≃ AR-modfg). For an R-algebra S, we can then consider the following:

AS := S⊗RAR, AS := S⊗RAR, CS = AS-modfg, CS , πS := BS⊗AS
·, . . .

The functor πR is supposed to satisfy the following conditions:

1. CK, CK are split semisimple K-linear categories, and πK : CK
∼→ CK is an

equivalence.

2. πR(∆R(τ)) is flat over R and LiπR(∆R(τ)) = 0 for all i > 0, for all τ .
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3. πF is faithful on C∆
F .

We call such a functor πR a Rouquier-Soergel functor. For example, take
CR = Oν,R,Ξ, let CR = RW

0 ⊗R/I-mod, and πR = Wh.

Now we discuss the consequences of the axioms.

Here are consequences of the axioms (a)-(c). First, by conditions (a)-(c), we
have that πR is fully faithful on C∆

R . The Yoneda description of Ext1 then
implies that πR : C∆

R ↪→ CR is injective on Ext1’s.

Moreover, we can recover Ext1 between objects of C∆
R . Since CK is semisimple,

there exists a divisorD ⊂ Spec(R) such that, forMR, NR ∈ CR that are flat over
R, the Ext group Ext1CR

(MR, NR) is supported on D. Let p1, . . . , pk ⊂ R be the

prime ideals corresponding to the components of D. Define L(R) :=
⊕k

i=1Rpi

as the localization of R. We have the maps

πR : Ext1CR
(MR, NR) ↪→ Ext1CR

(πRMR, πRNR)

for all MR, NR ∈ C∆
R , and similarly for πL(R).

We also have natural maps induced by the localization functor L:

L : Ext1CR
(MR, NR) → Ext1CL(R)

(ML(R), NL(R)),

and similar maps for CR.

Now we describe Ext1CR
(MR, NR):

Theorem 7.4. The following diagram is Cartesian:

Ext1CR
(MR, NR) Ext1CL

(ML, NL)

Ext1CR
(MR, NR) Ext1CL(R)

(ML(R), NL(R))

L

πR πL(R)

L

where MR := πR(MR), and similarly for NR, with MR, NR ∈ C∆
R .

Note that the bottom arrow depends only on CR, while the right arrow depends
only on the inclusions C∆

Rpi
↪→ CRpi

. Informally, once we have an RS functor,

CR can be recovered from the target category and its subgeneric behavior.

7.4 Back to O
We now provide a proof of the following result due to Soergel:

Theorem 7.5. A regular block of Oν,Ξ (one with W 0 = {1}) is determined up
to an equivalence of highest weight categories by W[ν].
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There is an immediate generalization to singular blocks, which can be proved
similarly (left as an exercise).

Sketch of proof. For w ∈W[ν], we define Rw as the R-bimodule R, where R acts
from the right by r 7→ r and from the left by r 7→ w(r), so that Wh(∆R(w ·λ)) =
Rw.

Exercise 7.6. Ext1CR
(Ru, Rv) ̸= 0 =⇒ u−1w = 1 or sα. Moreover, in the

latter case, this R-bimodule is Rw/Rwα ≃ Ru/Ruα.

Using this exercise, we can take D =
⋃

Spec(R/(α)), where the union is over the
positive roots of W[ν]. Consider the corresponding localization O∆

ν,R(α),Ξ
. This

splits into |W |/2 blocks, and so does CR(α)
. The blocks correspond to sα-orbits

in Ξ. The functor πR(α)
acts between blocks. Let F be the residue field of R(α).

Exercise 7.7. Let λ ∈ Ξ satisfy ⟨λ+ ρ, α∨⟩ < 0. Then

ExtOν,R(α)
(∆R(α)

(λ),∆R(α)
(sα · λ)) ̸= 0,

and hence Wh induces an isomorphism ExtCR(α)
(Rw,(α), Rwsα,(α)) = Fα for λ =

w · λ−.

This implies the following characterization of the image of the block: it consists
of all objects M such that the short exact sequence

0 → R⊕?
wsα,(α)

→M → R⊕?
w,(α) → 0

(with w ∈W[ν] shortest in its sα-coset) holds. Informally, we recover all exten-
sions in the ”right direction” and none in the ”wrong direction”.

Thus, the result in Section 2 shows that Ext1 between two objects in Wh(O∆
ν,R,Ξ)

can be fully recovered inside their Ext1 in CR, without directly needing to know
O∆
ν,R,Ξ. The completion of the proof is left as an exercise.
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