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Abstract

This expository paper provides an introduction to the theories of Soergel bimod-
ules and Braden-MacPherson sheaves, culminating in a brief sketch of Fiebig’s cor-
respondence between the two seemingly distinct frameworks. We begin with a brief
introduction to Coxeter groups and Hecke algebras. Eventually, this leads to Soergel’s
construction of bimodules that categorify the Hecke algebra, offering an algebraic path-
way to understanding Kazhdan-Lusztig polynomials. Afterwards, we introduce moment
graphs and Braden-MacPherson sheaves, combinatorial objects inspired by intersection
cohomology that provide a local perspective. Finally, we dive into Fiebig’s correspon-
dence that demonstrates the equivalence between additive categories of Soergel bimod-
ules and Braden-MacPherson sheaves.
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1 Introduction

1.1 Motivation

The representation theory of semisimple Lie algebras has long been influenced by deep
connections to geometry and combinatorics. A central example is the celebrated Kazhdan-
Lusztig conjecture, which states that there is a correspondence:

Jordan-Hölder multiplicities of
simple modules in Verma modules

↔ Kazhdan-Lusztig polynomials
evaluated at v = 1

Although formulated as a purely algebraic statement in the 1970s, the conjecture was not
proved until 1981, when Beilinson–Bernstein and Brylinski–Kashiwara independently estab-
lished it using a wide array of geometric techniques. These proof techniques have heavily
influenced the development of geometric representation theory in the past few decades, but
this perspective is not the focus of this writing.

Seeking an algebraic formulation, Soergel introduced Soergel bimodules. Let (W,S) be a
Coxeter system. Associated to W is the Hecke algebra H, which is a deformation of the
group algebra of W and plays a central role in representation theory and the theory of
Kazhdan–Lusztig polynomials. Soergel bimodules provide a categorification of H: they
form a monoidal category whose Grothendieck group (with a grading) is isomorphic to H,
with the indecomposable objects mapping to the Kazhdan-Lusztig basis elements in the
Hecke algebra. Using this framework, key results in Kazhdan-Lusztig theory were reproven,
this time through more algebraic methods.

At the same time, intersection cohomology inspired the development of sheaves on moment
graphs, which offer a powerful local perspective on Soergel bimodules. Let V be a finitely-
generated free R-module. On V , one can construct a moment graph (G, E , α,≤). Using the
Braden-MacPherson algorithm, we can construct a sheaf M on the moment graph called
the Braden-MacPherson sheaf. These sheaves allow for simpler ways to compute rather
complicated topological invariants.

To link these two stories, quite remarkably, Fiebig showed that we have the following corre-
spondence

additive categories of
Soergel bimodules

↔ Braden-MacPherson
Sheaves

where the indecomposable Soergel bimodules are sent to the indecomposable normalized
Braden-MacPherson sheaves.

The purpose of this essay is to give an introduction to the theory of Soergel Bimodules and
Braden-MacPherson sheaves, and then to rigorously formulate Fiebig’s correspondence.

1.2 Conventions

We work over a base field of characteristic zero, which we may assume to be C for conve-
nience. Recently, there has been a lot of progress and interest in the characteristic p case -
we will not discuss that here.

Graded objects are a key feature in the theory of Soergel bimodules. We establish the
following conventions:

• Grading: Graded always refers to Z-grading. A graded vector space (or module,
ring) M is a direct sum M =

⊕
i∈Z M

i. An element m ∈ M i is called homogeneous
of degree i, denoted deg(m) = i. Morphisms between graded objects are typically
assumed to be degree-preserving unless otherwise specified (e.g., Hom• denotes the
space of all graded homomorphisms).

• Shifts: For a graded object M and an integer n ∈ Z, the shifted object M(n) is defined
by setting its degree j component to be (M(n))j := Mn+j . This convention means
that the shift (1) lowers the degrees of homogeneous elements by 1. A degree k map
f : M → N is equivalent to a degree 0 map M → N(k) or M(−k) → N . In the
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context of the Grothendieck group, the shift (1) corresponds to multiplication by a
formal variable v, i.e., v[M ] := [M(1)].

• Graded Modules/Algebras: A graded ring R =
⊕

Ri satisfies RiRj ⊆ Ri+j . A
graded (left) module M =

⊕
M i over R satisfies RiM j ⊆ M i+j . Similar conditions

hold for right modules and bimodules. Submodules and direct summands are assumed
to be graded unless stated otherwise.

• Graded Rank: A graded module M over a graded ring R is called graded free if
it possesses a basis consisting of homogeneous elements. If M is finitely generated
and graded free over R, it is isomorphic to a direct sum of shifted copies of R. This
isomorphism can be uniquely encoded by a Laurent polynomial p =

∑
piv

i ∈ Z≥0[v±1],
where pi is the number of basis elements of degree −i (consistent with v[M ] = [M(1)]).
We write M ∼= R⊕p :=

⊕
i∈Z R(i)⊕pi . The polynomial p is called the graded rank of

M over R, denoted rkRM = p.

1.3 Organization

Our exposition largely follows the first six chapters of [13], supplemented with additional
commentary and clarifying remarks.

Section 2: Coxeter Groups and Hecke Algebras introduces the foundational algebraic
and combinatorial concepts, setting the stage for Section 3. In the Coxeter groups subsection,
we first define Coxeter systems, motivate the Bruhat order through matrix groups, explore
root systems in the geometric representation, and conclude with an alternative perspective
on root systems through Borel subgroups. In the Hecke algebras subsection, we provide
an overview of the field, introduce the Hecke algebra and its two bases, and finish with a
discussion on computing Kazhdan-Lusztig polynomials.

Section 3: Soergel Bimodules focuses on the first central object of study. Beginning
with polynomial rings and Demazure operators, we develop the theory from basic bimodules
all the way to Soergel bimodules. The section concludes with Soergel’s Categorification The-
orem, which shows that Soergel bimodules serve as a categorification of the Hecke algebra.

Section 4: Braden-MacPherson Sheaves introduces the second key framework, ap-
proaching it through the lens of intersection cohomology on varieties with torus actions. We
cover the necessary geometric preliminaries (torus actions, fixed points, Whitney stratifica-
tions, etc.), define the moment graph, introduce sheaves on these graphs, and describe the
Braden-MacPherson algorithm for constructing the canonical sheaf that computes intersec-
tion cohomology.

Section 5: Fiebig’s Correspondence bridges the previous two sections by demonstrat-
ing how the additive categories of Soergel bimodules correspond to Braden-MacPherson
sheaves.

1.4 Acknowledgements

I’d like to thank Grant Barkley for his mentorship throughout the semester, and to Stephen
McKean for organizing the Twoples Directed Mentored Reading Program.
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2 Coxeter Groups and Hecke Algebras

2.1 Coxeter Groups

This section introduces Coxeter groups, exploring their structure, classification, and connec-
tions to geometry and algebraic groups.

2.1.1 The Big Picture

We have already presented one motivation at the start of the paper, which guides the topics
and the purpose of this paper. However, there are two other motivations for Coxeter groups
that are worth knowing: one historical, the other is simply too fascinating to ignore.

Historical: The most natural starting point to study symmetry from a mathematically
rigorous viewpoint is to study groups generated by geometric reflections. Such groups, act-
ing on Euclidean space, describe the symmetries of familiar objects like regular polygons
(whose symmetry groups are the dihedral groups) and regular polyhedra. These reflec-
tion groups capture the transformations preserving an object through mirror-like operations
across hyperplanes. The inherent structure within these geometric examples motivated a
more abstract algebraic formulation.

In 1934, H.S.M. Coxeter introduced a class of groups defined purely by generators and
relations, abstracting the essential properties observed in geometric reflection groups. These
Coxeter groups provide a unified framework encompassing not only the finite Euclidean
reflection groups (indeed, the finite Coxeter groups correspond precisely to these geometric
groups) but also infinite groups. Important examples of infinite Coxeter groups include
affine Weyl groups, associated with tessellations of Euclidean space, and hyperbolic reflection
groups, related to tessellations of hyperbolic space.

This abstraction has proved to be remarkably fruitful. Perhaps the biggest strength of
Coxeter groups is its simplicity and versatility. Deattaching the study of Coxeter groups from
specific geometric interpretations allows for generalizations across many geometric settings,
including Euclidean, spherical, affine, and hyperbolic geometries, as well as combinational
structures with no immediate geometric realization.

We’ve already noted that Coxeter groups are central to many mathematical structures.
As a second motivation, we present an example that illustrates the kinds of insights and
constructions these groups make possible.

Coxeter groups and q-Polynomials: This section is based on [2].

One compelling motivation for studying Coxeter groups stems from their deep connection
to Dynkin diagrams, which appear in various mathematical contexts, notably Lie theory.
Starting from a Dynkin diagram, one can embark on two seemingly distinct paths that
remarkably converge on the same invariant, a q-polynomial.

• Algebraic Path: Given a Dynkin diagram and a field F, one can construct a cor-
responding simple algebraic group G. Associated with G is its flag variety FL(G), a
fundamental geometric object. The flag variety admits a stratification known as the
Bruhat decomposition, FL(G) =

⊔
w Xw, where the cells Xw are indexed by elements

w of the Weyl group W of G. The dimensions of these cells (related to the lengths of
elements in W ) can be encoded in a q-polynomial, often defined via the cohomology
or intersection cohomology of the flag variety.

• Combinatorial Path: A Dynkin diagram also directly defines a finite Coxeter group
W (which coincides with the Weyl group from the algebraic path). Associated with
W is a simplicial complex called the Coxeter complex, Σ(W ). The combinatorial
structure of this complex, specifically the enumeration of its simplices based on a
notion of distance or rank, also yields a q-polynomial.

The remarkable fact is that these two approaches yield the same q-polynomial, which con-
tains a lot of important information:
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• Its degree equals the dimension of the flag variety FL(G) and also the length of the
longest element in the Coxeter group W .

• Its value at q = 1 gives the order |W |, the number of elements in the Coxeter group.

• When q is a prime power, its value counts the number of Fq-rational points on the flag
variety FL(G).

• Its value at q = −1 yields the Euler characteristic of the real points of the flag variety.

This story can be briefly summarized in a diagram:

Dynkin diagram

simple algebraic
groups Coxeter groups

flag variety Coxeter complex

q-polynomial

Weyl group

Today

Coxeter groups now occupy a central position in mathematics, with deep connections to
Lie theory (where Weyl groups are fundamental examples), the theory of algebraic groups,
geometric group theory, the study of polytopes and buildings, algebraic combinatorics, and
representation theory. Standard comprehensive references include [4], [5], [11], and [22].

2.1.2 Coxeter Systems

We begin with the formal algebraic definition of a Coxeter system.

Definition 2.1 (Coxeter System). A Coxeter system is a pair (W,S), where W is a group
generated by a finite set S satisfying relations:

W = ⟨S | (st)m(s,t) = 1, s, t ∈ S⟩

with m(s, t) ∈ N ∪ {∞} satisfying:

1. m(s, s) = 1, implying s2 = 1.

2. m(s, t) = m(t, s).

3. m(s, t) ≥ 2 if s ̸= t.

4. m(s, t) =∞ if there is no relation (st)k = 1 with k ≥ 1.

These relations are called braid relations.

A fundamental, powerful, and non-trivial result concerning Coxeter groups is the following
proposition, which connects the abstract relations to the group structure:

Proposition 2.2. m(s, t) is the order of the product st in W .

The information defining a Coxeter system can be encoded succinctly in two equivalent
ways, which are often more convenient to work with:

Definition 2.3 (Coxeter Matrix). Given (W,S), define the Coxeter matrix M = (m(s, t))s,t∈S ,
symmetric with entries from {1, 2, . . . ,∞}.

Definition 2.4 (Coxeter Graph). The Coxeter graph Γ has vertices indexed by S and edges
as follows:

• Vertices s ̸= t connected if m(s, t) ≥ 3.

• Edges labeled by m(s, t) if m(s, t) > 3, unlabeled if m(s, t) = 3.

• No edge if m(s, t) = 2.

To solidify the understanding of these definitions, let’s take a look at a simple example:
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Example 2.5. Consider the Coxeter matrix and its corresponding Coxeter graph shown
below. The generators are s1, s2, s3, s4.

•
s4Ü

1 2 3 2
2 1 4 2
3 4 1 ∞
2 2 ∞ 1

ê
←→ •

s1

•
s3

•
s2

∞

4

From this representation, we can directly read off the defining relations of the Coxeter group
W :

• The diagonal entries of the matrix are 1, so s21 = s22 = s23 = s24 = id.

• m(s1, s2) = 2 ⇒ (s1s2)2 = s1s2s1s2 = id, which means s1s2 = s2s1 (they commute).
Similarly, s1s4 = s4s1 and s2s4 = s4s2.

• m(s1, s3) = 3⇒ (s1s3)3 = id.

• m(s2, s3) = 4⇒ (s2s3)4 = id.

• m(s3, s4) =∞⇒ there is no finite order relation between s3 and s4.

As mentioned earlier, the Coxeter matrix and the Coxeter graph are equivalent ways of
encoding the structure of a Coxeter system:

Proposition 2.6. Up to isomorphism, there exists a bijective correspondence between Cox-
eter matrices and Coxeter graphs. Given one, the other can be uniquely determined.

While the Coxeter matrix might seem more directly tied to the algebraic definition, the
Coxeter graph offers several advantages, particularly for visualization and understanding
certain properties of the Coxeter group. For instance, the graph readily reveals which
generators commute (absence of an edge) and the order of the product of non-commuting
generators (edge labels). Extracting this information from a large matrix can be more
annoying to do. Furthermore, the Coxeter graph provides a direct criterion for determining
whether the corresponding Coxeter group is finite:

Theorem 2.7 (Classification of Finite Coxeter Groups). A Coxeter group is finite if and
only if the Coxeter graph is a finite disjoint union of Coxeter graphs from the list:

Figure 1: Classification of Finite Coxeter Groups

Proof. We sketch the proof presented in [24].
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Every Coxeter group decomposes as a direct product over the connected components of its
diagram, so W is finite if and only if each irreducible component is finite. Consider the real
vector space V = RS with basis {es}s∈S , and define a symmetric bilinear form B by

B(es, es) = 2, B(es, et) = −2 cos(π/mst)

for s ̸= t. Each generator s ∈ S then acts linearly on V by s(v) = v − B(v, es)es, which is
a reflection fixing the hyperplane orthogonal to es. This yields a homomorphism ρ : W →
GL(V ), called the reflection representation, whose image is a group generated by reflections
preserving B. If B is positive definite, then ρ(W ) ⊂ O(V,B) is a finite subgroup of the
orthogonal group, and hence W is finite.

Conversely, if W is finite, then ρ must preserve some positive-definite inner product; since B
is invariant and defined by the group relations, it must coincide with the inner product up to
scaling, and hence is positive definite. Therefore, for irreducible W , finiteness is equivalent
to positive definiteness of B. The classification now reduces to finding all connected Coxeter
diagrams for which the Gram matrix (B(es, et)) is positive definite. One proceeds by case
analysis: trees with small edge labels yield positive definite forms, while cycles or multiple
large edge weights introduce indefinite directions. Explicitly, one tests positive definiteness
of B by constructing vectors x ∈ V for which B(x, x) ≤ 0 to eliminate infinite types, or shows
that B(x, x) > 0 for all x ̸= 0 to retain finite types. This leads to a finite list of diagrams
whose Gram matrices are positive definite: the simply-laced types An, Dn, E6, E7, E8, and
the non-simply-laced types Bn, F4, H3, H4, I2(m). Since all other connected diagrams fail
positive definiteness, this exhausts the classification.

Therefore, a Coxeter group is finite if and only if each irreducible component of its diagram
appears in this list.

Next, we introduce the geometric representation. This is a crucial tool for understanding
Coxeter groups as groups generated by linear reflections.

We now turn our attention to study the connection between Coxeter groups and orthogonal
transformations, which leads to the idea of the geometric representation.

Let O(Rn) denote the orthogonal group of Rn, consisting of all linear transformations that
preserve the Euclidean inner product.

Definition 2.8 (Reflection). A reflection is an orthogonal transformation s ∈ O(Rn) whose
fixed subspace is a hyperplane Hs ⊂ Rn. Such a reflection can be written explicitly as

s(v) = v − 2(v, αs)αs,

where αs is a unit normal vector to Hs.

Theorem 2.9. Let W be a finite subgroup of O(Rn) generated by reflections. Then W
admits a Coxeter presentation.

Proof. Let S ⊂ W be the set of reflections generating W . For each pair s, t ∈ S, let mst

denote the order of st in W . We claim that W has the presentation

W = ⟨S | (st)mst = 1 for all s, t ∈ S⟩.

To verify this, we must show that all relations in W follow from the given ones. Since W is
finite, the subgroup generated by any two reflections s, t is a dihedral group of order 2mst,
and the relation (st)mst = 1 holds. By the classification of finite reflection groups, these
relations suffice to present W .

Conversely, any finite Coxeter group can be embedded in some orthogonal group, by means
of its geometric representation.

Now, we formally define the geometric representation:
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Definition 2.10 (Geometric Representation). Let (W,S) be a Coxeter system. The geo-
metric representation of W is a linear representation ρ : W → GL(V ), where V is a real
vector space with basis {αs}s∈S indexed by the generators. V is equipped with a symmetric
bilinear form (·, ·) defined by its values on the basis vectors:

(αs, αt) = − cos

Å
π

mst

ã
for all s, t ∈ S.

Here, if mst = ∞, we interpret π/mst as 0, so (αs, αt) = −1. Note that since mss = 1,
(αs, αs) = − cos(π) = 1. The action of a generator s ∈ S on a vector v ∈ V is defined as a
reflection:

ρ(s)(v) = v − 2(v, αs)αs.

This map ρ extends to a homomorphism from W to GL(V ) because the reflection operators
satisfy the Coxeter relations (st)mst = id on V . (This relies on the fact that the composition
of two reflections sα, sβ in planes with angle θ is a rotation by 2θ; here the angle between
hyperplanes orthogonal to αs, αt relates to mst).

The most important fact to know about the geometric representation is that it is faithful:

Theorem 2.11. The geometric representation ρ : W → GL(V ) is faithful (injective) for
any Coxeter system (W,S).

Proof. We must show that ρ is injective. Suppose w ∈W acts trivially on V . Express w as
a reduced word w = s1 · · · sk with si ∈ S. Since w(αsi) = αsi for all i, we have

αsi = s1 · · · sk(αsi) = s1 · · · si−1(−αsi) + terms involving αsj , j ̸= i.

By linear independence of {αs}s∈S , this forces k = 0, meaning w = 1. Thus, ker ρ is
trivial.

While the geometric representation provides a concrete way to study Coxeter groups, the
theory can be developed in a more general framework using the notion of a realization.

Definition 2.12 (Realization). Let (W,S) be a Coxeter system and k a commutative inte-
gral domain (typically R, C, or a field of characteristic not 2). A realization of (W,S) over
k is a triple h = (h, {αs}s∈S , {α∨

s }s∈S) where:

1. h is a free k-module of finite rank.

2. {αs}s∈S is a family of elements in the dual module h∗ = Homk(h, k) (the simple roots).

3. {α∨
s }s∈S is a family of elements in h (the simple coroots).

4. These elements satisfy the condition ⟨αs, α
∨
t ⟩ := αs(α

∨
t ) ∈ k for all s, t ∈ S, and

critically, ⟨αs, α
∨
s ⟩ = 2 for all s ∈ S.

5. The assignment s 7→ σs, where σs(v) := v−⟨αs, v⟩α∨
s for v ∈ h, defines a linear action

of W on h (i.e., the σs satisfy the braid relations corresponding to (W,S)).

Further technical conditions, such as balancedness and Demazure surjectivity, are often im-
posed for the theory to develop smoothly, particularly for diagrammatic approaches. [14]
We will not do that here.

Many other important realizations arise naturally from the root data of reductive algebraic
groups, but we will not expand on that viewpoint here.

2.1.3 From Matrix Groups to Bruhat Order

The combinatorics of Coxeter groups is a very popular area of research, see [4]. The most
basic concept in this study is the length function, which we define as follows:

Definition 2.13 (Length). Let (W,S) be a Coxeter system. Any w ∈W can be written as
a product

w = s1 · · · sk
with si ∈ S, and the length ℓ(w) is defined as the minimal such k for which this is possible.
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We have already highlighted several reasons why Coxeter groups are significant. Here is
another: they arise naturally in the study of classical matrix groups, such as the general
linear group GLn(C). While matrix groups themselves are not Coxeter groups, through
the theory of Weyl groups and BN-pairs, we can connect the two. Let’s briefly outline this
connection, which serves as a primary motivation for the definition of the Bruhat order.

We first introduce the definition of a BN-pair:

Definition 2.14 (BN-pair). A pair (B,N) of subgroups of a group G is called a BN-pair
if the following hold:

1. B ∪N generates G, and B ∩N is normal in N .

2. W := N/(B ∩N) is generated by some set S of involutions.

3. For all s ∈ S and w ∈W , BsB ·BwB ⊆ BswB ∪BwB.

4. For all s ∈ S, BsB ·BsB ̸= B.

The group W is called the Weyl group and the number |S| is the rank of the BN-pair
(G;B,N).

Proposition 2.15. S is uniquely determined and that the pair (W,S) is a Coxeter system.

Proof. The uniqueness of S follows from the fact that it consists of the minimal nontrivial
elements in W (with respect to the Bruhat order induced by the BN-pair). Specifically, by
the BN-pair axioms, each s ∈ S corresponds to a double coset BsB that is minimal among
those not equal to B. The third BN-pair axiom ensures that multiplication of double cosets
respects the Coxeter relations, meaning that (W,S) satisfies the defining properties of a
Coxeter system. The fourth axiom guarantees that each s ∈ S is indeed an involution and
cannot be further decomposed. Thus, the pair (W,S) is uniquely determined and forms a
Coxeter system.

A magical fact about groups with BN-pairs is the existence of a decomposition of a particular
form:

Theorem 2.16 (Bruhat Decomposition). Let G be a group with a BN-pair (B,N). Then

G =
⊎

w∈W

BwB

is a disjoint decomposition of G into double cosets indexed by the Weyl group W = N/(B ∩
N).

Proof. We proceed by induction on the length ℓ(w) of elements in W .

Base case: The identity e ∈W corresponds to the double coset B = BeB.

Inductive step: Suppose every element of length ≤ k lies in some BwB. For w′ of length
k + 1, write w′ = sw where ℓ(w) = k and s ∈ S. By the BN-pair axioms,

Bw′B = BswB ⊆ BsB ·BwB.

The right-hand side is either BswB or BwB (by Axiom 3), but since ℓ(w′) > ℓ(w), the
former must hold. Thus, Bw′B is distinct from all shorter double cosets.

By induction, we are done.

Let’s consider a motivating example:

Example 2.17. Let G = GLn(C) and B be the upper-triangular matrices. The quotient
G/B is the flag variety, a smooth projective variety that decomposes into Bruhat cells:

G/B =
⊔

w∈Sn

Cw, where Cw = BwB/B.
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This decomposition gives G/B with the structure of a CW-complex. Then, the natural
partial order to put on this structure is the Bruhat order ≤ on Sn, which is defined by the
closure relation:

Cu ⊆ Cw ⇐⇒ u ≤ w.

Remarkably, this order depends only on the Coxeter group structure of Sn and not on the
matrix realization.

The Bruhat order can be defined purely in terms of a Coxeter system (W,S), without any
reference to matrix groups.

Definition 2.18 (Bruhat Order and Graph). Let T := {wsw−1 | w ∈W, s ∈ S} denote the
set of reflections in W .

• For x, y ∈W , write x→ y if y = xt for some t ∈ T and ℓ(x) < ℓ(y).

• The Bruhat graph is the directed graph with vertex set W and edges given by →.

• The Bruhat order ≤ is the transitive closure of →: x ≤ y if there exists a path

x = x0 → x1 → · · · → xk = y.

Proposition 2.19. The Bruhat order ≤ is a partial order on W .

Proof. Reflexivity is trivial; take k = 0. For antisymmetry, suppose x ≤ y and y ≤ x. Any
path x→ · · · → y increases length, so ℓ(x) ≤ ℓ(y). Similarly, ℓ(y) ≤ ℓ(x). Thus, ℓ(x) = ℓ(y),
and the only possible path is x = y. Finally, transitivity is immediate from the definition of
transitive closure.

We can use the Bruhat order to create Hasse diagrams, which are visually appealing but get
complicated very quickly. Here is an example of one:

Example 2.20. The Hasse diagram of the Bruhat order on S4 is given by:

2.1.4 Root Systems in the Geometric Representation

Now we move onto discuss roots in the geometric representation. But before this, let’s
review some basic definitions about root systems.

Let V be a finite-dimensional real vector space equipped with a positive-definite inner prod-
uct (·, ·). A root system is a highly symmetric configuration of vectors that arises naturally
in the classification of semisimple Lie algebras, Weyl groups, and algebraic groups.
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Definition 2.21 (Root system). A finite set Φ ⊂ V \ {0} is a root system if it satisfies:

1. Φ spans V .

2. For every α ∈ Φ, the reflection sα defined by

sα(λ) := λ− 2(λ, α)

(α, α)
α for all λ ∈ V

preserves Φ; i.e., sα(Φ) = Φ.

3. For all α, β ∈ Φ, the number ⟨β, α∨⟩ := 2(β,α)
(α,α) is an integer.

4. If α ∈ Φ, then the only scalar multiples of α in Φ are ±α.

The rank of Φ is dimV .

Definition 2.22 (Positive (and Negative) Roots). Fix a hyperplane in V not containing
any root (e.g., by choosing a linear form h ∈ V ∗ such that h(α) ̸= 0 for all α ∈ Φ). Define:

Φ+ := {α ∈ Φ : h(α) > 0}, Φ− := −Φ+.

Then Φ = Φ+ ⊔ Φ− and exactly one of {α,−α} lies in Φ+. The elements of Φ+ are called
positive roots and the elements of Φ− are called negative roots.

Definition 2.23 (Simple Roots). A root α ∈ Φ+ is simple if it cannot be written as a sum
of two elements of Φ+. The set of all simple roots is called the base ∆ of Φ. It forms a basis
of V such that every root β ∈ Φ can be written uniquely as:

β =
∑
α∈∆

cαα

with all cα ∈ Z, either all ≥ 0 or all ≤ 0.

Now, we present an alternate definition of the Weyl group.

Definition 2.24 (Weyl Group). The Weyl group W of a root system Φ is the subgroup of
O(V ) generated by all reflections sα with α ∈ Φ.

Definition 2.25 (Cartan Matrix). Let ∆ = {α1, . . . , αr} be an ordered base. The corre-
sponding Cartan matrix is the r × r integer matrix A = (aij) defined by:

aij := ⟨αj , α
∨
i ⟩ =

2(αj , αi)

(αi, αi)
.

This matrix encodes both angular and length data of the base roots.

Remark 2.26. The only possible angles θ between distinct roots in an irreducible root
system are 90◦, 120◦, 135◦, and 150◦, corresponding to Cartan integers aijaji = 0, 1, 2, 3.
The classification of root systems thus reduces to a finite list, associated to the Dynkin
diagrams of types An, Bn, Cn, Dn, E6, E7, E8, F4, and G2.

We are interested in discussing roots in the geometric representation. Denote by

T =
⋃

x∈W

xSx−1

the set of all reflection. For any t ∈ T choose x ∈W and s ∈ S with t = xsx−1 and xs > x
in Bruhat order and set

αt := x(αs) ∈ Vgeom. (†)

The inequality xs > x guarantees that αt is positive.

Proposition 2.27. The positive roots αt for W = Sn are

{ ei − ej | 1 ≤ i < j ≤ n}.
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Proof. Identify Sn with permutation matrices acting on Vgeom = {(x1, . . . , xn) ∈ Rn | x1 +
· · · + xn = 0}. For the simple transposition si = (i, i + 1) one has αsi = ei − ei+1. Any
reflection in Sn is a transposition t = (a, b) with a < b. Conjugating sa by a permutation
that carries {a, a + 1} to {a, b} gives

α(a,b) = ea − eb.

Hence Φ+ = { ei − ej | 1 ≤ i < j ≤ n}, the standard positive root system of type An−1.

Proposition 2.28. αt for t ∈ T is well-defined.

Proof. We show the following:

(i) s fixes a hyperplane in Vgeom and sends αs to −αs. Make a similar conclusion for
xsx−1 and deduce that αt is well defined up to a scalar.

(ii) By exploiting a suitable form on Vgeom, show that (αt, αt) = 1 and thus deduce that
αt is well-defined up to ±1.

(iii) Show that under the assumption that xs > x, we have

x(αs) ∈ ⊕s∈SR≥0αs.

Deduce that αt is well-defined.

For a simple reflection s,

s(αs) = −αs, s(v) = v for all v ∈ Hs := {v | (v, αs) = 0}.

Hence s fixes the hyperplane Hs pointwise and acts by −1 on the line Rαs. Conjugating by
x ∈W gives

t = xsx−1 : x(αs) 7→ −x(αs), x(Hs) fixed.

Thus the (−1)–eigenspace of t is the one–dimensional line R · x(αs). If t also equals yry−1

with r ∈ S, then y(αr) lies in the same eigenspace, so

y(αr) = λx(αs) (λ ∈ R×),

showing that αt is determined up to a non–zero scalar.

The form ( , ) is W–invariant and satisfies (αs, αs) = 1. Hence (x(αs), x(αs)) = 1 =
(y(αr), y(αr)). Taking norms in y(αr) = λx(αs) yields λ2 = 1, so λ = ±1. Therefore
every valid construction of αt differs at most by an overall sign.

By [22], Proposition 5.7: For α ∈ Π and w ∈W , one has ℓ(wsα) > ℓ(w) if and only if w(α)
is a positive root. Applying the proposition to our factorisation with w = x and α = αs

gives x(αs) ∈ Φ+. Because a positive root is a non-negative linear combination of the simple
roots,

x(αs) ∈
⊕
r∈S

R≥0 αr.

Its negative lies in −Φ+, so the sign ambiguity from part (ii) is resolved: we must keep the
positive vector x(αs). If a second valid presentation t = yry−1 also satisfies yr > y, the
same argument makes y(αr) positive; but the equality y(αr) = ±x(αs) then forces the plus
sign. Thus every allowable choice of factorisation yields exactly the same vector.

2.1.5 An Alternative View: Borel Subgroups

Having explored the connection between Coxeter groups and orthogonal transformations
through the geometric representation, we now shift our perspective to an alternative view-
point arising from the theory of algebraic groups. This section, following the exposition in
[23], briefly explores how the connection between positive roots and Borel subgroups.

Let G be a connected reductive algebraic group over an algebraically closed field F . In this
section, we explore how the choice of a Borel subgroup B ⊂ G determines a distinguished
set of positive roots in the root system of G, and vice versa.
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Definition 2.29 (Algebraic Group). An algebraic group is a group that is also an algebraic
variety, such that the group operations (multiplication and inversion) are morphisms of
varieties.

In the world of algebraic groups, a particular class of them are important:

Definition 2.30 (Unipotent). An algebraic group is called unipotent if it acts by unipotent
operators in any rational representation. A matrix is unipotent if all its eigenvalues are
equal to 1.

Building upon this, we can define a particularly important subgroup within any algebraic
group.

Definition 2.31 (Unipotent Radical). Let G be an algebraic group. Then G has a unique
maximal normal unipotent subgroup, called the unipotent radical of G, denoted Ru(G).

This leads us to the most important class of algebraic groups for our discussion:

Definition 2.32 (Reductive Algebraic Group). An algebraic group G is reductive if its
unipotent radical is trivial: Ru(G) = {1}.

To further understand the structure of reductive algebraic groups, we introduce the concept
of a torus.

Definition 2.33 (Torus). A torus is an algebraic group isomorphic to a finite product of
copies of the multiplicative group Gm = F×. A maximal torus T ⊂ G is a torus that is
maximal with respect to inclusion among all tori in G.

Now, we can define the important subgroup that governs the choice of positive roots.

Definition 2.34 (Borel Subgroup). A Borel subgroup B ⊂ G is a maximal connected
solvable subgroup. All Borel subgroups of a connected reductive group are conjugate, and
their quotient G/B is a projective algebraic variety.

To connect Borel subgroups with root systems, we need the concept of weights associated
with the maximal torus.

Definition 2.35 (Weight). Let T ⊂ G be a maximal torus. The group of characters of T ,
denoted X(T ), is the lattice of group homomorphisms χ : T → Gm. The elements of X(T )
are called weights.

These weights then give rise to specific subgroups within G:

Definition 2.36 (Root Subgroup). A root subgroup U ′ ⊂ G with respect to T is a sub-
group isomorphic to Ga (the additive group), such that there exists a character α ∈ X(T )
satisfying:

tut−1 = α(t)u for all t ∈ T, u ∈ U ′.

The character α is then called a root, and we denote the corresponding subgroup by Uα.

The collection of all such roots forms the root system of the algebraic group.

Definition 2.37 (Root System, Again). The set of all roots ∆ ⊂ X(T ) is called the root
system of G with respect to T . This set forms a reduced root system.

Finally, the Weyl group, which we encountered earlier in the context of Coxeter groups, also
has a definition within the framework of algebraic groups.

Definition 2.38 (Weyl Group, Again). The Weyl group W = NG(T )/T is defined as the
quotient of the normalizer of T in G by T itself. The Weyl group acts on the root system
∆.

Now, we state the main point of this section, without proof:

Theorem 2.39. Let G be a connected reductive group, and T ⊂ G a maximal torus.

1. Each root α ∈ ∆ determines a unique root subgroup Uα ⊂ G.

2. The group G is generated by T and all root subgroups Uα.
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3. The pair (Uα, U−α) generates a subgroup of G isomorphic to SL2 or PGL2.

4. The set ∆ is a reduced root system, and the group W = NG(T )/T is its Weyl group.

5. Any choice of a Borel subgroup B ⊃ T determines a subset of roots ∆+ ⊂ ∆ (called
the positive roots) such that the corresponding root subgroups Uα for α ∈ ∆+ multiply
to form the unipotent radical U ⊂ B, and B = TU .

6. This gives a bijection between Borel subgroups containing T and systems of positive
roots in ∆.

Remark 2.40. The set of simple roots Π ⊂ ∆+ forms a basis of ∆, and all positive roots are
non-negative integer linear combinations of simple roots. The choice of B thus determines
not only ∆+ but also the corresponding Dynkin diagram.

Example 2.41. In G = GLn, take T to be the subgroup of diagonal matrices. The roots are
αij = εi − εj , where εk is the character sending diag(t1, . . . , tn) 7→ tk. The upper-triangular
subgroup Bn defines the positive roots as αij with i < j.

Remark 2.42. The flag variety G/B, whose points correspond to Borel subgroups of G,
can be understood as the variety of all possible choices of positive root systems. As we saw
earlier, geometric structure of G/B reflects the combinatorics of the Weyl group and the
Bruhat decomposition.

2.2 Hecke Algebras

2.2.1 Hecke Algebras in Nature

This section is taken out of [9].

While out primary interest in Hecke algebra is for their role in Soergel bimodules, it is
important to note that Hecke algebras play a central role in many areas of math, not just
in Kazhdan-Lusztig theory. Here are two major examples in number theory:

• Finite Groups of Lie Type: For G over Fq with Weyl group W , Hq(W ) ⊂ C[G(Fq)]
captures key aspects of the representation theory of G(Fq), e.g., GLn(Fq).

• p-adic groups: For a nonarchimedean local field F (e.g., Qp), the affine Weyl group
Waff yields Hq(Waff) as a convolution algebra on G(F ). This is important in p-adic
representation theory and the theory of automorphic forms.

Beyond number theory, Hecke algebras also appear in other areas of representation theory,
including:

• quantum groups and statistical mechanics (e.g., Temperley–Lieb algebras, Jimbo’s
deformation),

• knot theory (e.g., Jones’ definition of the Jones polynomial),

• modular representation theory (e.g., the work of Dipper–James),

and much more.

We won’t be studying these perspectives, but they’re still worth being aware of.

2.2.2 From Generic Hecke Algebras to the Hecke Algebra

The generic Hecke algebra provides a uniform framework generalizing both group algebras
and Hecke algebras. Contrary to most texts, we present the general Hecke algebra before
presenting the Hecke algebra.

Let (W,S) be a Coxeter system with length function ℓ : W → Z≥0. Fix a commutative ring
A and parameters {as, bs}s∈S satisfying as = at and bs = bt whenever s, t are conjugate in
W .
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Definition 2.43. The generic Hecke algebra H is the free A-module with basis {Tw | w ∈
W}, equipped with the associative multiplication determined by:

TsTw =

®
Tsw if ℓ(sw) > ℓ(w),

asTw + bsTsw if ℓ(sw) < ℓ(w),

for all s ∈ S and w ∈W , with T1 acting as the identity.

To analyze the structure of H, we introduce endomorphisms Xs ∈ End(H) defined by:

Xs(Tw) =

®
Tsw if ℓ(sw) > ℓ(w),

asTw + bsTsw if ℓ(sw) < ℓ(w).

Let E ⊆ End(H) denote the subalgebra generated by {Xs}s∈S .

An important property of these endomorphisms is their compatibility with the multiplicative
structure of the generic Hecke algebra.

Lemma 2.44. The endomorphisms {Xs}s∈S commute with the multiplication relations
defining H.

Proof. For any s, t ∈ S and w ∈W , we verify:

• If ℓ(sw) > ℓ(w), then Xs(TtTw) = Xs(Ttw) (if ℓ(tw) > ℓ(w)) or Xs(atTw + btTtw).
Comparing with TtXs(Tw) yields equality in both cases.

• The case ℓ(sw) < ℓ(w) follows similarly by direct computation.

Now that we have established some properties of the endomorphisms Xs, we introduce
a homomorphism that connects the subalgebra E of endomorphisms to the generic Hecke
algebra H itself. Define an A-algebra homomorphism φ : E → H by φ(Xs) = Ts.

Theorem 2.45. The map φ is an isomorphism of A-algebras.

Proof.

Surjectivity: Since {Ts}s∈S generates H, φ is surjective.

Injectivity: Suppose φ(X) = 0. We induct on ℓ(w). For w = 1, X(T1) = 0 implies X = 0.
Assume X(Tu) = 0 for all u with ℓ(u) < n. For ℓ(w) = n, write w = sw′ with ℓ(w′) = n− 1.
Then:

X(Tw) = X(TsTw′) = XsX(Tw′) = 0

by the induction hypothesis. Thus, X = 0.

Having explored the generic Hecke algebra, we now turn our attention to a specific and
important instance of this construction: the Hecke algebra associated with a Coxeter system.
Fix a Coxeter system (W,S) and introduce an indeterminate v over the ring of integers Z.
The Hecke algebra H is defined as follows:

Definition 2.46. The Hecke algebra H is the Z[v, v−1]-algebra generated by {δs | s ∈ S},
subject to:

• Quadratic relation: δ2s = (v−1 − v)δs + 1 for all s ∈ S.

• Braid relations: δsδtδs · · ·︸ ︷︷ ︸
mst

= δtδsδt · · ·︸ ︷︷ ︸
mst

for all s, t ∈ S.

The Hecke algebra is often described as a deformation of the group algebra of the Coxeter
group W . The following theorem explains why.

Theorem 2.47. The specialization v 7→ 1 induces an isomorphism

H⊗Z[v,v−1] Z ∼= Z[W ].
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Proof. At v = 1, the quadratic relation becomes δ2s = 1, and the braid relations reduce to
the defining relations of W . Thus, the map δs 7→ s extends to an algebra isomorphism.

2.2.3 The Two Bases: Standard and Kazhdan-Lusztig

The Hecke algebra admits two particularly important bases: the standard basis and the
Kazhdan-Lusztig basis. We will first introduce the standard basis, which is directly defined
in terms of the generators of the algebra.

Definition 2.48. The standard basis of H is {δw | w ∈ W}, where δw = δs1 · · · δsk for any
reduced expression w = s1 · · · sk.

Proposition 2.49. The standard basis is a basis of the Hecke algebra.

Proof.

Spanning. We prove the general case: For the generic Hecke algebra HA(as, bs) the set
{Tw | w ∈ W} is an A-basis. By definition HA(as, bs) is the free A-module on the symbols
Tw, so they span.

Linear independence. Now we specialize the parameters to as = 0, bs = 1. With these
values the multiplication relations become

TsTw =

®
Tsw ℓ(sw) > ℓ(w),

Tsw ℓ(sw) < ℓ(w),

which are exactly the relations of the group algebra A[W ]. The specialisation map

HA(as, bs) −→ A[W ], Tw 7−→ w,

is A-linear and sends distinct Tw to distinct group elements. If we had a non-trivial A-linear
relation

∑
w∈W cwTw = 0, applying the map would give

∑
w∈W cww = 0 in A[W ], contra-

dicting the linear independence of {w | w ∈ W} there. Hence all coefficients cw must be
zero, proving independence.

Alongside the standard basis, the Hecke algebra possesses another basis, the Kazhdan-
Lusztig basis. This basis arises from an involution defined on the Hecke algebra:

Definition 2.50. The Kazhdan-Lusztig involution is the Z-linear automorphism (−) : H →
H determined by:

• v = v−1,

• δs = δ−1
s = δs + (v − v−1),

• ab = a · b for all a, b ∈ H.

This involution is the centerpiece of the characterization of the Kazhdan-Lusztig basis:

Definition 2.51. The Kazhdan-Lusztig basis {bw | w ∈ W} is the unique set of self-dual
elements (bw = bw) satisfying a triangularity condition:

bw = δw +
∑
y<w

hy,w(v)δy,

where hy,w(v) ∈ vZ[v] and < denotes the Bruhat order. The polynomials hy,w(v) are the
Kazhdan-Lusztig polynomials.

Theorem 2.52. The Kazhdan-Lusztig basis exists and is unique.

Proof. We construct the Kazhdan–Lusztig basis {bw}w∈W inductively on the Bruhat order.
The construction is carried out entirely within the Hecke algebra H, equipped with the
standard basis {δw}, where each δw is defined as the product of the generators δs along a
fixed reduced expression for w. The goal is to define elements bw ∈ H satisfying the following
conditions:
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1. bw = bw, where the bar involution is determined by v = v−1 and δs = δ−1
s extended

anti-linearly.

2. bw = δw +
∑

y<w hy,w(v)δy with hy,w(v) ∈ vZ[v].

We begin by setting be := δe, where e is the identity element in W . This element is evidently
fixed by the bar involution and has no lower terms.

Suppose now that by has been defined for all y < x, and we wish to construct bx. Choose a
simple reflection s ∈ S such that xs < x. Set y := xs, so that y < x and by is available by
the inductive hypothesis. Consider the product byδs. Since ℓ(y) < ℓ(x), and ℓ(x) = ℓ(y) + 1,
this product can be expressed as:

byδs = bx +
∑
z<x

µ(z, y; s)bz,

where the coefficients µ(z, y; s) ∈ Z depend only on the known elements bz with z < x. We
define:

bx := byδs −
∑
z<x

µ(z, y; s)bz.

This formula uniquely determines bx. By construction, bx is bar-invariant. Since by and δs
are bar-invariant, so is their product. Moreover, all correction terms bz are bar-invariant by
the inductive hypothesis, and the coefficients µ(z, y; s) ∈ Z are fixed under the involution.
Therefore bx = bx.

It remains to verify that bx expands in the standard basis with the correct leading term and
coefficients. Write

bx = δx +
∑
z<x

hz,x(v)δz.

The triangularity and coefficient conditions follow by examining the structure of the product
byδs in the standard basis. In the case ℓ(ys) > ℓ(y), this product equals bys plus a linear
combination of bz for z < y, and thus lies in δys +

∑
z<ys vZ[v]δz. The subtraction of the

correction terms ensures that the undesired coefficients are canceled, leaving hz,x(v) ∈ vZ[v]
as desired.

Uniqueness of bx follows from the fact that any two elements satisfying the conditions of
self-duality and triangularity must differ by a bar-invariant element supported strictly below
x, with coefficients in both vZ[v] and v−1Z[v−1], which forces the difference to vanish.

This completes the inductive construction of the Kazhdan–Lusztig basis.

2.2.4 Computing Kazhdan–Lusztig Polynomials

The Kazhdan–Lusztig polynomials hy,w(v) introduced above are uniquely determined by the
triangularity and self-duality conditions defining the basis {bw}, but Kazhdan and Lusztig
also provided a recursive algorithm to compute them explicitly. This recursive method is
essential for practical computations, especially when dealing with Coxeter systems of higher
rank.

To formulate the recursion, it is convenient to introduce an alternative Z[q1/2, q−1/2]-basis
{C ′

w}w∈W of H given by:

C ′
w = q−

ℓ(w)
2

∑
y≤w

Py,w(q)Ty,

where Py,w(q) denotes the Kazhdan–Lusztig polynomial, normalized so that Pw,w(q) = 1
and Py,w(q) = 0 unless y ≤ w in the Bruhat order. Once again, the defining property of this
basis is invariance under the bar involution:

C ′
w = C ′

w.
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This condition uniquely determines the polynomials Py,w(q), which satisfy the degree con-
straint:

degPy,w(q) ≤ 1

2
(ℓ(w)− ℓ(y)− 1) if y < w.

In their work, Kazhdan and Lusztig also introduced auxiliary polynomials Rx,y(q) appearing
in the expansion of inverse basis elements:

T−1
y−1 =

∑
x

D(Rx,y) q−ℓ(x)Tx,

where D is the bar involution on H, extended to polynomials by D(q1/2) = q−1/2.

The Rx,y(q) satisfy the following recursion:

Rx,y(q) =



0, if x ≰ y,

1, if x = y,

Rsx,sy(q), if ℓ(sx) < ℓ(x) and ℓ(sy) < ℓ(y),

Rxs,ys(q), if ℓ(xs) < ℓ(x) and ℓ(ys) < ℓ(y),

(q − 1)Rsx,y(q) + qRsx,sy(q), if ℓ(sx) > ℓ(x) and ℓ(sy) < ℓ(y).

These are computed entirely in terms of the Bruhat order and the Coxeter length function
ℓ : W → Z≥0.

Once the Rx,y(q) are known, one can compute the Px,w(q) recursively from the relation:

Proposition 2.53. The Kazhdan-Lusztig polynomials are computed as

q
1
2 (ℓ(w)−ℓ(x))Px,w(q)− q

1
2 (ℓ(x)−ℓ(w))Px,w(q)

=
∑

x<y≤w

(−1)ℓ(x)+ℓ(y)q
1
2 (−ℓ(x)+2ℓ(y)−ℓ(w))Rx,y(q)Py,w(q),

which determines Px,w(q) by descending induction on w and ascending induction on x. This
recursion ensures both the self-duality condition and the required triangularity with respect
to the standard basis {Tw}.

While this method is impractical to carry out by hand beyond rank 3 or 4, it is well suited
for computer implementation. Kazhdan–Lusztig polynomials for affine Weyl groups or high-
rank finite Coxeter groups have been tabulated computationally (via Sage’s Coxeter3 pack-
age), although the large number of them eventually exceeds the memory of a computer.

Although the recursive formula determines Kazhdan–Lusztig polynomials Py,w(q), explicit
computations reveal deeper features of their combinatorics. We collect several fundamental
facts and examples.

Proposition 2.54. Let y, w ∈W with y ≤ w in the Bruhat order. Then:

1. The constant term of Py,w(q) is always 1.

2. If ℓ(w)− ℓ(y) ∈ 0, 1, 2, then Py,w(q) = 1.

3. If w = w0 is the longest element in a finite Coxeter group W , then Py,w0(q) = 1 for
all y.

4. If W has rank at most 2 (e.g., type A1, A2, or I2(m)), then Py,w(q) = 1 if y ≤ w, and
0 otherwise.

Example 2.55. For the Coxeter group of type A3 with simple reflections S = a, b, c and
commutation relation ac = ca, we have:

Pb,bacb(q) = 1 + q,

Pac,acbca(q) = 1 + q.

These are the first examples of non-constant Kazhdan–Lusztig polynomials in type A.
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Remark 2.56. The simplicity of Kazhdan–Lusztig polynomials in low-rank Coxeter groups
does not generalize. There is also an analogue of Kazhdan-Lusztig polynomials for many
other contexts, such as for the representation of real Lie groups. In high-rank groups,
especially exceptional types, the polynomials become increasingly complex. For instance,
in the split real form of type E8, one of the most complicated Lusztig–Vogan polynomials
(a variant of Kazhdan–Lusztig polynomials relevant to the representation theory of real Lie
groups) is given by:

P (q) = 152q22 + 3472q21 + 38791q20 + 293021q19 + 1370892q18

+ 4067059q17 + 7964012q16 + 11159003q15 + 11808808q14

+ 9859915q13 + 6778956q12 + 3964369q11 + 2015441q10

+ 906567q9 + 363611q8 + 129820q7 + 41239q6 + 11426q5

+ 2677q4 + 492q3 + 61q2 + 3q.

While extensive research has focused on developing faster algorithms for computing Kazh-
dan–Lusztig polynomials, we will not discuss those advancements here.
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3 Soergel Bimodules

3.1 Constructing Soergel Bimodules

3.1.1 The Polynomial Ring and its Structure

Given a realization h, the fundamental algebraic object is the ring of polynomial functions
on h.

Definition 3.1 (Polynomial Ring). Let h be a realization. The associated polynomial ring
is R := Sym(h∗), the symmetric algebra1 on the dual space h∗. If h∗ has basis {β1, . . . , βn},
then R = k[β1, . . . , βn].

We impose a grading on R by declaring that all elements of h∗ have degree 2: deg(α) = 2
for all α ∈ h∗ \ {0}. Consequently, R =

⊕
k≥0 R

2k, where R2k = Symk(h∗). This grading
convention is motivated by connections to the cohomology rings of flag varieties in geometric
settings, where H2(G/B; k) ∼= h∗.

The action of W on h induces a dual action on h∗ via (w · α)(v) = α(w−1v) for w ∈W,α ∈
h∗, v ∈ h. This action extends uniquely to a degree-preserving action of W on R by k-algebra
automorphisms. Explicitly, (w · f)(v) = f(w−1v) for f ∈ R, v ∈ h.

Subgroups of W give rise to invariant subrings of R. For any subset I ⊆ S, let WI = ⟨I⟩ ⊆W
be the standard parabolic subgroup generated by I.

Definition 3.2. The ring of WI -invariants is RI := {f ∈ R | w(f) = f for all w ∈ WI}.
For I = {s}, we write Rs := R{s}.

The structure of these invariant rings, particularly when WI is finite, is governed by the
Chevalley-Shephard-Todd theorem.

Theorem 3.3 (Chevalley-Shephard-Todd Theorem). Let h be a finite-dimensional vector
space over a field k of characteristic zero, and let G ⊆ GL(h) be a finite group. The invariant
ring RG = Sym(h∗)G is isomorphic to a polynomial ring if and only if G is generated by
pseudo-reflections2. Furthermore, if RG is polynomial, then R is a free graded module over
RG of rank |G|.

Proof. See [10, 25] or standard texts on invariant theory.

Remark 3.4. Many variants of this theorem exist. For example, the theorem can be
restated as follows: Suppose I ⊂ S such that WI is finite. Then RI is a polynomial ring.
Moreover, R is a graded free module of finite rank over RI .

The Chevalley-Shephard-Todd theorem provides the essential algebraic guarantee that the
invariant rings RI for finite parabolic subgroups WI (which are generated by reflections,
hence pseudo-reflections) are well-structured polynomial rings, and crucially, that R is a free
module over them. This freeness property is fundamental for the construction of Soergel
bimodules, which has Bs := R ⊗Rs R(1) as a building block - this involves tensoring R
over Rs. Since W{s} = {e, s} is always finite of order 2, the theorem guarantees that Rs

is polynomial and R is a free Rs-module. This ensures that the tensor product R ⊗Rs R
is well-behaved and its structure (e.g., rank) can be readily determined from the structure
of R as an Rs-module. Without this freeness, the definition and properties of Bs would be
significantly more complicated, potentially obstructing the entire categorification program.

The case I = {s} is crucial for the construction. Since W{s} = {e, s} is finite, the theorem
applies. We have the following structural result:

Lemma 3.5. For any s ∈ S, the polynomial ring R is a free graded Rs-module of rank two.
More explicitly, R decomposes as a direct sum of s-invariants and s-antiinvariants:

R = Rs ⊕Rs · αs

1The symmetric algebra Sym(h∗) := T (h∗)
/
⟨α ⊗ β − β ⊗ α⟩α,β∈h∗ where T (h∗) :=

⊕∞
n=0 h

∗⊗n is the
tensor algebra on h∗.

2An element w is a pseudo-reflection if rk(id− w) = 1, or equivalently, w fixes a hyperplane pointwise.
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where Rs · αs = {fαs | f ∈ Rs}. Since deg(αs) = 2, this decomposition yields an isomor-
phism of graded Rs-modules:

R ∼= Rs ⊕Rs(−2)

Proof. Any f ∈ R can be written as:

f =
f + s(f)

2
+

f − s(f)

2
.

The first term is s-invariant. Since f − s(f) vanishes on the reflecting hyperplane ker(αs),
it must be divisible by αs. That is, we can write:

f − s(f) = gαs for some g ∈ R.

Now consider the action of s on both sides:

s(f − s(f)) = s(f)− f = −gαs,

and also:
s(f − s(f)) = s(gαs) = s(g)s(αs) = s(g)(−αs).

Comparing both expressions:

s(g)(−αs) = −gαs ⇒ s(g) = g.

Thus, g ∈ Rs. Therefore:
f − s(f)

2
=

g

2
αs ∈ Rs · αs,

assuming char(k) ̸= 2. The sum is direct: suppose fαs ∈ Rs · αs is s-invariant. Then:

fαs = s(fαs) = s(f)s(αs) = f(−αs),

which implies:
2fαs = 0.

Since αs ̸= 0 and R is a domain, this forces f = 0. Therefore, {1, αs} forms a basis for
R as a free module over Rs. Finally, the graded isomorphism follows from the fact that
deg(αs) = 2.

This decomposition R ∼= Rs ⊕Rs(−2) is the cornerstone for understanding the structure of
the basic bimodules Bs.

3.1.2 Demazure Operators

The decomposition R = Rs ⊕ Rs(−2) can be made more explicit, and its structure further
explored, using Demazure operators. These operators are the major tool in relating the left
and right module structures in Soergel bimodules and are fundamental tools for calculations.

Definition 3.6 ([12]). For s ∈ S, the Demazure operator ∂s : R → R(−2) is the k-linear
map defined by

∂s(f) :=
f − s(f)

αs

for f ∈ R.

The operator ∂s is well-defined for the following reasons:

1. As shown in the proof of Lemma 3.5, for any f ∈ R, the polynomial f − s(f) vanishes
on the hyperplane ker(αs). In a polynomial ring over a field, this implies f − s(f) is
divisible by αs, provided αs ̸= 0.

2. The operator lowers degree by deg(αs) = 2, hence the target R(−2).

3. Crucially, the result ∂s(f) is s-invariant, meaning ∂s(f) ∈ Rs.
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Proof of s-invariance.

s(∂s(f)) = s

Å
f − s(f)

αs

ã
=

s(f)− s2(f)

s(αs)
=

s(f)− f

−αs
=

f − s(f)

αs
= ∂s(f)

using s2 = id and s(αs) = −αs.

Thus, ∂s can be viewed as a map ∂s : R→ Rs(−2).

Demazure operators satisfy several fundamental algebraic properties, summarized in Table
1.

Table 1: Properties of Demazure Operators
Property Formula Notes
Rs-Linearity ∂s(gf) = g∂s(f) for g ∈ Rs Left Rs-linearity

∂s(fg) = ∂s(f)g if g ∈ Rs Right Rs-linearity (less common)
Interaction with s ∂ss = −∂s, s∂s = ∂s Relates operator to reflection
Nilpotence ∂2

s = 0 Fundamental algebraic property
Twisted Leibniz Rule ∂s(fg) = ∂s(f)g + s(f)∂s(g) Rule for products
Braid Relations ∂s∂t · · ·︸ ︷︷ ︸

mst

= ∂t∂s · · ·︸ ︷︷ ︸
mst

(mst <∞) Connection to W , defines ∂w

Proof.

• Rs-Linearity: ∂s(gf) = (gf − s(gf))/αs = (gf − s(g)s(f))/αs = (gf − gs(f))/αs =
g(f − s(f))/αs = g∂s(f) since g ∈ Rs. Right linearity is similar.

• Interaction with s: ∂s(s(f)) = (s(f) − s2(f))/αs = (s(f) − f)/αs = −∂s(f). Also
s(∂s(f)) = ∂s(f) as shown before.

• Nilpotence: ∂s(∂s(f)) = (∂s(f)− s(∂s(f)))/αs = (∂s(f)− ∂s(f))/αs = 0.

• Twisted Leibniz Rule: A direct calculation using the definition of ∂s and properties of
s.

• Braid Relations: This is a deeper result, often proven geometrically or by careful
algebraic manipulation. See [12] or related literature.

The fact that the Demazure operators satisfy the same braid relations as the simple reflec-
tions s ∈ S is very important. It indicates that the algebraic structure generated by these
operators reflects the combinatorial structure of the Coxeter group W itself. This allows one
to define an operator ∂w for any w ∈ W by choosing a reduced expression w = (s1, . . . , sn)
for w and setting ∂w := ∂s1 · · · ∂sn . The braid relations guarantee that ∂w is independent
of the choice of reduced expression. This connection is essential for linking the algebraic
constructions involving R and its bimodules back to the underlying combinatorics of W and
the Hecke algebra. Without the braid relations for ∂s, the theory would likely remain tied
to specific sequences of reflections, lacking a connection to the group elements w.

The role of the Demazure operator is to provide the projection onto the s-antiinvariant
component Rs(−2) in the decomposition R = Rs ⊕ Rs(−2). Assuming char(k) ̸= 2, any
f ∈ R can be written as:

f =
f + s(f)

2︸ ︷︷ ︸
∈Rs

+
f − s(f)

2︸ ︷︷ ︸
∈Rs·αs

=
f + s(f)

2
+ αs

∂s(f)

2

Alternatively, as noted in [13], one can write (again assuming char(k) ̸= 2):

f = ∂s

(
f
αs

2

)
︸ ︷︷ ︸

∈Rs

+
αs

2
∂s(f)︸ ︷︷ ︸

∈Rs·αs

The map f 7→ ∂s(f) isolates the Rs(−2) component, up to multiplication by αs/2.
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3.1.3 Basic Bimodules

Using the polynomial ring R, its invariant subrings Rs, and the Demazure operators ∂s,
we can now begin to construct one side of our story (Soergel bimodules) through various
bimodule3 structures.

We work within the category of graded R-bimodules.

Definition 3.7 (Hom•
R-gbim(M,N)). Let R-gbim denote the category whose objects are

Z-graded (R,R)-bimodules M =
⊕

k∈Z M
k such that RiM jRl ⊆ M i+j+l, and whose

morphisms are R-bimodule homomorphisms ϕ : M → N that preserve the grading (i.e.,
ϕ(Mk) ⊆ Nk). We denote by Hom•

R-gbim(M,N) the graded k-module
⊕

d∈Z HomR-gbim(M,N(d)),
where HomR-gbim(M,N(d)) consists of homomorphisms of degree d.

This category is monoidal under the tensor product ⊗R. For M,N ∈ R-gbim, the tensor
product M ⊗R N is graded by (M ⊗R N)k = span{m ⊗ n | m ∈ M i, n ∈ N j , i + j =
k}/(relations). The identity object is R itself, considered as a bimodule concentrated in
degree 0. The shift functors (n) are monoidal autoequivalences.4

We are primarily interested in the full subcategory R-gbimfg consisting of bimodules that
are finitely generated as both left and right R-modules.

The simplest non-trivial Soergel bimodules are associated with simple reflections.

Definition 3.8 (Basic Bimodule). For each s ∈ S, the basic (Soergel) bimodule Bs is defined
as

Bs := R⊗Rs R(1)

This is an object in R-gbimfg. The tensor product is taken over the ring of s-invariants Rs,
meaning rf ⊗ r′ = r⊗ fr′ for f ∈ Rs. The grading shift (1) indicates that the element 1⊗ 1
has degree deg(1⊗ 1) = deg(1) + deg(1)− 1 = 0 + 0− 1 = −1.

The structure of Bs as an R-module (forgetting one side of the bimodule structure) is
straightforward to determine using the rank-two freeness lemma.

Lemma 3.9. As a graded left R-module (or equivalently, as a graded right R-module), Bs

is free of rank two. Specifically, there is an isomorphism of graded left R-modules:

Bs
∼= R(1)⊕R(−1)

Consequently, the graded rank is rkRBs = v + v−1.

Proof. We use the isomorphism of graded right Rs-modules R ∼= Rs⊕Rs(−2) from Lemma
3.5. Since tensoring over Rs is right exact and commutes with direct sums, and Rs⊗RsR(1) ∼=
R(1), we have:

Bs = R⊗Rs R(1) ∼= (Rs ⊕Rs(−2))⊗Rs R(1)
∼= (Rs ⊗Rs R(1))⊕ (Rs(−2)⊗Rs R(1))
∼= R(1)⊕ (R(−2)⊗Rs Rs(1)) (as Rs is central in Rs)
∼= R(1)⊕R(−2)(1)
∼= R(1)⊕R(−1)

The isomorphism holds for left R-modules by viewing R as a left R-module and R(1) as a left
Rs-module (which is isomorphic to R(1) as Rs acts centrally). The graded rank polynomial
corresponding to R(1)⊕R(−1) is v1 + v−1.

3A bimodule over two algebras A and B is a module M that is both a left A-module and a right B-module,
satisfying the compatibility condition: a · (m · b) = (a ·m) · b for all a ∈ A, b ∈ B, m ∈ M.

4A monoidal functor is a monoidal autoequivalence if it is an equivalence of categories and its inverse is
also monoidal.
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3.1.4 Polynomial Forcing Relations

The interaction between the left and right R-actions on Bs is crucial and is governed by the
Rs-module structure used in the tensor product. This interaction can be made explicit using
a basis and the Demazure operator. Assuming char(k) ̸= 2, we can define basis elements:

• cid := 1⊗ 1 ∈ (Bs)
−1

• cs := 1
2 (αs ⊗ 1 + 1⊗ αs) ∈ (Bs)

1

These elements {cid, cs} form a basis for Bs as both a left and right free R-module.

Proposition 3.10. The basis elements {cid, cs} satisfy the following relations for any f ∈ R:

f · cid = cid · s(f) + cs · ∂s(f) (1)

f · cs = cs · s(f) + αscid · ∂s(f) (2)

(Note: Relation (2) is a more generalized version of f · cs = cs · f from [13], which holds
only if f ∈ Rs. The corrected version reflects the interaction more accurately, aligning with
diagrammatic presentations found in sources like [14].)

Proof. These relations arise from the definition Bs = R ⊗Rs R(1) and the properties of ∂s.

For (1): f · (1 ⊗ 1) = f ⊗ 1. We decompose f = f+s(f)
2 + αs

∂s(f)
2 . Since f+s(f)

2 ∈ Rs, it

can pass through the tensor: f ⊗ 1 = f+s(f)
2 ⊗ 1 + αs

∂s(f)
2 ⊗ 1 = 1⊗ f+s(f)

2 + αs
∂s(f)

2 ⊗ 1.
We need to relate this to cid · s(f) + cs · ∂s(f) = (1 ⊗ 1)s(f) + 1

2 (αs ⊗ 1 + 1 ⊗ αs)∂s(f) =
1⊗s(f)+ 1

2 (αs∂s(f)⊗1+1⊗αs∂s(f)). This can be verified by just manipulating the tensor
product around some more.

The relations essentially encode how the left action f ·− is expressed in terms of the right ac-
tion −·g and the Demazure operator ∂s. These relations are fundamental for understanding
the bimodule structure.

3.1.5 Bott-Samelson Bimodules

Iterating the tensor product of basic bimodules yields the Bott-Samelson bimodules.

Definition 3.11 (Bott Samuleson Bimodule). Let w = (s1, s2, . . . , sn) be any sequence
(expression) of simple reflections si ∈ S. The corresponding Bott-Samelson bimodule is
defined as:

BS(w) := Bs1 ⊗R Bs2 ⊗R · · · ⊗R Bsn

For the empty expression w = ∅ (corresponding to the identity element e ∈ W ), we define
BS(∅) := R. This gives BS(w) ∼= R⊗Rs1 R⊗Rs2 · · · ⊗Rsn R(n).

Concatenation of expressions corresponds to the tensor product: BS(u)⊗RBS(v) = BS(uv).

Lemma 3.12. Any Bott-Samelson bimodule BS(w) is graded free of finite rank as a left
(and right) R-module. The graded rank is rkRBS(w) = (v + v−1)n, where n is the length
of the expression w.

Proof. This follows by induction on the length n of w, using the fact that Bs is free of rank
v + v−1 (Lemma 3.9) and that the tensor product of free modules over a polynomial ring is
free.

Remark 3.13. It is crucial to remember that the isomorphism class of the Bott-Samelson bi-
module BS(w) depends on the specific sequence w, not just on the element w = s1s2 · · · sn ∈
W . For example, if w = st = ts (i.e., mst = 2), then BS(s, t) = Bs ⊗R Bt is generally not
isomorphic to BS(t, s) = Bt⊗RBs, even though they correspond to the same group element
w. However, if w and w′ are two different reduced expressions for the same element w, the
corresponding Bott-Samelson bimodules BS(w) and BS(w′) share a unique indecomposable
direct summand (up to isomorphism and shift), which will be denoted Bw.
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3.1.6 The Category of Soergel Bimodules SBim

Bott-Samelson bimodules serve as building blocks, but they depend on the choice of expres-
sion. The intrinsic objects associated with elements of W are their indecomposable direct
summands. The category encompassing these objects is the category of Soergel bimodules,
SBim.

Definition 3.14 (SBim). The category of Soergel bimodules, denoted SBim, is the smallest
strictly full subcategory5 of R-gbimfg that satisfies the following properties:

1. It contains the regular bimodule R = BS(∅).

2. It contains all basic bimodules Bs = R⊗Rs R(1) for s ∈ S.

3. It is closed under taking finite direct sums (⊕).

4. It is closed under grading shifts (n) for all n ∈ Z.

5. It is closed under taking direct summands (i.e., it is Karoubian or idempotent com-
plete).

Equivalently, SBim is the Karoubi envelope6 of the additive monoidal category generated
by the objects {Bs(n) | s ∈ S, n ∈ Z} under ⊕ and ⊗R. The Karoubi envelope formally
adds objects corresponding to images of idempotent endomorphisms.

The category SBim inherits several important structural properties:

• Additive: SBim is an additive category, meaning it has finite direct sums and a zero
object (the zero bimodule).

• Z[v±1]-linear: The grading shifts endow SBim with the structure of a Z[v±1]-linear
category7, where the action of vn corresponds to the shift (n).

• Monoidal: SBim is a monoidal category with tensor product ⊗R and unit object R.
This follows because the tensor product of Bott-Samelson bimodules is Bott-Samelson,
and the property of being a direct summand is preserved under tensor products with
free modules like Bs.

• Krull-Schmidt: SBim is a Krull-Schmidt category. This means that every object in
SBim decomposes into a finite direct sum of indecomposable objects, and this decom-
position is unique up to isomorphism and permutation of summands. This property
relies on the fact that SBim is additive, Karoubian, and the endomorphism rings of
objects are appropriately finite-dimensional after suitable base change (e.g., R→ k).

• Freeness: Every object B ∈ SBim is graded free of finite rank as both a left and a
right R-module. This follows from the freeness of Bott-Samelson bimodules and the
fact that direct summands of graded free modules over polynomial rings (over a field)
are themselves graded free (a graded analogue of the Quillen-Suslin theorem8, which
is simpler in the graded setting).

It is important to note that SBim is generally not an abelian category, as it is not typically
closed under taking kernels or cokernels within the larger category R-gbim.

3.1.7 Indecomposable Objects and Examples

The Krull-Schmidt property guarantees the existence and uniqueness of decomposition into
indecomposable objects. A fundamental result, formalized in Theorem 3.2.3, states that the

5A strictly full subcategory A ⊂ C is a subcategory such that: A is full (for all X,Y ∈ Ob(A),
HomA(X,Y ) = HomC(X,Y )) and isomorphism-closed (if X ∈ Ob(A) and Y ∈ Ob(C) with X ∼= Y in
C, then Y ∈ Ob(A)).

6The Karoubi envelope of a category C is the universal category Kar(C) containing C in which every
idempotent morphism e : X → X splits; that is, there exist Y , r : X → Y , and s : Y → X such that e = s◦r
and r ◦ s = idY .

7A Z[v±1]-linear category is a category C such that for all objects X,Y ∈ C, the hom-set HomC(X,Y ) is
a module over the ring Z[v±1]and the composition of morphisms is Z[v±1]-bilinear.

8The Quillen–Suslin theorem states that every finitely generated projective module over a polynomial
ring k[x1, . . . , xn] (with k a field) is free.
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indecomposable objects in SBim are, up to isomorphism and grading shift, in one-to-one
correspondence with the elements of the Coxeter group W . We denote the indecomposable
object corresponding to w ∈W (normalized appropriately, e.g., generated in degree −ℓ(w))
by Bw.

The structure of SBim and the decomposition of Bott-Samelson bimodules become apparent
through examples.

Example 3.15. The Coxeter group has two elements, e and s. The corresponding inde-
composable Soergel bimodules (up to shift) are Be = R and Bs = R ⊗Rs R(1). The tensor
square of Bs decomposes as:

Bs ⊗R Bs
∼= Bs(1)⊕Bs(−1)

This isomorphism can be established by constructing explicit projection and inclusion maps
or by analyzing the endomorphism ring EndSBim(Bs ⊗R Bs). This decomposition directly
reflects the quadratic relation in the Hecke algebra, often written as H2

s = (v + v−1)Hs +
(1 − v2) or in terms of the Kazhdan-Lusztig basis element C ′

s = Hs + vHe, for which
C ′

sC
′
s = (v + v−1)C ′

s. The categorical decomposition BsBs
∼= Bs(1) ⊕ Bs(−1) lifts the

algebraic relation [Bs]
2 = (v + v−1)[Bs] in the Grothendieck group [SBim]⊕.

Example 3.16. Here W = {e, s, t, st, ts, sts = tst}, with |W | = 6. The indecomposable
objects in SBim (up to shift) are {Bw | w ∈ S3}. These are Be = R, Bs, Bt. The products
Bs⊗RBs

∼= Bs(1)⊕Bs(−1) and Bt⊗RBt
∼= Bt(1)⊕Bt(−1) yield no new indecomposables.

The Bott-Samelson bimodules BS(s, t) = Bs⊗R Bt and BS(t, s) = Bt⊗R Bs correspond to
the elements st and ts. These are indecomposable and are denoted Bst and Bts respectively.
They are generally not isomorphic, Bst ̸∼= Bts. The length 3 Bott-Samelson bimodules
decompose according to the braid relation sts = tst. Explicit calculations show:

BS(s, t, s) = Bs ⊗R Bt ⊗R Bs
∼= Bsts ⊕Bs

BS(t, s, t) = Bt ⊗R Bs ⊗R Bt
∼= Btst ⊕Bt

Here Bsts (which is isomorphic to Btst) is the new indecomposable Soergel bimodule corre-
sponding to the longest element w0 = sts = tst. The appearance of Bs and Bt as summands
reflects the structure constants in the Hecke algebra when multiplying basis elements. For
instance, in the Kazhdan-Lusztig basis {C ′

w}, one finds relations like C ′
sC

′
tC

′
s = C ′

sts + C ′
s.

Further tensor products decompose in terms of these six indecomposables, e.g., Bsts⊗RBs
∼=

Bsts(1) ⊕ Bsts(−1). The set of indecomposable Soergel bimodules {Bw | w ∈ S3} provides
a basis for the Grothendieck group [SBim]⊕, mirroring the structure of the Hecke algebra
H(A2).

These examples illustrate a crucial point: the decomposition patterns of Bott-Samelson
bimodules under the tensor product ⊗R precisely mirror the multiplicative structure of
the Hecke algebra H, particularly the quadratic relation (s2 = e) and the braid relations
(stst... = tsts...). The emergence of unique indecomposable objects Bw associated with
each group element w provides concrete evidence for the categorification claim. The corre-
spondence between categorical operations (⊗R,⊕) and algebraic operations (multiplication,
addition) is the essence of how SBim categorifies H.

3.2 Soergel’s Categorification Theorem

The examples above hint at a deep, structural connection between the category of Soergel
bimodules SBim and the Hecke algebra H. Soergel’s Categorification Theorem formalizes
this relationship, establishing SBim as a categorical realization of H. The theorem, in its
original formulation [27, 28], relies on the assumption that the underlying realization h is
reflection faithful. While later developments have relaxed this condition [14, 1], we present
the theorem under this assumption first.

3.2.1 More Building Blocks

As introduced previously, the additive and monoidal structure of SBim is captured alge-
braically by its split Grothendieck group.
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Definition 3.17 (Split Grothendieck Group). The split Grothendieck group of SBim, de-
noted [SBim]⊕, is the free abelian group generated by the isomorphism classes [B] of objects
B ∈ SBim, subject to the relation [B] = [B′] + [B′′] whenever B ∼= B′ ⊕ B′′. It forms a
Z[v±1]-algebra where the ring structure is given by multiplication [B] · [B′] := [B⊗RB] with
unit [R], and the module structure is given by scalar multiplication vn · [B] := [B(n)] for
n ∈ Z.

To connect [SBim]⊕ to a specific basis of H, Soergel introduced standard objects and filtra-
tions.

Definition 3.18 (Standard Bimodule). For w ∈W , the standard bimodule Rw is defined as
the graded (R,R)-bimodule which is R as a set, with the standard left R-action (r ·m = rm)
and the right action twisted by w: m · r = mw(r) for m ∈ Rw, r ∈ R. The grading is the
standard grading of R.

Remark 3.19. Standard bimodules Rw for w ̸= e are generally not objects in SBim. They
serve as reference objects for defining filtrations. They form their own category StdBim
where Rx⊗R Ry

∼= Rxy and Hom•
R-gbim(Rx, Ry) ∼= δx,yR. The Grothendieck group [SBim]⊕

is isomorphic to the group ring Z[v±1][W ].

Definition 3.20 (Standard Filtration). A standard filtration (or ∆-filtration) of an object
M ∈ SBim is a finite filtration by graded sub-bimodules

0 = M0 ⊂M1 ⊂ · · · ⊂Mk = M

such that each subquotient Mi/Mi−1 is isomorphic to a direct sum of shifts of standard
bimodules:

Mi/Mi−1
∼=

⊕
x∈W,n∈Z

Rx(n)⊕mi,x,n

for some non-negative integers mi,x,n. Soergel proved that every M ∈ SBim admits such
filtrations. Furthermore, there exists a unique ∆-filtration where the elements x appearing in
the subquotients Mi/Mi−1 can be ordered such that x only appears after all y > x (in Bruhat
order) have appeared. For such a filtration, the graded multiplicity hx(M) ∈ Z≥0[v±1] of Rx

(defined as hx(M) =
∑

i,n mi,x,nv
−n) is an invariant of M . A dual notion of ∇-filtration

also exists, where the order is reversed.

Example 3.21. Consider Bs = R ⊗Rs R(1) ∼= R(1) ⊕ R(−1). A standard filtration is
0 ⊂ M1 ⊂ Bs, where M1 is an appropriate sub-bimodule isomorphic to Rs(−1). The
quotient Bs/M1 is then isomorphic to Re(1) = R(1). Thus, the standard subquotients are
Rs(−1) and Re(1). The graded multiplicities are hs(Bs) = v−(−1) = v1 and he(Bs) = v−1.
(Note: Normalization conventions for hx can vary, affecting powers of v. This calculation
needs careful checking against a specific source’s convention).

3.2.2 The Character Map

The standard filtrations allow defining a map from the Grothendieck group to the Hecke
algebra.

Definition 3.22 (Character Map). The (standard) character map

ch : [SBim]⊕ → H

is the Z[v±1]-linear map defined on the classes of indecomposable Soergel bimodules [B] ∈
[SBim]⊕ by

ch([B]) =
∑
x∈W

hx(B)Hx,

where hx(B) ∈ Z≥0[v±1] denotes the graded multiplicity of the Bott–Samelson bimodule Rx

in a fixed ∆-filtration of B, and {Hx}x∈W denotes the standard basis of the Hecke algebra
H over Z[v±1].

We adopt the normalization convention of [13], in which Hs = Ts+1 for each simple reflection
s, where the generators Ts satisfy the quadratic relation

T 2
s = (v − v−1)Ts + 1.

28



The graded multiplicities hx(B) depend on a chosen normalization of the ∆-filtration con-
sistent with the standard basis {Hx}.

Using the multiplicities computed in the example above (hs(Bs) = v, he(Bs) = v−1), we
obtain

ch([Bs]) = he(Bs)He + hs(Bs)Hs = v−1He + vHs.

This differs from the expression ch([Bs]) = vHe + Hs found in [13], reflecting a difference
in normalization conventions for the graded multiplicities and basis elements in the Hecke
algebra.

3.2.3 Soergel’s Categorification Theorem Statement

We can now state the main theorem formalizing the categorification.

Theorem 3.23 (Soergel’s Categorification Theorem). Assume that the realization h is
reflection faithful over a field k of characteristic 0. Then:

1. Indecomposable bimodules Bw: For each w ∈W , there exists an indecomposable
Soergel bimodule Bw ∈ SBim, unique up to isomorphism and grading shift. This Bw

is characterized as the unique indecomposable direct summand of any Bott–Samelson
bimodule BS(w) (for a reduced expression w of w) such that the standard bimod-
ule Rw appears in its ∆-filtration with graded multiplicity hw(Bw) having a nonzero
constant term. This is usually normalized so that hw(Bw) = 1 + · · · , which may be
achieved by shifting Bw to Bw(ℓ(w)). All other indecomposable summands of BS(w)
are isomorphic to grading shifts of Bx for x < w in the Bruhat order. The set

{Bw(n) | w ∈W, n ∈ Z}

forms a complete set of representatives for the isomorphism classes of indecomposable
objects in SBim.

2. Categorification isomorphism: There exists a unique isomorphism of Z[v±1]-algebras

c : H ∼−→ [SBim]⊕

determined by sending the standard basis element Hs (for each simple reflection s ∈ S)
to the class [Bs] in the Grothendieck group. This map respects multiplication via the
monoidal structure on SBim.

3. Character map: The character map

ch : [SBim]⊕ → H

defined via graded multiplicities in ∆-filtrations (Definition 3.22) is a Z[v±1]-linear
isomorphism and is the inverse of c:

ch = c−1.

4. Hom formula: For any B,B′ ∈ SBim, the graded k-vector space

Hom•
SBim(B,B′) :=

⊕
n∈Z

HomSBim(B,B′(n))

is finite-dimensional. Moreover, Hom•
SBim(B,B′) is a finitely generated graded free

R-bimodule, and its graded rank over R satisfies:

rkRHom•
SBim(B,B′) = (ch([B]), ch([B′]))H ,

where (·, ·)H is the standard sesquilinear form on the Hecke algebra H satisfying

(Hx, Hy) = δx,y

after appropriate normalization (e.g., taking (v−ℓ(x)Hx, v
−ℓ(y)Hy) to be orthonormal).
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The Hom formula (part 4) is particularly powerful. It establishes a direct link between the
internal structure of the category SBim, specifically the size and grading of its morphism
spaces, and the algebraic structure of the Hecke algebra H, namely its canonical inner
product. Since the graded rank rkR encodes dimensions of Hom spaces between objects
(which are non-negative integers when viewed as dimensions of vector spaces over k after
base change R→ k), this formula implies that the structure constants or inner products in
the Hecke algebra can be computed by counting dimensions of certain homomorphism spaces
in SBim. This provides a categorical explanation for combinatorial properties, especially
positivity phenomena, observed in the Hecke algebra.

3.2.4 Remarks on Realizations

The construction and main theorems regarding Soergel bimodules depend on the choice of a
realization h for the Coxeter system (W,S). We revisit this concept and discuss the technical
conditions often required.

Recall from Definition 2.12 that a realization consists of a free k-module h equipped with
families of roots {αs}s∈S ⊂ h∗ and coroots {α∨

s }s∈S ⊂ h satisfying ⟨αs, α
∨
s ⟩ = 2 and inducing

the correct W -action s(v) = v − ⟨αs, v⟩α∨
s .

While the geometric realization over R is standard, other realizations are important, partic-
ularly those arising from the root data of semisimple Lie algebras or Kac-Moody algebras,
where h is the Cartan subalgebra (or its dual).

For the theory to function smoothly, especially for diagrammatic approaches and certain
proofs, additional technical conditions on the realization are often imposed:

• Balancedness: Introduced by Elias-Williamson [14], this condition relates the pair-
ings ⟨αs, α

∨
t ⟩ and ⟨αt, α

∨
s ⟩ to the integer mst via certain ”quantum numbers”. It

simplifies diagrammatic calculations and ensures a consistent notion of positive roots
within the diagrammatics.

• Demazure Surjectivity: This condition requires that each root map αs : h → k is
surjective (or an equivalent condition on coroots). It ensures that the Demazure oper-
ator ∂s = (id− s)/αs is well-defined (as division by αs makes sense in an appropriate
localization) and that the ring extension Rs ⊂ R is Frobenius.9[14]

Additionally, a crucial condition in Soergel’s original development was reflection faithfulness.

Definition 3.24 (Reflection Faithful). Let h be a realization of (W,S) over a field k. We
say h is reflection faithful if:

1. The W -action on h is faithful (only e ∈W acts as the identity).

2. An element w ∈ W acts as a pseudo-reflection on h if and only if w is a reflection in
W (i.e., w is conjugate in W to some s ∈ S).

Reflection faithfulness creates a tight geometric correspondence between the abstract reflec-
tions within the group W and the elements acting as actual reflections on the representation
space h. Soergel’s original proofs of the Categorification Theorem (Theorem 3.23) and the
Hom formula relied on this assumption.

However, this condition is not always met by natural or standard realizations. A major
limitation is that the geometric realization Vgeom is often not reflection faithful for infinite
Coxeter groups, including affine Weyl groups, which are crucial in Lie theory and related
areas. This limitation was a significant motivator for developing alternative approaches.

Soergel proved that reflection faithful realizations always exist over R for any Coxeter system.
However, constructing them explicitly can be non-trivial, and they might not be the most
natural realization for certain applications.

9A ring extension A/B is called Frobenius if there exists a linear map E : A → B satisfying the bimodule
condition E(bac) = bE(a)c for all b, c ∈ B and a ∈ A, and there exist elements {xi}ni=1, {yi}ni=1 ∈ A such
that for all a ∈ A, we have

∑n
i=1 E(axi)yi = a =

∑n
i=1 xiE(yia).
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Modern developments, particularly the diagrammatic category of Elias-Williamson [14] and
related algebraic constructions by Abe [1], have successfully established categorification re-
sults under weaker assumptions, often requiring only balancedness and Demazure surjectiv-
ity, thereby bypassing the need for reflection faithfulness. These frameworks are more robust
and directly applicable to situations like affine Weyl groups acting on Cartan subalgebras.
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4 Braden-MacPherson Sheaves

We significantly depart from the exposition in [13], instead following the original treatment in
[7]. While [13] is largely driven by computations and overlooks the intersection cohomology
aspect, we fully embrace this perspective and focus less on computational details. For readers
specifically interested in the parts of the Braden-MacPherson framework most relevant to
Soergel bimodules, [13] provides a clearer exposition than the present one.

4.1 Preliminaries: Varieties with Torus Actions

The theory of Braden-MacPherson sheaves operates within a specific geometric context:
complex algebraic varieties equipped with actions of algebraic tori satisfying certain reg-
ularity conditions. We start by establishing this context, defining the key objects and
assumptions that underpin the entire framework.

4.1.1 Algebraic Tori, Actions, and Orbits

We begin by defining the actors of our story: algebraic tori and their actions on varieties.
Throughout, we work over the ground field C of complex numbers, and all algebraic varieties
are assumed to be separated and of finite type.

Definition 4.1 (Algebraic Torus). An algebraic torus of dimension d is an affine algebraic
group T isomorphic to the d-fold product of the multiplicative group Gm = C∗, i.e., T ∼=
(C∗)d for some integer d ≥ 1.

Remark 4.2. Algebraic tori over C are commutative affine algebraic groups. As Lie groups,
T ∼= (S1)d × (R+)d, containing the compact torus K = (S1)d as a maximal compact sub-
group. While the theory of torus actions in symplectic geometry often focuses on the action
of the compact torus K and associated moment maps, the Braden-MacPherson theory uses
the algebraic structure of T itself, particularly its characters.

Definition 4.3 (Character Lattice). The character lattice of an algebraic torus T ∼= (C∗)d is
the group of algebraic group homomorphisms X∗(T ) = Homalg(T,Gm). It is a free abelian
group of rank d. The associated cocharacter lattice is X∗(T ) = Homalg(Gm, T ), also a free
abelian group of rank d, dual to X∗(T ) under the natural pairing ⟨χ, λ⟩ ∈ Z defined by
χ(λ(t)) = t⟨χ,λ⟩ for χ ∈ X∗(T ), λ ∈ X∗(T ), and t ∈ Gm.

Characters χ ∈ X∗(T ) can be thought of as Laurent monomials in coordinates t1, . . . , td if
T = (C∗)d. The character lattice encodes the algebraic structure of the torus action. We
denote the Lie algebra of T by t ∼= Cd, and its dual space by t∗. The character lattice
embeds into t∗ (via differentiation), and we often work with the rational vector space t∗Q =
X∗(T )⊗Z Q.

Definition 4.4 (T -Variety). A T -variety is a complex algebraic variety X equipped with a
morphism a : T ×X → X satisfying the axioms of a (left) group action.

Linear actions on vector spaces provide simple examples. If T acts linearly on a finite-
dimensional vector space V , then V decomposes into a direct sum of weight spaces V =⊕

χ∈X∗(T ) Vχ, where Vχ = {v ∈ V | t · v = χ(t)v for all t ∈ T}. The characters χ appearing
in this decomposition are called the weights of the action.

Definition 4.5 (Orbit and Stabilizer). For a T -variety X and a point x ∈ X, the orbit
through x is the set T · x = {t · x | t ∈ T}. The stabilizer of x is the subgroup Tx = {t ∈ T |
t · x = x}. The orbit T · x is isomorphic as a variety to the quotient T/Tx. Its dimension is
d− dimTx.

Definition 4.6 (One-dimensional Orbit). A one-dimensional T -orbit is an orbit T · x such
that dim(T · x) = 1. In the contexts considered by Braden-MacPherson, the Zariski closure
T · x of such an orbit is assumed to be isomorphic to the projective line P1.

4.1.2 Fixed Points and Contracting Subgroups

Fixed points play a central role, acting as anchors for the combinatorial structure.
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Definition 4.7 (Fixed-Point Set). For a T -variety X, the fixed-point set is XT = {x ∈ X |
t · x = x for all t ∈ T}.

The local behavior near fixed points is often analyzed using one-parameter subgroups.

Definition 4.8 (One-Parameter Subgroup). A one-parameter subgroup of T is an algebraic
group homomorphism λ : Gm → T . These correspond bijectively to cocharacters λ ∈ X∗(T ).

Definition 4.9. Let x ∈ XT . A one-parameter subgroup λ : Gm → T is contracting at x if
there exists a Zariski-open neighborhood U ⊆ X of x such that

lim
t→0

λ(t) · y = x

for all y ∈ U . The limit is taken in an analytic topology on X, which coincides with the
Zariski topology for such limits involving algebraic actions.

The existence of a contracting 1-PS at a fixed point x implies that x is an attractive fixed
point for the action of the subtorus λ(Gm). This provides a powerful tool for analyzing the
local structure of X near x, as it induces a flow towards x within a neighborhood. This
concept is fundamental to the Bia lynicki-Birula decomposition.

4.1.3 Bia lynicki-Birula Decomposition

The existence of contracting subgroups is intimately related to the Bia lynicki-Birula (BB)
decomposition, which provides a canonical way to partition a variety based on the flow
induced by a Gm-action.

Let X be a smooth projective variety over C with a Gm-action induced by a 1-PS λ : Gm →
T . Assume the fixed point set Xλ = Xλ(Gm) is finite. For each fixed point xi ∈ Xλ, the
Bia lynicki-Birula cell (or stratum) is defined as:

X+
i = {x ∈ X | lim

t→0
λ(t) · x = xi}.

Theorem 4.10 ([3]). Let X be a smooth projective variety over C with a Gm-action (via
λ) such that Xλ is finite. Then:

1. X decomposes into a disjoint union of the locally closed cells X =
⊔

xi∈Xλ X
+
i .

2. Each cell X+
i is isomorphic to an affine space Cni .

3. The map pi : X+
i → {xi} defined by pi(x) = limt→0 λ(t) · x makes X+

i a locally trivial
algebraic fiber bundle over {xi} with fiber Cni .

4. The dimension ni is the number of positive weights of the Gm-action on the tangent
space Txi

X.

This decomposition provides a cellular structure on X determined by the torus action. The
closure relation among these cells induces a partial order on the fixed point set: xi ⪯
xj if X+

i ⊆ X+
j . While the original theorem requires smoothness and projectivity, the

existence of contracting subgroups (Assumption 2 in the BM framework) and a T-invariant
Whitney stratification by affine spaces (Assumption 4) ensures a similar decomposition into
affine strata exists for the varieties considered by Braden and MacPherson, even if they are
singular. The partial order defined later for the moment graph directly reflects the closure
relationships between these affine strata, analogous to the BB cell closures.

4.1.4 Whitney Stratifications by Affine Spaces

Intersection cohomology is sensitive to the singular structure of a variety. Stratifications
provide a way to decompose a singular space into smooth pieces (strata) in a controlled
manner.

Definition 4.11 (Stratification). A stratification of a topological space X is a locally finite
partition X =

⊔
α Sα into disjoint, connected, locally closed smooth manifolds Sα, called

strata.
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For intersection cohomology, Whitney stratifications are particularly important because they
impose regularity conditions on how strata meet.

Definition 4.12 (Whitney Stratification). Let Sα and Sβ be two strata in a stratification
of a subset X ⊆ CN . The pair (Sα, Sβ) satisfies:

(A) Whitney’s Condition (A) if for any point y ∈ Sβ and any sequence {xm} ⊂ Sα con-
verging to y, if the tangent spaces Txm

Sα converge to a plane L (in the Grassmannian),
then TySβ ⊆ L.

(B) Whitney’s Condition (B) if for any point y ∈ Sβ , any sequence {xm} ⊂ Sα converging
to y, and any sequence {ym} ⊂ Sβ converging to y, if the tangent spaces Txm

Sα

converge to a plane L and the secant lines xmym converge to a line ℓ, then ℓ ⊆ L.

A stratification is a Whitney stratification if every pair of strata satisfies Whitney’s Condition
(A) or (B), which are equivalent.

Whitney’s conditions ensure that the tangent spaces of nearby strata align in a controlled
way as they approach a lower-dimensional stratum, guaranteeing a certain uniformity of
the singularity structure along each stratum. Existence theorems guarantee that complex
algebraic and analytic varieties admit Whitney stratifications. Algorithms exist to compute
these stratifications.

The Braden-MacPherson theory requires a very specific type of stratification:

Definition 4.13. A T -invariant Whitney stratification by affine spaces of a T -variety X is
a partition such that:

1. Each stratum Cx is T -stable (i.e., t · Cx = Cx for all t ∈ T ).

2. Each stratum Cx contains exactly one T -fixed point, namely x.

3. Each stratum Cx is isomorphic as a variety to an affine space Cn(x) for some n(x) ≥ 0.

4. The collection {Cx}x∈XT forms a Whitney stratification of X.

Remark 4.14. The condition that each stratum Cx is isomorphic to an affine space is
very strong. Since T acts on the affine space Cx and x is the unique fixed point, standard
results imply that the action is linear in suitable coordinates and x corresponds to the origin.
This affine structure, combined with the Whitney conditions ensuring uniform singularity
behavior, is what enables the reduction of intersection cohomology computations to the
combinatorial data encoded in the moment graph. The unique fixed point property is a
direct consequence of the strata being affine.

4.1.5 The Braden-MacPherson Assumptions

We can now state the four fundamental assumptions on the pair (X,T ) required by the
Braden-MacPherson theory. These assumptions collectively ensure that the variety X has
a structure that allows for a combinatorial study via its torus action, specifically allowing
the computation of its intersection cohomology from the moment graph.

Assumptions Let X be an irreducible complex algebraic variety equipped with an action
of an algebraic torus T ∼= (C∗)d. The pair (X,T ) is assumed to satisfy the following four
conditions:

(1) T -action with isolated fixed points. The fixed point set XT is finite.

(2) Local contraction. For every fixed point x ∈ XT , there exists a contracting one-
parameter subgroup λ : Gm → T at x.

(3) Finiteness of one-dimensional orbits. The T -action has only finitely many one-
dimensional orbits, and the Zariski closure of each such orbit is isomorphic to P1.

(4) Whitney stratification. There exists a T -invariant Whitney stratification by affine
spaces, X =

⊔
x∈XT Cx.

Remark 4.15 (Motivation for Assumptions). These four conditions work together to bridge
the geometry of X with the combinatorics of the moment graph:

34



• Assumption (1) reduces the problem to analyzing a finite set of points, which will
become the vertices of the moment graph.

• Assumption (2) guarantees that the local geometry near each fixed point is governed
by the torus action, providing the basis for a Bia lynicki-Birula-like decomposition.
The contracting flow defines the directions inherent in the partial order of the moment
graph.

• Assumption (3) ensures that the graph connecting these fixed points (the moment
graph) has only finitely many edges, corresponding to the P1 closures of these 1D
orbits.

• Assumption (4) is the strongest structural condition. The Whitney property en-
sures that singularities behave uniformly along strata, allowing intersection cohomol-
ogy (which measures singularities) to be understood locally. The affine space property
simplifies the structure of each stratum immensely, ensuring a unique fixed point and
allowing the local equivariant geometry (and thus local intersection cohomology) to
be captured by the tangent space action at the fixed point. This ultimately enables
the computation of global intersection cohomology from data localized at the fixed
points (stalks10 of the BM sheaf) and their immediate connections (edges/weights of
the moment graph).

Table 2: Summary of Braden-MacPherson Assumptions

Assumption Idea Role
Isolated Fixed
Pts

T acts on X, XT is finite. Reduces global analysis to a finite set
of points. Simplifies combinatorics
(finite vertex set for graph).

Local Contrac-
tion

∀x ∈ XT , ∃λ : Gm → T
contracting at x.

Ensures local geometry near x is
controlled by T -action (BB decom-
position). Provides local coordi-
nates/flow, defines partial order.

Finite 1D Or-
bits

Finitely many 1D T -orbits
O, O ∼= P1.

Ensures the moment graph has
finitely many edges. Simplifies com-
binatorics.

Whitney Strati-
fication

X =
⊔

x∈XT Cx, Cx T-

stable, ∼= Cn(x), Whitney
(A,B).

Guarantees local struc-
ture/singularities are uniform
along strata, determined by fixed
points. Enables IC computation via
stalks on the graph.

It is now natural to wonder which varieties satisfy the desired assumptions.

Let G be a complex semisimple algebraic group, B a Borel subgroup, and T ⊂ B a maximal
torus. The flag variety X = G/B is a smooth projective variety. For w ∈ W = NG(T )/T ,
the Weyl group, the Schubert cell is Cw = BwB/B ⊂ G/B, and the Schubert variety is its
closure Xw = Cw. Schubert varieties are, in general, singular.

The maximal torus T acts on G/B (by left multiplication, for instance), and this action
stabilizes each Schubert variety Xw.

Proposition 4.16. The pair (Xw, T ) satisfies the Braden-MacPherson assumptions. More
generally, Schubert varieties in a flag manifold and affine flag varieties11 satisfy the Braden-
MacPherson assumptions.

10The stalk of a sheaf F at a point p is the direct limit of the sections of F over open neighborhoods of p:

Fp = lim−→
U∋p

F(U)

11Let G be a semisimple complex algebraic group, G(C((t)) the corresponding loop group, I an Iwahori
subgroup, P ⊇ I a parahoric subgroup. Then M = G/P is a affine flag variety.
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For the (Xw, T ) case:

• The T -fixed points in G/B are indexed by the Weyl group W , specifically XT
w = {x ∈

W | x ≤ w}, where ≤ is the Bruhat order. This set is finite.

• The remaining assumptions (local contraction, finite 1D orbits ∼= P1, Whitney strati-
fication by affine spaces via the Bruhat decomposition) also hold.

4.2 Construction of Braden-MacPherson Sheaves

Given a pair (X,T ) satisfying the Braden-MacPherson assumptions (Assumption 4.1.5),
we construct a finite, directed, labeled graph G(X,T ), called the moment graph. This
combinatorial object encapsulates the essential T -equivariant geometry arising from the zero-
and one-dimensional orbits, providing the foundation upon which the Braden-MacPherson
sheaf is built. Its structure is reminiscent of graphs used in GKM (Goresky-Kottwitz-
MacPherson) theory for equivariant cohomology computations.

4.2.1 The Moment Graph G(X,T )

We will present two (equivalent) definitions of the moment graph. Our first one will be in
terms of the geometry of the space X under the torus action, with a focus on edge weights
and closures of orbits. The second definition describes a more abstract moment graph,
emphasizing the vector space structure, the direction of edges, and the partial order. Both
definitions aim to capture the combinatorial and geometric features of moment graphs, but
they do so from slightly different perspectives.

Here is the first definition of the moment graph.

Definition 4.17 (Moment Graph #1). Let t be a complex vector space (typically the Lie
algebra of the torus T ). A t-moment graph Γ is a finite graph endowed with two additional
structures:

1. For each edge L, a one-dimensional subspace VL of the dual vector space t∗, called the
direction of L.

2. A partial order ≤ on the set of vertices V such that if an edge L connects vertices x
and y, then either x ≤ y or y ≤ x (and x ̸= y).

The set of edges is denoted by E . For a vertex x ∈ V, Ux denotes the set of edges connecting
x to a vertex y with x ≤ y (”up”), and Dx denotes the set of edges connecting x to a vertex
y with y ≤ x (”down”).

The components of the moment graph are derived directly from the low-dimensional orbits
of the T -action on X.

Definition 4.18 (Vertices and Edges). Let (X,T ) satisfy Assumptions 4.1.5.

• The vertex set of the moment graph G(X,T ) is V := XT . This set is finite by
Assumption (1).

• The edge set E consists of unordered pairs {x, y} of distinct vertices such that there
exists a one-dimensional T -orbit O whose closure is O = (T · z) ∪ {x, y} for some
z ∈ X. By Assumption (3), there are finitely many such orbits, and each closure O is
isomorphic to P1 and connects exactly two fixed points x, y ∈ V . The edges correspond
to these one-dimensional orbits.

Each edge carries a weight, an algebraic invariant derived from the torus action.

Definition 4.19 (Weight of an Edge). Let e = {x, y} ∈ E be an edge corresponding to the
curve O ∼= P1. The torus T acts on O. At the fixed point x, the tangent space TxO is a
one-dimensional vector space isomorphic to C. The induced T -action on TxO is linear and
non-trivial (since O is not a fixed point). Being a one-dimensional representation of T , this
action is determined by a unique non-zero character αx,e ∈ X∗(T ). Similarly, the action on
TyO determines a character αy,e ∈ X∗(T ). These characters are related by αy,e = −αx,e.
We choose one of these, say αe = αx,e, and call it the weight of the edge e. We view αe as a
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non-zero element in the rational vector space t∗Q = X∗(T )⊗Z Q. The weight is also referred
to as the direction VL in some sources, a one-dimensional subspace of t∗.

Remark 4.20. The weight αe encodes the character by which T scales the tangent direction
along the edge O emanating from x. Choosing the opposite orientation (thinking of the edge
emanating from y) negates the character. For the purpose of defining the sheaf structure
later, only the one-dimensional subspace ⟨αe⟩Q ⊂ t∗Q spanned by the weight is intrinsically
defined by the unoriented edge e. However, fixing a choice of αe (up to sign) is necessary
for defining the edge rings AL. Geometrically, αe can also be understood via the stabilizer
subgroup Tz for any z ∈ O. Since dimO = 1, dimTz = d − 1. The Lie algebra Lie(Tz)
is a hyperplane in t. The weight vector αe spans the one-dimensional annihilator of this
hyperplane in t∗. This weight captures the essential infinitesimal T -equivariant geometry
connecting the fixed points x and y.

The moment graph is endowed with a partial order reflecting the flow structure induced by
the torus action, closely related to the Bia lynicki-Birula decomposition.

Definition 4.21 (Partial Order). Fix a generic one-parameter subgroup λ : Gm → T such
that the limit limt→0 λ(t) · z exists for all z ∈ X and converges to a point in XT . (The
existence of contracting 1-PS, Assumption (2), ensures such limits exist locally; genericity
ensures a consistent global flow structure, often related to choosing λ in a particular Weyl
chamber in representation-theoretic contexts). Define a relation ⪯ on the vertex set V = XT

by declaring:
x ⪯ y ⇐⇒ y = lim

t→0
λ(t) · x

Equivalently, using the flow interpretation, x ⪯ y if y lies in the closure of the λ(Gm)-orbit
flowing from x towards t = 0. An alternative, equivalent definition uses the strata from
Assumption (4):

x ⪯ y ⇐⇒ Cy ⊆ Cx

(Note: the convention might be reversed, Cx ⊆ Cy, depending on whether λ is contracting
or expanding; we follow the convention linked to contracting 1-PS). This relation ⪯ defines
a partial order on V . For any edge e = {x, y} ∈ E, the points x and y are comparable under
⪯, meaning either x ≺ y or y ≺ x.

We now combine these elements to give our second definition of the moment graph.

Definition 4.22 (Moment Graph #2). The moment graph G(X,T ) is the quadruple con-
sisting of the finite vertex set V = XT , the finite edge set E (viewed as pairs {x, y} corre-
sponding to closures of 1D orbits), the weight map α : E → t∗Q \ {0} assigning a weight αe

to each edge e ∈ E (well-defined up to sign), and the partial order ⪯ on V .

The moment graph is thus a finite, directed graph whose edges are labeled by non-zero
rational characters (up to sign). Its significance lies in its ability to encode the necessary
geometric information for computing intersection cohomology.

Remark 4.23. The Braden-MacPherson assumptions, particularly the Whitney stratifica-
tion by affine spaces (Assumption 4), ensure that the local structure of X near each fixed
point x and along each 1D orbit O is sufficiently well-behaved. The intersection cohomology
sheaf IC•(X) is locally constant along the strata Cx \ {x} and its behavior at the fixed
point x is determined by how the strata Cy for y connected to x by an edge come together
at x. This interaction is governed by the T -action on the normal directions at x, which
are precisely captured by the weights αe of the edges e incident to x. The partial order ⪯
reflects the inclusion relationships of strata closures. Therefore, the moment graph G(X,T )
packages exactly the combinatorial and equivariant data needed to reconstruct the stalks
and global sections of the (equivariant) intersection cohomology sheaf.

Remark 4.24 (Relation to Symplectic Geometry). The name ”moment graph” is motivated
by symplectic geometry. If X is projective, one can choose a T -equivariant embedding into
projective space X ↪→ PN . With the Fubini-Study metric, the T -action is Hamiltonian,
leading to a moment map µ : X → t∗K , where tK is the Lie algebra of the maximal compact
torus TK ⊂ T . The image µ(L) of the closure of a 1D orbit is a line segment connecting µ(x)
and µ(y). The direction vector µ(y)− µ(x) (or µ(x)− µ(y)) spans the real line underlying
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the complex line VL ⊂ t∗ ∼= t∗K ⊗R C. Similar graphs appear in the work of Guillemin and
Zara on equivariant cohomology and Morse theory on graphs [20, 19, 21].

For those particularly interested in the connection to Soergel bimodules, most moment
graphs (in that context) are Hasse diagrams of the Bruhat order.

Example 4.25 (SL3/B Moment Graph). Let X = G/B where G = SL3(C) and B is the
Borel subgroup of upper triangular matrices. Let T be the maximal torus of diagonal matri-
ces. The fixed points XT are indexed by the Weyl group W = S3 = {id, s1, s2, s1s2, s2s1, s1s2s1}.
The Bruhat order provides the partial order ≤. Edges connect w, v ∈W if v = wr for some
reflection r and w < v. The moment graph is the Hasse diagram of the Bruhat order. The
directions VL correspond to roots of SL3.

4.2.2 Sheaves on Moment Graphs

Having constructed the combinatorial moment graph Γ = G(X,T ), we now define algebraic
objects living on this graph: Γ-sheaves. These sheaves, particularly the canonical one defined
in the next chapter, are the central objects in the Braden-MacPherson theory, designed to
capture the (equivariant) intersection cohomology of the original variety X.

The sheaves are built from modules over specific graded rings associated with the vertices
and edges of the moment graph. The base ring reflects the global torus action, while the
edge rings incorporate local geometric information.

Definition 4.26. Let t = Lie(T ) be the Lie algebra of the torus T , and let t∗ be its dual
space. The primary coefficient ring is the symmetric algebra of t∗: We equip A with
a grading by placing elements of t∗ in degree 2. If {β1, . . . , βd} is a basis for t∗, then
A ∼= C[β1, . . . , βd] is a graded polynomial ring.

Remark 4.27. This is very similar to the setup in the previous section.

Remark 4.28 (Connection to Equivariant Cohomology). The ring A = Sym(t∗) is canon-
ically isomorphic to the T -equivariant cohomology ring of a point, H∗

T (pt;C). The grading
corresponds to the cohomological degree. Thus, modules over A naturally model objects
carrying T -equivariant information.

Definition 4.29. For each edge L ∈ E of the moment graph Γ, let αL ∈ t∗Q \ {0} be
its associated weight. By clearing denominators, we can assume αL ∈ t∗. The edge ring
associated to L is the quotient ring:

AL := A/(αL)

where (αL) is the principal ideal generated by the linear form αL. Since αL is homogeneous
of degree 2, AL inherits a grading from A. The natural projection map qL : A→ AL makes
AL a graded A-algebra.

The edge ring AL incorporates the local constraint imposed by the torus action along the
edge L. In GKM theory, compatibility conditions between data at adjacent fixed points
often involve congruence modulo the edge weight αL. Using AL-modules as building blocks
encodes this local compatibility directly into the sheaf structure.

A Γ-sheaf packages modules associated with vertices and edges, linked by restriction maps
respecting the graph structure.

Definition 4.30. Let Γ = (V,E, α,⪯) be a moment graph. A Γ-sheaf M consists of the
following data:

1. For each vertex x ∈ V , a graded A-module Mx.

2. For each edge L ∈ E, a graded AL-module ML (which is also a graded A-module via
the projection A→ AL).

3. For each pair (x, L) where x ∈ V is an endpoint of L ∈ E, a degree-preserving A-linear
homomorphism ρx,L :Mx →ML.
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All modules Mx and ML are assumed to be finitely generated over their respective rings
(A or AL).

Remark 4.31 (Intuition). One should think ofMx as the ”stalk” of the sheaf at the vertex
x, and ML as the ”stalk” along the edge L. The maps ρx,L are ”restriction maps” that
enforce compatibility between the data at a vertex and the data along an incident edge. This
definition discretizes the usual notion of a sheaf on a topological space, adapting it to the
combinatorial structure of the graph Γ. The use of A-modules and AL-modules incorporates
the T -equivariant structure via the coefficient rings derived from the torus characters and
edge weights.

While defined combinatorially, Γ-sheaves can also be viewed as traditional sheaves on a
suitable topological space associated with the graph.

Definition 4.32. Let Γ = (V,E, α,⪯) be a moment graph. Define the set S(Γ) := V ∪ E.
We endow S(Γ) with a topology by declaring a subset O ⊆ S(Γ) to be open if it satisfies
the condition:

if x ∈ O ∩ V, then L ∈ O for all edges L ∈ E incident to x.

This defines a topology where the minimal open neighborhood of a vertex x consists of x
and all edges incident to it. S(Γ) becomes a finite T0 topological space, sometimes called an
Alexandrov space.

Definition 4.33. Let M be a Γ-sheaf and let Z ⊆ S(Γ) be any subset. The module of
sections of M over Z is defined as:

M(Z) :=

{
((sx)x∈Z∩V , (sL)L∈Z∩E) ∈

⊕
a∈Z

Ma

∣∣∣∣∣ ρx,L(sx) = sL whenever x ⊂ L and {x, L} ⊂ Z

}

where Ma denotes Mx if a = x ∈ V and ML if a = L ∈ E. Elements of M(Z) are
compatible families of elements from the vertex and edge modules within Z. The global
sections are Γ(M) := M(S(Γ)). M(Z) forms a graded module over the ring of sections
A(Z) of the structure sheaf A (defined below).

Definition 4.34. The structure sheaf (or sheaf of coefficient rings) on Γ is the Γ-sheaf A
defined by:

• Ax = A = Sym(t∗) for all x ∈ V .

• AL = AL = A/(αL) for all L ∈ E.

• ρx,L : Ax → AL is the natural quotient map qL : A→ AL.

For any Γ-sheafM, the modulesMx are A = Ax-modules andML are AL = AL-modules,
and the maps ρx,L are compatible with these structures in a natural sense, making M a
”sheaf of A-modules” in the combinatorial setting.

The combinatorial definition of a Γ-sheaf is equivalent to the standard definition of a sheaf
on the topological space S(Γ).

Proposition 4.35 ([7, Proposition 1.1]). The assignment M 7→ (O 7→ M(O)) establishes
a bijection between:

• Γ-sheaves in the sense of Definition 4.30.

• Sheaves of graded A-modules on the topological space S(Γ) (Definition 4.32), where
A is viewed as a sheaf of rings on S(Γ).

Proof. Given a Γ-sheaf M, the map O 7→ M(O) defines a presheaf on S(Γ). The compat-
ibility condition ρx,L(sx) = sL in the definition of M(O) ensures the gluing axiom holds
for the specific topology on S(Γ), making it a sheaf. Conversely, given a sheaf F of graded
A-modules on S(Γ), we can recover the Γ-sheaf data by setting Mx = Fx (stalk at x) and
ML = FL (stalk at L), with ρx,L being the restriction map induced by the topology. More
precisely, one can define Mx = F(x◦) where x◦ is the minimal open set containing x, and
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ML = F(L◦) (or simply FL if edges are considered closed points in some sense). The
equivalence ensures consistency.

Remark 4.36. This equivalence is powerful. It allows us to primarily use the concrete,
combinatorial definition of Γ-sheaves for constructions and computations, involving only
finitely many modules (Mx,ML) and explicit maps (ρx,L). Simultaneously, it grants access
to the full machinery of sheaf theory on topological spaces, such as sheaf cohomology and
derived functors, via the interpretation as a sheaf on S(Γ).

4.2.3 The Braden-MacPherson Algorithm

The core of the Braden-MacPherson theory is the construction of a specific, canonical Γ-
sheaf M associated to the moment graph Γ of X. From the geometric side: among all
possible Γ-sheaves, there exists a unique one, the canonical sheaf M, whose global sections
compute the equivariant intersection cohomology of the original variety X. Remarkably,
this construction can be carried out purely combinatorially, relying solely on the structure
of Γ. To achieve this, [7] developed a recursive algorithm, now widely known as the Braden-
MacPherson algorithm.

The core of the Braden-MacPherson theory is the construction of a specific, canonical Γ-
sheafM associated to the moment graph Γ of X. This construction is purely combinatorial,
relying only on Γ (vertices, edges, directions VL, and partial order ≤).

The construction proceeds by induction, moving downwards through the partial order ≤ on
V. We first recall the notion of a projective cover.

Definition 4.37 (Projective Cover). Let R be a ring (typically A = Sym(t∗) here) and
M be an R-module. A projective cover of M is a projective R-module P together with a
surjective homomorphism π : P → M such that the induced map π : P/(mP ) → M/(mM)
is an isomorphism, where m is the Jacobson radical of R. For our graded ring A = Sym(t∗),
where the unique maximal homogeneous ideal is (t∗)A, this means π : P ⊗A C → M ⊗A C
is an isomorphism. Such a P is typically constructed as P = (M ⊗A C)⊗C A.

Braden-MacPherson Algorithm, ([8]):

Let Γ be the moment graph of X.

1. Initialization: Since X is irreducible, there is a unique maximal vertex x0 ∈ V under
the partial order ≤. Define Mx[x0] = A.

2. Inductive Step: Assume Mx[y], ML, and ρy,L have been defined for all vertices y > x
and all edges L connecting such vertices. We want to define Mx.

(a) Define modules on incoming edges: For each edge L ∈ Ux (connecting x
to y with x < y), define ML = Mx[y]/VLMx[y]. Let ρy,L : Mx[y] → ML be the
quotient map.

(b) Define boundary module: Consider the subgraph Γ̃>x = Γ>x ∪ Ux (vertices
> x, edges between them, and edges from x up to them). Define the ”boundary
module” M∂x as the image of the restriction map ϕ:

ϕ :M(Γ̃>x) −→M(Ux) =
⊕
L∈Ux

ML

An element of M∂x is thus a collection (sL)L∈Ux
with sL ∈ ML that can be

extended compatibly to all of Γ̃>x.

(c) Define vertex module via projective cover: Define Mx to be the projective
cover of M∂x. Let πx : Mx ↠ M∂x be the covering map.

(d) Define restriction maps: For L ∈ Ux, define ρx,L : Mx → ML as the compo-

sition Mx
πx−→M∂x ↪→M(Ux)

projL−−−→ML.
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(e) Consistency for outgoing edges: For edges L ∈ Dx (connecting x to y with
y < x), the modules ML and maps ρx,L will be defined when the construction
reaches y. The overall consistency (e.g., that ML is also isomorphic to Mx/VLMx

if L ⊂ Cx) is implicitly guaranteed by the main theorem identifying M with the
intersection cohomology sheaf.

This process defines the Γ-sheaf M = ({Mx}, {ML}, {ρx,L}) for the entire graph Γ.

The construction, particularly the use of projective covers, might seem non-canonical. How-
ever, the resulting sheaf M possesses strong uniqueness properties.

Proposition 4.38 (Rigidity, Prop 1.2 [8]). Let Mx →M∂x and Nx →M∂x be two projective
covers as constructed in step (2c). Then there exists a unique isomorphism f : Mx → Nx of
graded A-modules such that the diagram commutes (i.e., f respects the maps to M∂x).

Proof. The proof given in [8] relies on the geometric interpretation via intersection cohomol-
ogy (Theorem 1.8) and properties of compactly supported IH (Theorem 3.8, Lemma 4.2).
It is not purely combinatorial.

Corollary 4.39 (Automorphisms, Cor 1.3 [8]). The group of automorphisms of the canoni-
cal sheafM as a graded A-module, AutA(M), is isomorphic to C∗ acting by scalar multipli-
cation. This follows from Prop 4.38 by induction starting from AutA(Mx0) = AutA(A) ∼= C∗.

This rigidity ensures that although choices might be made in constructing projective cov-
ers, the resulting sheaf M is well-defined up to a unique isomorphism, making subsequent
identifications with geometric objects canonical.

An alternative characterization of M is given using the notion of ”purity”.

Definition 4.40 (Pure A-module [8] §1.4). An A-module (or Γ-sheaf) N is called pure if
for all x ∈ V:

1. N (x) is a free A-module.

2. N (L) = N (x)/VLN (x) whenever L ∈ Dx.

3. The image of the restriction map N (x◦)→ N (Ux) is equal to the image of the restric-
tion map N (Γ̃>x)→ N (Ux), where x◦ = {x} ∪ Ux ∪Dx.

Theorem 4.41 (Characterization via Purity, Thm 1.4 [8]). The canonical sheaf M con-
structed above is the unique (up to isomorphism and shift) indecomposable pure A-module
on Γ satisfyingM(x0) = A. Any pure A-module on Γ decomposes as a direct sum of shifted
copies of the canonical sheaves associated with the subgraphs Γ≤x for x ∈ V.

4.3 Intersection Cohomology and the Main Theorems

See [17], [18], and [6] for a more thorough iscussion

4.3.1 Brief Introduction to Intersection Cohomology

Intersection cohomology, introduced by Goresky and MacPherson, is a cohomology theory
for singular spaces that generalizes Poincaré duality.

Definition 4.42 (Intersection Cohomology). Let X be an irreducible complex algebraic
variety of dimension n. Let L be a local system on a dense smooth open subset U ⊆ X.
The intersection cohomology complex with coefficients in L is an object IC•(X;L) in the
derived category Db

c(X) of constructible sheaves. It is characterized by properties related
to its stalks and costalks relative to a stratification. When L is the constant sheaf CU , we
write IC•(X). The intersection cohomology groups are the hypercohomology groups:

IHk(X;L) := Hk(X, IC•(X;L))

We primarily consider the constant coefficient case IHk(X) := IHk(X;C).

When a torus T acts on X, we can define the equivariant version.
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Definition 4.43 (Equivariant Intersection Cohomology). Let T be an algebraic torus acting
on X. Let ET → BT be the universal principal T -bundle, where ET is a contractible space
with a free T -action and BT = ET/T is the classifying space. The Borel construction
or homotopy quotient is XT := (X × ET )/T . The T -equivariant intersection cohomology
of X is defined as the ordinary intersection cohomology of the homotopy quotient: The
equivariant intersection cohomology IH∗

T (X) =
⊕

k IH
k
T (X) forms a graded module over

the equivariant cohomology of a point, H∗
T (pt) ∼= A = Sym(t∗).

We also need the local versions.

Definition 4.44 (Local Intersection Cohomology). For a point x ∈ X, the local intersec-
tion cohomology at x, denoted IH∗(X)x, is defined via the stalk of the intersection coho-
mology complex IC•(X) at x. Specifically, IHk(X)x = Hk(IC•(X)x). Similarly, the local
T -equivariant intersection cohomology IH∗

T (X)x is defined using the stalks of an equivariant
version of the IC complex, or equivalently via the restriction map IH∗

T (X)→ IH∗
T ({x}) ∼=

H∗
T (pt)⊗ IH∗(X)x. If x ∈ XT , then IH∗

T (X)x is a graded A-module.

4.3.2 Braden-MacPherson Sheaves for Intersection Cohomology

The theorems in [7] provide a way to compute these potentially complicated topological
invariants IH∗

T (X) and IH∗
T (X)x using the purely algebraic and combinatorial construction

of the canonical sheaf M on the moment graph Γ, provided (X,T ) satisfies Assumptions
4.1.5. Let’s see how to do this:

Theorem 4.45 (Global Sections vs Global IH, Thm 1.5 [8]). Let Γ be the moment graph of
X andM be the canonical Γ-sheaf. There is a canonical isomorphism of graded A-modules:

IH∗
T (X) ∼=M(Γ)

Consequently, the ordinary intersection cohomology is given by:

IH∗(X) ∼=M(Γ)⊗A C =M(Γ)

Furthermore, IH∗
T (X) is a free A-module.

Theorem 4.46 (Stalks vs Local IH, Thm 1.6 [8]). For each fixed point x ∈ XT = V, there
is a canonical isomorphism of graded A-modules between the stalk of M at x and the local
equivariant intersection cohomology at x:

IH∗
T (X)x ∼= Mx

The local ordinary intersection cohomology is given by:

IH∗(X)x ∼= Mx ⊗A C = Mx

Theorem 4.47 (Module Structures, Thm 1.7 [8]). The identifications in Theorems 4.45
and 4.46 respect the module structures over the equivariant and ordinary cohomology rings
H∗

T (X) and H∗(X). These cohomology rings themselves can be identified with the global

sections of the sheaf of rings A, H∗
T (X) ∼= A(Γ) and H∗(X) ∼= A(Γ) (under suitable con-

ditions, cf. [16]). The H∗
T (X)-module structure on IH∗

T (X) corresponds precisely to the
A(Γ)-module structure on M(Γ).

These theorems are remarkable. They provide a purely combinatorial algorithm, starting
from the moment graph Γ, to compute the equivariant intersection cohomology of X both
globally and locally.
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5 Fiebig’s Correspondence

Now that we have seen both Soergel bimodules and Braden-MacPherson sheaves, it’s finally
time to combine them. To do this, we turn to Fiebig’s correspondence, which states the
following:

Proposition 5.1 (Fiebig’s Correspondence). There exists a bijectiion between between the
following two categories:

additive categories of
Soergel bimodules

↔ Braden-MacPherson Sheaves
BM(G)

Specifically, where the indecomposable Soergel bimodules are sent to the indecomposable
normalized Braden-MacPherson sheaves.

Soon, we will state this more formally. Throughout this section, we follow the exposition of
the original paper, [15].

5.1 The Set Up

5.1.1 Assumptions

Before we dive straight into the math, let’s briefly mention some of the assumptions that
are required for this correspondence to work.

• Coxeter System: (W,S) is a Coxeter system, T ⊂ W the set of reflections, k is a
field with char(k) ̸= 2

• Representation: V is a finite-dimensional, reflection faithful representation of W
over k

• Hyperplanes and Forms: For t ∈ T , V t = ker(t − id) is a hyperplane. αt ∈ V ∗ is
a non-zero linear form with ker(αt) = V t. These forms are unique up to scalars and
distinct for distinct reflections.

• Symmetric Algebra: S = Sk(V ∗) is the symmetric algebra on V ∗, graded by
deg(V ∗) = 2. We identify S with polynomial functions on V when k is infinite.
All modules and maps are graded unless stated otherwise. M{l} denotes a grading
shift: (M{l})n = Mn+l

• W -Orbit and Order: Λ ⊂ V is a W -orbit. It is equipped with a partial order ≤
such that x, y ∈ Λ are comparable if y = tx for some t ∈ T . For the main theorem, Λ
will be a regular orbit.

5.1.2 Category V(Λ): The Sheaf-Theoretic Side

Next, we describe the category V(Λ), which is built using an auxiliary algebra and linked to
sheaves on a moment graph.

Definition 5.2 (Structure Algebra Z(Λ)). The structure algebra Z = Z(Λ) is the S-
subalgebra of

∏
x∈Λ S defined by compatibility across reflections:

Z(Λ) :=

{
(zx)x∈Λ ∈

∏
x∈Λ

S
∣∣∣∣∣ zx ≡ ztx (mod αt) for all x ∈ Λ, t ∈ T with tx ∈ Λ

}
.

Z is commutative, associative, Z-graded, and an S-algebra via the diagonal embedding
f 7→ (f, f, . . . ).

Building on the structure algebra Z(Λ), we now define the category V(Λ,≤).

Definition 5.3 (Category V(Λ,≤)). Let Z-modf be the category of graded Z-modules
that are finitely generated and torsion-free12 over S, and whose action factors through ZΩ

12A module is torsion-free if for any non-zero element m in the module and any non-zero scalar r ∈ Z,
the equation rm = 0 implies m = 0.
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for some finite Ω ⊂ Λ. For M ∈ Z-modf and an upwardly closed Ω ⊂ Λ, let MΩ be the
canonical quotient supported on Ω. M admits a Verma flag if MΩ is a graded free S-module
for all upwardly closed Ω. The category V = V(Λ,≤) is the full subcategory of Z-modf of
objects admitting a Verma flag.

Remark 5.4 (Moment Graph Interpretation). The orbit Λ with its partial order defines a
moment graph G(Λ) whose vertices are Λ, and edges x ↔ tx are labelled by k · αt ∈ PV ∗.
There is a localization functor L from Z-modules to sheaves SH(G(Λ)), and V(Λ) fully
embeds into SH(G(Λ)). Objects in the image L(V) are characterized by being generated by
global sections, being flabby13, and having graded free ”local stalks” H[x]. This links V to
Braden-MacPherson’s framework.

5.1.3 Category F▽: The Bimodule Side

Now that we have defined the category V(Λ), we now turn our attention to the bimodule
side of the story. On this side, the category is constructed from S-bimodules, assuming k is
infinite.

Definition 5.5 (Twisted Diagonals Gr(x) and Bimodules S(x)). For x ∈ W , Gr(x) =
{(x−1v, v) ∈ V × V | v ∈ V }. Let S(x) be the regular functions on Gr(x). The projection
pr2 : Gr(x)→ V identifies S(x) with S as a (right) S-module. The S-bimodule structure is
given by (f ⊗k g) · h = (fx · g)h, where fx(v) = f(x−1v).

Next, we present a lemma that explains the codimension of intersections of twisted diagonals,
which is important for understanding the filtration structure in the category F▽.

Lemma 5.6 (Intersection Codimension [15, Lemma 4.1]).

codimGr(x)(Gr(x) ∩Gr(y)) = 1 ⇐⇒ y = tx

for some t ∈ T .

With this lemma in hand, we are now ready to define the category F▽, which is constructed
from graded S-bimodules and involves a filtration structure indexed by the length function
l : W → N0. For M ∈ S-mod-S, let M≤i be the submodule supported on

⋃
l(x)≤i Gr(x).

Definition 5.7 (Category F▽). The category F▽ is the full subcategory of graded S-
bimodules M such that:

1. M is supported on Gr(A) =
⋃

x∈A Gr(x) for some finite A ⊂W .

2. For each i ≥ 0, the filtration quotient M≤i+1/M≤i is isomorphic to a finite direct sum
of shifted basic bimodules:

M≤i+1/M≤i
∼=

⊕
x: l(x)=i+1

⊕
j

S(x){kx,j} (kx,j ∈ Z).

(Note: Fiebig’s text states l(x) = i; we follow the interpretation consistent with filtra-
tion steps, where the (i + 1)-th layer involves elements of length i + 1.)

5.1.4 The Equivalence Theorem (Theorem 4.3)

We now present the main result and sketch the proof strategy:

Central Setup: Let Λ ⊂ V be a regular W -orbit14. Fix v0 ∈ Λ to identify W ∼= Λ via
w 7→ w ·v0. Equip Λ with the partial order induced by the Bruhat order on W . Let V = V(Λ)
and G = G(Λ) be the associated category and moment graph.

Theorem 5.8 ([15, Theorem 4.3]). Under the central setup above, there exists an equiva-
lence of additive, graded categories:

F▽
∼= V

13A flabby sheaf on a topological space X is a sheaf F such that for every open subset U ⊂ X and every
inclusion of open subsets V ⊂ U , the restriction map F(U) → F(V ) is surjective.

14A regular W -orbit is an orbit of an element v under the group W such that the stabilizer StabW (v) is
trivial, i.e., StabW (v) = {e}.
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The proof constructs functors G : F▽ → V and F : V → F▽ and shows they are quasi-
inverse15.

5.2 Proof

5.2.1 Step 1. Construction of the Functor G : F▽ → V

This functor translates the bimodule structure into a sheaf on the moment graph, whose
global sections yield an object in V.

Local Data from Bimodules. Let M ∈ F▽, supported on Gr(A) for finite A ⊂W .

Definition 5.9. For each vertex x ∈W ∼= Λ, define the vertex module (stalk) by restricting
M to the diagonal Gr(x):

Mx := M |Gr(x).

Via the isomorphism pr2 : Gr(x)
∼=−→ V , Mx is identified with a graded right S-module

(isomorphic to a direct sum of copies of S{k} by Definition 5.7).

Definition 5.10. For each edge E in G connecting x and y = tx (t ∈ T ), the corresponding
hyperplanes intersect: Gr(x)∩Gr(y) ∼= V t. Define the edge module by restricting M to this
intersection:

Mx∩tx := M |Gr(x)∩Gr(y).

Since Gr(x) ∩Gr(y) is defined by αt = 0 (acting from the right via pr2), the right action of
αt on Mx∩tx is zero: Mx∩tx · αt = 0.

Gluing via Restrictions: Defining the Sheaf M.

There are natural restriction maps of right S-modules induced by the inclusions of varieties:

ρx,x∩tx : Mx →Mx∩tx and ρtx,x∩tx : M tx →Mx∩tx.

These data define a sheafM (denoted H in [15, Section 4, Proof of Thm 4.3]) on the moment
graph G = G(Λ ∼= W ):

• Mx := Mx (module at vertex x).

• ME := Mx∩tx (module at edge E : x↔ tx).

• The structure maps Mx →ME are the restriction maps ρx,x∩tx.

The condition Mx∩tx · αt = 0 matches the sheaf requirement l(E) · ME = 0, where l(E) =
k · αt is the label of edge E.

Local-to-Global Principle. A cornerstone result relates the global bimodule M to its
local pieces Mx.

Proposition 5.11 ([15, Proposition 4.4]). Let M ∈ F▽ supported on Gr(A). The canonical
map M ↪→

⊕
x∈A Mx identifies M with the subspace of tuples (mx)x∈A satisfying the

matching conditions on all intersections corresponding to edges in G:

M ∼=

{
(mx)x∈A ∈

⊕
x∈A

Mx

∣∣∣∣∣ ρx,x∩tx(mx) = ρtx,x∩tx(mtx) for all edges E : x↔ tx

}
.

Proof Idea). The statement is checked by localizing at height one graded prime ideals p ⊂ S.
Lemma 4.5 shows that Mp decomposes into pieces corresponding to S(x)p and, if p = (αt),
extensions involving S(x, tx)p. The proposition holds for these basic components, implying
it holds for M .

15Two categories C and D are quasi-inverse equivalences of categories if there exist functors F : C → D
and G : D → C such that F ◦G is naturally isomorphic to the identity functor on D and G ◦ F is naturally
isomorphic to the identity functor on C.
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This proposition means exactly that M is isomorphic to the global sections of the sheafM:

Γ(G,M) ∼= M.

Furthermore, the matching conditions zx ≡ ztx (mod αt) defining the structure algebra
Z (Definition 5.2) allow Z to act naturally on Γ(G,M) by pointwise multiplication: (z ·
(mx))y = zy ·my. This endows Γ(G,M) with a Z-module structure.

Landing in V: The Verma Flag Condition. We define G(M) := Γ(G,M), now viewed
as a Z-module. We must show G(M) ∈ V. This requires verifying the Verma flag condition.

Let Ω ⊂W ∼= Λ be upwardly closed with respect to. Bruhat order. Consider the quotient Z-
module G(M)Ω = im(G(M)→

⊕
x∈Ω G(M)xQ). Let MΩ be the restriction of the bimodule

M to Gr(Ω) =
⋃

x∈Ω Gr(x). A result from [26] implies MΩ ∈ F▽. Applying the functor G to
MΩ yields G(MΩ). The construction ensures that G(MΩ) ∼= G(M)Ω as Z-modules. Since
MΩ ∈ F▽, its underlying right S-module structure (obtained by forgetting the left action)
must be graded free. This follows because MΩ has a filtration whose quotients are sums of
S(x){k}, and S(x) is graded free as a right S-module (isomorphic to S). The right S-module
underlying G(MΩ) is precisely G(M)Ω. Therefore, G(M)Ω is a graded free S-module.

This holds for all upwardly closed Ω, so G(M) admits a Verma flag. The finite generation
and torsion-free conditions are also met. Thus, G(M) ∈ V. This completes the construction
G : F▽ → V.

(Note: Flabbiness is implicitly satisfied because the construction lands in V, whose objects
correspond to flabby sheaves under localization.)

5.2.2 Step 2. Construction of the Functor F : V → F▽

This functor takes an object N ∈ V and endows it with an S-bimodule structure using the
structure algebra Z, such that it becomes an object in F▽.

Starting with an Object N ∈ V. Let N be an object in V = V(Λ). By definition, N is a
graded Z-module admitting a Verma flag.

The Canonical Algebra Homomorphism σ⊗ τ . Since Λ ∼= W is regular, we define two
key maps into Z, following [15, Lemma 2.4]:

• σ : S → Z: This map encodes the left action. It is the algebra homomorphism
extending σ : V ∗ → Z defined by

σ(λ)w = w · λ (= λ ◦ w−1)

for λ ∈ V ∗, w ∈ W ∼= Λ. One verifies this definition satisfies the compatibility wλ ≡
twλ (mod αt) needed for σ(λ) to be in Z.

• τ : S → Z: This is the standard S-algebra structure map, τ(g) = g · 1Z = (g, g, . . . ),
encoding the right action.

These combine via the tensor product to give an algebra homomorphism:

σ ⊗ τ : S ⊗k S → Z, f ⊗k g 7→ σ(f)τ(g).

This map essentially connects the abstract coordinate rings of V × V (namely S ⊗k S) to
the structure algebra Z, which Fiebig notes can be viewed as the regular functions on the
union of diagonals

⋃
x∈W Gr(x) (at least for finite W ).

Defining the Bimodule F (N) via Restriction. Define F (N) to be the same underly-
ing graded k-vector space as N , but equipped with an S-bimodule structure obtained by
restriction of scalars along σ ⊗ τ :

(f ⊗k g) · n := (σ ⊗ τ)(f ⊗k g) · n = (σ(f)τ(g)) · n for n ∈ N, f, g ∈ S.

This defines the functor F : V → S-mod-S.

Compatibility Check and Landing in F▽. We must show F (N) ∈ F▽.
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• Support: Since N ∈ V ⊂ Z-modf , its Z-action factors through ZΩ for some finite
Ω ⊂W ∼= Λ. This implies F (N) is supported on Gr(Ω).

• Filtration Quotients: This is the crucial step. We need to show the filtration
F (N)≤i+1/F (N)≤i consists of sums of S(x){k}.

A key commutative diagram relates the action ix defining S(x) and the evaluation
map evx : Z → S:

S ⊗k S
σ⊗τ−−−→ Z

↓ ix ↓ evx
S id−→ S

This diagram means that the bimodule action defined by F , when restricted to the
x-component Nx (using the decomposition NQ =

⊕
Nx

Q), matches the action defin-
ing the standard bimodule S(x). Since N ∈ V, it has a Verma flag. This implies
its filtration quotients according to the Bruhat order, say N [x] = ker(N≥x → N>x),
are graded free S-modules. More usefully, linearizing the cofiltration [15, Section 2.5]
shows that the quotient N{l(·)=i+1} := N{l(·)≤i+1}/N{l(·)≤i} is isomorphic to a di-
rect sum

⊕
x:l(x)=i+1

⊕
j M(x){kx,j}, where M(x) ∈ V is the basic object supported

only at x (isomorphic to S as an S-module). The commutative diagram implies
F (M(x)) ∼= S(x) as S-bimodules. Since F is additive and respects grading shifts,
F (N{l(·)=i+1}) ∼=

⊕
x:l(x)=i+1

⊕
j S(x){kx,j}. The map F also preserves the filtration

indexed by length: F (N)≤i = F (N{l(·)≤i}). Therefore, the filtration quotient for F (N)
is F (N)≤i+1/F (N)≤i

∼= F (N{l(·)=i+1}), which has the required form
⊕

S(x){k} with
l(x) = i + 1.

This confirms F (N) satisfies the conditions of Definition 5.7, so F (N) ∈ F▽. This completes
the definition F : V → F▽.

5.2.3 Step 3. Verifying the Quasi–Inverse Relationship

Finally, we confirm that F and G invert each other up to natural isomorphism.

Checking G ◦ F ∼= idV . Start with N ∈ V. F (N) is N with the S-bimodule structure via
σ ⊗ τ . Applying G means constructing the sheaf M from F (N) and taking global sections:
G(F (N)) = Γ(G,M). The vertex module Mx is F (N)|Gr(x). Due to the commutative
diagram relating ix and evx, this restriction process effectively recovers the original Z-module
structure on the components. Proposition 4.4 ensures Γ(G,M) ∼= F (N) as bimodules. But
viewed as Z-modules, the action on Γ(G,M) is the original action on N . Thus G(F (N)) ∼=
N .

Checking F ◦ G ∼= idF▽ . Start with M ∈ F▽. G(M) = Γ(G,M) ∈ V, where M is the
sheaf built from M . By Proposition 4.4, G(M) ∼= M as underlying spaces, equipped with a
Z-action. Applying F restricts this Z-action back to an S-bimodule action via σ ⊗ τ . We
need to show this recovered bimodule action is the original action on M . This follows again
from the commutative diagram and how the Z-action relates to the original S ⊗k S action
on M . Essentially, the map σ ⊗ τ correctly encodes the relationship between the pointwise
Z-action on global sections and the original bimodule structure defined via fx and g. Thus
F (G(M)) ∼= M .

Compatibility of Structures (Filtrations, Grading, Exactness).

• Filtrations: The proof explicitly relies on the fact that F maps the Verma flag
filtration (by upwardly closed sets / Bruhat order) in V to the length filtration in F▽,
and G maps the length filtration back to the Verma flag structure. This compatibility
is essential.

• Grading: Both categories and functors are inherently graded. The constructions
preserve the grading degrees, including shifts M{k}.

• Exactness: While not explicitly detailed in the proof of Theorem 4.3 itself, both V
and F▽ carry natural exact structures (Quillen structure on V [15, Proposition 2.10],
structure from filtration on F▽). The functors F and G, being constructed from

47



restriction/induction-like processes preserving the filtration structures, are exact func-
tors between these categories (or can be shown to be). This is crucial for applications,
e.g., relating projective objects [15, Theorem 6.3].

These steps confirm that F and G are mutually quasi-inverse equivalences of categories, and
we are done.
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