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Abstract

From August 18 to August 22, Rutgers University ran a summer school on symplectic geometry that
aimed to provide graduate students and advanced undergraduate students tutorials in various advanced
topics in symplectic geometry and introductions to recent developments. This year we focus on, but are
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Floer theory in low-dimensional topology, contact geometry, and Hamiltonian dynamics etc.
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MINICOURSES

There were three minicourses, each three hours long:

1. Rational Symplectic Field Theory by Zhengyi Zhou (Chinese Academy of Sciences)

2. Atiyah-Floer Conjecture by Aliakbar Daemi (Washington University in St. Louis)

3. Equivariant Lagrangian Floer Theory and Application to Symplectic Khovanov Homology by Cheuk
Yu Mak (University of Sheffield)
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1 Cheuk Yu Mak: Equivariant Lagrangian Floer Theory and Ap-
plications to Symplectic Khovanov Homology

There were three lectures:

• Lecture 1: We will introduce equivariant Lagrangian Floer cohomology. There are many different
versions available in the literature. We will discuss the version given by Seidel and Smith. We will also
explain the localization theorem.

• Lecture 2: Khovanov homology is a link invariant. Seidel and Smith introduced the symplectic ana-
logue, called the symplectic Khovanov homology, which doesn’t involve resolutions of a link. We will
see what symplectic Khovanov homology is and understand why it is a link invariant. We will also see
an annular version which gives a link invariant of a solid torus.

• Lecture 3: We will explain how to apply equivariant Lagrangian Floer theory to get applications of
symplectic (annular) Khovanov homology.

1.1 Lecture 1

1.1.1 Background: Borel Equivariant Cohomology

Let G be a compact Lie group (e.g., Z{2Z, S1, Upnq) and let M be a finite G-CW complex. A theory of
G-equivariant cohomology, denoted H˚

Gp´q, is expected to satisfy several properties, such as:

• Functoriality: It should be a contravariant functor from the category of G-spaces to the category of
graded rings.

• Normalization for free actions: IfG acts freely onM , the theory should recover the ordinary cohomology
of the orbit space, i.e., H˚

GpMq – H˚pM{Gq.

When the action of G is not free, the quotient space M{G is often poorly behaved. The Borel construction
circumvents this issue by replacing M with a related space on which the action is free. This is accomplished
by introducing a contractible space EG on which G acts freely.

Theorem 1.1. For any Lie group G, such a universal space EG exists.

We denote the quotient space by BG :“ EG{G, the classifying space of G.

Example 1.2.

• For G “ Z{2Z, we may take EG “ S8, on which G acts antipodally. Then BG “ S8{pZ{2Zq “ RP8.

• For G “ S1, we may also take EG “ S8 (the unit sphere in C8) with the standard action of S1 by
scalar multiplication. Then BG “ S8{S1 “ CP8.

The diagonal action of G on M ˆ EG is always free. This leads to our definition of Borel cohomology.

Definition 1.3 (Borel Cohomology). The Borel equivariant cohomology of a G-space M is

H˚
GpMq :“ H˚

ˆ

M ˆ EG

G

˙

.

We denote the quotient space pM ˆ EGq{G by M ˆG EG.

This construction has several immediate properties:

• A G-equivariant map f : M Ñ N naturally induces a map M ˆG EG Ñ N ˆG EG, making the
construction functorial.

• If H Ď G is a subgroup, EG also serves as an EH, and the natural map M ˆH EG Ñ M ˆG EG
provides a restriction homomorphism.

• The definition is independent of the choice of model for EG, up to canonical isomorphism.
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• If G acts freely on M , the projection map M ˆGEG Ñ M{G is a homotopy equivalence, which induces
an isomorphism H˚pM{Gq – H˚

GpMq.

The projection M ˆG EG Ñ BG endows H˚
GpMq with the structure of an algebra over H˚pBGq.

Example 1.4. Let G “ Z{2Z and let the coefficient ring be F2. Then H˚pBG;F2q “ H˚pRP8;F2q – F2rqs,
where degpqq “ 1. The ring map F2rqs Ñ H˚

Z{2ZpMq governs the structure of the equivariant cohomology.

Multiplication by q has a geometric meaning. The shift map τ : pz0, z1, z2, . . . q ÞÑ p0, z0, z1, . . . q on S8

induces a self-map of RP8. The induced map on cohomology is precisely multiplication by q.

• If the Z{2Z-action on M is trivial, then M ˆG EG “ M ˆ BG. By the Künneth formula, H˚
GpMq –

H˚pMq b H˚pBGq. The action of H˚pBGq is free.

• If the Z{2Z-action on M is free, then H˚
GpMq “ H˚pM{Gq is finite-dimensional. This implies that

H˚
GpMq is a torsion F2rqs-module.

The map p : M ˆG EG Ñ BG is a fibration with fiber M .

M M ˆG EG

BG

This gives rise to a Serre spectral sequence with E2-pageH
˚pBG;H˚pMqq converging toH˚

GpMq. A powerful
consequence of this structure is the Localization Theorem.

Theorem 1.5 (Localization). For G “ Z{2Z with F2 coefficients, the inclusion of the fixed-point set MZ{2Z “

tx P M |gpxq “ x@g P Z{2u ãÑ M induces an isomorphism upon inverting q:

H˚
Z{2ZpM ;F2q bF2rqs F2rq, q´1s

–
ÝÑ H˚pMZ{2Z;F2q bF2 F2rq, q´1s.

Comparing the ranks of the modules in the theorem gives:

Corollary 1.6 (Smith Inequality).

rank H˚
Z{2ZpM ;F2q ě rank H˚pMZ{2Z;F2q.

Remark 1.7. The long exact sequence in equivariant homology for the pair pM,MZ{2Zq,

¨ ¨ ¨ Ñ HZ{2ZpM,MZ{2Zq Ñ HZ{2ZpMq Ñ HZ{2ZpMZ{2Zq Ñ . . .

is useful. Furthermore, HZ{2ZpM,MZ{2Zq is built from cells of the form pZ{2Z ˆ Dn,Z{2Z ˆ Sn´1q.

1.1.2 Towards Equivariant Floer Theory

We now sketch how the Borel construction can be applied in symplectic geometry to define an equivariant
version of Lagrangian Floer cohomology.

Let a symplectic action of G “ Z{2Z be given on a symplectic manifold pM,ωq, and consider two Lagrangian
submanifolds, L0 and L1, that are setwise fixed by G. The goal is to perform Floer theory on the homotopy
quotient M ˆGEG; however, this space is not a symplectic manifold. The strategy, therefore, is to use Morse
theory on the base space BG.

We choose a Morse-Smale pair ph, gq on BG, working within the standard filtration by finite-dimensional
skeleta BGn Ď BGn`1 Ď . . . , where BGn – RP2n`1. The gradient flow lines between critical points of h will
define the differential. For this to be well-defined on the filtration, we require that any flow line originating
in a skeleton BGn remains within BGn.

Next, we introduce a Hamiltonian H P C8pr0, 1s ˆ pM ˆG EGqq. For each z P BG, this defines a Hamil-
tonian on the fiber, Hz :“ H|π´1pzq. The construction requires a regularity condition at the critical
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points of the Morse function: for each z P critphq, the time-1 flow must satisfy the transversality condi-
tion ϕXHz

pL0,zq&L1,z. The Lagrangians in the fiber over z, denoted Li,z, are given by the intersection
Li X π´1pzq.

Let G act on a symplectic manifold pM,ωq. Let G “ Z{2. Consider two Lagrangians L0, L1 setwise fixed
by G. We want to do Floer theory on the fiber M ˆG EG, but this is not a symplectic manifold, so we
best we can do is Morse theory on the base BG. Pick ph, gq for BG. Then BGn Ď BGn`1 Ď ... where
BGn “ RP2n`1. We do Morse-Smale on BGn. Consider critphq as the gradient flowlines. If it starts at
x P BGn Ď BGN , then the flowline stays in BGn.

BG

ppM,L0, L1q, Hz, Jzq

z

In addition to the Hamiltonian, we consider a family of ω-compatible almost complex structures pJzqzPBG

parametrized by the base, where each Jz is defined on the fiber π´1pzq – M .

The equivariant Floer complex, CFeqpL0, L1q, is generated by pairs pz, xq, where z P critphq and x is a
generator of the fiberwise Floer complex CF pL0,z, L1,z, Hzq. A generator x is an intersection point in the
set ϕ1

XHz
pL0,zq X L1,z.

The differential counts pairs pη, uq contributing to the map from a generator pz0, x0q to pz1, x1q. Here,
η : R Ñ BG is a gradient trajectory of ph, gq from z0 to z1. The map u : R ˆ r0, 1s Ñ M ˆG EG is a
finite-energy solution to the parametrized Floer equation

pBsu ´ XHηpsq
puq b dtq0,1Jηpsq

“ 0.

This solution must satisfy the condition π˝ups, tq “ ηpsq, the Lagrangian boundary conditions ups, 0q P L0,ηpsq

and ups, 1q P L1,ηpsq, and the asymptotic limits limsÑ´8 ups, ¨q “ x0 and limsÑ`8 ups, ¨q “ x1.

x0

x1

s

ηpsq

Mηpsq

Example 1.8. We consider the case of BG “ RP8 with homogeneous coordinates rz0 : z1 : . . . s. Let the
Morse function h be defined as

hprz0 : z1 : . . . sq “
|z1|2 ` 2|z2|2 ` 3|z3|2 ` . . .

ř8

k“0 |zk|2
.

Let τ : RP8
Ñ RP8 be the shift map. Then the pullback of h along τ satisfies

τ˚h “
|z1|2 ` 2|z2|2 ` ¨ ¨ ¨ ` p|z0|2 ` |z1|2 ` . . . q

ř

|zk|2

“ h ` 1.

Let g be the standard round metric, and assume the pair ph, gq is chosen to be compatible with τ . For each
integer k ě 0, there exists a unique critical point zpkq P critphq whose index (or degree) is k. The resulting
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Morse complex has a trivial differential, indicated by

CMorsephq : . . .
0

ÝÑ F2xzpkqy
0

ÝÑ . . .

Since the differential is zero, any gradient trajectory η from a critical point zpkq to another point zplq must
be trivial unless l “ k. The full complex of generators for the equivariant theory, which are pairs pzpkq, xq,
thus admits a natural filtration:

à

kě0

pzpkq, xq Ě
à

kě1

pzpkq, xq.

We now make the simplifying assumption that the Floer data pHz, Jzq is constant for all critical points, i.e.,
Hzpkq “ Hzplq and Jzpkq “ Jzplq for all k, l. Then the equivariant Floer complex is given by

CFeqpL0, L1q “
à

zpkq

CF pL0, L1;Hzp0q q

“ CF pL0, L1;Hzp0q qrqs

where the equivariant differential has the form deq “ d0 ` qd1 ` q2d2 ` . . . .

Next time, we will see how this algebraic structure plays an important role in equivariant Lagrangian Floer
theory.

1.2 Lecture 2

We begin by recalling the foundational setup for equivariant Lagrangian Floer cohomology. Given a sym-
plectic manifold pM,ωq, a pair of Lagrangian submanifolds pL0, L1q, and a choice of auxiliary data ph, gq

consisting of a Morse function h and a Riemannian metric g, we can select a compatible pair pH,Jq, a
Hamiltonian and an almost complex structure, to define the Floer cochain complex CF˚pL0, L1q.

We now consider the setting where a finite group G acts on M by symplectomorphisms, and the Lagrangians
L0, L1 are G-invariant. For our purposes, we will specialize to the case G “ Z{2. The goal is to construct
a G-equivariant version of Floer cohomology. Let τ : RP8

Ñ RP8 be the map inducing multiplication by
the variable q on cohomology. The Z{2-equivariant Floer cochain complex, denoted CF˚

eqpL0, L1q, is a free
module over the polynomial ring F2rqs, given by

CF˚
eqpL0, L1q “ CF˚pL0, L1q bF2 F2rqs.

The equivariant differential deq is an F2rqs-module endomorphism of this complex, which can be expressed
as a power series in q:

deq “ d0 ` qd1 ` q2d2 ` . . . ,

where each di : CF˚pL0, L1q Ñ CF˚pL0, L1q is a map of degree +1. The operator d0 is the standard,
non-equivariant Floer differential.

1.2.1 The Localization Isomorphism

In classical equivariant topology, for a space X with a Z{2-action, there is a fundamental long exact sequence
relating the equivariant cohomology of X to that of its fixed-point set XZ{2:

¨ ¨ ¨ Ñ Hk
eqpX;XZ{2q Ñ Hk

eqpXq Ñ Hk
eqpXZ{2q Ñ Hk`1

eq pX;XZ{2q Ñ . . .

At the cochain level, this corresponds to a short exact sequence

0 Ñ C˚
eqpX;XZ{2q Ñ C˚

eqpXq Ñ C˚
eqpXZ{2q Ñ 0.

One might hope for a direct analogue in Floer theory. However, establishing such a relationship presents
two significant technical challenges:
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1. The differential deq does not preserve the decomposition of the chain complex into invariant and non-
invariant parts. A generator corresponding to a G-invariant intersection point can have a non-zero
differential to a generator that is not invariant, and vice-versa.

2. A pseudo-holomorphic curve contributing to deq that lies entirely within the fixed locus MZ{2 may be
a regular solution in the moduli space over the fixed locus, but fail to be regular in the full equivariant
moduli space M ˆG EG. This issue of transversality is a central difficulty.

The second problem was resolved by Seidel and Smith. Their work provides a powerful localization theorem
that connects the equivariant Floer homology of pM,L0, L1q to the ordinary Floer homology of the fixed-point
sets, under a specific geometric condition on the normal bundle.

Theorem 1.9 (Seidel-Smith Localization). Let pM,ωq be a symplectic manifold with a symplectic Z{2-
action, and let L0, L1 be Z{2-invariant Lagrangian submanifolds. Suppose the normal bundle of the fixed locus

pMZ{2, L
Z{2
0 , L

Z{2
1 q inside pM,L0, L1q is stably trivial. Then there is an isomorphism of localized modules:

HFeqpL0, L1;F2q bF2rqs F2rq, q´1s – HF pL
Z{2
0 , L

Z{2
1 ;F2q bF2 F2rq, q´1s.

The notion of a stably trivial normal bundle is very important and is defined as follows:

Definition 1.10. The normal bundle triple pNMZ{2, NL
Z{2
0 , NL

Z{2
1 q is stably trivial if there exists an

integer k ě 0 and an isomorphism of vector bundles over MZ{2,

ϕ : NMZ{2 ‘ Ck –
ÝÑ MZ{2 ˆ Cn,

(where the rank of NMZ{2 is n´k) such that ϕ restricts to isomorphisms on the Lagrangian normal bundles:

ϕpNL
Z{2
0 ‘ Rkq “ L

Z{2
0 ˆ Rn,

ϕpNL
Z{2
1 ‘ piRqkq “ L

Z{2
1 ˆ piRqn.

Remark 1.11. The utility of the stable triviality condition is that it allows one to modify the geometric
setup without changing the equivariant Floer cohomology. Given such a trivialization ϕ, one can consider
the stabilized manifold M ˆCk and Lagrangians Li ˆRk. The equivariant Floer complex remains unchanged,
CFeqpL0 ˆ Rk, L1 ˆ iRkq – CFeqpL0, L1q. One can then use ϕ to construct an equivariant Hamiltonian

isotopy to deform the geometry so that the fixed locus becomes pMZ{2 ˆt0u, L
Z{2
0 , L

Z{2
1 q and its normal bundle

is now genuinely trivial. This resolves the transversality issues mentioned earlier. After this modification,

there is a well-defined restriction map λ : CFeqpL0, L1q Ñ CF pL
Z{2
0 , L

Z{2
1 qrqs which induces the isomorphism

in the theorem upon localization.

1.2.2 Application: Symplectic Khovanov Homology

One application of this machinery is the construction of a symplectic version of Khovanov homology, a
powerful link invariant. We provide a basic outline of their construction.

The construction relies on three core ingredients:

1. An exact symplectic manifold pY, ωq.

2. A homomorphism from the braid group BrnpCq “ π1pConfnpCqq into the group of Hamiltonian sym-
pathomorphisms of Y , considered up to homotopy:

ρ : BrnpCq Ñ SymppY, ωq{Ham.

3. An exact Lagrangian submanifold L Ď pY, ωq.
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Given a braid β P BrnpCq, its image under ρ is a Hamiltonian isotopy class, which we denote by ϕβ . Applying
this to the Lagrangian L, we obtain a new Lagrangian ϕβpLq. The Floer homology group HF pL, ϕβpLqq

is then an invariant of the isotopy class. If this construction satisfies certain properties (invariance under
Markov moves), the resulting homology theory HF pL;β˝Lq depends only on the link obtained by the closure
of the braid β:

β

The specific manifold pY, ωq is constructed from a family of affine varieties. Let τ “ pτ1, . . . , τnq P ConfnpCq

be a configuration of n distinct points in the complex plane. To this, we associate the affine surface in C3

defined by
Aτ “ tpu, v, zq P C3 | uv “ pz ´ τ1q . . . pz ´ τnqu.

This construction can be globalized. Consider the space Cn parametrizing monic polynomials of degree n,
identified with Symn

pCq via the root map. Let A Ă C3 ˆ Cn be the total space defined by the equation
uv “ zn ´ p1z

n´1 ´ ¨ ¨ ¨ ´ pn. The projection onto the second factor gives a fibration A Ñ Cn. The base
space Cn – Symn

pCq has a singular locus corresponding to polynomials with repeated roots. The regular
part of the base is precisely ConfnpCq.

The symplectic structure on the fibers Aτ allows for symplectic parallel transport over paths in the regular
base ConfnpCq. This transport defines the monodromy representation

π1pConfnpCqq Ñ SymppAτ q{Ham,

which gives the required braid group action.

When a path pτ tqtPr0,1s in the base approaches the singular locus, for instance when τ11 “ τ12 as t Ñ 1, the
fiber Aτt degenerates. For example, we have:

t “ 0

t “ 1
τ4

τ4

τ3

τ3τ1 τ2

The local model for this degeneration is tuv “ pz ´ ϵqpz ` ϵqu Ñ tuv “ z2u as ϵ Ñ 0. This process creates a
a vanishing Lagrangian sphere S2 in the smooth fiber tuv “ z2 ´ ϵ2u that collapses to the singular point in
the degenerate fiber.

To construct a richer theory, Seidel and Smith use a more complicated (and more interesting) space. Let
Sym2n

0 pCq “ tpτ1, . . . , τ2nq P Sym2n
pCq |

ř

τi “ 0u. We consider the map from the space of traceless 2nˆ 2n
matrices to the space of their characteristic polynomial coefficients:

πchar : slp2nq Ñ C2n´1 – Sym2n
0 pCq

A ÞÑ coefficients of char poly of A.

9



The manifold Y is defined as follows:

Y “

$

’

’

’

’

’

&

’

’

’

’

’

%

¨

˚

˚

˚

˚

˚

˝

Y11 I 0 ¨ ¨ ¨ 0
Y21 0 I ¨ ¨ ¨ 0
...

...
. . .

. . .
...

Ypn´1q1 0 ¨ ¨ ¨ 0 I
Yn1 0 ¨ ¨ ¨ 0 0

˛

‹

‹

‹

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Y11 P slp2q, Yj1 P glp2q @j ą 1

,

/

/

/

/

/

.

/

/

/

/

/

-

Ď slp2nq.

There is a projection map π : Y Ñ C2n´1 – Sym2n
0 pCq induced by πchar. The regular locus of the base is

Conf2n0 pCq, the space of 2n distinct points in C summing to zero. The monodromy of this fibration provides
an action of π1pConf2n0 pCqq “ Br2npCq on the fibers Yτ for τ P Conf2n0 pCq.

Consider a point in the singular locus of the base, e.g., τ˚ “ p0, 0, τ3, . . . , τ2nq. This means the corresponding
matrices have a generalized eigenspace of dimension 2 for the eigenvalue 0. This can happen in two ways:

1. Type 1: The eigenspace is 2-dimensional.

2. Type 2: The eigenspace is 1-dimensional.

The Type 1 singularities correspond to matrices in the fiber Yτ˚
where the bottom-left block Yn1 is zero.

Such points form the singular locus of the fiber Yτ˚
. There is a map from this singular locus to the fiber

over a lower-dimensional configuration space:

SingpYτ˚
q Ñ Ypτ3,...,τ2nq.

Given a Lagrangian L Ď Ypτ3,...,τ2nq, which can be identified with a component of the singular locus
SingpYp0,0,τ3,...,τ2nqq, one can consider the set of points in a nearby smooth fiber Yp´ϵ,ϵ,τ3,...,τ2nq that con-

verge to L as ϵ Ñ 0. This procedure defines a new Lagrangian L̃ in the smooth fiber, which is topologically
an S2-bundle over L.

1.2.3 Lagrangians and Khovanov Homology

Lagrangian submanifolds in the fibers Yτ are constructed from diagrams. A non-crossing matching on 2n
points defines a Lagrangian submanifold in the fiber Ypτ1,...,τ2nq:

τ1 τ2

τ3 τ4

Proposition 1.12. The construction of Lagrangians from non-crossing matchings has the following proper-
ties:

• The resulting Lagrangian submanifold L is independent of the ordering of the matching paths used in
its construction.

• Composing diagrams corresponds to applying the braid group action. That is, if a diagram D1 is
obtained from D by the action of a braid β, then LD1 “ ϕβpLDq.

• The diagrams below represent isotopic Lagrangians:

“

“

“

“

10



To define the link invariant, we fix a reference Lagrangian L\ corresponding to the standard ”cap” diagram
on 2n points:

L\ :“
τ1 τn τn`1 τ2n

where β ÞÑ β ˆ id, i.e.

β ÞÑ β

Given a braid β P Brn, we embed it into Br2n via the map β ÞÑ βb idn, which acts on the first n strands and
leaves the last n strands fixed. The symplectic Khovanov homology of the closure of β, denoted Khpclpβqq,
is defined as the Lagrangian Floer homology:

Khpclpβqq :“ HF pL\, ϕβpL\qq.

For this definition to yield a well-defined link invariant, it must be invariant under the Markov moves, which
relate braids with equivalent closures.

Proposition 1.13. The constructed homology theory is invariant under the two Markov moves:

1. Khpclpβqq – Khpclpσβσ´1qq for any σ P Brn:

β

σ

σ´1

» β

σ

σ´1

β»

2. Khpclpβqq – Khpclpβσ˘1
n qq for β P Brn, where the closure is taken in Brn`1:

11



»

β

σn

β

Proof.

• Let ϕσ be the Hamiltonian diffeomorphism corresponding to σ.

Khpclpσβσ´1qq “ HF pL\, ϕσβσ´1pL\qq

“ HF pL\, ϕσϕβϕσ´1pL\qq

– HF pϕ´1
σ pL\q, ϕβϕσ´1pL\qq

“ HF pϕσ´1pL\q, ϕβpϕσ´1pL\qqq.

Because the diagram for σ´1 composed with the cap diagram is isotopic to the cap diagram itself (i.e.,
ϕσ´1pL\q – L\), we can substitute this into the expression:

. . . – HF pL\, ϕβpL\qq

“ Khpclpβqq.

• We do a very brief sketch since we don’t have enough time. We need to analyze the degeneration
corresponding to three colliding points, i.e., the fiber over p0, 0, 0, τ4, . . . , τ2nq. The singular locus of
this fiber is isomorphic to Yp0,τ4,...,τ2nq, which brings the dimension into the story.

1.3 Lecture 3

1.3.1 Hilbert Schemes

Let τ “ pτ1, . . . , τ2nq P Conf2npCq be a configuration of 2n distinct points in the complex plane. We consider
the variety Yτ defined by matrices of a particular block form.

Definition 1.14. Let Yτ be the subvariety of a product of matrix spaces defined as:

Yτ “

$

’

’

’

’

’

&

’

’

’

’

’

%

A “

¨

˚

˚

˚

˚

˚

˝

Y11 I 0 ¨ ¨ ¨ 0
Y21 0 I ¨ ¨ ¨ 0
...

...
. . .

. . .
...

Ypn´1q1 0 ¨ ¨ ¨ 0 I
Yn1 0 ¨ ¨ ¨ 0 0

˛

‹

‹

‹

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Y11 P slp2q, Yj1 P glp2q @j ą 1,detpxI ´ Aq “

n
ź

i“1

px ´ τiq

,

/

/

/

/

/

.

/

/

/

/

/

-

We seek a more geometric description of Yτ . We can analyze the determinant detpxI ´ Aq in terms of

the block entries Yj1. Let Yj “

ˆ

aj bj
cj dj

˙

. A block determinant expansion reveals that the characteristic

12



polynomial detpxI ´ Aq takes the form of a determinant of a 2 ˆ 2 matrix whose entries are polynomials in
x.

detpxI ´ Aq “ det
`

pxIqn ´ Y11pxIqn´1 ` Y21pxIqn´2 ´ . . .
˘

“ det

ˆ

xn ´ a1x
n´1 ` . . . ´b1x

n´1 ` b2x
n´2 ´ . . .

´c1x
n´1 ` . . . xn ´ d1x

n´1 ` d2x
n´2 ´ . . .

˙

“ ApxqDpxq ´ BpxqCpxq

Here, Apxq, Bpxq, Cpxq, Dpxq are polynomials whose coefficients are determined by the entries of the matrices

Yj1. The condition detpxI ´ Aq “ Pτ pxq “
ś2n

i“1px ´ τiq gives us a useful algebraic identity:

ApxqDpxq ´ BpxqCpxq “ Pτ pxq ùñ ApxqDpxq “ BpxqCpxq ` Pτ pxq.

This algebraic relation suggests a link to a geometric object. We can consider the variety Sτ “ Spec
´

Crb,c,xs

pbc`Pτ pxqq

¯

,

which is defined by the equation bc ` Pτ pxq “ 0 in C3
b,c,x. The algebraic identity shows that for any A P Yτ ,

the roots z1, . . . , zn of the polynomial Apxq are related to points in Sτ . Specifically, if Apziq “ 0, then the
point pBpziq, Cpziq, ziq lies on the variety Sτ . This defines a map Yτ Ñ Symn

pSτ q by sending a matrix A to
the set of points tpBpziq, Cpziq, ziquni“1, where the zi are the roots of Apxq.

Conversely, given n distinct points pbi, ci, ziq P Sτ for i “ 1, . . . , n, we can define a matrix A in Yτ . First,
we construct the polynomial Apxq “

śn
i“1px ´ ziq. Using polynomial interpolation, there exists a unique

polynomial Bpxq of degree at most n ´ 1 such that Bpziq “ bi for all i. Similarly, there exists a unique
polynomial Cpxq of degree at most n ´ 1 such that Cpziq “ ci for all i. The identity bici ` Pτ pziq “ 0 for
each i implies that the polynomial BpxqCpxq ` Pτ pxq vanishes at each zi. This means Apxq must divide
BpxqCpxq ` Pτ pxq, which then uniquely determines a polynomial Dpxq such that ApxqDpxq ´ BpxqCpxq “

Pτ pxq.

To make this correspondence more precise, we need to work using the language of schemes. Let R be the
coordinate ring of Yτ . The roots of the polynomial Apxq over Yτ correspond to the scheme SpecpRrxs{Apxqq,
which is a subscheme of Yτ ˆ C “ SpecpRrxsq. This leads to the following geometric picture:

Z Yτ ˆ Sτ

Yτ Q A

Ď

Here, Z is a closed subscheme of Yτ ˆ Sτ . For a given A P Yτ , the fiber of Z over A is a subscheme of Sτ

whose ideal is given by IA “ tQpb, c, zq | Apxq divides QpBpxq, Cpxq, xqu. This ideal defines a subscheme of
Sτ of length n.

The collection of all such length-n subschemes is called the Hilbert scheme.

Definition 1.15. The Hilbert scheme HilbnpSτ q is the moduli space of all length-n subschemes of Sτ .

Theorem 1.16. The Hilbert scheme HilbnpSτ q is a smooth algebraic variety.

This theorem allows us to define a map from the variety Yτ to the Hilbert scheme.

Definition 1.17. Let j : Yτ Ñ HilbnpSτ q be the map defined by A ÞÑ IA, where IA is the ideal of the
subscheme corresponding to the roots of Apxq.

This map provides an important connection between the algebraic variety Yτ and the geometric object
HilbnpSτ q.

Theorem 1.18 (Manolescu).

1. The map j : Yτ Ñ HilbnpSτ q is an open embedding.

13



2. The complement of the image of j, denoted by Dτ , is the closure of the set of collections of points
tpbi, ci, ziquni“1 P ConfnpSτ q such that zi “ zj for some i ‰ j. This set is a subvariety of HilbnpSτ q.

3. For a given non-crossing matching diagram D, there is a Lagrangian submanifold LSeidel-Smith
D Ď Yτ .

The Hilbert scheme also comes with a natural map to Symn
pSτ q, which is a subset of ConfnpSτ q. Given

a Lagrangian sphere Lpi
Ď Sτ , we can define a Lagrangian submanifold LM

D “ SympLpq “ πpLp1
ˆ¨ ¨ ¨ˆ

Lpn
q Ď Symn

pSτ q. We have the following chain of inclusions: πpLp1
ˆ¨ ¨ ¨ˆLpn

q Ď ConfnpSτ qzDτ Ď Yτ .
The key result is that LM

D is Hamiltonian isotopic to LSeidel-Smith
D .

4. The rank of the Khovanov homology of a link K can be computed using the Floer homology of the
corresponding Lagrangian submanifolds. Specifically, for two diagrams D0 and D1 of a link, the Floer
homology group HFpLD0

, LD1
q computes the Khovanov homology KhpKq. The diagrams below illustrate

two non-crossing matchings, D0 and D1.

D0 D1

The diagrams in the image depict two non-crossing matching diagrams, D0 and D1, which can be used to
construct the corresponding Lagrangian submanifolds. The Khovanov homology of the link is then computed
by the Floer homology of these two Lagrangian submanifolds. The next image shows the associated link
diagram.

This image shows a standard link diagram. The previous image of the matching diagrams, D0 and D1, are
used as building blocks to define the Lagrangian submanifolds whose intersection Floer homology gives the
Khovanov homology of this link.

Corollary 1.19. Consider the diagrams for D0 and D1 from the theorem statement.

D0 “

D1 “

The corresponding Lagrangian submanifolds LD0
and LD1

are not Hamiltonian isotopic in the space ConfnpSτ qzDτ .
However, by the Seidel-Smith lemma and the Manolescu theorem, they are Hamiltonian isotopic in the larger
ambient space Yτ .

1.3.2 Symmetry and Localization

We can use geometric symmetries to learn more about these invariants. Let’s consider a 2-periodic link K
and its quotient link K. This symmetry can be lifted to the geometric spaces we have constructed.

Consider a map ι : Sτ Ñ Sτ defined by pb, c, zq ÞÑ pb, c,´zq. This involution is well-defined if the polynomial
Pτ pzq satisfies Pτ pzq “ Pτ p´zq. This condition holds if the set of points τ is symmetric with respect to the
origin, i.e., τ “ t˘τ1, . . . ,˘τ2nu P Conf4npCq. The involution ι on Sτ induces an involution on the Hilbert
scheme HilbnpSτ q, and furthermore, it lifts to an involution on Yτ .

14



We can describe this induced involution on Yτ more explicitly. If A P Yτ is the matrix corresponding to
the set of roots tziu, the image ιpAq is the matrix corresponding to the roots t´ziu. This means that if

Apxq “
ś2n

i“1px´ziq, then ιpAq corresponds to the polynomial Ãpxq “
ś2n

i“1px`ziq “ Ap´xq. Similarly, the

polynomial Bpxq associated with A satisfies Bpziq “ bi. The polynomial B̃pxq associated with ιpAq satisfies
B̃p´ziq “ bi. This implies that Bpxq “ B̃p´xq. This involution acts on the matrices in Yτ as a sign change
on the blocks, as illustrated below.

¨

˚

˚

˚

˚

˝

Y11 I
...

. . .
... I

Yn1 0

˛

‹

‹

‹

‹

‚

ι
ÞÝÑ

¨

˚

˚

˚

˚

˚

˚

˚

˝

´Y11 I

Y21
. . .

´Y31
. . .

... I
Yn1

˛

‹

‹

‹

‹

‹

‹

‹

‚

The fixed set of this involution is also of interest. A matrix A is fixed by ι if A “ ιpAq, which means that
the entries must satisfy certain sign relations. This leads to a simplified block matrix structure for the fixed
points: the fixed set is defined by:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 I

Y21
. . .

0
. . .

Y41
. . .

... I
Y2n 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

This fixed set is isomorphic to a new variety of the same type, but with half the number of parameters: the
fixed set is isomorphic to:

¨

˚

˚

˚

˚

˝

Y21 I

Y41
. . .

... I
Y2n 1

˛

‹

‹

‹

‹

‚

P Yτ2

where τ2 “ tτ21 , . . . , τ
2
2nu.

This structure allows us to apply a localization principle in Floer theory. If we have two Lagrangian sub-
manifolds L and K that are fixed by the Z{2 involution, their Floer homology can be related to the Floer
homology of their fixed point sets.

Proposition 1.20 (Localization). If Lagrangian submanifolds L and K are fixed by a Z{2 involution, their
Floer homology satisfies:

rankpKhpKqq “ rankpHFpL,Kqq ě rankpHFpLZ{2,KZ{2qq “ rankpKhpKqq

where LZ{2 and KZ{2 denote the fixed point sets of L and K respectively.
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2 Zhengyi Zhou: Rational Symplectic Field Theory

There were three lectures:

• Lecture 1: We will explain the algebraic structures arising from rational symplectic field theory (RSFT)
and use them to define hierarchy invariants for contact manifolds via RSFT.

• Lecture 2: We will explain properties and applications of the hierarchy invariants, as well as examples.

• Lecture 3: We will explain the functoriality of RSFT and hierarchy invariants under strong symplectic
cobordisms, and their applications. Time permitting, we will explain, in all known examples, the non-
existence of strong/weak fillings of contact manifolds of dimension at least 5 is obtained via RSFT.

2.1 Lecture 1

2.1.1 L8 Algebras

Let V be a Z{2-graded vector space over Q. We denote by SV the symmetric algebra on V ,

SV “
à

kě0

SkV,

where SkV is the k-th symmetric power of V . We also define SV to omit the degree-zero component:

SV “
à

ką0

SkV.

Definition 2.1. An L8-algebra structure on V is a sequence of linear maps tlkukě1, called the higher
brackets, where each map lk : SkV Ñ V has degree 1. These maps collectively induce a degree-1 linear
operator l̂ : SV Ñ SV defined on an element v1 b ¨ ¨ ¨ b vn P SnV by

l̂pv1, . . . , vnq “

n
ÿ

k“1

ÿ

σPShpk,n´kq

ϵpσqlkpvσp1q, . . . , vσpkqq b vσpk`1q b ¨ ¨ ¨ b vσpnq,

where Shpk, n ´ kq is the set of pk, n ´ kq-shuffles (permutations σ of t1, . . . , nu such that σp1q ă ¨ ¨ ¨ ă σpkq

and σpk ` 1q ă ¨ ¨ ¨ ă σpnq), and ϵpσq is the Koszul sign. The defining condition for an L8-algebra is that
this induced map squares to zero:

l̂2 “ 0.

There also exists a pictorial description of l̂ that is often easier to work with:

v1 v2 v3 v4

l3
id

The action of l̂ can be conceptualized as a procedure: an element is lifted from SV to a space of representatives
TV , the operations tlku are applied via a gluing map Σ to a space RV , and the result is projected back to
SV via π. This is summarized by the diagram:

l̂ : SV TV

SV RV

find a representative

Σ glue for tl1,...,lku

π
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Using this, we can reformulate this equation diagramatically:

v1 v2 v3 v4

l3
id

v5

id

equals 0.

Now, we can define a L8-morphism.

Definition 2.2. An L8-morphism from pV, tl1kuq to pW, tl2kuq is a collection of maps tϕk : SkV Ñ W ukě1

that induces an operator ϕ̂ satisfying the intertwining relation ϕ̂ ˝ l̂1 “ l̂2 ˝ ϕ̂.

Diagramaticaly, this condition can be drawn as:

ϕ3 ϕ2ϕ̂ “ Σ p q

Exercise 2.3. Define the composition of L8-morphisms and show that it is also an L8-morphism.

2.1.2 BL8 and IBL8-algebras

For the intended applications, we require a more general structure that allows for operations with multiple
outputs.

Definition 2.4. A BL8-algebra on V is a collection of maps tpk,l : SkV Ñ SlV ukě1,lě0. Let EV “ SpSV q.
These maps assemble into an operator p̂ : EV Ñ EV that is required to satisfy p̂2 “ 0.

Diagramatically:

id

The operations tpk,lu of the BL8-algebra can be constructed through a map Σ. This map acts on a space of
representatives, denoted TTV , for elements in EV . The map Σ “glues” the basic operations tpk,lu acyclically,
and its output is then mapped back to EV .

Proposition 2.5. If pk,0 “ 0 for k “ 1, 2, then the following hold:

1. p1,1 is a differential on V .

2. p2,1 induces a Lie bracket on the homology H˚pV, p1,1q.

3. p1,2 induces a co-Lie algebra structure on H˚pV q.
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4. The composition p1,2 ˝ p2,1 vanishes on homology.

Proposition 2.6. If pk,l “ 0 for all k ą l, the BL8-structure reduces to an L8-structure.

Exercise 2.7. Let p̂1 “ p̂|SV : SV Ñ SV . Show that pp̂1q2 “ 0, implying pSV, p̂1q is a differential graded
algebra. Show that this induces an L8-structure on SV with brackets l1 “ p̂1.

We have a trivial BL8 structure on t0u “ V , which is an initial object:

0
φ
Ñ V, ϕk,l “ 0.

What about the converse?

Definition 2.8. A BL8 augmentation is a BL8 morphism

pV, T q
E

ÝÑ t0u,

i.e., a collection of maps
Ek : SkV Ñ S0t0u “ Q

such that
Ê ˝ p̂ “ 0.

Diagramatically, this is equivalent to:

Σ p

E2 E1

An augmentation may not exist for a given BL8-algebra. To study the obstruction to its existence, we
introduce an invariant derived from the homology of a sequence of truncated complexes.

Definition 2.9. For a BL8-algebra pV, p̂q, we define the following:

• For each k ě 0, the truncated space is EkV “
Àk

i“0 S
ipSV q. The operator p̂ restricts to a differential

p̂|EkV on this space, making pEkV, p̂|EkV q a chain complex.

• For the trivial algebra t0u, the corresponding complex is Ekt0u “
Àk

i“0 Q, whose homology is H˚pEkt0uq –
Àk

i“0 Q.

• The unique algebra morphism i : t0u Ñ V induces a chain map i˚ : Ekt0u Ñ EkV . The unit element
1V P H˚pEkV, p̂q is the image of the generator 1 P H0pEkt0uq under this map, i.e., 1V “ i˚p1q.

Proposition 2.10. If a BL8-algebra V has an augmentation, then its unit 1V is non-zero in H˚pEkV, p̂q

for all k ě 0.

Proof. An augmentation E : V Ñ t0u induces a chain map on the truncated complexes. The composition
of the morphisms induced by i : t0u Ñ V and E : V Ñ t0u is the identity on Ekt0u. Consequently, the
composition of the induced maps on homology, E˚ ˝ i˚, is the identity on H˚pEkt0uq. This is summarized
by the diagram:
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t0u V t0u

Ekt0u EV Ekt0u

1t0u 1V 1t0u

E

id

Since 1 P H˚pEkt0uq is non-zero, its image under i˚, the element 1V , must also be non-zero for the compo-
sition to be the identity.

This proposition motivates the following definition, which quantifies the failure of 1V to persist.

Definition 2.11. The torsion of a BL8-algebra pV, p̂q is

T pV q “ inftk P N Y t0u | 1V “ 0 in H˚pEk`1V, p̂qu P N Y t8u.

(Here, the infimum of the empty set is taken to be 8.)

Exercise 2.12. Show that if there exists a BL8-morphism ϕ : V Ñ W , then T pV q ě T pW q.

Finally, we introduce a version of this algebra that includes a genus count.

Definition 2.13. An IBL8-algebra is given by a collection of maps pk,l,g : SkV Ñ SlV for k ě 1, l ě

0, g ě 0.

These maps determine an operator on SpSV qrℏs.

Pictorially, it’s almost the same as previously, but now we count genus:

p2,2,l

2.1.3 Curves in SFT

Now, we aim to answer the question: what is symplectic field theory?

Definition 2.14. A p2n ´ 1q-dimensional manifold Y equipped with a hyperplane distribution ξ Ă TY is a
contact manifold if there exists a 1-form α P Ω1pY q, called the contact form, such that ξ “ kerα and the
volume form condition α ^ pdαqn´1 ‰ 0 is satisfied everywhere. The choice of α is called a co-orientation.

The contact form determines a canonical vector field on the manifold.

Definition 2.15. The Reeb vector field R on a contact manifold pY, αq is the unique vector field defined
by the conditions αpRq “ 1 and ιRdα “ 0, where ιR denotes the interior product with respect to R.
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The morphisms between contact manifolds are given by Liouville cobordisms.

Definition 2.16. A Liouville cobordism from a contact manifold pY´, α´q to pY`, α`q is a compact
manifold with boundary W equipped with a 1-form λ such that:

• The boundary is oriented as BW “ Y` \ p´Y´q.

• The 2-form ω “ dλ is a symplectic form on W .

• The Liouville vector field X, defined by ιXω “ λ, points outwards along Y` and inwards along Y´.

• The restriction of λ to the boundaries recovers the contact distributions: kerλ|Y˘
“ ξ˘.

Example 2.17. Let M be a Stein manifold with boundary Y “ BM . The manifold Y inherits a natural
contact structure where the contact distribution is given by ξp “ TpY XJpTpY q for p P Y . The Stein manifold
M itself serves as a Liouville cobordism from Y to the empty set, known as a Stein filling.

Y´

Y`

˚
x

Remark 2.18. Liouville cobordisms can be composed up to a natural equivalence known as Liouville homo-
topy. This observation establishes the symplectic cobordism category, whose objects are contact manifolds
and whose morphisms are Liouville homotopy classes of cobordisms.

Definition 2.19. Symplectic Field Theory (SFT) is a contravariant functor from the symplectic cobor-
dism category to a suitable algebraic category C (e.g., the category of IBL8-algebras).

This functor is constructed, following the work of Eliashberg, Givental, and Hofer, by defining invariants
from counts of pseudo-holomorphic curves.

Later, for technical reasons, we will later replace the symplectic cobordism category with the strong sym-
plectic cobordism category, where morphisms are required to possess a Liouville structure near the
boundary.

2.1.4 Analysis of Curves

To study pseudo-holomorphic curves, we must equip the symplectization Ŷ “ pRsˆY, dpesαqq with a suitable
almost complex structure J that is compatible with both the symplectic form and the underlying contact
geometry. We choose a class of almost complex structures that satisfy the following three conditions:

1. Relation to the Reeb field: J maps the translation vector field Bs to the Reeb vector field R.

JpBsq “ R

2. Compatibility with the contact structure: J preserves the contact distribution ξ and is compatible
with the 2-form dα on it. This means:

• Jpξpq “ ξp for all points p P Y .

• The bilinear form dαp¨, J |ξ¨q defines a Riemannian metric on the vector bundle ξ.

3. Invariance: J is invariant under translations in the Rs coordinate, i.e. it is s-invariant.
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A J-holomorphic curve u : Σ Ñ Ŷ from a closed Riemann surface Σ must be constant, as
ş

Σ
u˚pdpesαqq “ 0.

To obtain a non-trivial theory, we must therefore consider curves from Riemann surfaces with punctures.

Example 2.20. A periodic Reeb orbit γ of period T gives rise to a J-holomorphic cylinder u : Rs ˆS1
t Ñ Ŷ

via the map ps, tq ÞÑ pTs, γpTtqq. The energy of this cylinder is infinite:

Epuq “

ż

RˆS1

u˚pdpesαqq “ 8.

We must restrict our attention to curves with finite energy.

Definition 2.21. The Hofer energy of a curve u “ pa, vq : Σ Ñ R ˆ Y is defined as

Epuq “

ż

Σ

v˚pdαq ` sup
ϕ

ż

Σ

u˚pdpϕpsqαqq,

where the supremum is taken over all smooth, non-decreasing functions ϕ : R Ñ r0, 1s.

Theorem 2.22 (Hofer-Wysocki-Zehnder). Let α be a non-degenerate contact form on Y . If a J-holomorphic
curve u : Σ Ñ Ŷ has finite Hofer energy, then at each puncture of the Riemann surface Σ, the map u
converges exponentially to a trivial cylinder over a periodic Reeb orbit.

More precisely, in cylindrical coordinates ps, tq near a puncture, there exists a periodic Reeb orbit γ of period
T , a constant c P R, and positive constants C and δ such that the following estimate holds:

}ups, tq ´ pTs ` c, γpTtqq} ď Ce´δ|s| as s Ñ ˘8.

The norm is measured with respect to a product metric on the symplectization R ˆ Y .

The Hofer-Wysocki-Zehnder theorem allows us to draw pictures such as:

In particular, it guarantees that the cylindrical ends corresponding to punctures are asymptotically modeled
by trivial cylinders over periodic Reeb orbits.

2.2 Lecture 2

We begin by explaining many analogies between SFT and the more familiar framework of Morse theory.

In Morse theory, the central object is a smooth function f : M Ñ R on a finite-dimensional manifold M .
The dynamics are governed by its critical points and the gradient flow lines connecting them.

In SFT, the setting is infinite-dimensional. Let pY, αq be a contact manifold. The analogue of the manifold
is the free loop space C8pS1, Y q, and the Morse function is replaced by the symplectic action functional
A:

A : C8pS1, Y q Ñ R

γ ÞÑ

ż

S1

γ˚α.
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The critical points of this functional correspond to closed orbits of the Reeb vector field R (where R is
defined by iRdα “ 0 and iRα “ 1). Specifically, a loop γptq is a critical point of A if and only if its velocity
vector γ1ptq is everywhere proportional to the Reeb vector field Rpγptqq. These are precisely the constant
loops, and the positive and negative parametrizations of closed Reeb orbits.

The analogy extends further. In Morse theory, one chooses a Riemannian metric g to define the gradient
vector field ´∇gf . In SFT, one chooses a compatible almost complex structure J on the contact structure
ξ “ kerα. This choice induces an L2-metric on the loop space, and the corresponding L2-gradient of the
action functional A at a loop γ is given by

∇Apγq “ ´Jpπξγ
1q,

where πξ is the projection onto the contact hyperplanes along the Reeb direction. The ”flow lines” of SFT,
which are solutions to a perturbed Cauchy-Riemann equation, can be viewed as the gradient flow lines for
this structure.

Let us now examine the local picture around a critical point, which we take to be a closed Reeb orbit γptq
with period T , so that γ1ptq “ TRpγptqq. The Hessian of A at γ, denoted HessApγq, is a symmetric operator
acting on the tangent space TγpC8pS1, Y qq “ Γpγ˚ξq. It is given by

HessApγqη “ ´Jπξ∇tη ´ Jπξ∇ηpTRq,

where ∇ is the Levi-Civita connection associated with a compatible metric. This operator is often referred
to as the asymptotic operator Aγ .

Exercise 2.23. Show that the asymptotic operator Aγ is a self-adjoint operator with respect to the L2-metric.
A Reeb orbit γ is called non-degenerate if kerAγ “ t0u.

Upon choosing a symplectic trivialization of the contact bundle γ˚ξ – S1 ˆCn´1, the operator Aγ takes the
more familiar form

Aγη “ ´J0
dη

dt
´ Sptqη,

where J0 is the standard complex structure on Cn´1 and Sptq is a path of symmetric matrices in spp2n´2,Rq.
The spectrum of this operator determines the local behavior of the SFT ”gradient flow.” The linearized flow of
the Reeb vector field along γ is the path of symplectic matrices Φptq P Spp2n´2q solving Φ1ptq “ J0SptqΦptq.

The gradient flow lines of Morse theory, which solve the equation γ1psq `∇fpγpsqq “ 0, have an analogue in
Symplectic Field Theory (SFT). These are pseudo-holomorphic curves in the symplectization Ŷ “ Y ˆR.
For a map from a Riemann surface pΣ, jq to the symplectization, written as ũ “ pu, aq : Σ Ñ Y ˆ R, the
condition to be pseudo-holomorphic is equivalent to the system:

#

pπξduq0,1 “ 0

da “ u˚α ˝ j

where a : Σ Ñ R is the coordinate in the R factor and πξ is the projection onto the contact structure
ξ “ kerα. A crucial technical condition is that these curves have finite energy,

ş

Σ
u˚dα ă 8, which controls

the symplectic area of the curve’s projection into ξ. For example, Hofer rules out the map ez : Cˆ Ñ Cˆ.

The asymptotic behavior of these curves near punctures mirrors the exponential convergence of gradient flow
lines in Morse theory. In Morse theory, a flow line γpsq approaches a critical point p as |γpsq ´ p| ă Ce´λ|s|.
Near the critical point, the flow line can be approximated by γpsq « p ` eλsν, where λ is an eigenvalue
of ´Hessf |p and ν is a corresponding eigenvector. In SFT, a finite energy curve ups, tq on a cylinder
ps, tq P p´8, 0s ˆ S1 approaches the cylinder over a Reeb orbit γptq. The convergence is of the form
ups, tq « γptq ` eλsνptq, where λ ą 0 is a positive eigenvalue of the asymptotic operator Aγ and νptq is the
corresponding eigenfunction.

We now construct the central objects of study in Symplectic Field Theory: the moduli spaces of pseudo-
holomorphic curves. The construction requires several pieces of data:
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• Domain: A closed, connected Riemann surface pΣ, jq of a fixed genus g.

• Punctures: Disjoint, finite, and ordered sets of points Σ` Ă Σ (positive punctures) and Σ´ Ă Σ
(negative punctures).

• Asymptotic Data: For each set of punctures, we fix a corresponding ordered multiset of closed Reeb
orbits, denoted rΓ`s and rΓ´s, such that |Γ˘| “ |Σ˘|. We also fix a base point on each of these Reeb
orbits.

• Asymptotic Markers: At each puncture p P Σ` Y Σ´, we fix an asymptotic marker, which is a
non-zero vector vp P TpΣ. These markers are used to resolve rotational symmetries in the convergence
of a curve to a Reeb orbit.

With this data, we can define the moduli space.

Definition 2.24. The moduli space of pseudo-holomorphic curves, denoted MY pg,Γ`,Γ´q, is the
set of equivalence classes of pairs pj, uq, where j is a complex structure on a genus-g surface Σ, and u :
ΣzpΣ` Y Σ´q Ñ Ŷ is a map to the symplectization Ŷ “ Y ˆ R, satisfying the following conditions:

1. u is pseudo-holomorphic (i.e., B̄Jpuq “ 0) and has finite energy.

2. At each positive puncture pi P Σ`, the map u is asymptotic to the corresponding Reeb orbit γi P Γ`.

3. At each negative puncture pj P Σ´, the map u is asymptotic to the corresponding Reeb orbit γj P Γ´.

4. The convergence at each puncture respects the chosen asymptotic marker and base point.

The equivalence relation is given by biholomorphic reparametrizations of the domain Σ that preserve the
ordering of the punctures, modulo the natural translation action of R on the target Ŷ .

The moduli space MY pg,Γ`,Γ´q can be described analytically as the zero set of a Fredholm section.

Proposition 2.25. The space of maps (before quotienting by reparametrizations and the R-action) can be
framed as the zero set of a Fredholm section s of a Banach bundle E Ñ B.

E

B

s

The virtual dimension of the moduli space can be computed:

Proposition 2.26. The virtual dimension of MY pg,Γ`,Γ´q is given by:

virdim MY pg,Γ`,Γ´q “ Indpsq ´ dimpAutpΣ,Σ˘qq ´ 1

“ pn ´ 3qp2 ´ 2g ´ |Γ`| ´ |Γ´|q `
ÿ

γPΓ`

CZτ pγq ´
ÿ

γPΓ´

CZτ pγq

` 2xc1pξ, τq, Ay ´ 1,

where n “ pdimY ` 1q{2, CZτ pγq is the Conley-Zehnder index of an orbit γ, and the term xc1pξ, τq, Ay

represents the evaluation of the first Chern class of the contact bundle ξ (relative to the trivialization τ) on
the homology class represented by the curve.

In a SFT, we need compactness. Unlike in simpler Floer theories, a sequence of pseudo-holomorphic curves
can degenerate by ”breaking” into a multi-level object called a holomorphic building. The following example
illustrates this phenomenon.

Example 2.27. Consider the one-parameter family of maps uδ : Cˆ Ñ C2zt0u, given by

uδpzq “ pz3 ` z2 ` δz, z3 ` 2z2 ` 3δzq.
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Here, the domain Cˆ – RˆS1 represents a cylindrical domain, and the target C2zt0u is the symplectization
of the standard contact sphere pS3, αstdq. We analyze the limiting behavior of this family as δ Ñ 0 in the
C8

loc topology.

If we take the limit directly as δ Ñ 0, the sequence uδ converges to

u0pzq “ lim
δÑ0

uδpzq “ pz3 ` z2, z3 ` 2z2q.

This limiting curve connects a Reeb orbit of asymptotic period 3 (at the positive end, z Ñ 8) to a Reeb orbit
of period 2 (at the negative end, z Ñ 0).

To reveal more of the structure, we can perform a rescaling to ”zoom in” on the behavior near the puncture
at z “ 0. We can reparametrize the domain of uδ. For instance, a particular choice leads to the expression:

pδ3z3 ` δ2z2 ` δ2z, δ3z3 ` 2δ2z2 ` 3δ2zq.

Following the reparametrization, we apply a translation in the target space to recenter the map. This yields
the new family of maps ũδ:

ũδpzq “ pδz3 ` z2 ` z, δz3 ` 2z2 ` 3zq.

Now, taking the limit of this rescaled sequence as δ Ñ 0 in the C8
loc topology, we obtain a completely different

limiting curve:
v0pzq “ lim

δÑ0
ũδpzq “ pz2 ` z, 2z2 ` 3zq.

This second curve, extracted from the same original sequence uδ, connects a Reeb orbit of period 2 to one of
period 1.

The existence of these two distinct limits from a single sequence is problematic and shows us why we need
compactness.

3

1

3

2

1

Theorem 2.28 (Bourgeois-Eliashberg-Hofer-Wysocki-Zehnder). The moduli space MY pg,Γ`,Γ´q admits a
natural compactification MY pg,Γ`,Γ´q by adding stable buildings:

{ }“ { }Y }{ { }Y Y { }Y
...

A building is stable if each level has non-zero energy
ş

u˚dα or has a stable component (i.e., a branched cover
over a trivial cylinder).

2.2.1 Contact Homology and RSFT

Let α be a non-degenerate contact form. Let V be the vector space generated by ”good” Reeb orbits, with
a generator qγ for each such orbit γ. The grading is given by |qγ | “ CZpγq ` n ´ 3 pmod 2q.

Definition 2.29. The contact homology differential is a linear map B : SpV q Ñ SpV q of degree ´1,
which is defined on the generators qγ P V by the formula:

Bpqγq “
ÿ

rΓs

#MY pγ,Γq

mΓkΓ
qΓ.
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This map is extended to all of the symmetric algebra SpV q by requiring that it satisfies the graded Leibniz
rule, Bpabq “ Bpaqb ` p´1q|a|aBpbq. The terms in the formula are defined as follows:

• The sum is taken over all multisets rΓs of ”good” Reeb orbits.

• #MY pγ,Γq is the algebraic count of rigid (i.e., virtual dimension 0) pseudo-holomorphic buildings in
the symplectization Ŷ . These buildings have one positive puncture asymptotic to γ and a set of negative
punctures asymptotic to the orbits in the multiset Γ.

• qΓ denotes the product in SpV q of the generators corresponding to the orbits in Γ.

• The denominator is a symmetry factor. If the multiset Γ consists of ni copies of an orbit γi for
i “ 1, . . . , k, then mΓ “ n1!n2! ¨ ¨ ¨nk!. The term kΓ is the product of the multiplicities of the orbits
themselves.

The crucial property that makes this construction a homology theory is as follows:

Proposition 2.30. If the moduli spaces MY are cut out transversally, then B2 “ 0.

Remark 2.31. For a generic choice of the almost complex structure J , the moduli spaces MY are regular,
meaning they are orbifolds of the expected dimension. This is the ”lucky” case where transversality holds.

In practice, to construct a robust invariant that is independent of the choice of J , one must employ more
advanced ”virtual” techniques. The algebraic count #MY is rigorously defined using either the virtual
fundamental cycle (VFC) machinery, developed in this context by Pardon, or the theory of semi-global
Kuranishi structures, developed by Bourgeois and Hofer. Both of these approaches yield a well-defined
count and ensure that B2 “ 0 holds in general.

The resulting homology is a powerful invariant of the contact structure, and its construction is functorial.

Theorem 2.32 (Bourgeois-Hofer; Pardon). The homology of the chain complex pSpV q, Bq, denoted CHpY q,
is an invariant of the contact structure pY, ξq and is independent of the auxiliary choices (e.g., the contact
form α and almost complex structure J) used in its definition.

Furthermore, the assignment pY, ξq ÞÑ CHpY q defines a functor from the symplectic cobordism category to
the category of Z{2-graded algebras.

2.2.2 RSFT as BL8-Algebras

Let V be the graded vector space generated by ”good” Reeb orbits. We can define a family of multi-linear
operations pk,l : V bk Ñ V bl for k ě 0, l ě 0 with k ` l ě 1. These operations are defined by counting rigid
(i.e., virtual dimension 0) pseudo-holomorphic curves of genus zero.

Let qΓ`
be an element in V bk corresponding to an ordered multiset of k Reeb orbits. The operation pk,l is

defined by:

pk,lpqΓ`
q “

ÿ

rΓ´s

#MY p0,Γ`,Γ´q

mΓ´
kΓ´

qΓ´

Here, the sum is over all possible ordered multisets rΓ´s of l Reeb orbits, and the coefficient is the alge-
braic count of rigid genus-zero curves with k positive punctures asymptotic to Γ` and l negative punctures
asymptotic to Γ´.

The collection of operations tpk,lu satisfies a set of quadratic relations, endowing the graded vector space V
with the structure of a BL8-algebra.

Most importantly, the assignment pY, ξq ÞÑ pV, tpk,luq is not a functor to the category of BL8-algebras. A
functor to this category would require a symplectic cobordism between two contact manifolds to induce a
strict homomorphism between their associated algebras. Curve counting in a cobordism does not, in general,
satisfy this strong condition.
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Instead, curve counting in a cobordism gives rise to a weaker, homotopy-theoretic map: a BL8-morphism.
This means SFT provides a functor to the infinity-category of BL8-algebras, whose morphisms are the
BL8-morphisms themselves.

2.2.3 Simpler Invariants

The full BL8-algebra is a complex object. For many applications, it is useful to extract simpler invariants
from this structure.

Definition 2.33. The algebraic planar torsion of a contact manifold pY, ξq, denoted APT pY q, is an
invariant derived from the algebraic structure pV, tpk,luq generated by genus-zero curves. Formally,

APT pY q :“ T pV, tpk,luq,

where T is a specific algebraic construction that measures the ”torsion” of the planar SFT algebra.

This simpler invariant is well-behaved with respect to cobordisms.

Proposition 2.34. The assignment pY, ξq ÞÑ APT pY q defines a functor from the symplectic cobordism
category to the partially ordered set pN Y t8u,ďq.

Proof. We have a proof by picture:

pY, pα2, J2, θ3q

pY, pα1, J1, θ1q

pY, pα2, J2, θ3q

where the middle is the auxiliary data, where we stretch c ąą 0.

Proposition 2.35. If APT pY q “ 8, then pY, ξq does not admit a strong Liouville filling.

Exercise 2.36. Show that APT pY q “ 8 if and only if the unit element vanishes in the contact homology
algebra, i.e., 1 “ 0 in CHpY q. This implies that the homology itself is trivial, CHpY q “ 0.

Theorem 2.37 (Mei-Lin Yau, Bourgeois, etc.). The contact homology of any overtwisted contact manifold
is trivial. That is, if pY, ξq is overtwisted, then CHpY q “ 0.

We have

Γ
# ‰ 0

where we have k ` 1 punctures. In particular, we have no subset of Γ

This implies:
APT pY q ď k.
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2.3 Lecture 3

2.3.1 Examples

Recall the characterization of the invariant APT pY q for a contact manifold pY, αq: APT pY q ď k if and only
if there exists a set of Reeb orbits Γ “ tr1, . . . , rk`1u satisfying a specific algebraic condition in RSFT, while
no subset of Γ satisfies a related, simpler condition. These conditions are typically represented by diagrams
corresponding to the moduli spaces of certain holomorphic curves.

Specifically, APT pY q ď k is established by the existence of a set Γ “ tr1, . . . , rk`1u for which the following
configuration exists:

Γ
# ‰ 0

In particular,

does not appear as a subset of Γ.

Theorem 2.38 (Mei-Lin Yau, Buk). For an overtwisted contact structure YOT , the cylindrical contact
homology vanishes, CHpYOT q “ 0. This vanishing corresponds to APT pYOT q “ 0.

Theorem 2.39 (Latschev-Wendl). For any integer k ě 0, there exists a contact 3-manifold Yk such that
APT pYkq “ k.

Example 2.40. The canonical model for an overtwisted contact structure is given by the manifold pR3, αOT q,
where the contact form in cylindrical coordinates pr, θ, zq is αOT “ cos r dz ` r sin r dθ

The first diagram below provides a global picture of the contact planes ξ “ kerpαOT q in the ambient space.
The planes rotate as one moves away from the z-axis, completing a full twist at r “ π. The red line segment
labeled π indicates the singular set of the projection of the contact planes onto the xy-plane.

π

z

The defining feature of this structure lies in the characteristic foliation on an embedded disk. Consider the
disk D in the plane tz “ 0u. The characteristic foliation F is the singular line field on D given by the
intersection of the tangent space of the disk with the contact planes, F “ TD X ξ. Diagramatically, this
possesses a unique singular point at the origin, around which the foliation spirals.

The boundary of the disk is a Legendrian curve. This embedded disk, endowed with this specific characteristic
foliation, is the standard overtwisted disk.
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The existence of such a disk is the defining property of an important class of contact manifolds.

Definition 2.41. A contact 3-manifold pY 3, ξq is overtwisted if there exists an embedded disk D Ă Y such
that its boundary BD is Legendrian and the characteristic foliation TBD X ξ has a unique singular point.

Proposition 2.42 (Giroux). The characteristic foliation on a surface determines the contact structure in
a neighborhood of the surface (the contact germ).

Theorem 2.43 (Eliashberg). A contact 3-manifold pY 3, ξq contains an overtwisted disk if and only if it
contains a Legendrian unknot with Thurston-Bennequin number tb “ 0.

Now, we move on to discuss convex hypersurfaces, a special type of embedded surface.

Definition 2.44. A hypersurface Σ Ă Y 3 is convex if there exists a contact vector field X that is transverse
to Σ.

For a convex surface Σ, the contact form α can be chosen such that its Lie derivative LXα “ 0. This implies
that Σ decomposes into regions Σ` “ tp P Σ | pdαq|p ą 0u and Σ´ “ tp P Σ | pdαq|p ă 0u, separated by
the dividing set Γ “ tp P Σ | pdαq|p “ 0u. The regions Σ` and Σ´ can be viewed as Liouville fillings of the
contact manifold Γ.

The local model near a convex hypersurface is determined by the Liouville flows on Σ` and Σ´. A crucial
result by Giroux connects the geometry of this decomposition to the property of being overtwisted.

A local model for the neighborhood of a convex hypersurface can be constructed from Liouville domains.
Let pV, λV q and pW,λW q be two Liouville domains. Their symplectic product pV ˆ W,λV ‘ λW q is also a
Liouville domain. A neighborhood of the dividing set can be modeled on this product structure, as depicted
below:

V ˆ BW

W ˆ BV

Consider the specific case where the dividing set Γ is diffeomorphic to S1. A neighborhood of Γ inside the
symplectization RˆY can be described by the cotangent bundle of R, D˚R – Rx ˆRy, crossed with Γ. The
contact form in this neighborhood is locally αΓ ` y dx. The hypersurface itself is the slice at x “ 0. The
regions on either side are modeled by Rˆ t1u ˆΣ` and Rˆ t´1u ˆΣ´, with corresponding 1-forms related
to the Liouville forms on Σ` and Σ´. Here is an diagram of a local model for the neighborhood of a convex
hypersurface where the slice x “ 0 corresponds to the hypersurface itself:

αΓ ` ydx

D˚R ˆ Γ

R ˆ t1u ˆ Σ`

λΣ` ` dx

R ˆ t1u ˆ Σ´

λΣ´ ´ dx

The geometry of the dividing set Γ and the characteristic foliation on Σ determine the contact structure in
a neighborhood of the surface. A theorem by Giroux connects this local picture to the global property of
being overtwisted.

Theorem 2.45 (Giroux). The contact germ of a convex hypersurface is overtwisted if and only if the
characteristic foliation on the surface has the following configuration:

Σ`

Σ´

rather than the following configuration:
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Σ´Σ`

This geometric criterion can be understood in terms of the dynamics of the Liouville flows on the regions
Σ` and Σ´. The overtwisted case corresponds to a situation where the dynamics on the two sides of the
dividing set are opposites of one another.

Our goal is to demonstrate that if a contact manifold pY, ξq contains an overtwisted convex hypersurface,
then its cylindrical contact homology vanishes, i.e., CHpY q “ 0. The strategy involves creating a specific
Reeb orbit whose SFT differential is the unit element.

Goal: CHpY q “ 0. If Y contains an overtwisted convex hypersurface.

Step 1: Perturb the contact form to be non-degenerate. We begin by perturbing the contact form
in a local neighborhood modeled on S1 ˆ R2 with coordinates pt, x, yq. The initial form is α “ dt ` y dx.
We introduce a new form α1 “ fpx, yq dt ` y dx, where pf ´ 1q is C2-small. Specifically, near the origin
px, yq “ p0, 0q, we choose

fpx, yq “ 1 ` ϵpx2 ´ y2q

for some small ϵ ą 0. The Reeb vector field Rf for the form α1 is parallel to Bt ´ Xf , where Xf is the
Hamiltonian vector field of f with respect to the symplectic form ω “ dx^dy. The Hamiltonian vector field
Xf is defined by iXf

ω “ ´df . A direct calculation yields

´df “ ´2ϵx dx ` 2ϵy dy ùñ Xf “ 2ϵy Bx ` 2ϵx By.

The flow of this vector field describes a saddle point at the origin, as shown in the figure below:

x

y

This local perturbation creates a hyperbolic closed Reeb orbit r “ p0, 0q ˆ S1. The goal is to show that this
orbit is the boundary of a pseudo-holomorphic plane.

Lemma 2.46. For the generator qr corresponding to the orbit r, we have Bpqrq “ 1.

Proof. We analyze the asymptotic operator at r to find a pseudo-holomorphic curve with one positive
puncture at r and no negative punctures. The linearization of the Reeb flow in the contact planes normal
to the orbit r is given by the Hessian of f . Identifying the tangent space with C “ Rx ` iRy, the asymptotic
operator acts on sections of the trivial bundle over S1 and has the form

Ar “ ´J0

ˆ

d

dt
´ Sptq

˙

where Sptq is the matrix of the linearized flow. In our case, this is simply the Hessian of f at the origin:

S “ ∇2fp0, 0q “

ˆ

2ϵ 0
0 ´2ϵ

˙

.

The relevant operator governing the Fredholm theory is associated with the linearization of the Reeb flow,
whose matrix has eigenvalues ˘2ϵ. For an appropriate choice of almost complex structure J , we can find
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a family of pseudo-holomorphic disks with a single positive puncture at r. The existence of such a disk
is guaranteed by the local analysis of the linearized Cauchy-Riemann equations. The leading term in the
asymptotics of such a curve ups, tq : p´8, 0s ˆ S1 Ñ R ˆ Y as s Ñ ´8 will be of the form

ups, tq « γrptq ` eλsνptq ` higher order terms,

where λ ą 0 is a positive eigenvalue of the asymptotic operator Ar and νptq is a corresponding eigenfunction.
The existence of a rigid holomorphic plane establishes that Bpqrq “ 1, which in turn forces the contact
homology to be trivial, CHpY q “ 0.

2.3.2 Detour to Intersection Theory

To justify the preceding claim, we briefly review the intersection theory of punctured pseudoholomorphic
curves. Let U and V be two such curves in the symplectization RˆY . Let Aγ be the asymptotic operator at
a Reeb orbit γ. Assume its eigenvalues ¨ ¨ ¨ ă a´2 ă a´1 ă 0 ă a1 ă a2 ă . . . are simple, with corresponding
eigenfunctions ηi. The intersection number of U and V can be computed as:

U ¨ V “ #pU X V q ` IasypU, V q

where #pU X V q is the algebraic count of intersection points in the interior, and Iasy is an asymptotic
contribution. At a positive puncture, this contribution is given by the difference of winding numbers of the
asymptotic limits of U and V relative to the eigendirections of Aγ . For example,

IasypU, V q “

#

windpη´1q ´ windpu ´ vq at positive punctures

windpu ´ vq ´ windpη1q at negative punctures

where u, v are asymptotic markers for U, V . This framework allows one to show that certain moduli spaces
are non-empty by demonstrating that intersection numbers must be negative, which is impossible for dis-
tinct pseudoholomorphic curves. By constructing appropriate foliations by curves (leaves), one can force
intersections and establish the existence of connecting trajectories, thereby proving claims such as Bpγq “ 1.

1. Excluding Degenerations: First, one must rule out certain degenerations or unexpected curves.
Consider a pseudoholomorphic curve U with a single positive puncture, as depicted below.

U

By constructing a local foliation of the ambient manifold by trivial cylinders, we can always find a ”leaf”
curve V whose asymptotic behavior relative to U is controlled. The algebraic intersection number U ¨V
between such distinct curves is zero. This number decomposes into a sum of local intersection numbers
and an asymptotic contribution: U ¨ V “ #pU X V q ` IasypU, V q.

With a careful choice of V , one can ensure that the asymptotic contribution is bounded, for instance
IasypU, V q ą ´1. Since the local intersection count #pU X V q must be non-negative, the relation
0 “ #pU X V q ` IasypU, V q leads to a contradiction.

2. Next, one must show that there are no urves that have a positive puncture at γ but also have one or
more negative punctures. Consider a curve U with one positive puncture at γ and negative punctures
at a set of Reeb orbits triu.

U

r1 r2 r3

r

Under suitable topological assumptions (e.g., that the linking numbers between γ and the ri are zero),
the intersection theory argument implies that U cannot be an solution. The condition U ¨V “ 0 forces
U to be a leaf itself, meaning it does not contribute to the SFT differential.
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Exercise 2.47. Prove Giroux criterion, assuming that Γn represents the collection of Reeb orbits.

2.3.3 Higher ADT

Generalizing the notion of overtwistedness to higher dimensions is difficult. A naive construction mimicking
the 3-dimensional case often fails due to dimensional constraints. For instance, a configuration intended
to produce a special holomorphic curve might have a virtual dimension of ´1, meaning the corresponding
moduli space is empty. As shown in the diagram below, a configuration involving a saddle point might be
expected to yield a curve of dimension 0 only after including a sufficient number of additional punctures.
For a surface with only one positive puncture, the virtual dimension may be ´1, implying that the moduli
space is empty for a generic choice of almost complex structure.

Σ`

Σ´

Γ1 ˆ D˚R

Γ2 ˆ D˚R

max saddle

A higher-dimensional analogue of overtwistedness is provided by the concept of Giroux torsion.

Definition 2.48. A contact manifold pY 2n`1, ξq is said to have Giroux torsion if it contains an embedded
domain diffeomorphic to r0, 1sz ˆS1

θ ˆS2n´2 with a contact form that is locally modeled by α “ pcos 2πzq dθ`

psin 2πzqβ. Here, β is a connection 1-form on a principal bundle over M .

The existence of Giroux torsion imposes strong constraints on SFT-based invariants and has several impli-
cations for the existence of symplectic cobordisms. The following theorems establish some of these:

Theorem 2.49 (Latschev-Wendl). If a contact manifold Y contains Giroux torsion, then APT pY q ď 1.

This can be visualized as follows, where D˚ is the cotangent bundle:

D˚T 1 ˆ T 1

T 1 ˆ D˚T 1

D˚T 1 ˆ T 1

T 1 ˆ D˚T 1

Theorem 2.50 (Moreno-Zhou). If there exists a strong cobordism from pY´, ξ´q to pY`, ξ`q, and if APT pY`q ă

8, then APT pY´q ă 8.

Theorem 2.51 (Wendl). If a contact manifold Y has planar torsion, then Y admits a strong cobordism to
an overtwisted contact manifold.
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3 Aliakbar Daemi: Atiyah-Floer conjecture

There were three lectures:

• Lecture 1: I will begin this talk by reviewing some foundational material in gauge theory, including
connections on principal bundles, curvature of a connection and the action of the gauge group on
connections. I will then explain how gauge theory on low dimensional manifolds provides a rich source
of symplectic manifolds and Lagrangians in them. More specifically, flat connections on Riemann
surfaces give rise to symplectic manifolds, and flat connections on 3-manifolds can be used to produce
Lagrangians. Next, I will discuss how Lagrangian Floer homology of these Lagrangians can be used to
define a 3-manifold invariant, called symplectic instanton homology.

• Lecture 2: Instanton Floer homology is a topological invariant of 3-manifolds, which is obtained by
applying methods of Morse homology to the Chern—Simons functional. This invariant, along with
its variations for knots and links, has recently found many interesting applications in low dimensional
topology. In this talk, I will review the definition of instanton homology and various algebraic structures
on this invariant, which will be useful for the third talk.

• Lecture 3: Atiyah-Floer conjecture predicts a connection between gauge theory and symplectic topol-
ogy. Morse specifically, it proposes that instanton Floer homology and symplectic instanton homology
are isomorphic invariants of 3-manifolds. In this talk, I will review the proof of the Atiyah-Floer con-
jecture for admissible bundles. In particular, this shows that framed instanton homology (introduced
by Floer, Kronheimer and Mrowka) and its symplectic variant (defined by Wehrheim and Woodward)
are isomorphic to each other. The key geometric ingredient in the proof is the mixed equation, relating
ASD equation for connections and holomorphic curve equation.

3.1 Lecture 1

3.1.1 Connections, Curvature, and Gauge Groups

Throughout, let X be a smooth manifold and G be a Lie group. Our primary example of interest will be
the special orthogonal group G “ SOp3q. The fundamental geometric object is a principal G-bundle.

Definition 3.1 (Principal Bundle). A principal G-bundle over X is a smooth manifold P equipped with
a smooth right action of G, such that X is the quotient space P {G and the action is free. We represent this
structure as:

G P

X

π

Definition 3.2 (Gauge Group). The gauge group of P , denoted GpP q, is the group of fiber-preserving
diffeomorphisms F : P Ñ P that are G-equivariant. That is, π ˝ F “ π and F pp ¨ gq “ F ppq ¨ g for all
p P P, g P G. This is equivalent to the set of maps u : P Ñ G satisfying upp ¨ gq “ g´1uppqg, where
F ppq “ p ¨ uppq.

To understand the structure of the gauge group and related objects, we use the construction of an associated
bundle.

Definition 3.3 (Associated Bundle). Let P Ñ X be a principal G-bundle and let φ be a left action of G
on a manifold F . The associated bundle, denoted P ˆφ F , is the quotient of P ˆ F by the equivalence
relation pp ¨ g, fq „ pp, φpgqfq. The projection πφprp, f sq “ πppq makes this a fiber bundle over X with fiber
F .

Example 3.4 (Adjoint Action). Consider the adjoint action of G on itself, Adgphq “ ghg´1.

Exercise 3.5. Following the construction, check that the gauge group GpP q is isomorphic to the space of
sections of the associated bundle P ˆAd G.
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Example 3.6 (Determinant One Gauge Group). Consider SOp3q “ SUp2q{t˘Iu. The group SUp2q acts
on itself via the Adjoint action. For a principal SOp3q-bundle P , the group G̃pP q :“ ΓpX,P ˆAd SUp2qq is
the determinant one gauge group.

If the fiber is a vector space V on which G has a representation, then P ˆφ V is a vector bundle.

Example 3.7. The adjoint action of G on its Lie algebra g gives the adjoint bundle, adpP q :“ P ˆad g,
which is a vector bundle over X. For G “ SOp3q, this corresponds to the standard representation of SOp3q

on sop3q – R3.

Exercise 3.8. Show that GpP q (or G̃pP q) is an infinite-dimensional Lie group with Lie algebra Ω0pX, adpP qq,
the space of sections of the adjoint bundle.

A connection provides a notion of differentiation on the bundle. It can be defined as a splitting of the tangent
bundle sequence:

0 Ñ TverP ãÑ TP
π˚

ÝÝÑ TX Ñ 0

where TverP “ kerpπ˚q is the vertical tangent bundle.

Definition 3.9 (Connection). A connection is a G-equivariant splitting of this exact sequence. Equiva-
lently, it is specified by a projection onto the vertical component. Let ωA : TP Ñ TverP – P ˆ g be the
projection map onto the vertical tangent space for a connection A. This map must satisfy:

1. For the inclusion i : TverP Ñ TP , we have ωA ˝ i “ id.

2. The kernel of ωA, called the horizontal space, maps isomorphically to TX via π˚.

Diagramatically:

X

The space of all connections on P is denoted ApP q.

Exercise 3.10. Show that ApP q is an affine space modeled on Ω1pX, adpP qq. That is, for a fixed connection
A0 P ApP q and any a P Ω1pX, adpP qq, A0 ` a is another connection. The connection forms are related by
ωA0`apvq “ ωA0

pvq ` apπ˚pvqq for v P TP .

• For u P GpP q and A P ApP q, the action is given by the pullback u˚A.

• The curvature of A, denoted FA P Ω2pX, adpP qq, is the obstruction to integrability of the horizontal
distribution. It is defined by FApη, η1q :“ ωAprη̃, η̃1sq, where η̃, η̃1 are the horizontal lifts of vector fields
η, η1 from X.

In a local trivialization of the bundle, a connection A can be written as the exterior derivative plus a g-valued
1-form, A “ d ` a, where a P Ω1pUq b g.

Example 3.11. In a local trivialization, the curvature and the action of a gauge transformation u are given
by:

FA “ da `
1

2
ra, as and u˚A “ d ` u´1au ` u´1du

Definition 3.12. A connection A is flat if its curvature vanishes, FA “ 0.

A flat connection allows for path-independent parallel transport. Given a path γ : r0, 1s Ñ X, the connection
A defines a unique horizontal lift γ̃ starting at any point p0 in the fiber over γp0q. The endpoint γ̃p1q will
be in the fiber over γp1q. If γ is a closed loop, the map from p0 to γ̃p1q defines an element of G, known as
the holonomy of the connection along γ.
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X
γx

P

The flatness condition FA “ 0 implies that the holonomy depends only on the homotopy class of the loop.
This gives rise to a homomorphism from the fundamental group of X into G.

Theorem 3.13. The moduli space of flat connections on P is in one-to-one correspondence with the character
variety of X:

tA P ApP q | FA “ 0u{GpP q – Hompπ1pXq, Gqρ{ „

where „ is the adjoint action of G. A representation ρ P Hompπ1pXq, Gq gives rise to a flat bundle Pρ “

pX̃ ˆ Gq{π1pXq, where the action is px̃, gq ¨ γ “ px̃ ¨ γ, ρpγq´1gq for γ P π1pXq.

3.1.2 Moduli Space of Flat Connections on a Riemann Surface

Let Σ be a Riemann surface of genus g, and let G “ SOp3q. Principal SOp3q-bundles over Σ are classified
by the second Stiefel-Whitney class w2pP q P H2pΣ;Z{2q – Z{2. Let Pi be a bundle with w2pPiq “ i.

Definition 3.14 (Even Character Variety). The moduli space for the trivial bundle P0 (with w2pP0q “ 0)
is the even character variety:

MevenpΣq “ tA P ApP0q | FA “ 0u{GpP0q “ tφ : π1pΣq Ñ SUp2qu{SUp2q.

Definition 3.15 (Odd Character Variety). The moduli space for the non-trivial bundle P1 (with w2pP1q “ 1)
is the odd character variety. It is described using representations of the fundamental group of the punctured
surface, Σ1 “ Σztptu:

ModdpΣq “ tA P ApP1q | FA “ 0u{G̃pP1q

“ tφ : π1pΣ1q Ñ SUp2q | φpµq “ ´Iu{SUp2q

“ tpA1, . . . , Bgq P SUp2q2g |

g
ź

i“1

rAi, Bis “ ´Iu{SUp2q.

where µ is a loop around the puncture.

Exercise 3.16. Show that ModdpΣq is a smooth manifold of dimension 6g ´ 6. In contrast, MevenpΣq is
singular.

3.2 Lecture 2

3.2.1 More on Moduli Space of Flat Connections

Let P Ñ Σ be a principal SOp3q-bundle. The space of all connections on P is denoted by ApP q. A connection
A P ApP q is said to be flat if its curvature FA vanishes. The group of gauge transformations is denoted by
GpP q, which acts on ApP q. We are interested in the space of gauge equivalence classes of flat connections.

Definition 3.17. The moduli space of flat connections on a principal SOp3q-bundle P over Σ is the quotient
space

MpΣq “ tA P ApP q | FA “ 0u{G̃pP q

where G̃pP q is the group of based gauge transformations.
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The bundle P is determined, up to isomorphism, by its second Stiefel-Whitney class w2pP q P H2pΣ;Z2q – Z2.
Thus, for a given genus g surface, there are two distinct SOp3q-bundles to consider.

SOp3q P

Σ

This diagram illustrates the structure of the principal bundle P over the surface Σ. The fibers of the bundle
are copies of the structure group SOp3q.

The moduli space MpΣq can also be described in terms of group homomorphisms. Specifically, for a suitable
choice of SOp3q-bundle, MpΣq is related to the space of homomorphisms from the fundamental group of a
punctured surface to SUp2q, modulo conjugation. This leads to the following algebraic description:

MpΣq “ tpA1, . . . , Ag, B1, . . . , Bgq P SUp2q2g |

g
ź

i“1

rAi, Bis “ ´1u{SUp2q

This space is a smooth manifold of dimension 6g ´ 6.

Example 3.18. When g “ 0, Σ is a 2-sphere. The moduli space of flat connections on a sphere is empty,
as there are no non-trivial flat bundles. Thus, MpΣq “ H.

Exercise 3.19. When g “ 1, Σ is a torus. Show that MpΣq consists of a single point. Hint: Cnsider

A1 “

ˆ

2 0
0 ´2

˙

and B1 “

„

0 1
´1 0

ȷ

.

Example 3.20. When g “ 2, the moduli space MpΣq is the complete intersection of two quadrics.

Remark 3.21. The moduli space of flat connections is also a central object of study in algebraic geometry.
In that context, it is referred to as the moduli space of stable holomorphic vector bundles of rank 2 and degree
1 with a fixed determinant. We won’t study anything via this viewpoint, but it is still good to know.

The tangent space to the moduli space at a point represented by a flat connection A can be characterized
using cohomology. Let adpP1q denote the adjoint bundle of the principal bundle. The tangent space is given
by

TAMpΣq “ tζ P Ω1pΣ, adpP1qq | dAζ “ 0u{tdAβ | β P Ω0pΣ, adpP1qqu

Using Hodge theory, this is isomorphic to the space of harmonic 1-forms with values in the adjoint bundle:

TAMpΣq – tζ P Ω1pΣ, adpP1qq | dAζ “ 0, d˚
Aζ “ 0u

The moduli space MpΣq is endowed with a natural symplectic structure. The symplectic form ω is defined
on the tangent space by the following expression.

Definition 3.22. Let ζ, ζ 1 P Ω1pΣ, adpP1qq. The symplectic form ω is given by

ωpζ, ζ 1q “

ż

Σ

xζ ^ ζ 1y

where x¨, ¨y is induced by the inner product on the Lie algebra sup3q – R3.

Exercise 3.23. Show that the action of the group of based gauge transformations G̃pP1q on the space of
connections ApP1q is Hamiltonian, with the curvature map A ÞÑ FA serving as the moment map. Deduce
that the moduli space is isomorphic to the space of connections quotiented by the full gauge group, i.e.,
MpΣq – ApP1q{GpP1q.
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3.2.2 Moduli Space of Flat Connnections on 3-Manifolds

The study of moduli spaces on 3-manifolds is a powerful method for defining topological invariants. The cen-
tral idea is that the moduli space of flat connections on a 3-manifold with boundary determines a Lagrangian
submanifold within the symplectic moduli space of its boundary.

Let Y be a compact 3-manifold with boundary BY “ Σ. We need to fix an SOp3q-bundle on Y , denoted by
Q Ñ Y .

SOp3q Q

Y

Q is determined up to isomorphism by w2pQq “ PDprγsq, where γ is a properly embedded 1-manifold in Y .
The bundle Q is determined, up to isomorphism, by its second Stiefel-Whitney class w2pQq, which is the
Poincaré dual of a properly embedded 1-manifold γ in Y . The diagram shows the structure of this principal
bundle Q over the 3-manifold Y .

For a 3-manifold Y with a boundary, the moduli space of flat connections on Y is a subset of the moduli
space on its boundary. Consider the case where the boundary consists of two components, BY “ Σ1 \ Σ2.
The moduli space of flat connections on Y is given by

LpY,γq “ tA P ApQq | FA “ 0u{G̃pQq

This can also be described as the set of holonomies of flat connections on Y .

LpY,γq “ tp : π1pY zγq Ñ SUp2q | P pµq “ ´I for any Mu{SUp2q

The following diagram shows a 3-manifold Y with two boundaries Σ1 and Σ2, and a properly embedded
1-manifold γ shown in red. The moduli space LpY,γq associated with this setup is a Lagrangian submanifold
of MpΣ1q ˆ MpΣ2q.

Y

Σ1 Σ2

γ

MM

Theorem 3.24 (Herald). After a small perturbation, the moduli space LpY,γq is an immersed Lagrangian
submanifold in MpΣq. This immersed Lagrangian is well-defined up to Lagrangian cobordisms.

Let L : LpY,γq ãÑ MpΣq be the restriction to the boundary after a small perturbation. This embedding has
two key properties:

• L˚ω “ 0, where ω is the symplectic form on MpΣq.

• dimpLpY,γqq “ dimpMpΣqq{2 “ 3g ´ 3.

Exercise 3.25. Prove the first part of Herald’s theorem. Hint: Use Stokes’s Theorem.

Let Z be a 3-manifold with boundary BZ “ Σg´1. Consider a new 3-manifold Z# “ Z6T 2
X ˆ I formed

by taking a connected sum with a thickened torus, where the connected sum is taken along a point. The
associated 1-manifold is γ# “ tptu ˆ I. This construction yields a new Lagrangian submanifold L#

Z :“
LpZ#,γ#q embedded in MpΣgq ˆ MpT 2q “ MpΣgq. For instance, if Z “ Hg´1 is a handlebody of genus

g ´ 1, then the associated Lagrangian is a product of spheres, L#
Hg´1

– pS3qg´1, which is a Lagrangian

submanifold of MpΣgq.
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The diagram below illustrates this handlebody connected sum. The leftmost figure represents the initial
handlebody Z with boundary Σg´1. The middle figure shows the connected sum operation with a thickened
torus T 2 ˆ I. The result, on the right, is a new handlebody Z# whose boundary is a surface of genus g,
denoted Σg, and contains a properly embedded 1-manifold γ# (in red).

T 2 ˆ I

Z

Σg´1

6 “

Z7

Σg T 3

γ7

Exercise 3.26. Prove that L#
Z – S3 ˆ ... ˆ S3.

3.2.3 Symplectic Instanton Homology

Given two 3-manifolds pY, γq and pY 1, γ1q with the same boundary Σ, their associated moduli spaces LpY,γq

and LpY 1,γ1q are embedded Lagrangians in MpΣq. We can define a Floer homology, HF pLpY,γq, LpY 1,γ1qq, by
studying the intersection points of these two Lagrangians.

The homology is defined as the homology of a chain complex pC˚, dq.

Definition 3.27. The chain group C˚ is a free abelian group generated by the intersection points of the two
Lagrangians, LpY,γq X LpY 1,γ1q.

The differential d is a map from C˚ to C˚ defined by counting specific solutions to a partial differential
equation. For any two intersection points α´ and α`, the coefficient of α` in dα´ is given by

xdα´, α`y “ #tu : R ˆ r0, 1s Ñ MpΣq | uη Ď LY,γ , uη1 Ď LY 1,γ1 , lim
tÑ8

up¨, sq “ α˘, BJu “ 0u{R

The domain for the map u is the cylinder Rˆr0, 1s. The term uη denotes the map restricted to the boundary of
the cylinder at a fixed time, while BJu “ 0 is the Cauchy-Riemann equation for a J-holomorphic curve, where
J is a chosen compatible almost complex structure on MpΣq. The quotient by R accounts for translational
symmetry in the domain. The geometric setup for this is shown in the following figure:

η1

η

t

R ˆ r0, 1s

This diagram shows the domain of the maps u used to define the Floer differential. It is a cylinder with ends
extending infinitely in either direction, representing a flow between two intersection points α´ and α`. The
flow lines are constrained to lie within the two Lagrangian submanifolds LY,γ and LY 1,γ1 at the boundaries.

Theorem 3.28 (Daemi-Fukaya-Lipyankij). The map d satisfies d2 “ 0, so pC˚, dq is a chain complex. Its
homology HF pLpY,γq, LpY 1,γ1qq is a topological invariant of the pair pN,ωq, where N is a closed 3-manifold
and ω is a properly embedded 1-manifold.

This result follows from gluing the two 3-manifolds along their boundaries to obtain a closed 3-manifold.
The geometric gluing process is depicted below:
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pY, γq

p´Y 1,´γ1q

This figure illustrates the topological gluing of two 3-manifolds, pY, γq and p´Y 1,´γ1q, where the minus sign
denotes a reversal of orientation. They are glued along their common boundary Σ. The resulting object is
a closed 3-manifold N which contains a closed 1-manifold ω.

The homology can then be identified as an invariant of the closed 3-manifold.

Theorem 3.29 (Wehrheim-Woodward). The symplectic framed instanton homology, denoted SI#pNq, is
an invariant of the closed 3-manifold N with a properly embedded 1-manifold ω. It is defined by the Floer
homology of the Lagrangians associated with a Heegaard splitting of N :

SI#pNq “ HF pL#
H , L#

H1 q

where N “ H YΣg´1 H
1 is a Heegaard splitting of genus g ´ 1.

3.3 Lecture 3

The moduli space of flat connections on a closed 3-manifold N can be understood as the intersection of
two Lagrangian submanifolds derived from a Heegaard splitting of N . Given a pair of 3-manifolds pY, γq

and pY 1, γ1q with a common boundary Σ, the intersection points LpY,γq X LpY 1,γ1q correspond to pairs of flat
connections on the respective manifolds that agree on the boundary. Gluing the two 3-manifolds along their
boundary, we obtain a closed 3-manifold N “ Y YΣY

1. A flat connection on this closed manifold corresponds
to an equivalence class of such pairs.

pY 1, γ1q

pY, γq

LpY 1,E1q

LpY,Eq

The diagram above illustrates how the intersection of two Lagrangians LpY,γq and LpY 1,γ1q corresponds to the
gluing of the two 3-manifolds pY, γq and pY 1, γ1q, yielding a closed 3-manifold N . The intersection points of
the Lagrangians represent the flat connections on this closed manifold.

The moduli space of flat connections on the closed 3-manifold N with a fixed SOp3q-bundle Q Ñ N (deter-
mined by w2pQq “ PDpωq) is denoted by RpN,wq. The expected dimension of this moduli space is zero.
We will now provide another justification for this fact by considering the Chern-Simons functional.
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3.3.1 Chern-Simons Functional

The Chern-Simons functional provides a real-valued invariant of connections on a 3-manifold.

Definition 3.30. Let Q Ñ N be a principal SOp3q-bundle over a 3-manifold N . The Chern-Simons
functional CS : ApQq Ñ R is defined by fixing a reference connection A0 P ApQq. For any other connection
A P ApQq, we choose an auxiliary connection A on the cylinder r´1, 1s ˆ N such that A|t´1uˆN “ A and
A|t1uˆN “ A0. Then, the functional is given by

CSpAq “
1

8π2

ż

r´1,1sˆN

xFA ^ FAy

The diagram below visualizes the cylinder over the 3-manifold N which is used as the domain for the auxiliary
connection A.

A

r´1, 1s ˆ N

The Chern-Simons functional has several key properties:

• The value of CSpAq depends only on the connection A (and the reference connection A0), not on the
choice of the auxiliary connection A.

• It is not gauge invariant in general. However, for a gauge transformation u P G̃pP q, the value changes
by an integer, i.e., CSpu˚Aq ” CSpAq pmod qZ.

• As a consequence, CS descends to a map CS : ApQq{Ĝ Ñ R{Z, where Ĝ is the group of gauge
transformations that are based, but not necessarily trivial at infinity.

Another important result is that the critical points of the Chern-Simons functional are precisely the flat
connections on N . Thus, the set of critical points is isomorphic to the moduli space of flat connections,
CritpCSq – RpN,wq. This provides a functional-theoretic justification for the expected zero-dimensionality
of the moduli space.

Definition 3.31. A pair pN,wq is called admissible if there exists a properly embedded surface S ãÑ N
such that the pullback of the second Stiefel-Whitney class, s˚w, is non-zero in H2pS, BS;Z2q. This condition
ensures that the moduli space is non-empty and well-behaved.

Example 3.32. The pair pN,wq “ pY, γq Y pY 1, γ1q, formed by gluing two 3-manifolds as described in the
previously, is an admissible pair.

Exercise 3.33. Prove that the stabilizer of any flat connection A P RpN,wq under the action of the group
of based gauge transformations G̃pQq is trivial, consisting only of t˘1u.

The instanton homology IpN,wq is defined as the Morse homology of the Chern-Simons functional, IpN,wq “

HpC˚, dq. The chain complex C˚ is a free abelian group generated by the critical points of CS, which are the
flat connections in RpN,wq. The differential d counts the number of unparameterized downward gradient
flow lines of the functional, connecting critical points.

The gradient flow lines of CS are closely related to the anti-self-duality (ASD) equation. The flow line

equation dAptq
dt “ ´∇CS is equivalent to the ASD equation, FA ` ˚FA “ 0, for a connection A on the

cylinder R ˆ N with the product metric. This establishes a connection between the Morse theory of the
Chern-Simons functional and solutions to a gauge-theoretic PDE.
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3.3.2 Atiyah-Floer Conjecture for Admissible Bundles

The Atiyah-Floer conjecture is the central result that links the two homologies we have discussed. It states
that the instanton homology and the symplectic instanton homology are isomorphic.

Theorem 3.34 (Daemi, Fukaya, Lipyanskiy). For any admissible pair pN,wq, there is a natural isomorphism
between the instanton homology and the symplectic instanton homology:

I˚pN,wq – SI˚pN,wq

This theorem provides a powerful statement that a homology theory defined by counting solutions to the anti-
self-duality equations on a closed 3-manifold is isomorphic to a Floer homology theory defined by counting
J-holomorphic curves in a symplectic moduli space on a surface.

Corollary 3.35 (Dostoglou, Salamon). Let ϕ : Σg Ñ Σg be a diffeomorphism, and let Mϕ “ Σg ˆ I{px, 1q „

pϕpxq, 0q be the mapping torus. The diffeomorphism induces a symplectomorphism ϕ˚ : MpΣgq Ñ MpΣgq.
The graph of this map, Γϕ˚

Ď ´MpΣgq ˆ MpΣgq, is a Lagrangian submanifold. The instanton homology of
the mapping torus is isomorphic to the Floer homology of the diagonal and the graph of the induced map:

I˚pMϕ, wϕq – HF p∆,Γϕ˚
q

The diagram below shows the mapping torus construction. The two boundary components of the cylinder
Σg ˆ I are identified by the diffeomorphism ϕ. This gluing process creates a closed 3-manifold Mϕ and is
the context for the above corollary.

Σg ˆ I

Σg ˆ I

id
ϕ

Corollary 3.36. There is a natural isomorphism between framed instanton homology and symplectic framed
instanton homology:

SI#pNq – I#pNq :“ IpN#T 3, w “ tptu ˆ S1q

where the first term is the symplectic framed instanton homology, and the second is the framed instanton
homology as defined by Kronheimer, Mrowka, and Floer.

Exercise 3.37. Conclude the previous corollary from the main Theorem by considering the specific case of
the connected sum with a 3-torus.

The proof of the main theorem is quite complicated and we do not have enough time to explain it in depth.
However, there are two main approaches:

1. The adiabatic approach, which involves analyzing the limiting behavior of the ASD equation as a
parameter is sent to infinity.

2. The functorial approach, which constructs an explicit chain map Φ : pC˚, dq Ñ pC 1
˚, d

1q that is a
quasi-isomorphism, proving that the two homology theories are isomorphic. The map Φ is defined
using solutions to a ”mixed equation” that combines features of both the ASD and Cauchy-Riemann
equations.
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The differential d is defined by counting solutions to the ASD equation, while the differential d1 is defined
by counting solutions to the Cauchy-Riemann equation. The map Φ is constructed by counting solutions to
a hybrid equation defined on a domain that interpolates between the two.

Consider the following:

D`D´

The diagram shows a disk split into two semicircles, D` and D´. This provides the domain for the mixed
equation, allowing for a connection on one half and a map to the moduli space on the other.

The mixed equation for a pair pA, uq consists of a connection A on D´ ˆ Σ and a map u : D` Ñ MpΣq,
satisfying the following conditions:

• A is a solution to the ASD equation, FA ` ˚FA “ 0, on D´ ˆ Σ.

• u is a J-holomorphic curve, satisfying the Cauchy-Riemann equation Bu “ 0, on D`.

• On the shared boundary between D` and D´, the two solutions are required to match: the holonomy
of the connection A must equal the value of the map u in the moduli space, i.e., Aq “ A|tquˆΣ is flat,
and its gauge equivalence class rAqs must be equal to upqq for all q on the boundary.
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RESEARCH TALKS

There were 9 research talks, each one hour long.

1. An Invitation to Seidel/Shift Operators by Eduardo Gonzalez (UMass Boston)

2. A Symplectic Look at Contractible Affine Surfaces of Log Kodaira Dimension One by Yin Li (Uppsala)

3. The Mapping Class Group Action on the Odd Character Variety is Faithful by Aliakbar Daemi (Wash-
ington University in St. Louis)

4. Immersed Exact Lagrangian Fillings and Augmentations to Arbitrary Fields by Zijun Li (Duke)

5. Sectorial Decompositions of Symmetric Products of Surfaces and Homological Mirror Symmetry by
Xinle Dai (Harvard)

6. Towards the HZ- and Multiplicity Conjectures for Dynamically Convex Reeb Flows by Basak Gurel
(University of Central Florida)

7. On Wrapped Floer Homology Barcode Entropy and Hyperbolic Sets Restricted to the Hyperbolic Set
by Rafeal Fernandez (UC Santa Cruz)

8. Symplectic vs. Algebraic Log Maps by Mohammad Farajzadeh Tehrani (University of Iowa)

9. Manin Configurations of Lagrangians in del Pezzos by Chris Woodward (Rutgers)

I have scribed notes for all four of the chalkboard talks. The remaining talks were given via beamer slides,
which I do not have any notes for.
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4 Eduardo Gonzalez: An Invitation to Seidel/Shift Operators

Abstract: We will review several applications of Seidel/shift operators in quantum cohomology, including
recent joint work with D. Pomerleano and C. Y. Mak on its relation to Coulomb branches.

4.1 Introduction to Quantum Cohomology

Let pM,ωq be a symplectic manifold. We consider a specific case where the symplectic form ω is a multiple
of the first Chern class, i.e., ω “ λc1 for some constant λ ą 0. In this context, the quantum cohomology ring,
denoted QHpMq, can be described as a tensor product HpMq bΛ, where HpMq is the ordinary cohomology
ring of M and Λ “ krq, q´1s is a Novikov ring with formal variable q.

The quantum cohomology ring is a deformation of the ordinary cup product. This deformed product, often
denoted by ˆ, is defined via Gromov-Witten invariants. For cohomology classes a, b, c P HpMq, the structure
coefficients of the deformed product are given by

pa ˆ b, cq “
ÿ

dPH2pMq

xa, b, cy0,3q
d,

where xa, b, cy0,3 is the three-point Gromov-Witten invariant counting the number of genus-0 curves in a
given homology class d that pass through representatives of the cohomology classes a, b, and c.

Example 4.1. Consider the complex projective space Pn. Its ordinary cohomology ring is HpPnq “
krps

pn`1 ,

where p is a generator of H2pPnq. The quantum multiplication of powers of p is given by

ppl ˆ pm, pkq “

$

’

&

’

%

q0 if l ` m ` k “ n

qn if l ` n ` k “ 2n ` 1

0 otherwise

Here, the integer n corresponds to the first Chern class. The term xa, b, cy0,3,d is the number of curves in a
class d passing through a, b, c.

4.2 Toric Varieties

Quantum cohomology can be applied to toric varieties, which can be expressed as a symplectic quotient
M “ Cn{{TY . In 1995, Seidel introduced an operator Sγ associated with a loop γ : S1 Ñ AutpMq in
the group of symplectomorphisms of M . This operator acts on the quantum cohomology ring QHpMq

and is defined via a count of holomorphic disks. The operator is defined using a pairing pSγpaq, bq “
ř

dPH2pMqxa, by0,2,σ`dq
d and is invertible on QHpMq. The relationship between loops in the automorphism

group of M and quantum cohomology is captured by a homomorphism from π1pAutpMqq to the group of
units in the quantum cohomology ring, QHpMq˚.

Theorem 4.2 (McDuff-Tolman). For certain symplectic manifolds, the Seidel operator has a leading term
given by the homology class of the maximal fixed point component.

Sγpaq “ rFmaxs ` lower order terms,

where Fmax Ă Mvi is the maximal fixed point set.

A key challenge is that the lower order terms are not well-understood.

Theorem 4.3 (Batyrev). For a toric variety X, the quantum cohomology ring QHpXq can be expressed as
an algebraic structure.

QHpXq “ Bat

ˆ

Λrw1, . . . , wN s

additive relations

˙

,

This algebra is subject to multiplicative relations of the form
ś

xD,dyą0 q
d

ś

xDi,dyď0 w
´xDi,diy

i .
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Theorem 4.4. The operators Si satisfy the multiplicative relations but do not satisfy the additive relations.

Letting Wi “ Si only works for Fano varieties where the anticanonical class ´KM is positive. For cases
where ´KM ě 0, we have an additional curve correction term. This is similar to the approach taken by
Giventhal using mirror maps. This raises the question of whether Si is equal to the mirror map itself.

Example 4.5. Consider the projective line P1. Its Jacobian ring is given by JacpP1q “
xq,zy

z2“q . This relation

is derived from the mirror map w “ z ` q{z by setting zBz “ 0, which implies z ´ q{z “ 0, or z2 “ q.

4.3 Equivariant Quantum Cohomology and Coulomb Branches

The theory can be extended to an equivariant setting by considering a Hamiltonian action of a torus T on
a symplectic manifold M . This leads to the definition of equivariant quantum cohomology QHT pMq. The
Seidel operator Sγ can be generalized to this setting, acting on the equivariant quantum cohomology ring

Sγ : QHT̂ pMq Ñ QHT̂ pMq, where T̂ “ U1 ˆ T .

A result by Iritani and Liebenschutz-Jones proves that, under very good conditions, the Jacobian ring of
the equivariant mirror potential, JacpW eqq, is isomorphic to the equivariant quantum cohomology ring,
QHT pMq.

Example 4.6. Consider a Up1q action on P1. If Up1q acts on C2 with weight p0, 1q, then the equivariant

cohomology of P1 is HUp1qpP1q “
krp,us

ppp`uq
. This corresponds to the relation ppp ` uq “ 0. The equivariant

potential is related to the non-equivariant one by W eq “ WHv ` u log z. Substituting the non-equivariant
potential for P1, we get W eq “ z ` q{z ` u log z. Setting the derivative with respect to z to zero, we obtain
z2 ´ q ` uz “ 0, which simplifies to zpz ` uq “ q.

At his ICM lectures, Teleman proposed a connection between the quantum cohomology of a manifold and a
Coulomb branch of a gauge theory: If a group G acts on a manifold M , then there exists a Lagrangian with
certain categorical aspects that lives inside a Coulomb branch MpG_, 0q.

Coulomb branches for specific groups are known.

1. MpT, 0q “ T˚TC.

2. pT˚Greg
C “ GC ˆ gregC q{{GC.

3. MpG_, 0q “ SpecpHG
˚ pΩpgqqq.

For Up1q, its Coulomb branch is C ˆ Cˆ. A result by Mak-Pomerleano demonstrates a connection between
the equivariant quantum cohomology and the homology of the based loop group. Specifically, there is an

action of H T̂
˚ pLG{T q on QHT̂ pMq, where LG{T is the flat affine variety. This action allows the spectrum of

the equivariant quantum cohomology to be viewed as a sheaf over the spectrum of the equivariant homology
of the based loop group. The action is given by a convolution product, where the homology of the loop group

is decomposed as H T̂
˚ pLG{T q “

À

RrS˚
σws based on a decomposition of LG{T “

Ť

σW SσW . This gives a
module structure via the action SF

σ1,w1
˝ SF

σ2,w2
“ SF

pσ1,w1q˝pσ2,w2q
on fixed points.

This theory provides a way to construct the Coulomb branch MpUp1q, V ‘V _q via two charts whose gluing
is determined by the Seidel operators. This construction yields the space C2ztp0, 0qu. This framework can
also be developed in a K-theory setting. The concepts have natural applications in other fields, such as
symplectic reduction, where T˚pG{Hq can be obtained by studying T˚{{H. In this context, QHpX{{Up1qq

can be recovered from QHUp1qpXq by setting the Seidel operator to the identity.
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5 Aliakbar Daemi: The Mapping Class Group Action on the Odd
Character Variety is Faithful

Abstract: The odd character variety of a Riemann surface is a moduli space of SOp3q representations of
the fundamental group which can be interpreted as the moduli space of stable holomorphic rank 2 bundles
of odd degree and fixed determinant. This is a symplectic manifold, and there is a homomorphism from (a
finite extension of) the mapping class group of the surface to the symplectic mapping class group of this
moduli space. In this talk, I will discuss a result establishing that this homomorphism is injective when the
genus is at least 2. This answers a question posed by Dostoglou and Salamon and generalizes a theorem
of Smith from the genus 2 case to arbitrary genus. Our appraoch also yields a result on the faithfulness of
the action on the Fukaya category of the odd character variety. The proofs use instanton Floer homology,
a version of the Atiyah-Floer Conjecture, and aspects of a strategy used by Clarkson in the Heegaard Floer
setting.

5.1 The Odd Character Variety

Let Σ be a Riemann surface of genus g. We recall the definition of the odd character variety, denoted Mg

or MpΣq, as the space of certain SUp2q-representations of the fundamental group of the punctured surface
π1pΣgztptuq. Specifically, we have

Mg “ MpΣq “ tp : π1pΣgztptuq Ñ SUp2q | ppµq “ ´Iu{SUp2q

where the relation is conjugation, and µ is any meridian around the puncture.

This variety has several equivalent descriptions. It can also be seen as the set of connections A on a principal
SOp3q-bundle P over Σg with a non-trivial second Stiefel-Whitney class, w2pP q ‰ 0, all modded out by
gauge transformations.

SOp3q P

Σg

Furthermore, Mg is equivalent to the moduli space of holomorphic stable bundles of rank 2 and degree 1
with a fixed determinant. The space Mg is known to be a smooth symplectic manifold of dimension 6g ´ 6
with trivial fundamental group, i.e., π1pMgq “ 0.

Example 5.1. For g “ 1, the odd character variety is a single point, Mg “ tptu. For g “ 2, Mg is the
complete intersection of two quadrics in P1.

An important object of study is the mapping class group of the surface Σg. A diffeomorphism Φ : pΣg, pq Ñ

pΣg, pq naturally induces a diffeomorphism Φ˚ : Mg Ñ Mg via pullback. A basic property is that Φ˚ depends
only on the isotopy class of Φ and, importantly, Φ˚ preserves the symplectic structure of Mg.

Definition 5.2. Let MCGpΣg, pq be the group of diffeomorphisms of pΣg, pq up to isotopy. The group
π0SymppMgq consists of the symplectomorphisms of Mg considered up to symplectic isotopy.

The induced action described above gives a map ρ : MCGpΣg, pq Ñ π0SymppMgq. This map fits into a
Birman exact sequence:

0 π1pΣgq MCGpΣg, pq MCGpΣgq 0

0 H1pΣg;Z{2q Γ̂g MCGpΣgq 0

push map

j

The maps in this diagram are related as follows: The map from MCGpΣg, pq to MCGpΣgq is the forgetful

map that forgets the puncture. The map from π1pΣgq to MCGpΣg, pq is the push map. The group Γ̂g is an
extension of MCGpΣgq by H1pΣg;Z{2q. The action on the coordinates of the character variety is given by

ppγqppAi, Biq
g
i“1q “ p´1qγAiAi, ..., p´1qσBiBi. This leads to a map ρ̂ : Γ̂g Ñ π0SymppMgq where ρ “ ρ̂ ˝ j.
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Problem 5.3 (Dostoghan-Salamon, 1993). For g ě 2, is the map ρ̂ injective?

Theorem 5.4 (Smith, 2012). The answer is yes for g “ 2.

Theorem 5.5 (Daemi-Scaduto). The answer is yes for any g.

The action of Γ̂g on Mg can be viewed in two ways: via its symplectic action and its smooth action. This
leads to the following diagram:

Γ̂g π0DiffeopMgq “ MCGpMgq

π0SymppMgq

ρ̂SM

ρ̂ forgetful map

There is also a related result about the kernel of the smooth action:

Theorem 5.6 (Daemi-Scaduto). For g “ 2, the kernel of the smooth action, kerpρ̂smoothq, is not finitely
generated.

The proof of this theorem relies on the work of Kreck-Su which provides tools to study MCGpMgq for
manifolds with π1 “ 0 and a specific dimension and cohomology ring.

5.2 Lagrangian Floer Theory and the Proof Strategy

To prove the main theorem concerning the injectivity of ρ̂, the strategy is to use Lagrangian Floer theory. The
core idea is to show that any non-trivial element ϕ P Γ̂gzt0u acts non-trivially on the space of Lagrangians
in Mg.

The strategy can be summarized as follows: it is sufficient to show that for any ϕ P Γ̂gzt0u, there exist
Lagrangians L,L1 P Mg such that their Lagrangian Floer cohomology groups are not isomorphic after
applying the action of ϕ.

HFpL,L1q fl HFpL, ρpϕqpL1qq

This result implies that ρpϕq is not Hamiltonian isotopic to the identity, which in turn proves injectivity.

To do this, we need to find a source of Lagrangians in Mg. These Lagrangians are constructed from three-
manifolds with boundary. Consider a three-manifold Y with a boundary that is a surface Σ, and a knot γ
inside it.

Y

Σ1 Σ2

γ

In this diagram, we see a 3-manifold Y with a boundary composed of two surfaces, Σ1 and Σ2. A knot γ is
shown passing through the manifold, intersecting the boundary at a point on each surface.

The Lagrangian LpY,γq is defined as the moduli space of SUp2q-representations of the fundamental group of
the three-manifold complement, Y zγ, with a specific condition on the meridian µ of the knot γ:

LpY,γq “ tρ : π1pY zγq Ñ SUp2q | ρpµq “ ´I for any meridian µ of γu{conj.

By restricting these representations to the boundary surfaces, we obtain a map L : LpY,γq Ñ Mg ˆ Mg1 .

Theorem 5.7 (Herald). The space LpY,γq is an immersed Lagrangian submanifold in the product manifold
Mg ˆ Mg1 , possibly after a perturbation.
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Theorem 5.8 (Daemi, Fukaya, Lipyanskiy). The Lagrangian Floer cohomology HFpL,L1q of any two em-
bedded Lagrangians L and L1 is a well-defined invariant.

Let us define a subgroup G Ď Γ̂g.

G “ tφ P Γ̂g | for any pair of embedded 3-manifold Lagrangians L,L1,HFpL,L1q – HFpL, ρ̂pφqpL1qqu.

The main result is a classification of this subgroup G.

Theorem 5.9. For g ě 3, the subgroup G is trivial, i.e., G “ 1. For g “ 2, G is a subgroup of t1, τu, where
τ is the hyperelliptic involution on Σg.

Corollary 5.10. The action of Γ̂g on the Fukaya category FukpMgq is non-trivial for g ě 3.

5.3 Proof of Main Theorem

The proof proceeds by establishing several key properties of the subgroup G:

1. G is a normal subgroup of Γ̂g.

2. The intersection of G with the normal subgroup H1pΣ,Z{2q Ď Γ̂g is trivial, i.e., G X H1pΣ,Z{2q “ 0.

3. We relate the groupG to the Torelli subgroup of the mapping class group. The Torelli subgroup IpΣgq Ď

MCGpΣgq is defined as the subgroup of mapping classes that act trivially on the first cohomology group

H1pΣg;Zq. If an element φ P Γ̂g has a projection πpφq that is a pseudo-Anosov element of the Torelli
group, then φ R G.

4. A result on subgroups of Γ̂g that satisfy properties (1)-(3) implies that G is trivial for g ě 3 and is a
subgroup of x1, τy for g “ 2. This deduction requires showing that the projection of G to MCGpΣgq

is trivial, which follows from the works of Ivanov and Long.

The proof of property (3) utilizes the Atiyah-Floer conjecture, applied to admissible bundles. The conjecture
relates the Lagrangian Floer cohomology of our Lagrangians to the instanton Floer homology of a specific
3-manifold. Specifically, for Lagrangians LpY,Eq and LpY 1,E1q constructed from three-manifolds Y and Y 1, we
have

HFpLpY,Eq, LpY 1,E1qq “ I˚p´Y#ΣY
1, γ#γ1q

Here, ´Y#ΣY
1 denotes the connected sum of the three-manifolds along their boundary, and γ#γ1 is the

connected sum of the knots. We denote N “ ´Y#ΣY
1 and ω “ γ#γ1.

Theorem 5.11 (Kronheimer-Mrawka). The instanton Floer homology I˚pN,wq is non-zero if the 3-manifold
N is irreducible.

The action of ρ̂pφq on the Lagrangian LpY,Eq corresponds to an action on the underlying 3-manifold, which
transforms the instanton Floer homology.

HFpL
ρ̂pφq

pY,Eq
, LpY 1,E1qq “ I˚p´Y#

ρ̂pφq

Σ Y 1, γ#γ1q

We denote the transformed manifold and knot as Nφ and ηφ.

To complete the proof of property (3), we must find a suitable pair of 3-manifolds with knots, pY, γq and
pY 1, γ1q, that satisfy two conditions:

1. The Lagrangians are disjoint, leading to zero Floer cohomology:

LpY,γq X LpY 1,γ1q “ H ùñ HFpLpY,γq, LpY 1,γ1qq “ 0.

2. After the action of ρ̂pφq, the Floer cohomology becomes non-zero: The manifold Nφ is irreducible,

which by the Kronheimer-Mrawka theorem implies I˚pNφ, ηφq ‰ 0, and thus HFpL
ρ̂pφq

pY,Eq
, LpY 1,E1qq ‰ 0.
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The existence of such pairs pY, γq and pY 1, γ1q is established using the works of Clarkson, which themselves
rely on the foundational work of Hemples. Hemples’s work on defining a distance and Heegaard-splittings
of 3-manifolds was used by Clarkson to guarantee the existence of the pseudo-Anosov and Torelli elements
needed for the proof.
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6 Xinle Dai: Sectorial Decomposition of Symmetric Products and
Homological Mirror Symmetry

Abstract: Symmetric products of Riemann surfaces play a important role in symplectic geometry and
low-dimensional topology. For example, they are essential ingredients in the definition of Heegaard Floer
homology and serve as important examples of Liouville manifolds when the surfaces are open. In this talk,
I will discuss work in progress on the symplectic topology of these spaces using Liouville sectorial methods.

6.1 Symmetric Products of Surfaces

We begin with the concept of a symmetric product of a topological surface, a fundamental construction in
topology and algebraic geometry.

Definition 6.1. Let Σ be a topological surface. The n-th symmetric product of Σ, denoted SymnpΣq, is
the quotient space of the Cartesian product Σˆ ¨ ¨ ¨ ˆΣ (with n factors) by the action of the symmetric group
Sn permuting the factors.

SymnpΣq “ Σ ˆ ¨ ¨ ¨ ˆ Σ{Sn

This construction provides a natural way to consider unordered n-tuples of points on a surface. The geometric
properties of SymnpΣq depend on the structure of Σ:

1. If Σ is a Riemann surface, then SymnpΣq inherits a natural complex structure, making it a complex
manifold.

2. If Σ is a compact Riemann surface, SymnpΣq is a projective variety.

3. If Σ is an open quasi-projective Riemann surface, SymnpΣq is a quasi-projective variety.

Example 6.2. A classic example is the symmetric product of the complex plane C.

1. SymnpCq is isomorphic to Cn. The isomorphism is given by mapping an unordered n-tuple of complex
numbers tz1, . . . , znu to the elementary symmetric polynomials pσ1, . . . , σnq in these variables.

2. For any Riemann surface Σ, SymnpΣq is a complex manifold.

The space SymnpP1ztpn ` 2q ptsuq is isomorphic to Pnztpn ´ 2q hyperplanesu. These spaces are a type of
n-dimensional pair of pants.

6.2 Liouville Manifolds and Sectors

Liouville manifolds form a special class of symplectic manifolds characterized by a particular vector field or
form. These structures provide a natural way to define an ”exact at infinity” condition, which is important
for applications in Floer theory.

Definition 6.3. A Liouville vector field on a symplectic manifold pX,ωq is a vector field Z that satisfies
the condition LZω “ ω.

The condition LZω “ ω implies that the symplectic form ω is not only preserved but scaled by the flow of
Z. This concept has a dual formulation in terms of differential forms.

Definition 6.4. A Liouville form λ on a symplectic manifold pX,ωq is a primitive for ω, meaning that
ω “ dλ. This form is related to the Liouville vector field Z by the identity λ “ ιZω, where ιZ denotes the
interior product.

Definition 6.5. A Liouville manifold is an exact symplectic manifold pX,ω “ dλq that, near infinity, is
modeled on the product pR2n ˆ Y, dpesαqq, where Y is a compact manifold and α is a contact form on Y .

The following image shows a Liouville manifold, where the end is modelled on a product of a ray and a
compact manifold Y .
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Y R ě 0

Example 6.6. Every cotangent bundle or Stein manifold is a Liouville manifold.

The notion of a Liouville manifold can be extended to include boundaries. This leads to the concept of a
Liouville sector, which is a foundational object in the study of wrapped Fukaya categories.

Definition 6.7. A Liouville sector X is a Liouville manifold with boundaries, BX. The Liouville vector
field Z must be tangent to BX near infinity. Additionally, there exists a function I : BX Ñ R such that
ZI “ I near infinity and the Hamiltonian vector field XI is transverse to BX and points outward along it.
This condition is equivalent to the positivity of the differential of I restricted to the characteristic foliation,
i.e., dIchar fol ą 0.

The image shows a Liouville sector, which is a Liouville manifold with a boundary. The shaded region
denotes the interior of the sector.

Y R ě 0

Example 6.8.

1. The cotangent bundle of any manifold with boundary is a Liouville sector.

2. Any punctured bounded Riemann surface with no boundary components is a Liouville sector, which is
homeomorphic to S1.

The following image displays various examples of Liouville sectors. These are: a half-plane, a square, a
hexagon, and a more complex genus two surface with a boundary. The shaded regions denote the interior of
each sector.

Example 6.9. Consider the manifold X “ CReě0, the right half-plane in the complex numbers. A Liouville
form is λ “

x dy´y dx
2 , which gives the standard symplectic form ω “ dλ “ dx ^ dy. The Liouville vector

field is Z “
xBx`yBy

2 .

This image illustrates the Liouville sector on the right half-plane. The central curved dashed line represents
the boundary at infinity, B8X, while the vertical line is the finite boundary, BX. Arrows indicate the
direction of the Liouville vector field.

50



I “ y

BX

B8X

Every Liouville sector X possesses a wrapped Fukaya category, denoted WpXq. For an inclusion of
Liouville sectors X ãÑ X 1, this structure induces a map WpXq Ñ WpX 1q.

6.3 Sectorial Decomposition and Homological Invariants

This section delves into the main topic of the talk: using a specific structure on a Riemann surface to
decompose its symmetric product into Liouville sectors. This decomposition provides a powerful tool to
study the geometry of the symmetric product and its relationship to other algebraic objects through the lens
of Homological Mirror Symmetry (HMS).

Definition 6.10. Let Σ be a Riemann surface and φ a proper plurisubharmonic function on Σ. Let tsiuiPI
be the saddles (critical points of Morse index 1) of φ. For each saddle si, let γi be the stable manifold of si.
If the function φ is quadratic in a neighborhood of each saddle, i.e., φ|Npγiq is of the form ax2 ` by2 with
ab ă 0, we say that pΣ, φq is a Riemann surface with a quadratic Stein structure.

An important result establishes the existence of such structures on a wide class of surfaces.

Proposition 6.11. For any orientable topological surface Σ with a set of disjoint proper embedded arcs
tγiuiPI , one can construct a quadratic Stein structure φ on Σ. This structure is built such that φ has a
saddle si on each arc γi and one minimum mj on each component of the complement Σz

Ť

iPI γi.

This existence result allows us to apply the theory of Liouville sectors to the symmetric product. The main
theorem establishes a decomposition of Sym2pΣq based on this structure.

Theorem 6.12 (Sectorial Decomposition). In the setting of a Riemann surface with a quadratic Stein
structure as described above, the structure determines a decomposition of the second symmetric product into
Liouville sectors:

Sym2pΣq “
ď

Hsi,mj

Umj ,mk

where the sets Umj ,mk
are Liouville sectors (with corners) for j ď k. These sectors are separated by smooth

hypersurfaces Hsi,mj which intersect at corners Csi,sj .

X

m0 m1

s

The image above shows a decomposition of a space X with two minima, m0 and m1, and a saddle s. This
structure leads to a decomposition of Sym2pXq.

Let’s consider the specific case of a 2-dimensional Liouville sector X. A related corollary simplifies the
structure of its symmetric product.

Corollary 6.13. For a 2-dimensional Liouville sector X, the space Sym2pXq is deformation equivalent to
a Liouville sector Y .

Sym2pXq » Y

where » denotes deformation equivalence.
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The sectorial decomposition allows for a local-to-global approach, where a larger space is understood by
piecing together simpler, more manageable sectors.

To further understand this decomposition, we can study a local model.

1. Let φ be a plurisubharmonic Morse function on C. The associated symplectic form and Liouville form
are ω “ ddcφ and λ “ dcφ respectively. Let gφ be the Riemannian metric and Z “ ∇gpφ the gradient
vector field.

2. Assume φ has only one index 1 critical point at 0, with a local form φpx ` yiq “ ´1
4x

2 ` 3
4y

3.

3. The gradient flow of this function has specific asymptotic properties. Under the gradient flow of a
related function Î, as |z1 ´ z0| Ñ `8, the real part of the Liouville form Rpωq Ñ `8 and the
imaginary part of the symplectic form Impwq Ñ 0 as t Ñ 8.

4. The gradient flow moves faster near the origin.

5. For large time t, the gradient flow will align with one of the diagonals.

The local model provides a guide for the decomposition. The different asymptotic regions of the space
correspond to the Liouville sectors in the decomposition. Specifically, for points pz1, z2q:

• p´8,´8q corresponds to the sector U´,´.

• p´8, 0q corresponds to the hypersurface H0,´.

• p´8,`8q corresponds to the sector U´,`.

• p0,`8q corresponds to the hypersurface H0,`.

• p`8,`8q corresponds to the sector U`,`.

This correspondence is visualized in the following diagram.

Repz1q

Repz2q

U´,´ U´,`

U`,`

H0,´

H0,`

6.4 Homological Mirror Symmetry of a Pair of Pants

The main application of this decomposition is in HMS. We explore a concrete example of this conjecture for
a 2-dimensional pair of pants.

The geometric setting is Sym2pP1tp0, p1, p2, p3uq, a symmetric product of a sphere with four punctures. This
surface can be cut by a single separating arc.

The separating arc divides the surface into two components: Σ´, which is a pair of pants, and Σ`, which is
a cylinder.
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By applying the sectorial decomposition to this specific surface, we find that the Liouville sectors have
familiar geometric forms:

• U´,´ is deformation equivalent to Sym2ppantsq, which is isomorphic to the Liouville manifold pCˆq2.

• H0,´ is deformation equivalent to pants ˆ R.

A central claim links the wrapped Fukaya category of these sectors to derived categories of coherent sheaves
on algebraic varieties.

Proposition 6.14. The wrapped Fukaya category of the sector U´,´, which is isomorphic to ppCˆq2,W “

z1 ` z2q, corresponds under Homological Mirror Symmetry to the derived category of coherent sheaves on the
algebraic variety C2 defined by the relation txy “ 0u.

We can learn more about the mirror correspondence by studying the inclusion maps between sectors.

WpF0,´q WpU´,´q

Dbptxy “ 0uq DbpC2q

i`

s s

i´

The wrapped Fukaya category of the hypersurface F0,´ maps to the derived category of the line txy “ 0u,
while the wrapped Fukaya category of the sector U´,´ maps to the derived category of C2.

Extending this analysis to other sectors in the decomposition yields a more general mirror symmetry:

• U´,` is deformation equivalent to pants ˆ cylinder. This is conjectured to be mirror to txy “ 0u ˆ C.

• U`,` is deformation equivalent to cylinder ˆ torus.

The complete picture of the sectorial decomposition and its mirror correspondence is summarized in the
following diagram.

WpU´,` YH0,´
U`,`q

WpP ´ p3ptsqq DbCohptxy “ 0u ˆ Cq WpSym2
pΣqq

DbCohptxy “ 0uq WpU´,´q DbCohptxyz “ 0uq

DbCohpC2
Repzq“0q

–
i˚

– Corollary

–

This diagram illustrates the correspondence between the symplectic side (top, wrapped Fukaya categories)
and the algebraic side (bottom, derived categories). The key maps, such as the inclusions of sectors, are
mirrored by maps of derived categories. The top part of the diagram represents the geometric objects and
their inclusions, ending with Sym2pΣq, while the bottom part represents their mirror duals. The horizontal
arrows show how smaller pieces are glued together, and the vertical arrows represent the mirror map s.
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7 Chris Woodward: Disk Counting for Tropical Lagrangians

Abstract: Manin assigned to any del Pezzo surface (compact complex surface with positive first Chern class)
a root system, given by the set of second homology classes with square -2, perpendicular to the symplectic
form. For example, the del Pezzo surface of degree one, which is obtained by blowing up the projective plane
at eight points, corresponds to the root system E8. I will explain how to realize these homology classes as
Lagrangian spheres, and outline the proof that they split-generate all of the Fukaya eigencategories with
integer eigenvalues with non-maximal modulus.

7.1 Introduction

The central object of study in this section is the disk count for tropical Lagrangians, which provides a way
to relate the geometric properties of a symplectic manifold to combinatorial data. We begin by setting up
the necessary definitions and a key theorem.

Let Φ : X Ñ B be a compact almost toric manifold. Let L Ă X be a tropical Lagrangian that is both
compact and oriented spin. We assume that both X and L are monotone. Given these conditions, we can
define a number wL P Z as a disk count of holomorphic, Maslov index two disks. This integer count is
related to a polyhedral decomposition of the base manifold B. Let R “ tP Ă Bu be a good polyhedral
decomposition. We then choose a dual complex B_ “

Ť

PPP P_.

Theorem 7.1. The disk count wL can be expressed as a sum over tropical graphs in the dual complex B_:

wL “
ÿ

tropical graphs in B_

1

|AutpΓq
mpΓq

In ”good cases,” the multiplicity term mpΓq simplifies to a product over the vertices of the graph: mpΓq “
ś

V PV erpΓq mpvq. The vertex multiplicities mpvq are given by explicit formulas.

An important application of this theory is found in the study of Fukaya categories. Specifically, the Fukaya
category of a del Pezzo surface with a monotone symplectic form is split generated by monotone tori and
Manin configurations of spheres.

Example 7.2. Let X “ Bl3pP2q be the blow-up of P2 at three points. Manin observed that a certain
configuration of spheres in this space can be used to visualize the ADE root system. The following diagram
illustrates this for the A2 and A3 systems, showing a tropical graph representation within a hexagon-shaped
base manifold. Each graph is associated with a specific disk count wL.

B

wL “ ´2

wL “ ´3

Manin A2 system Manin A3 system

wL “ 6

L “ T 2

The spectrum of the quantum cohomology ring QHpXq of the manifold X “ Bl3pP2q is given by the set of
disk counts t6,´2,´3u. This set split generates the Fukaya category, FukpXq.

7.2 Almost Toric Manifold

To understand tropical Lagrangians, we first need to define an almost toric manifold.
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Definition 7.3. A symplectic manifold X is an almost toric manifold if there exists a map Φ : X Ñ Rn

with a certain local structure. The components of this map, Φi, are required to commute with respect to the
Poisson bracket, i.e., tΦi,Φju “ 0 for all i, j. The local structure of this map is a product of three types of
components:

• A regular component: pq, pq ÞÑ p0.

• An elliptic component: pq, pq ÞÑ pq2 ` p2q{2.

• A focus-focus component: pq1, p1, q2, p2q ÞÑ pq1p2 ´ q2p1, q1p1 ` q2p2q.

Example 7.4. Let X “ T˚S2 Ñ R2 represent a spherical pendulum. The map Φ can be chosen to be the
energy and angular momentum. The behavior of the system can be visualized in the base space B “ R2 via the
image of the map Φ. The following diagram shows the image of the momentum map for a spherical pendulum.
The upper point b` corresponds to an elliptic rank 1 singularity, while the lower point b´ corresponds to an
elliptic rank 0 singularity.

b`

b´

elliptic rank 1

elliptic rank 0
fiber point

fiber S

The diagram shows two critical points: an unstable equilibrium point x` corresponding to a focus-focus
singularity in the fiber, and a stable equilibrium point x´ corresponding to an elliptic rank 0 singularity. The
fiber over Φpx`q is given by the manifold X` shown in the next diagram.

x`

The diagram shows a double torus-like structure. The central point corresponds to the unstable equilibrium
x`.

The existence of almost toric structures is known for a broad class of manifolds.

Example 7.5 (Vienna). All monotone del Pezzo surfaces are almost toric. This follows from work by
McDuff, which showed that the monotone symplectic form on such a surface is unique up to isomorphism.

Example 7.6. The blow-up of P2 at four points, Bl4P2, is also an almost toric manifold. The base diagram
for such a manifold is shown below. This diagram represents a square with eight interior points, a central
point, and four points on the edges.

7.3 Tropical Lagrangians

Tropical Lagrangians are a class of Lagrangian submanifolds whose projections onto the base of a toric
fibration have a specific combinatorial structure.
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Theorem 7.7 (Mikhalkin). Let Φ : X Ñ B be a toric variety. Let Π Ă B be a tropical graph. We assume
for simplicity that dimpXq “ 4. Then the univalent vertices of the tropical graph are bisectrices, as shown in
the diagram.

The vertices can also be trivalent. The following diagram shows a trivalent vertex with vectors p1, p2 and
their sum p1 ` p2.

p1 p2

p1 ` p2

The vectors p1 and p2 must satisfy the condition |det p1p2| “ 1.

An addendum to this theorem states that for almost toric manifolds, vanishing thimbles are also allowed, as
represented by a simple graph.

‚ ‚

Roughly speaking, this implies the existence of a family of Lagrangians L whose image under the map Φ
approaches the tropical graph Π.

Example 7.8. Returning to the blow-up of P2 at five points, Bl5P2, we obtain the affine Dynkin diagram
of type D̂5.

‚ ‚ ‚

‚ ‚ ‚

7.4 Holomorphic Disk Counts

The computation of disk counts relies on techniques developed by Venugopalan and Woodward, building on
earlier works by Ianel, B. Parker, and Tehrani. This method involves constructing a dual complex from a
polyhedral decomposition of the base manifold.

Let P “ tP u be a good polyhedral decomposition of the base manifold. We choose a dual complex P_ for
each P . For instance, the following diagram shows a polyhedral decomposition of a diamond shape with its
dual complex lines in red.
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The process of holomorphic disk counting can be understood by considering a degeneration process where
we obtain long necks, as shown in the diagram. This corresponds to the limit as t Ñ 8.

t Ñ 8

This framework also applies to Lagrangians that are locally invariant on neck regions, mapping to UV . In
this case, the moduli space splits as a product of components associated to the vertices, and the vertex
multiplicity mpvq is the number of maps from a compact Riemann surface with boundary cV to the manifold
XP pvq associated with the vertex v.

mpvq “ #uV : cV Ñ XP pvq

The multiplicities are known for certain special cases. For example, for a type pd, 0q singularity, the Bryan-
Pandharipande formula states that mpvq “ p´1qd´1{d2. The multiplicity for a half pair of pants with type
pd, 0q is also known to be p´1qd, as illustrated by the diagram showing a half-pants-like shape.

Example 7.9. For X “ Bl3pP2q, the spectrum of the first Chern class c1 in the quantum cohomology is
c1 ýQHpBl3P2qq “ t6,´2,´3u. This is consistent with the disk counts. The graph for wL “ 6 is the
following.

The value wL “ ´2 is explained by the following tropical graph Γ Ă B_.

Γ1

Γ2

The total disk count is the sum of the multiplicities of the components: wL “ ´1 ` ´1 “ ´2.
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Example 7.10. The value wL “ ´3 from the quantum cohomology spectrum is explained by the following
tropical graph.

Γ1

Γ2

Γ3

Γ4

In this case, the total disk count is given by the sum of multiplicities of four components: ´1` ´1` ´1{2`

´1{2 “ ´3.

Example 7.11. For the monotone torus, the disk count is wL “ 12. The corresponding tropical graph is
shown below, represented by lines on a diamond-shaped base manifold.

Γ4 Γ3 Γ1 Γ3

The diagram shows a cross-shaped tropical graph on the dual complex. We can count in a similar way to
obtain ´12.
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