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Abstract

From August 18 to August 22, Rutgers University ran a summer school on symplectic geometry that
aimed to provide graduate students and advanced undergraduate students tutorials in various advanced
topics in symplectic geometry and introductions to recent developments. This year we focus on, but are
not restricted to, theories and applications of Lagrangian Floer theories, including Fukaya categories,
Floer theory in low-dimensional topology, contact geometry, and Hamiltonian dynamics etc.

This is an unofficial set of notes scribed by Gary Hu, who is responsible for all mistakes. None of these
notes have been endorsed by the original lecturers. All of the course content is owned by their respective
institutions and their researchers, while mistakes should be attributed solely to me. If you do find any
errors, please report them to: gh7@williams.edu

Contents
MINICOURSES

1 Cheuk Yu Mak: Equivariant Lagrangian Floer Theory and Applications to Symplectic

Khovanov Homology

1.1 Lecture 1 . . . . . . o L e
1.1.1 Background: Borel Equivariant Cohomology . . . . . . . . ... ... ... ... ....
1.1.2 Towards Equivariant Floer Theory . . . . . . . . . .. ... ... ... ....

1.2 Lecture 2 . . . . . L e e
1.2.1 The Localization Isomorphism . . . . . . . . .. . .. .. ... ... ...
1.2.2  Application: Symplectic Khovanov Homology . . . . . . ... .. ... ... ......
1.2.3 Lagrangians and Khovanov Homology . . . . . . . .. ... ... ... ... .....

1.3 Lecture 3 . . . . . . L e
1.3.1 Hilbert Schemes . . . . . . . . . . . e
1.3.2 Symmetry and Localization . . . . .. ... ... oL o

2 Zhengyi Zhou: Rational Symplectic Field Theory
2.1 Lecture 1 . . . . . L e e
2.1.1 Loy Algebras . . . . oo
2.1.2 BL%* and IBL®-algebras . . . . . . . . . e

—
O 00 =1 =7 U B R



2.1.3 Curves in SET . . . . . . . e 19

2.1.4 Analysisof Curves . . . . . . . . L e 20
2.2 Lecture 2 . . . . .. e e 21
2.2.1 Contact Homology and RSFT . . . . . . . ... ... .. . .. ... 24
2.2.2 RSFT as BLy-Algebras . . . . . . . . .o 25
2.2.3 Simpler Invariants . . . . . .. oL 26
2.3 Lecture 3 . . . . . . e e 27
2.3.1 Examples . . . . . ... e 27
2.3.2 Detour to Intersection Theory . . . . . . . . . . . ... Lo 30
2.3.3 Higher ADT . . . . . . . e 31
3 Aliakbar Daemi: Atiyah-Floer conjecture 32
3.1 Lecture 1 . . . . . L e 32
3.1.1 Connections, Curvature, and Gauge Groups . . . . . . . . . . ... ... .. 32
3.1.2  Moduli Space of Flat Connections on a Riemann Surface . . . ... ... ... ... .. 34
3.2 Lecture 2 . . . . .. e 34
3.2.1 More on Moduli Space of Flat Connections . . . . .. ... ... ... ......... 34
3.2.2  Moduli Space of Flat Connnections on 3-Manifolds . . . . ... ... ... ....... 36
3.2.3  Symplectic Instanton Homology . . . . . . . .. .. ... oo 37
3.3 Lecture 3 . . . . . e 38
3.3.1 Chern-Simons Functional . . . . . . .. .. ... .. ... ... 39
3.3.2 Atiyah-Floer Conjecture for Admissible Bundles . . . . . . ... .. ... ... .... 40
RESEARCH TALKS 42
4 Eduardo Gonzalez: An Invitation to Seidel/Shift Operators 43
4.1 Introduction to Quantum Cohomology . . . . . . . . . . . ... .. 43
4.2 Toric Varieties . . . . . . . . L e e 43
4.3 Equivariant Quantum Cohomology and Coulomb Branches . . . ... ... ... ... .... 44

5 Aliakbar Daemi: The Mapping Class Group Action on the Odd Character Variety is
Faithful 45
5.1 The Odd Character Variety . . . . . . . . . . . it 45
5.2 Lagrangian Floer Theory and the Proof Strategy . . . . . . ... .. ... ... . ....... 46
5.3 Proof of Main Theorem . . . . . . . . . . . . e 47

6 Xinle Dai: Sectorial Decomposition of Symmetric Products and Homological Mirror
Symmetry 49
6.1 Symmetric Products of Surfaces . . . . . . . .. ..o 49
6.2 Liouville Manifolds and Sectors . . . . . . . . . . . . 49
6.3 Sectorial Decomposition and Homological Invariants . . . . . . . .. .. ... ... ...... 51
6.4 Homological Mirror Symmetry of a Pairof Pants . . . . . . ... ... ... ... ... .. 52
7 Chris Woodward: Disk Counting for Tropical Lagrangians 54
7.1 Introduction . . . . . . . . L e 54
7.2 Almost Toric Manifold . . . . . . . . . . . . e 54
7.3 Tropical Lagrangians . . . . . . . . . . L L e e 55
7.4 Holomorphic Disk Counts . . . . . . . . .. . e 56



MINICOURSES

There were three minicourses, each three hours long:
1. Rational Symplectic Field Theory by Zhengyi Zhou (Chinese Academy of Sciences)
2. Atiyah-Floer Conjecture by Aliakbar Daemi (Washington University in St. Louis)

3. Equivariant Lagrangian Floer Theory and Application to Symplectic Khovanov Homology by Cheuk
Yu Mak (University of Sheffield)



1 Cheuk Yu Mak: Equivariant Lagrangian Floer Theory and Ap-
plications to Symplectic Khovanov Homology

There were three lectures:

e Lecture 1: We will introduce equivariant Lagrangian Floer cohomology. There are many different
versions available in the literature. We will discuss the version given by Seidel and Smith. We will also
explain the localization theorem.

e Lecture 2: Khovanov homology is a link invariant. Seidel and Smith introduced the symplectic ana-
logue, called the symplectic Khovanov homology, which doesn’t involve resolutions of a link. We will
see what symplectic Khovanov homology is and understand why it is a link invariant. We will also see
an annular version which gives a link invariant of a solid torus.

e Lecture 3: We will explain how to apply equivariant Lagrangian Floer theory to get applications of
symplectic (annular) Khovanov homology.

1.1 Lecture 1
1.1.1 Background: Borel Equivariant Cohomology

Let G be a compact Lie group (e.g., Z/2Z,S',U(n)) and let M be a finite G-CW complex. A theory of
G-equivariant cohomology, denoted H(—), is expected to satisfy several properties, such as:

e Functoriality: It should be a contravariant functor from the category of G-spaces to the category of
graded rings.

e Normalization for free actions: If G acts freely on M, the theory should recover the ordinary cohomology
of the orbit space, i.e., H5(M) =~ H*(M/G).

When the action of G is not free, the quotient space M /G is often poorly behaved. The Borel construction
circumvents this issue by replacing M with a related space on which the action is free. This is accomplished
by introducing a contractible space EG on which G acts freely.

Theorem 1.1. For any Lie group G, such a universal space EG exists.
We denote the quotient space by BG := EG/G, the classifying space of G.
Example 1.2.
o For G = 7/27, we may take EG = S*, on which G acts antipodally. Then BG = S*/(Z/27) = RP™.

e For G = S, we may also take EG = S® (the unit sphere in C*) with the standard action of S by
scalar multiplication. Then BG = S*/S1 = CP”.

The diagonal action of G on M x EG is always free. This leads to our definition of Borel cohomology.

Definition 1.3 (Borel Cohomology). The Borel equivariant cohomology of a G-space M is

HE(M) := H* <MXGEG> :

We denote the quotient space (M x EG)/G by M xg EG.
This construction has several immediate properties:

e A G-equivariant map f : M — N naturally induces a map M xg EG — N xg EG, making the
construction functorial.

o If H € (G is a subgroup, EG also serves as an FH, and the natural map M xg EG — M xg EG
provides a restriction homomorphism.

e The definition is independent of the choice of model for EG, up to canonical isomorphism.



o If G acts freely on M, the projection map M xg EG — M /G is a homotopy equivalence, which induces
an isomorphism H*(M/G) =~ H}(M).

The projection M x¢ EG — BG endows H} (M) with the structure of an algebra over H*(BG).

Example 1.4. Let G = Z/27 and let the coefficient ring be Fy. Then H*(BG;Fy) = H*(RP*;Fy) ~ Fy[q],
where deg(q) = 1. The ring map Fa[q] — H;/QZ(M) governs the structure of the equivariant cohomology.

Multiplication by q has a geometric meaning. The shift map 7 : (20,21, 22,...) — (0,20,21,...) on S®
induces a self-map of RP®. The induced map on cohomology is precisely multiplication by q.

o If the ZZ/2Z-action on M is trivial, then M xg EG = M x BG. By the Kiinneth formula, H (M) =
H*(M)® H*(BG). The action of H*(BQ) is free.

o If the Z/2Z-action on M is free, then H(M) = H*(M/G) is finite-dimensional. This implies that
H}(M) is a torsion Fa[q]-module.

The map p: M xqg EG — B(G is a fibration with fiber M.

M —— M x¢g EG

|

BG

This gives rise to a Serre spectral sequence with Es-page H*(BG; H*(M)) converging to H(M). A powerful
consequence of this structure is the Localization Theorem.

Theorem 1.5 (Localization). For G = Z/27 with Fy coefficients, the inclusion of the fived-point set M*/?> =

{x e M|g(z) = a¥g € Z/2} — M induces an isomorphism upon inverting q:

H3 oy (M; F2) ®g,[q) Fo[a,¢7 '] —=> H*(M"*%,F5) ®r, Fa[q,q7'].

Comparing the ranks of the modules in the theorem gives:

Corollary 1.6 (Smith Inequality).

rank Hy o7 (M;F2) = rank H*(M%?2,Fy).

Remark 1.7. The long exact sequence in equivariant homology for the pair (M, MZ/ZZ),
i HZ/2Z(Ma MZ/2Z) - HZ/2Z(M) - HZ/2Z(MZ/2Z) .

is useful. Furthermore, Hz o7 (M, MZ?2) s built from cells of the form (Z/27Z x D™ 7./2Z x S™~1).

1.1.2 Towards Equivariant Floer Theory

We now sketch how the Borel construction can be applied in symplectic geometry to define an equivariant
version of Lagrangian Floer cohomology.

Let a symplectic action of G = Z/27Z be given on a symplectic manifold (M, w), and consider two Lagrangian
submanifolds, Ly and Ly, that are setwise fixed by G. The goal is to perform Floer theory on the homotopy
quotient M x g EG; however, this space is not a symplectic manifold. The strategy, therefore, is to use Morse
theory on the base space BG.

We choose a Morse-Smale pair (h,g) on BG, working within the standard filtration by finite-dimensional
skeleta BG,, € BG,,+1 € ..., where BG,, = RP?>" !, The gradient flow lines between critical points of h will
define the differential. For this to be well-defined on the filtration, we require that any flow line originating
in a skeleton BG,, remains within BG,,.

Next, we introduce a Hamiltonian H € C*([0,1] x (M xg EG)). For each z € BG, this defines a Hamil-
tonian on the fiber, H, := H|.-1(,). The construction requires a regularity condition at the critical



points of the Morse function: for each z € crit(h), the time-1 flow must satisfy the transversality condi-

tion ¢x,,_ (Lo,.)MLq,,. The Lagrangians in the fiber over z, denoted L, ., are given by the intersection
Li nm1(2).

Let G act on a symplectic manifold (M,w). Let G = Z/2. Consider two Lagrangians Lo, L setwise fixed
by G. We want to do Floer theory on the fiber M xg EG, but this is not a symplectic manifold, so we
best we can do is Morse theory on the base BG. Pick (h,g) for BG. Then BG, < BG,41 < ... where
BG,, = RP*"*'. We do Morse-Smale on BG,,. Consider crit(h) as the gradient flowlines. If it starts at
x € BG,, € BGy, then the flowline stays in BG,,.

((Ma LOv Ll)u Hza Jz)

BG

In addition to the Hamiltonian, we consider a family of w-compatible almost complex structures (J,).cna
parametrized by the base, where each J, is defined on the fiber 7=1(2) =~ M.

The equivariant Floer complex, CF,,(Lo, L1), is generated by pairs (z,x), where z € crit(h) and z is a
generator of the fiberwise Floer complex CF(Lg ,, L1 ., H,). A generator x is an intersection point in the
set q%(Hz (Loz) N Ly ,.

The differential counts pairs (n,u) contributing to the map from a generator (zg,xo) to (z1,z1). Here,
7 : R — BG is a gradient trajectory of (h,g) from zy to z;. The map u : R x [0,1] - M xg EG is a
finite-energy solution to the parametrized Floer equation
(Osu — X, (u) ® dt)g’:(S) =0.
This solution must satisfy the condition wou(s,t) = 7(s), the Lagrangian boundary conditions u(s,0) € Lg )
and u(s, 1) € Ly ,(s), and the asymptotic limits lim,_, o u(s, ) = x¢ and lim,_, 1 u(s,-) = 1.
M,

n(s) -

Example 1.8. We consider the case of BG = RP* with homogeneous coordinates [29 : z1 : ...]. Let the
Morse function h be defined as

B |21|% + 2|22]2 + 3|23]% + . ..
Zkoo:o |2k]?

Let 7 : RP® — RP® be the shift map. Then the pullback of h along T satisfies

h([Z()IZl : ])

_ ‘Zl|2 +2|22|2 + -+ (|Zo|2 + ‘Zl|2 +)

2 lzl?

T*h

=h+1.

Let g be the standard round metric, and assume the pair (h,g) is chosen to be compatible with 7. For each
integer k = 0, there exists a unique critical point z*) € crit(h) whose index (or degree) is k. The resulting



Morse complex has a trivial differential, indicated by

CMorse(h) L. —0> ]F2<Z(k)> —0> .

Since the differential is zero, any gradient trajectory n from a critical point z*) to another point 2 must
be trivial unless I = k. The full complex of generators for the equivariant theory, which are pairs (z(k),m),
thus admits a natural filtration:

(—D(Z(k),x) =) (—D(z(k),ac).

k=0 k=1

We now make the simplifying assumption that the Floer data (H,,J,) is constant for all critical points, i.e.,
H,x = H,» and J,x) = J,u) for all k,l. Then the equivariant Floer complex is given by

CF.q(Lo, L) = @ CF(Lo,L1; H.0)

2 (k)
= CF(Lo, L1; H.)[4q]
where the equivariant differential has the form deq = do + qdy + Pdy+ ...

Next time, we will see how this algebraic structure plays an important role in equivariant Lagrangian Floer
theory.

1.2 Lecture 2

We begin by recalling the foundational setup for equivariant Lagrangian Floer cohomology. Given a sym-
plectic manifold (M,w), a pair of Lagrangian submanifolds (Lg, L), and a choice of auxiliary data (h,g)
consisting of a Morse function h and a Riemannian metric g, we can select a compatible pair (H,J), a
Hamiltonian and an almost complex structure, to define the Floer cochain complex CF*(Lg, L1).

We now consider the setting where a finite group G acts on M by symplectomorphisms, and the Lagrangians
Lo, Ly are G-invariant. For our purposes, we will specialize to the case G = Z/2. The goal is to construct
a G-equivariant version of Floer cohomology. Let 7 : RP® — RP® be the map inducing multiplication by
the variable ¢ on cohomology. The Z/2-equivariant Floer cochain complex, denoted CF, (Lo, L1), is a free
module over the polynomial ring Fy[q], given by

CFeZ(LOaLl) = CF*(LOaLl) ®]F2 FZ[Q]

The equivariant differential deq is an Fo[¢]-module endomorphism of this complex, which can be expressed
as a power series in q:
deq = do + qdy + ¢°da + . ..,

where each d; : CF*(Lg,L1) — CF*(Lg,L1) is a map of degree +1. The operator dqy is the standard,
non-equivariant Floer differential.

1.2.1 The Localization Isomorphism

In classical equivariant topology, for a space X with a Z/2-action, there is a fundamental long exact sequence
relating the equivariant cohomology of X to that of its fixed-point set X%/2:

kE(yv. YvZ/2 k kE (vZ/2 k+1/v. vZ/2
- HE (X, X%?) - HE (X) — HE (XP?) > HEPH(X; XP?) —
At the cochain level, this corresponds to a short exact sequence
0— CX(X; X% — C (X) — CX(X"?) > 0.

One might hope for a direct analogue in Floer theory. However, establishing such a relationship presents
two significant technical challenges:



1. The differential doq does not preserve the decomposition of the chain complex into invariant and non-
invariant parts. A generator corresponding to a G-invariant intersection point can have a non-zero
differential to a generator that is not invariant, and vice-versa.

2. A pseudo-holomorphic curve contributing to deq that lies entirely within the fixed locus M ZI2 may be
a regular solution in the moduli space over the fixed locus, but fail to be regular in the full equivariant
moduli space M xg EG. This issue of transversality is a central difficulty.

The second problem was resolved by Seidel and Smith. Their work provides a powerful localization theorem
that connects the equivariant Floer homology of (M, Lg, L) to the ordinary Floer homology of the fixed-point
sets, under a specific geometric condition on the normal bundle.

Theorem 1.9 (Seidel-Smith Localization). Let (M,w) be a symplectic manifold with a symplectic Z/2-
action, and let Ly, Ly be Z/2-invariant Lagrangian submanifolds. Suppose the normal bundle of the fized locus

(MZ/27L§/2, L?/Q) inside (M, Lo, L1) is stably trivial. Then there is an isomorphism of localized modules:

HF (Lo, L1;F2) ®p,(q Fola, ¢ '] = HF(LY?, L7%F2) ®r, Falq,q7".

The notion of a stably trivial normal bundle is very important and is defined as follows:
Definition 1.10. The normal bundle triple (NMZ/2,NL%/2,NL?/2) is stably trivial if there exists an
integer k = 0 and an isomorphism of vector bundles over M%/?,

¢: NM“?2@Ck = M%? x C™,

(where the rank of NM?%/? isn—k) such that ¢ restricts to isomorphisms on the Lagrangian normal bundles:

S(NLY? @RF) = LE? x R™,
S(NLY? @ (iR)*) = L x (iR)".
Remark 1.11. The utility of the stable triviality condition is that it allows one to modify the geometric
setup without changing the equivariant Floer cohomology. Given such a trivialization ¢, one can consider

the stabilized manifold M x C* and Lagrangians L; x R*. The equivariant Floer complex remains unchanged,
CFey(Lo x R¥ L, x iRF) =~ CFey(Lo,L1). One can then use ¢ to construct an equivariant Hamiltonian

isotopy to deform the geometry so that the fized locus becomes (M%/? x {0}, L?Q, L?/z) and its normal bundle
is mow genuinely trivial. This resolves the transversality issues mentioned earlier. After this modification,

there is a well-defined restriction map X : CFeq(Lo, L1) — CF(L?Q, L?/Z)[q] which induces the isomorphism
in the theorem upon localization.

1.2.2 Application: Symplectic Khovanov Homology

One application of this machinery is the construction of a symplectic version of Khovanov homology, a
powerful link invariant. We provide a basic outline of their construction.

The construction relies on three core ingredients:
1. An exact symplectic manifold (Y, w).

2. A homomorphism from the braid group Br, (C) = m1(Conf,(C)) into the group of Hamiltonian sym-
pathomorphisms of Y, considered up to homotopy:

p : Br,(C) — Symp(Y, w)/Ham.

3. An exact Lagrangian submanifold L < (Y, w).



Given a braid § € Br,, (C), its image under p is a Hamiltonian isotopy class, which we denote by ¢3. Applying
this to the Lagrangian L, we obtain a new Lagrangian ¢g(L). The Floer homology group HF(L,¢s(L))
is then an invariant of the isotopy class. If this construction satisfies certain properties (invariance under
Markov moves), the resulting homology theory HF(L; SoL) depends only on the link obtained by the closure
of the braid f:

The specific manifold (Y,w) is constructed from a family of affine varieties. Let 7 = (7q,...,7,) € Conf, (C)
be a configuration of n distinct points in the complex plane. To this, we associate the affine surface in C3
defined by

Ay = {(u,0,2) €C3 |uv = (z —711) ... (2 — )}

This construction can be globalized. Consider the space C™ parametrizing monic polynomials of degree n,
identified with Sym™(C) via the root map. Let A = C3 x C" be the total space defined by the equation
ww = 2" — p12"~ ! — ... — p,. The projection onto the second factor gives a fibration A — C™. The base
space C" =~ Sym"(C) has a singular locus corresponding to polynomials with repeated roots. The regular
part of the base is precisely Conf,,(C).

The symplectic structure on the fibers A, allows for symplectic parallel transport over paths in the regular
base Conf,, (C). This transport defines the monodromy representation

m1(Conf,,(C)) — Symp(A,)/Ham,

which gives the required braid group action.

When a path (Tt)te[OJ] in the base approaches the singular locus, for instance when 7 = 73 as t — 1, the
fiber A, degenerates. For example, we have:

1 T2 T3 T4

t=1
T3 T4

The local model for this degeneration is {uv = (z — €)(z + €)} — {uv = 22} as e — 0. This process creates a
a vanishing Lagrangian sphere S? in the smooth fiber {uv = 22 — €2} that collapses to the singular point in
the degenerate fiber.

To construct a richer theory, Seidel and Smith use a more complicated (and more interesting) space. Let
Sym2™(C) = {(71,...,72n) € Sym>"(C) | X 7; = 0}. We consider the map from the space of traceless 2n x 2n
matrices to the space of their characteristic polynomial coefficients:

Tehar © SI(2n) — c1 ~ Sym%”(@)
A — coefficients of char poly of A.



The manifold Y is defined as follows:

Y1 I 0 0
Yo1 0 I 0
Y = : Do [ Yiesl(2), Yiiegl(2) Vi > 1 < sl(2n).
}/(nfl)l 0 0 I
Y1 0 0 0

There is a projection map 7 : ¥ — C?*~! =~ Sym?"(C) induced by mcar. The regular locus of the base is
Conf%n (C), the space of 2n distinct points in C summing to zero. The monodromy of this fibration provides
an action of 71 (Confz"(C)) = Br,(C) on the fibers Y; for 7 € Conf2"(C).

Consider a point in the singular locus of the base, e.g., 74 = (0,0, 73, ..., 72,). This means the corresponding
matrices have a generalized eigenspace of dimension 2 for the eigenvalue 0. This can happen in two ways:

1. Type 1: The eigenspace is 2-dimensional.
2. Type 2: The eigenspace is 1-dimensional.

The Type 1 singularities correspond to matrices in the fiber Y;, where the bottom-left block Yy, is zero.
Such points form the singular locus of the fiber Y, . There is a map from this singular locus to the fiber
over a lower-dimensional configuration space:

Sing(Yz, ) — Y(r,..

T2n)*

Given a Lagrangian L < Y(,,  .,.), which can be identified with a component of the singular locus
Sing(Y{(0,0,74,...,72,,)), One can consider the set of points in a nearby smooth fiber Y{_ . r, . y that con-

T2n
verge to L as € — 0. This procedure defines a new Lagrangian L in the smooth fiber, which is topologically
an S2-bundle over L.

1.2.3 Lagrangians and Khovanov Homology

Lagrangian submanifolds in the fibers Y, are constructed from diagrams. A non-crossing matching on 2n
points defines a Lagrangian submanifold in the fiber Y(,

,...,Tgn):

./'\:3 .
T1 TZ\/

Proposition 1.12. The construction of Lagrangians from non-crossing matchings has the following proper-
ties:

o The resulting Lagrangian submanifold L is independent of the ordering of the matching paths used in
1ts construction.

e Composing diagrams corresponds to applying the braid group action. That is, if a diagram D’ is
obtained from D by the action of a braid 8, then Lp: = ¢g(Lp).

o The diagrams below represent isotopic Lagrangians:

10



To define the link invariant, we fix a reference Lagrangian Lgn corresponding to the standard ”cap” diagram
on 2n points:

T1 Tn Tn+1 T2n

where § — [ x id, i.e.

Given a braid § € Br,,, we embed it into Brsy,, via the map 8 — S®id,,, which acts on the first n strands and
leaves the last n strands fixed. The symplectic Khovanov homology of the closure of 3, denoted Kh(cl(f)),
is defined as the Lagrangian Floer homology:

Kh(cl(B)) := HF (La, ¢5(La))-

For this definition to yield a well-defined link invariant, it must be invariant under the Markov moves, which
relate braids with equivalent closures.

Proposition 1.13. The constructed homology theory is invariant under the two Markov moves:

1. Kh(cl(B)) = Kh(cl(cBo™t)) for any o € Br,:

2. Kh(cl(B)) =~ Kh(cl(BoEt)) for B € Br,, where the closure is taken in Br,1:

11



Proof.

e Let ¢, be the Hamiltonian diffeomorphism corresponding to o.

HF L@afﬁaﬁaﬂ(L@))

HF (L@, $s9595-1(La))

HF (¢, (L), ¢pdo-1 (L))

= HF(¢5-1(La), ¢p(do-1(La)))-

Because the diagram for o~ composed with the cap diagram is isotopic to the cap diagram itself (i.e.,
do-1(La) = La), we can substitute this into the expression:

...= HF(La, ¢3(La))
= Kh(cl(B)).

Kh(cl(aBo™ 1))

I

1

e We do a very brief sketch since we don’t have enough time. We need to analyze the degeneration
corresponding to three colliding points, i.e., the fiber over (0,0,0,74,...,72,). The singular locus of

this fiber is isomorphic to Y{g r,, .. 7,,), Which brings the dimension into the story.
O
1.3 Lecture 3
1.3.1 Hilbert Schemes
Let 7 = (71,...,72,) € Conf?(C) be a configuration of 2n distinct points in the complex plane. We consider

the variety Y, defined by matrices of a particular block form.

Definition 1.14. Let Y, be the subvariety of a product of matrix spaces defined as:

Yo I 0 - 0
Yoy 0 I - 0 .
YV, =< A= : Do e || Yaesl2), Yiiegl2) Vi > Ldet(al — A) = [ [(x - )
Yi-11 O 0 I =t
Y1 0 0 0

We seek a more geometric description of Y. We can analyze the determinant det(z/ — A) in terms of

the block entries Y;;. Let Y; = <aj b;

Iy d-)' A block determinant expansion reveals that the characteristic
J

12



polynomial det(x] — A) takes the form of a determinant of a 2 x 2 matrix whose entries are polynomials in
x.

det(z] — A) = det ((zI)" — Yi1(zD)" " + Yoy (aI)" 2 — ...)

_ det " —ax T+ —byz" N+ bor 2 — L.
- —ciz 4L 2 —diz" 4 doz™ 2 — L.

= A(x)D(z) — B(x)C(x)

Here, A(x), B(x), C(z), D(x) are polynomials whose coefficients are determined by the entries of the matrices
Y;1. The condition det(z — A) = Pr(z) = Hle(x — 1) gives us a useful algebraic identity:

A(x)D(z) — B(xz)C(x) = Pr(x) = A(x)D(x) = B(x)C(x) + Pr(x).

e+ P, ()
which is defined by the equation bc + P, (x) = 0 in Cic,m. The algebraic identity shows that for any A € Y,
the roots z1,...,z2, of the polynomial A(x) are related to points in S,. Specifically, if A(z;) = 0, then the
point (B(z;),C(z;), z;) lies on the variety S;. This defines a map Y, — Sym"(S;) by sending a matrix A to
the set of points {(B(z;), C(z:), z;)}_;, where the z; are the roots of A(x).

This algebraic relation suggests a link to a geometric object. We can consider the variety S, = Spec (M) ,

Conversely, given n distinct points (b;, ¢;,2;) € Sy for i = 1,...,n, we can define a matrix A in Y;. First,

we construct the polynomial A(z) = [[;_,(z — z;). Using polynomial interpolation, there exists a unique

polynomial B(z) of degree at most n — 1 such that B(z;) = b; for all 4. Similarly, there exists a unique
polynomial C(z) of degree at most n — 1 such that C(z;) = ¢; for all i. The identity b;c; + P;(z;) = 0 for
each 4 implies that the polynomial B(z)C(x) + P-(x) vanishes at each z;. This means A(x) must divide
B(z)C(x) + P;(x), which then uniquely determines a polynomial D(z) such that A(x)D(x) — B(x)C(z) =
P, (z).

To make this correspondence more precise, we need to work using the language of schemes. Let R be the
coordinate ring of Y. The roots of the polynomial A(z) over Y, correspond to the scheme Spec(R[z]/A(z)),
which is a subscheme of Y, x C = Spec(R[x]). This leads to the following geometric picture:

Z c Y, xS,
Y, 3A

Here, Z is a closed subscheme of Y, x S.. For a given A € Y,, the fiber of Z over A is a subscheme of S,
whose ideal is given by T4 = {Q(b, ¢, 2) | A(x) divides Q(B(x),C(x),x)}. This ideal defines a subscheme of
S, of length n.

The collection of all such length-n subschemes is called the Hilbert scheme.

Definition 1.15. The Hilbert scheme Hilb™(S;) is the moduli space of all length-n subschemes of S;.
Theorem 1.16. The Hilbert scheme Hilb™(S;) is a smooth algebraic variety.

This theorem allows us to define a map from the variety Y, to the Hilbert scheme.

Definition 1.17. Let j : Y, — Hilb"(S;) be the map defined by A — Ia, where I4 is the ideal of the
subscheme corresponding to the roots of A(x).

This map provides an important connection between the algebraic variety Y, and the geometric object
Hilb™(S;).

Theorem 1.18 (Manolescu).

1. The map j : Y, — Hilb"(S;) is an open embedding.
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2. The complement of the image of j, denoted by D., is the closure of the set of collections of points
{(bi, i, zi)}i—1 € Conf™(S;) such that z; = z; for some i # j. This set is a subvariety of Hilb™(S,).

3. For a given non-crossing matching diagram D, there is a Lagrangian submanifold L7¢del-Smith <y,
The Hilbert scheme also comes with a natural map to Sym™(S;), which is a subset of Conf"(S;). Given
a Lagrangian sphere Ly,  S., we can define a Lagrangian submanifold LY = Sym(L,) = w(Lp, X - -+ x
L, ) < Sym"(S;). We have the following chain of inclusions: w(Ly,, x---x L, ) < Cont"(S;)\D, € Y-.
The key result is that LY is Hamiltonian isotopic to L3¢idel-Smith,

4. The rank of the Khovanov homology of a link K can be computed using the Floer homology of the
corresponding Lagrangian submanifolds. Specifically, for two diagrams Dy and Dy of a link, the Floer
homology group HF (Lp,, Lp,) computes the Khovanov homology Kh(K). The diagrams below illustrate
two non-crossing matchings, Dy and D .

The diagrams in the image depict two non-crossing matching diagrams, Dy and D, which can be used to
construct the corresponding Lagrangian submanifolds. The Khovanov homology of the link is then computed
by the Floer homology of these two Lagrangian submanifolds. The next image shows the associated link

diagram.

This image shows a standard link diagram. The previous image of the matching diagrams, Dy and D1, are
used as building blocks to define the Lagrangian submanifolds whose intersection Floer homology gives the
Khovanov homology of this link.

Corollary 1.19. Consider the diagrams for Doy and D1 from the theorem statement.

The corresponding Lagrangian submanifolds Lp, and Lp, are not Hamiltonian isotopic in the space Conf™ (S;)\D:.
However, by the Seidel-Smith lemma and the Manolescu theorem, they are Hamiltonian isotopic in the larger
ambient space Y.

1.3.2 Symmetry and Localization

We can use geometric symmetries to learn more about these invariants. Let’s consider a 2-periodic link K
and its quotient link K. This symmetry can be lifted to the geometric spaces we have constructed.

Consider a map ¢ : S; — S; defined by (b, ¢, z) — (b, ¢, —z). This involution is well-defined if the polynomial
P.(z) satisfies P-(z) = P-(—z). This condition holds if the set of points 7 is symmetric with respect to the
origin, i.e., 7 = {£71,...,£72,} € Conf*"(C). The involution ¢ on S, induces an involution on the Hilbert
scheme Hilb"(S;), and furthermore, it lifts to an involution on Y.
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We can describe this induced involution on Y, more explicitly. If A € Y, is the matrix corresponding to
the set of roots {z;}, the image ¢(A4) is the matrix corresponding to the roots {—z;}. This means that if
A(x) = TI2", (& — =), then 1(A) corresponds to the polynomial A(x) = [, (x + 2;) = A(—x). Similarly, the
polynomial B(z) associated with A satisfies B(z;) = b;. The polynomial B(z) associated with +(A) satisfies
B(—2;) = b;. This implies that B(z) = B(—x). This involution acts on the matrices in Y; as a sign change
on the blocks, as illustrated below.

Y. I
Yii1 I
) Yo,
—
} —Y3;
: I
\ 0 : I
Ynl

The fixed set of this involution is also of interest. A matrix A is fixed by ¢ if A = 1(A), which means that
the entries must satisfy certain sign relations. This leads to a simplified block matrix structure for the fixed
points: the fixed set is defined by:

Yon1

This fixed set is isomorphic to a new variety of the same type, but with half the number of parameters: the
fixed set is isomorphic to:

Yénl
where 72 = {77,...,74,}.

This structure allows us to apply a localization principle in Floer theory. If we have two Lagrangian sub-
manifolds L and K that are fixed by the Z/2 involution, their Floer homology can be related to the Floer
homology of their fixed point sets.

Proposition 1.20 (Localization). If Lagrangian submanifolds L and K are fixved by a Z/2 involution, their
Floer homology satisfies:

rank(Kh(K)) = rank(HF (L, K)) > rank(HF (L?/2, K%/?)) = rank(Kh(K))

where L%? and K%/? denote the fized point sets of L and K respectively.
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2 Zhengyi Zhou: Rational Symplectic Field Theory

There were three lectures:

e Lecture 1: We will explain the algebraic structures arising from rational symplectic field theory (RSFT)
and use them to define hierarchy invariants for contact manifolds via RSFT.

e Lecture 2: We will explain properties and applications of the hierarchy invariants, as well as examples.

e Lecture 3: We will explain the functoriality of RSFT and hierarchy invariants under strong symplectic
cobordisms, and their applications. Time permitting, we will explain, in all known examples, the non-
existence of strong/weak fillings of contact manifolds of dimension at least 5 is obtained via RSFT.

2.1 Lecture 1
2.1.1 L, Algebras

Let V be a Z/2-graded vector space over Q. We denote by SV the symmetric algebra on V,
SV =@ st
k=0
where S*V is the k-th symmetric power of V. We also define SV to omit the degree-zero component:

SV =P stv.

k>0

Definition 2.1. An Ly -algebra structure on V is a sequence of linear maps {li}x>1, called the higher
brackets, where each map Iy : SkV — V has degree 1. These maps collectively induce a degree-1 linear
operator 1 : SV — SV defined on an element 11 ® --- ® v, € SV by

[(vi,...,00) = Z Z ()l (Vo (1)s -+ + s Vo (k) ® Vo (k1) @ ® Vg (n)s
k=1 geSh(k,n—k)

where Sh(k,n — k) is the set of (k,n — k)-shuffles (permutations o of {1,...,n} such that o(1) < --- < o(k)
and o(k +1) < --- < o(n)), and €(o) is the Koszul sign. The defining condition for an Ly -algebra is that
this induced map squares to zero:
?=o0.
There also exists a pictorial description of [ that is often easier to work with:
U1 V2 U3 Vg

I3

The action of [ can be conceptualized as a procedure: an element is lifted from SV to a space of representatives
TV, the operations {l;} are applied via a gluing map X to a space RV, and the result is projected back to
SV via m. This is summarized by the diagram:

ZA : S@nd a representati&ev

> |glue for {l1,...,lx}

SV ¢«———— RV
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Using this, we can reformulate this equation diagramatically:
vy V2 Vs U4 Us

equals 0.
Now, we can define a Lo-morphism.

Definition 2.2. An Lo,-morphism from (V,{l}}) to (W, {i2}) is a collection of maps {¢y : S¥V — W}=1
that induces an operator qAS satisfying the intertwining relation quSO =120 ¢E

Diagramaticaly, this condition can be drawn as:

$==x (\%\T/ﬁz)

Exercise 2.3. Define the composition of Lo, -morphisms and show that it is also an Lo, -morphism.

2.1.2 BL® and IBL%*-algebras

For the intended applications, we require a more general structure that allows for operations with multiple
outputs.

Definition 2.4. A BL,-algebra onV is a collection of maps {p*' : S*V — SV }i=150. Let EV = S(SV).
These maps assemble into an operator p : EV — EV that is required to satisfy p* = 0.

Diagramatically:

The operations {p*!} of the BLgy-algebra can be constructed through a map . This map acts on a space of
representatives, denoted T'TV, for elements in EV. The map ¥ “glues” the basic operations {p*!} acyclically,
and its output is then mapped back to EV.

Proposition 2.5. If p** = 0 for k = 1,2, then the following hold:
1. pY! is a differential on V.
2. p*>! induces a Lie bracket on the homology H(V,pbt).

3. pb? induces a co-Lie algebra structure on Hy (V).
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4. The composition p2 o p>! vanishes on homology.
Proposition 2.6. If p*!' = 0 for all k > 1, the BL,-structure reduces to an Le,-structure.

Exercise 2.7. Let p* = p|gy : SV — SV. Show that (p*)? = 0, implying (SV,p') is a differential graded
algebra. Show that this induces an Ly -structure on SV with brackets I' = p'.

We have a trivial BLy, structure on {0} =V, which is an initial object:
05V, M=o
What about the converse?
Definition 2.8. A BL,, augmentation is a BLy morphism
(V. T) =5 {0},

i.e., a collection of maps
EF .StV - 5% 01 =Q
such that .
Eop=0.

Diagramatically, this is equivalent to:

52 51

An augmentation may not exist for a given BLy-algebra. To study the obstruction to its existence, we
introduce an invariant derived from the homology of a sequence of truncated complexes.

Definition 2.9. For a BLy-algebra (V,p), we define the following:

e For each k > 0, the truncated space is EFV = @fzo S{(SV). The operator p restricts to a differential
plgry on this space, making (E*V,p|gry) a chain complex.

e For the trivial algebra {0}, the corresponding complex is E*{0} = (‘B?:o Q, whose homology is Hy (E*{0}) =
S

o The unique algebra morphism i : {0} — V induces a chain map iy : E*{0} — E*V. The unit element
ly € Hy(E*V,p) is the image of the generator 1 € Ho(E*{0}) under this map, i.e., 1y = i4(1).

Proposition 2.10. If a BLy-algebra V has an augmentation, then its unit 1y is non-zero in Hy(E*V,p)
for all k = 0.

Proof. An augmentation £ : V — {0} induces a chain map on the truncated complexes. The composition
of the morphisms induced by i : {0} — V and € : V — {0} is the identity on E*{0}. Consequently, the
composition of the induced maps on homology, £ o iy, is the identity on H,(E*{0}). This is summarized
by the diagram:
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{0} 1 £ {0}

E*{0} e Ek{0}
id
Loy Ly Loy

Since 1 € H4(E*{0}) is non-zero, its image under 4, the element 1y, must also be non-zero for the compo-
sition to be the identity. O
This proposition motivates the following definition, which quantifies the failure of 1y, to persist.
Definition 2.11. The torsion of a BLy-algebra (V,p) is

T(V)=inf{lke NU{0} | 1y = 0 in Hy(E*"'V,p)} e N U {o0}.
(Here, the infimum of the empty set is taken to be 00.)
Exercise 2.12. Show that if there exists a BLy-morphism ¢ : V — W, then T(V) = T(W).

Finally, we introduce a version of this algebra that includes a genus count.

Definition 2.13. An IBL.-algebra is given by a collection of maps p*'9 : SFV — SV for k > 1,1 >
0,9 = 0.

These maps determine an operator on S(SV)[A].

Pictorially, it’s almost the same as previously, but now we count genus:

2,2,1
@ p

2.1.3 Curves in SFT
Now, we aim to answer the question: what is symplectic field theory?

Definition 2.14. A (2n — 1)-dimensional manifold Y equipped with a hyperplane distribution £ ¢ TY s a
contact manifold if there exists a 1-form o€ QY (Y), called the contact form, such that & = ker a and the
volume form condition o A (da)"~! # 0 is satisfied everywhere. The choice of « is called a co-orientation.

The contact form determines a canonical vector field on the manifold.

Definition 2.15. The Reeb vector field R on a contact manifold (Y, «) is the unique vector field defined
by the conditions a(R) = 1 and trda = 0, where tr denotes the interior product with respect to R.
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The morphisms between contact manifolds are given by Liouville cobordisms.

Definition 2.16. A Liouwville cobordism from a contact manifold (Y_,a_) to (Yi,ay) is a compact
manifold with boundary W equipped with a 1-form X\ such that:

o The boundary is oriented as OW =Y, 1 (=Y_).

o The 2-form w = dX is a symplectic form on W.

e The Liouville vector field X, defined by .xw = A, points outwards along Y, and inwards along Y_.
o The restriction of A to the boundaries recovers the contact distributions: kerM|y, = {+.

Example 2.17. Let M be a Stein manifold with boundary Y = 0M. The manifold Y inherits a natural
contact structure where the contact distribution is given by &, = T,Y nJ(T,Y) forpe Y. The Stein manifold
M itself serves as a Liouville cobordism from Y to the empty set, known as a Stein filling.

/N

Yy

Remark 2.18. Liouville cobordisms can be composed up to a natural equivalence known as Liouville homo-
topy. This observation establishes the symplectic cobordism category, whose objects are contact manifolds
and whose morphisms are Liouville homotopy classes of cobordisms.

Definition 2.19. Symplectic Field Theory (SFT) is a contravariant functor from the symplectic cobor-
dism category to a suitable algebraic category C (e.g., the category of IB Ly -algebras).

This functor is constructed, following the work of Eliashberg, Givental, and Hofer, by defining invariants
from counts of pseudo-holomorphic curves.

Later, for technical reasons, we will later replace the symplectic cobordism category with the strong sym-
plectic cobordism category, where morphisms are required to possess a Liouville structure near the
boundary.

2.1.4 Analysis of Curves

To study pseudo-holomorphic curves, we must equip the symplectization Y = (Rs x Y, d(e®«)) with a suitable
almost complex structure J that is compatible with both the symplectic form and the underlying contact
geometry. We choose a class of almost complex structures that satisfy the following three conditions:

1. Relation to the Reeb field: J maps the translation vector field ds to the Reeb vector field R.

J(0s) =R
2. Compatibility with the contact structure: J preserves the contact distribution £ and is compatible
with the 2-form da on it. This means:
o J(&) =& for all points pe Y.
e The bilinear form da(-, J|¢-) defines a Riemannian metric on the vector bundle &.

3. Invariance: J is invariant under translations in the Ry coordinate, i.e. it is s-invariant.

20



A J-holomorphic curve u : ¥ — Y from a closed Riemann surface ¥ must be constant, as §s u*(d(e*ar)) = 0.
To obtain a non-trivial theory, we must therefore consider curves from Riemann surfaces with punctures.

Example 2.20. A periodic Reeb orbit v of period T gives rise to a J-holomorphic cylinder u : Ry x S} — Y
via the map (s,t) — (T's,y(Tt)). The energy of this cylinder is infinite:

E(u) = fR o u*(d(e’a)) = 0.

We must restrict our attention to curves with finite energy.
Definition 2.21. The Hofer energy of a curve u = (a,v) : ¥ —> R x Y is defined as

B = [ v¥(da)+sup [ wd(os)a))

¢

where the supremum is taken over all smooth, non-decreasing functions ¢ : R — [0,1].

Theorem 2.22 (ﬂofer—Wysocki—Zehnder). Let a be a non-degenerate contact form on'Y . If a J-holomorphic
curve u : % — Y has finite Hofer energy, then at each puncture of the Riemann surface X, the map u
converges exponentially to a trivial cylinder over a periodic Reeb orbit.

More precisely, in cylindrical coordinates (s,t) near a puncture, there exists a periodic Reeb orbit vy of period
T, a constant ¢ € R, and positive constants C and § such that the following estimate holds:

|u(s,t) — (T's + ¢, y(Tt))| < Ce ¥l as s — +o0.

The norm is measured with respect to a product metric on the symplectization R x Y.

The Hofer-Wysocki-Zehnder theorem allows us to draw pictures such as:

In particular, it guarantees that the cylindrical ends corresponding to punctures are asymptotically modeled
by trivial cylinders over periodic Reeb orbits.

2.2 Lecture 2

We begin by explaining many analogies between SF'T and the more familiar framework of Morse theory.

In Morse theory, the central object is a smooth function f : M — R on a finite-dimensional manifold M.
The dynamics are governed by its critical points and the gradient flow lines connecting them.

In SFT, the setting is infinite-dimensional. Let (Y, a) be a contact manifold. The analogue of the manifold
is the free loop space C®(S!,Y), and the Morse function is replaced by the symplectic action functional

A:
A:C*(SNY) - R

v v*a.
Sl
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The critical points of this functional correspond to closed orbits of the Reeb vector field R (where R is
defined by igda = 0 and igra = 1). Specifically, a loop 7(t) is a critical point of A if and only if its velocity
vector +/(t) is everywhere proportional to the Reeb vector field R(y(¢)). These are precisely the constant
loops, and the positive and negative parametrizations of closed Reeb orbits.

The analogy extends further. In Morse theory, one chooses a Riemannian metric g to define the gradient
vector field —V, f. In SFT, one chooses a compatible almost complex structure J on the contact structure
¢ = kera. This choice induces an L?-metric on the loop space, and the corresponding L2-gradient of the
action functional A at a loop ~y is given by

VA(y) = =J(me'),

where 7¢ is the projection onto the contact hyperplanes along the Reeb direction. The ”flow lines” of SFT,
which are solutions to a perturbed Cauchy-Riemann equation, can be viewed as the gradient flow lines for
this structure.

Let us now examine the local picture around a critical point, which we take to be a closed Reeb orbit ~(t)
with period T, so that v/(¢) = TR(y(t)). The Hessian of A at -y, denoted HessA(7), is a symmetric operator
acting on the tangent space T, (C®(S1,Y)) = I'(v*£). It is given by

HessA(y)n = —JneVyn — JneVy (TR),

where V is the Levi-Civita connection associated with a compatible metric. This operator is often referred
to as the asymptotic operator A,.

Exercise 2.23. Show that the asymptotic operator A., is a self-adjoint operator with respect to the L*-metric.
A Reeb orbit vy is called non-degenerate if ker A, = {0}.

Upon choosing a symplectic trivialization of the contact bundle y*¢ =~ S' x C"~!, the operator A, takes the
more familiar form J
U
An=—-Jo— — S(t)n,
"/77 0 dt ( )77
where Jj is the standard complex structure on C*~! and S(t) is a path of symmetric matrices in sp(2n—2, R).
The spectrum of this operator determines the local behavior of the SFT ”gradient flow.” The linearized flow of

the Reeb vector field along v is the path of symplectic matrices ®(¢) € Sp(2n —2) solving ®'(t) = Jo.S(¢)P(¢).

The gradient flow lines of Morse theory, which solve the equation v/(s) + V f(7(s)) = 0, have an analogue in
Symplectic Field Theory (SFT). These are pseudo-holomorphic curves in the symplectization Y =Y xR.
For a map from a Riemann surface (¥, j) to the symplectization, written as @ = (u,a) : ¥ — Y x R, the
condition to be pseudo-holomorphic is equivalent to the system:

{(ngu)o’l =0

da =u*aoj

where a : ¥ — R is the coordinate in the R factor and m¢ is the projection onto the contact structure
& = kera. A crucial technical condition is that these curves have finite energy, Sz: u*da < o0, which controls
the symplectic area of the curve’s projection into £. For example, Hofer rules out the map e* : C* — C*.

The asymptotic behavior of these curves near punctures mirrors the exponential convergence of gradient flow
lines in Morse theory. In Morse theory, a flow line (s) approaches a critical point p as |y(s) — p| < Ce Al
Near the critical point, the flow line can be approximated by v(s) ~ p + e**v, where ) is an eigenvalue
of —Hessf|, and v is a corresponding eigenvector. In SFT, a finite energy curve u(s,t) on a cylinder
(s,t) € (—,0] x S! approaches the cylinder over a Reeb orbit y(t). The convergence is of the form
u(s,t) ~ v(t) + ev(t), where A > 0 is a positive eigenvalue of the asymptotic operator A, and v(t) is the
corresponding eigenfunction.

We now construct the central objects of study in Symplectic Field Theory: the moduli spaces of pseudo-
holomorphic curves. The construction requires several pieces of data:
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e Domain: A closed, connected Riemann surface (3, j) of a fixed genus g.

e Punctures: Disjoint, finite, and ordered sets of points ¥, < ¥ (positive punctures) and ¥_ < X
(negative punctures).

e Asymptotic Data: For each set of punctures, we fix a corresponding ordered multiset of closed Reeb
orbits, denoted [I';] and [I'_], such that |[T'y+| = |X+|. We also fix a base point on each of these Reeb
orbits.

e Asymptotic Markers: At each puncture p € ¥, u ¥_, we fix an asymptotic marker, which is a
non-zero vector v, € T,X. These markers are used to resolve rotational symmetries in the convergence
of a curve to a Reeb orbit.

With this data, we can define the moduli space.

Definition 2.24. The moduli space of pseudo-holomorphic curves, denoted My (g, T+, T_), is the
set of equivalence classes of pairs (j,u), where j is_a complex structure on a genus-g surface X, and u :
S\(Xs uX_) > Y is a map to the symplectization Y =Y x R, satisfying the following conditions:

1. u is pseudo-holomorphic (i.e., d;(u) = 0) and has finite energy.

2. At each positive puncture p; € X, the map u is asymptotic to the corresponding Reeb orbit v; € T'y.
3. At each negative puncture p; € ¥_, the map u is asymptotic to the corresponding Reeb orbit v; e I'_.
4. The convergence at each puncture respects the chosen asymptotic marker and base point.

The equivalence relation is given by biholomorphic reparametrizations of the domain X thal preserve the
ordering of the punctures, modulo the natural translation action of R on the target Y.

The moduli space My (g,T'y,T'_) can be described analytically as the zero set of a Fredholm section.

Proposition 2.25. The space of maps (before quotienting by reparametrizations and the R-action) can be
framed as the zero set of a Fredholm section s of a Banach bundle E — B.

1)

The virtual dimension of the moduli space can be computed:

Proposition 2.26. The virtual dimension of My (g,T+,T_) is given by:
virdim My (¢, T4, T_) = Ind(s) — dim(Aut(2,X4)) — 1
= (n=3)2-29—T4[-[T_|)+ >} CZ(v) = ), CZ(v)

~yel'y ~yel'—

+ 2c1(&, 1), A) — 1,

where n = (dimY + 1)/2, CZ,(~) is the Conley-Zehnder index of an orbit v, and the term {ci(&,7), A)
represents the evaluation of the first Chern class of the contact bundle & (relative to the trivialization T) on
the homology class represented by the curve.

In a SFT, we need compactness. Unlike in simpler Floer theories, a sequence of pseudo-holomorphic curves
can degenerate by ”breaking” into a multi-level object called a holomorphic building. The following example
illustrates this phenomenon.

Example 2.27. Consider the one-parameter family of maps us : C* — C2\{0}, given by

us(2) = (23 + 2% + 02, 2% + 22° + 362).
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Here, the domain C* =~ R x S represents a cylindrical domain, and the target C*\{0} is the symplectization
of the standard contact sphere (S3, agq). We analyze the limiting behavior of this family as § — 0 in the
C®  topology.

loc

If we take the limit directly as § — 0, the sequence ug converges to

ug(2) = ;irr(l)u(;(z) = (2% + 22, 2% + 227).
This limiting curve connects a Reeb orbit of asymptotic period 3 (at the positive end, z — ) to a Reeb orbit
of period 2 (at the negative end, z — 0).

To reveal more of the structure, we can perform a rescaling to ”"zoom in” on the behavior near the puncture
at z = 0. We can reparametrize the domain of us. For instance, a particular choice leads to the expression:

(6323 + 6222 + 0%2,0%23 + 26222 + 36%2).

Following the reparametrization, we apply a translation in the target space to recenter the map. This yields
the new family of maps us:
5(2) = (02° + 22 + 2,62° + 222 + 32).

Now, taking the limit of this rescaled sequence as § — 0 in the C[5, topology, we obtain a completely different
limiting curve:
vo(z) = ;iné Us5(2) = (22 + 2,222 + 32).

This second curve, extracted from the same original sequence us, connects a Reeb orbit of period 2 to one of
period 1.

The existence of these two distinct limits from a single sequence is problematic and shows us why we need
compactness.

=

1 1
Theorem 2.28 (Bourgeois-Eliashberg-Hofer-Wysocki-Zehnder). The moduli space My (g,T+,T_) admits a
natural compactification My (g,T' 1, T_) by adding stable buildings:

g g3 & € g
5

A building is stable if each level has non-zero energy §u*da or has a stable component (i.e., a branched cover
over a trivial cylinder).
2.2.1 Contact Homology and RSFT

Let a be a non-degenerate contact form. Let V' be the vector space generated by ”good” Reeb orbits, with
a generator ¢, for each such orbit 7. The grading is given by |¢,| = CZ(vy) + n — 3 (mod 2).

Definition 2.29. The contact homology differential is a linear map 0 : S(V) — S(V) of degree —1,
which is defined on the generators q, € V by the formula:

Z#MY 7, I r.

mr k‘r
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This map is extended to all of the symmetric algebra S(V') by requiring that it satisfies the graded Leibniz
rule, 0(ab) = d(a)b + (—=1)1*lad(b). The terms in the formula are defined as follows:

e The sum is taken over all multisets [T'] of “good” Reeb orbits.

o #My(v,T) is the algebraic count of rigid (i.e., virtual dimension 0) pseudo-holomorphic buildings in
the symplectization Y . These buildings have one positive puncture asymptotic to v and a set of negative
punctures asymptotic to the orbits in the multiset I'.

e ¢" denotes the product in S(V') of the generators corresponding to the orbits in T.

e The denominator is a symmetry factor. If the multiset T' consists of n; copies of an orbit v; for
i =1,...,k, then mpr = nilng!---ng!. The term kr is the product of the multiplicities of the orbits
themselves.

The crucial property that makes this construction a homology theory is as follows:
Proposition 2.30. If the moduli spaces My are cut out transversally, then 0% = 0.

Remark 2.31. For a generic choice of the almost complex structure J, the moduli spaces My are reqular,
meaning they are orbifolds of the expected dimension. This is the "lucky” case where transversality holds.

In practice, to construct a robust invariant that is independent of the choice of J, one must employ more
advanced "virtual” techniques. The algebraic count #My is rigorously defined using either the virtual
fundamental cycle (VFC) machinery, developed in this context by Pardon, or the theory of semi-global
Kuranishi structures, developed by Bourgeois and Hofer. Both of these approaches yield a well-defined
count and ensure that 0> = 0 holds in general.

The resulting homology is a powerful invariant of the contact structure, and its construction is functorial.

Theorem 2.32 (Bourgeois-Hofer; Pardon). The homology of the chain complex (S(V'), ), denoted CH(Y'),
is an tnvariant of the contact structure (Y,€) and is independent of the auziliary choices (e.g., the contact
form « and almost complex structure J) used in its definition.

Furthermore, the assignment (Y, &) — CH(Y') defines a functor from the symplectic cobordism category to
the category of Z/2-graded algebras.

2.2.2 RSFT as BLy-Algebras

Let V be the graded vector space generated by ”good” Reeb orbits. We can define a family of multi-linear
operations p*! : VO V& for k > 0,1 > 0 with k 4+ [ > 1. These operations are defined by counting rigid
(i.e., virtual dimension 0) pseudo-holomorphic curves of genus zero.

Let gr, be an element in V®F corresponding to an ordered multiset of & Reeb orbits. The operation p*! is
defined by:
Z #My (0,14, T )qr_

mr_kr_

QF+

Here, the sum is over all possible ordered multisets [I'_] of [ Reeb orbits, and the coefficient is the alge-
braic count of rigid genus-zero curves with & positive punctures asymptotic to I'y and [ negative punctures
asymptotic to T'_.

The collection of operations {p*!} satisfies a set of quadratic relations, endowing the graded vector space V'
with the structure of a BLy-algebra.

Most importantly, the assignment (Y,¢) — (V, {p*!}) is not a functor to the category of BL.-algebras. A
functor to this category would require a symplectic cobordism between two contact manifolds to induce a
strict homomorphism between their associated algebras. Curve counting in a cobordism does not, in general,
satisfy this strong condition.
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Instead, curve counting in a cobordism gives rise to a weaker, homotopy-theoretic map: a BLq-morphism.
This means SFT provides a functor to the infinity-category of BL.-algebras, whose morphisms are the
B Ly-morphisms themselves.
2.2.3 Simpler Invariants

The full BLy-algebra is a complex object. For many applications, it is useful to extract simpler invariants
from this structure.

Definition 2.33. The algebraic planar torsion of a contact manifold (Y,€), denoted APT(Y), is an
invariant derived from the algebraic structure (V, {p*'}) generated by genus-zero curves. Formally,

APT(Y) := T(V, {p*'}),

where T is a specific algebraic construction that measures the “torsion” of the planar SFT algebra.
This simpler invariant is well-behaved with respect to cobordisms.

Proposition 2.34. The assignment (Y,£) — APT(Y) defines a functor from the symplectic cobordism
category to the partially ordered set (N U {00}, <).

Proof. We have a proof by picture:

(Y7 (042, J2a 93)

(Y, (o1, J1, 61)
<Y7 (a2aJ27 93)

where the middle is the auxiliary data, where we stretch ¢ >> 0. O

Proposition 2.35. If APT(Y) = oo, then (Y, ) does not admit a strong Liouville filling.

Exercise 2.36. Show that APT(Y) = o if and only if the unit element vanishes in the contact homology
algebra, i.e., 1 =0 in CH(Y). This implies that the homology itself is trivial, CH(Y) = 0.

Theorem 2.37 (Mei-Lin Yau, Bourgeois, etc.). The contact homology of any overtwisted contact manifold
is trivial. That is, if (Y, &) is overtwisted, then CH(Y) = 0.

We have
e

where we have k + 1 punctures. In particular, we have no subset of I'

L

APT(Y) < k.

This implies:
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2.3 Lecture 3
2.3.1 Examples

Recall the characterization of the invariant APT(Y") for a contact manifold (Y, a): APT(Y) < k if and only
if there exists a set of Reeb orbits I" = {ry,...,rg41} satisfying a specific algebraic condition in RSFT, while
no subset of I" satisfies a related, simpler condition. These conditions are typically represented by diagrams
corresponding to the moduli spaces of certain holomorphic curves.

Specifically, APT(Y) < k is established by the existence of a set I' = {rq,...,rt+1} for which the following

configuration exists:

Theorem 2.38 (Mei-Lin Yau, Buk). For an overtwisted contact structure Yor, the cylindrical contact
homology vanishes, CH(Yor) = 0. This vanishing corresponds to APT(Yor) = 0.

In particular,

does not appear as a subset of I'.

Theorem 2.39 (Latschev-Wendl). For any integer k = 0, there exists a contact 3-manifold Yy, such that
APT(Yy) = k.

Example 2.40. The canonical model for an overtwisted contact structure is given by the manifold (R?, aor),
where the contact form in cylindrical coordinates (r,0,2) is apr = cosrdz + rsinr df

The first diagram below provides a global picture of the contact planes & = ker(aor) in the ambient space.
The planes rotate as one moves away from the z-axis, completing a full twist at r = w. The red line segment
labeled 7 indicates the singular set of the projection of the contact planes onto the xy-plane.

z

///// [\ /
\( L

/&

The defining feature of this structure lies in the characteristic foliation on an embedded disk. Consider the
disk D in the plane {z = 0}. The characteristic foliation F is the singular line field on D given by the
intersection of the tangent space of the disk with the contact planes, F = TD n £. Diagramatically, this
possesses a unique singular point at the origin, around which the foliation spirals.

The boundary of the disk is a Legendrian curve. This embedded disk, endowed with this specific characteristic
foliation, is the standard overtwisted disk.
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The existence of such a disk is the defining property of an important class of contact manifolds.

Definition 2.41. A contact 3-manifold (Y3,€) is overtwisted if there exists an embedded disk D =Y such
that its boundary 0D is Legendrian and the characteristic foliation TOD n & has a unique singular point.

Proposition 2.42 (Giroux). The characteristic foliation on a surface determines the contact structure in
a neighborhood of the surface (the contact germ).

Theorem 2.43 (Eliashberg). A contact 3-manifold (Y3,£) contains an overtwisted disk if and only if it
contains a Legendrian unknot with Thurston-Bennequin number tb = 0.

Now, we move on to discuss convex hypersurfaces, a special type of embedded surface.

Definition 2.44. A hypersurface ¥ Y3 is convex if there exists a contact vector field X that is transverse
to 3.

For a convex surface ¥, the contact form « can be chosen such that its Lie derivative £Lx« = 0. This implies
that ¥ decomposes into regions ¥, = {p € ¥ | (da)|, > 0} and X_ = {p € ¥ | (do)|, < 0}, separated by
the dividing set I' = {p € ¥ | (de)|, = 0}. The regions X and ¥X_ can be viewed as Liouville fillings of the
contact manifold I'.

The local model near a convex hypersurface is determined by the Liouville flows on ¥, and ¥_. A crucial
result by Giroux connects the geometry of this decomposition to the property of being overtwisted.

A local model for the neighborhood of a convex hypersurface can be constructed from Liouville domains.
Let (V,Ay) and (W, Aw) be two Liouville domains. Their symplectic product (V x W, Ay @ Aw) is also a
Liouville domain. A neighborhood of the dividing set can be modeled on this product structure, as depicted
below:

V x oW

W x oV

Consider the specific case where the dividing set I' is diffeomorphic to S*. A neighborhood of I inside the
symplectization R x Y can be described by the cotangent bundle of R, D*R =~ R, x R,;, crossed with I". The
contact form in this neighborhood is locally ar + ydx. The hypersurface itself is the slice at x = 0. The
regions on either side are modeled by R x {1} x ¥, and R x {—1} x ¥_, with corresponding 1-forms related
to the Liouville forms on ¥, and ¥_. Here is an diagram of a local model for the neighborhood of a convex
hypersurface where the slice x = 0 corresponds to the hypersurface itself:

or + ydz
D*R x T
R {1} x X R x {1} x &,
Ap- —dx As +dx
The geometry of the dividing set I and the characteristic foliation on ¥ determine the contact structure in

a neighborhood of the surface. A theorem by Giroux connects this local picture to the global property of
being overtwisted.

Theorem 2.45 (Giroux). The contact germ of a convexr hypersurface is overtwisted if and only if the
characteristic foliation on the surface has the following configuration:

&Y

3

rather than the following configuration:
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This geometric criterion can be understood in terms of the dynamics of the Liouville flows on the regions
¥, and X_. The overtwisted case corresponds to a situation where the dynamics on the two sides of the
dividing set are opposites of one another.

Our goal is to demonstrate that if a contact manifold (Y,&) contains an overtwisted convex hypersurface,
then its cylindrical contact homology vanishes, i.e., CH(Y) = 0. The strategy involves creating a specific
Reeb orbit whose SF'T differential is the unit element.

Goal: CH(Y) = 0. If Y contains an overtwisted convex hypersurface.

Step 1: Perturb the contact form to be non-degenerate. We begin by perturbing the contact form
in a local neighborhood modeled on S* x R? with coordinates (¢,z,y). The initial form is a = dt + ydx.
We introduce a new form o' = f(x,y)dt + ydx, where (f — 1) is C?-small. Specifically, near the origin
(z,y) = (0,0), we choose

flay) =1+e(@® —y?)

for some small ¢ > 0. The Reeb vector field R; for the form o' is parallel to ¢, — Xy, where X is the
Hamiltonian vector field of f with respect to the symplectic form w = dx A dy. The Hamiltonian vector field
Xy is defined by ix,w = —df. A direct calculation yields

—df = “2exdr +2eydy —> X; = 2ey 0y + 2ex 0.

The flow of this vector field describes a saddle point at the origin, as shown in the figure below:

T

V..
N

This local perturbation creates a hyperbolic closed Reeb orbit » = (0,0) x S. The goal is to show that this
orbit is the boundary of a pseudo-holomorphic plane.

Lemma 2.46. For the generator q, corresponding to the orbit v, we have d(q,) = 1.
Proof. We analyze the asymptotic operator at r to find a pseudo-holomorphic curve with one positive
puncture at r and no negative punctures. The linearization of the Reeb flow in the contact planes normal

to the orbit r is given by the Hessian of f. Identifying the tangent space with C = R, + iR, the asymptotic
operator acts on sections of the trivial bundle over S' and has the form

a4 s0)

where S(t) is the matrix of the linearized flow. In our case, this is simply the Hessian of f at the origin:

2€ 0
S =V?2£(0,0) = (0 _2€> .

The relevant operator governing the Fredholm theory is associated with the linearization of the Reeb flow,
whose matrix has eigenvalues +2e. For an appropriate choice of almost complex structure J, we can find
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a family of pseudo-holomorphic disks with a single positive puncture at r. The existence of such a disk
is guaranteed by the local analysis of the linearized Cauchy-Riemann equations. The leading term in the
asymptotics of such a curve u(s,t) : (—00,0] x S - R x Y as s — —oo will be of the form

u(s,t) ~ v.(t) + e**v(t) + higher order terms,

where A > 0 is a positive eigenvalue of the asymptotic operator A, and v(t) is a corresponding eigenfunction.
The existence of a rigid holomorphic plane establishes that d(g,.) = 1, which in turn forces the contact
homology to be trivial, CH(Y) = 0. O

2.3.2 Detour to Intersection Theory

To justify the preceding claim, we briefly review the intersection theory of punctured pseudoholomorphic
curves. Let U and V' be two such curves in the symplectization R x Y. Let A, be the asymptotic operator at
a Reeb orbit 7. Assume its eigenvalues - -+ < a_s <a_1 <0< a; <as < ... are simple, with corresponding
eigenfunctions 7;. The intersection number of U and V' can be computed as:

U-V=#UnV)+I,UYV)

where #(U n'V) is the algebraic count of intersection points in the interior, and I,s, is an asymptotic
contribution. At a positive puncture, this contribution is given by the difference of winding numbers of the
asymptotic limits of U and V relative to the eigendirections of A,. For example,

wind(n_1) — wind(u — v) at positive punctures

Isy(U, V) = {

wind(u —v) — wind(n;)  at negative punctures

where u, v are asymptotic markers for U, V. This framework allows one to show that certain moduli spaces
are non-empty by demonstrating that intersection numbers must be negative, which is impossible for dis-
tinct pseudoholomorphic curves. By constructing appropriate foliations by curves (leaves), one can force
intersections and establish the existence of connecting trajectories, thereby proving claims such as d(vy) = 1.

1. Excluding Degenerations: First, one must rule out certain degenerations or unexpected curves.
Consider a pseudoholomorphic curve U with a single positive puncture, as depicted below.

y

By constructing a local foliation of the ambient manifold by trivial cylinders, we can always find a ”leaf”
curve V whose asymptotic behavior relative to U is controlled. The algebraic intersection number U -V
between such distinct curves is zero. This number decomposes into a sum of local intersection numbers
and an asymptotic contribution: U -V = #(U N V) + I, (U, V).

With a careful choice of V', one can ensure that the asymptotic contribution is bounded, for instance
I,sy(U,V) > —1. Since the local intersection count #(U n V') must be non-negative, the relation
0=#UNnV)+I(U, V) leads to a contradiction.

2. Next, one must show that there are no urves that have a positive puncture at v but also have one or
more negative punctures. Consider a curve U with one positive puncture at v and negative punctures
at a set of Reeb orbits {r;}.

17273

Under suitable topological assumptions (e.g., that the linking numbers between + and the r; are zero),
the intersection theory argument implies that U cannot be an solution. The condition U -V = 0 forces
U to be a leaf itself, meaning it does not contribute to the SF'T differential.

30



Exercise 2.47. Prove Giroux criterion, assuming that I'™ represents the collection of Reeb orbits.

2.3.3 Higher ADT

Generalizing the notion of overtwistedness to higher dimensions is difficult. A naive construction mimicking
the 3-dimensional case often fails due to dimensional constraints. For instance, a configuration intended
to produce a special holomorphic curve might have a virtual dimension of —1, meaning the corresponding
moduli space is empty. As shown in the diagram below, a configuration involving a saddle point might be
expected to yield a curve of dimension 0 only after including a sufficient number of additional punctures.
For a surface with only one positive puncture, the virtual dimension may be —1, implying that the moduli
space is empty for a generic choice of almost complex structure.

max saddle

1 x D*R
0
C D
()
Ty x D*R

A higher-dimensional analogue of overtwistedness is provided by the concept of Giroux torsion.

Definition 2.48. A contact manifold (Y?"*1 €) is said to have Giroux torsion if it contains an embedded
domain diffeomorphic to [0, 1], x S§ x S?"=2 with a contact form that is locally modeled by o = (cos 2mz) d +
(sin27z) 8. Here, B is a connection 1-form on a principal bundle over M.

The existence of Giroux torsion imposes strong constraints on SFT-based invariants and has several impli-
cations for the existence of symplectic cobordisms. The following theorems establish some of these:

Theorem 2.49 (Latschev-Wendl). If a contact manifold Y contains Girouzx torsion, then APT(Y) < 1.
This can be visualized as follows, where D* is the cotangent bundle:

D*T! x T

T x D*T* Tt x D*T*

D*T! x T

Theorem 2.50 (Moreno-Zhou). If there exists a strong cobordism from (Y_,£_) to (Y, €4), and if APT(Y,) <
oo, then APT(Y_) < .

Theorem 2.51 (Wendl). If a contact manifold Y has planar torsion, then Y admits a strong cobordism to
an overtwisted contact manifold.
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3 Aliakbar Daemi: Atiyah-Floer conjecture

There were three lectures:

e Lecture 1: I will begin this talk by reviewing some foundational material in gauge theory, including
connections on principal bundles, curvature of a connection and the action of the gauge group on
connections. I will then explain how gauge theory on low dimensional manifolds provides a rich source
of symplectic manifolds and Lagrangians in them. More specifically, flat connections on Riemann
surfaces give rise to symplectic manifolds, and flat connections on 3-manifolds can be used to produce
Lagrangians. Next, I will discuss how Lagrangian Floer homology of these Lagrangians can be used to
define a 3-manifold invariant, called symplectic instanton homology.

e Lecture 2: Instanton Floer homology is a topological invariant of 3-manifolds, which is obtained by
applying methods of Morse homology to the Chern—Simons functional. This invariant, along with
its variations for knots and links, has recently found many interesting applications in low dimensional
topology. In this talk, I will review the definition of instanton homology and various algebraic structures
on this invariant, which will be useful for the third talk.

e Lecture 3: Atiyah-Floer conjecture predicts a connection between gauge theory and symplectic topol-
ogy. Morse specifically, it proposes that instanton Floer homology and symplectic instanton homology
are isomorphic invariants of 3-manifolds. In this talk, I will review the proof of the Atiyah-Floer con-
jecture for admissible bundles. In particular, this shows that framed instanton homology (introduced
by Floer, Kronheimer and Mrowka) and its symplectic variant (defined by Wehrheim and Woodward)
are isomorphic to each other. The key geometric ingredient in the proof is the mixed equation, relating
ASD equation for connections and holomorphic curve equation.

3.1 Lecture 1
3.1.1 Connections, Curvature, and Gauge Groups

Throughout, let X be a smooth manifold and G be a Lie group. Our primary example of interest will be
the special orthogonal group G' = SO(3). The fundamental geometric object is a principal G-bundle.

Definition 3.1 (Principal Bundle). A principal G-bundle over X is a smooth manifold P equipped with
a smooth right action of G, such that X is the quotient space P/G and the action is free. We represent this
structure as:
G——P
lﬂ

X

Definition 3.2 (Gauge Group). The gauge group of P, denoted G(P), is the group of fiber-preserving
diffeomorphisms F : P — P that are G-equivariant. That is, 1o F = m and F(p-g) = F(p) - g for all
p € P,g € G. This is equivalent to the set of maps u : P — G satisfying u(p - g) = g ‘u(p)g, where
F(p) =p-u(p).

To understand the structure of the gauge group and related objects, we use the construction of an associated
bundle.

Definition 3.3 (Associated Bundle). Let P — X be a principal G-bundle and let ¢ be a left action of G
on a manifold F'. The associated bundle, denoted P x, F, is the quotient of P x F' by the equivalence

relation (p- g, f) ~ (p,v(9)f). The projection w,([p, f]) = w(p) makes this a fiber bundle over X with fiber
F.

Example 3.4 (Adjoint Action). Consider the adjoint action of G on itself, Ady(h) = ghg™'.

Exercise 3.5. Following the construction, check that the gauge group G(P) is isomorphic to the space of
sections of the associated bundle P X 44 G.
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Example 3.6 (Determinant One Gauge Group). Consider SO(3) = SU(2)/{+
(P

on itself via the Adjoint action. For a principal SO(3)-bundle P, the group G
the determinant one gauge group.

I}. The group SU(2) acts
) = F(X,P X Ad SU(2)) 18

If the fiber is a vector space V on which G has a representation, then P x, V' is a vector bundle.

Example 3.7. The adjoint action of G on its Lie algebra g gives the adjoint bundle, ad(P) := P X,4 9,
which is a vector bundle over X. For G = SO(3), this corresponds to the standard representation of SO(3)
on s50(3) =~ R3.

Exercise 3.8. Show that G(P) (or G(P)) is an infinite-dimensional Lie group with Lie algebra Q°(X, ad(P)),
the space of sections of the adjoint bundle.

A connection provides a notion of differentiation on the bundle. It can be defined as a splitting of the tangent
bundle sequence:

0> TP >TP 5 TX -0
where Ty, P = ker(my) is the vertical tangent bundle.

Definition 3.9 (Connection). A connection is a G-equivariant splitting of this exact sequence. Equiva-
lently, it is specified by a projection onto the vertical component. Let wa : TP — TyerP = P X g be the
projection map onto the vertical tangent space for a connection A. This map must satisfy:

1. For the inclusion i : Tye,, P — TP, we have wy 01 = id.
2. The kernel of wy, called the horizontal space, maps isomorphically to T X via .

Diagramatically:

The space of all connections on P is denoted A(P).

Exercise 3.10. Show that A(P) is an affine space modeled on Q' (X, ad(P)). That is, for a fized connection
Ag € A(P) and any a € QY(X, ad(P)), Ao + a is another connection. The connection forms are related by
Wag+a (V) = wa, (V) + a(mx(v)) forve TP.

e Forue G(P) and A € A(P), the action is given by the pullback u*A.

e The curvature of A, denoted Fa € Q?(X, ad(P)), is the obstruction to integrability of the horizontal
distribution. It is defined by Fa(n,n') := wa([7,7']), where 7,7 are the horizontal lifts of vector fields
n,n from X.

In alocal trivialization of the bundle, a connection A can be written as the exterior derivative plus a g-valued
1-form, A = d + a, where a € Q' (U) ® g.

Example 3.11. In a local trivialization, the curvature and the action of a gauge transformation u are given
by:
1
Fa=da+ §[a7a] and uw*A=d+u tau+utdu

Definition 3.12. A connection A is flat if its curvature vanishes, Fa4 = 0.

A flat connection allows for path-independent parallel transport. Given a path + : [0,1] — X, the connection
A defines a unique horizontal lift 4 starting at any point py in the fiber over v(0). The endpoint ¥(1) will
be in the fiber over y(1). If v is a closed loop, the map from pg to (1) defines an element of G, known as
the holonomy of the connection along ~.
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The flatness condition F4 = 0 implies that the holonomy depends only on the homotopy class of the loop.
This gives rise to a homomorphism from the fundamental group of X into G.

Theorem 3.13. The moduli space of flat connections on P is in one-to-one correspondence with the character
variety of X :
{Ae A(P) | Fy = 0}/G(P) =~ Hom(m1(X),G)?/ ~

where ~ is the adjoint action of G. A representation p € Hom(m (X),G) gives rise to a flat bundle P, =
(X x G)/m1(X), where the action is (%,g) -~y = (T -7, p(y)"Lg) for v e m (X).

3.1.2 Moduli Space of Flat Connections on a Riemann Surface

Let 3 be a Riemann surface of genus g, and let G = SO(3). Principal SO(3)-bundles over ¥ are classified
by the second Stiefel-Whitney class wq(P) € H?(3;Z/2) =~ Z/2. Let P; be a bundle with wq(P;) = i.

Definition 3.14 (Even Character Variety). The moduli space for the trivial bundle Py (with wa(Py) = 0)
is the even character variety:

Meyen(X) = {A € A(Po) | Fa = 0}/G(Po) = {p: m (%) — SU(2)}/SU(2).

Definition 3.15 (Odd Character Variety). The moduli space for the non-trivial bundle Py (with we(Py) = 1)
is the odd character variety. It is described using representations of the fundamental group of the punctured
surface, ¥/ = X\{pt}:
Moai(8) = {Ae A(Py) | Fa = 0}/G(Py)
={p:m(¥) = SU(2) | p(n) = —1}/SU(2)
g
= {(A1,...,By) € SU@2)* | [ [[4i, Bi] = —1}/SU(2).
i=1
where 1 is a loop around the puncture.

Exercise 3.16. Show that M,44(2) is a smooth manifold of dimension 6g — 6. In contrast, Meyen(X) is
singular.

3.2 Lecture 2

3.2.1 More on Moduli Space of Flat Connections

Let P — X be a principal SO(3)-bundle. The space of all connections on P is denoted by A(P). A connection
A e A(P) is said to be flat if its curvature F4 vanishes. The group of gauge transformations is denoted by
G(P), which acts on A(P). We are interested in the space of gauge equivalence classes of flat connections.

Definition 3.17. The moduli space of flat connections on a principal SO(3)-bundle P over ¥ is the quotient
space R
M(X) = {Ae A(P) | Fa = 0}/G(P)

where Q(P) is the group of based gauge transformations.
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The bundle P is determined, up to isomorphism, by its second Stiefel-Whitney class wa(P) € H?(3;Zg) = Zs.
Thus, for a given genus g surface, there are two distinct SO(3)-bundles to consider.

SO3) —— P

|

D)

This diagram illustrates the structure of the principal bundle P over the surface 3. The fibers of the bundle
are copies of the structure group SO(3).

The moduli space M (X) can also be described in terms of group homomorphisms. Specifically, for a suitable
choice of SO(3)-bundle, M (X) is related to the space of homomorphisms from the fundamental group of a
punctured surface to SU(2), modulo conjugation. This leads to the following algebraic description:

M) ={(A1,..., Ay, B1,...,B,) € SU(2)* | ﬁ[Ai,Bi] =—1}/5U(2)

i=1
This space is a smooth manifold of dimension 6g — 6.

Example 3.18. When g = 0, X is a 2-sphere. The moduli space of flat connections on a sphere is empty,
as there are no non-trivial flat bundles. Thus, M (X) = .

Exercise 3.19. When g = 1, ¥ is a torus. Show that M(X) consists of a single point. Hint: Chnsider
2 0 0 1

Ay = <O 2) and By = [1 0}.

Example 3.20. When g = 2, the moduli space M (X) is the complete intersection of two quadrics.

Remark 3.21. The moduli space of flat connections is also a central object of study in algebraic geometry.
In that context, it is referred to as the moduli space of stable holomorphic vector bundles of rank 2 and degree
1 with a fized determinant. We won’t study anything via this viewpoint, but it is still good to know.

The tangent space to the moduli space at a point represented by a flat connection A can be characterized
using cohomology. Let ad(P;) denote the adjoint bundle of the principal bundle. The tangent space is given
by

TAM(2) = {C € Q'(S,ad(P1)) | da¢ = 0}/{daf | B € Q°(, ad(P1))}

Using Hodge theory, this is isomorphic to the space of harmonic 1-forms with values in the adjoint bundle:
TAM(E) = {¢ e QY(S,ad(Py)) | da¢ = 0,d%¢ = 0}

The moduli space M (X)) is endowed with a natural symplectic structure. The symplectic form w is defined
on the tangent space by the following expression.

Definition 3.22. Let ¢, (" € QY(3,ad(Py)). The symplectic form w is given by
wl6.0) = [ ey
)

where (-, - is induced by the inner product on the Lie algebra su(3) =~ R3.

Exercise 3.23. Show that the action of the group of based gauge transformations Q(Pl) on the space of
connections A(Py) is Hamiltonian, with the curvature map A — F4 serving as the moment map. Deduce
that the moduli space is isomorphic to the space of connections quotiented by the full gauge group, i.e.,

MX) = A(P)/G(P).

35



3.2.2 Moduli Space of Flat Connnections on 3-Manifolds

The study of moduli spaces on 3-manifolds is a powerful method for defining topological invariants. The cen-
tral idea is that the moduli space of flat connections on a 3-manifold with boundary determines a Lagrangian
submanifold within the symplectic moduli space of its boundary.

Let Y be a compact 3-manifold with boundary dY = 3. We need to fix an SO(3)-bundle on Y, denoted by

Q-Y.
Q
|
Y

Q is determined up to isomorphism by ws(Q) = PD([7]), where v is a properly embedded 1-manifold in Y.
The bundle @ is determined, up to isomorphism, by its second Stiefel-Whitney class wo(Q), which is the
Poincaré dual of a properly embedded 1-manifold v in Y. The diagram shows the structure of this principal
bundle @ over the 3-manifold Y.

SO(3) —

For a 3-manifold Y with a boundary, the moduli space of flat connections on Y is a subset of the moduli
space on its boundary. Consider the case where the boundary consists of two components, 0Y = ¥; 11 3.
The moduli space of flat connections on Y is given by

Ly ={A€ AQ) | Fa =0}/G(Q)

This can also be described as the set of holonomies of flat connections on Y.
Liyy = {p: m(Y\7) = SU(2) | P() = —1I for any M}/SU(2)

The following diagram shows a 3-manifold Y with two boundaries 3; and 35, and a properly embedded
I-manifold v shown in red. The moduli space L(y,,) associated with this setup is a Lagrangian submanifold

of M(El) X M(Eg)
Y

M’"’

21 Z2
Theorem 3.24 (Herald). After a small perturbation, the moduli space Ly is an immersed Lagrangian

submanifold in M(X). This immersed Lagrangian is well-defined up to Lagrangian cobordisms.

Let L: LY — M(X) be the restriction to the boundary after a small perturbation. This embedding has
two key properties:

e L*w = 0, where w is the symplectic form on M(X).
e dim(L(y,) = dim(M(¥))/2 = 3g — 3.
Exercise 3.25. Prove the first part of Herald’s theorem. Hint: Use Stokes’s Theorem.

Let Z be a 3-manifold with boundary 0Z = ¥,_;. Consider a new 3-manifold Z# = Z§T% x I formed
by taking a connected sum with a thickened torus, where the connected sum is taken along a point. The
associated 1-manifold is v# = {pt} x I. This construction yields a new Lagrangian submanifold Lﬁ =
Lz# o#) embedded in M(X,) x M(T?) = M(X,). For instance, if Z = H,_; is a handlebody of genus
g — 1, then the associated Lagrangian is a product of spheres, qu_l >~ (83)971, which is a Lagrangian
submanifold of M(%,). \
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The diagram below illustrates this handlebody connected sum. The leftmost figure represents the initial
handlebody Z with boundary ,_;. The middle figure shows the connected sum operation with a thickened
torus 72 x I. The result, on the right, is a new handlebody Z# whose boundary is a surface of genus g,
denoted X, and contains a properly embedded 1-manifold 4# (in red).

Z zr

X
{
y

Exercise 3.26. Prove that Lﬁ ~ 93 x ... x S5,

3.2.3 Symplectic Instanton Homology

Given two 3-manifolds (Y,~) and (Y’,~’) with the same boundary ¥, their associated moduli spaces Ly )
and Ly’ are embedded Lagrangians in M(X). We can define a Floer homology, HF(L(y ), Ly’ ~7)), by
studying the intersection points of these two Lagrangians.

The homology is defined as the homology of a chain complex (Cl, d).

Definition 3.27. The chain group Cy is a free abelian group generated by the intersection points of the two
Lagrangians, Liy,yy 0 Ly 41y

The differential d is a map from C, to C, defined by counting specific solutions to a partial differential
equation. For any two intersection points a_ and «., the coefficient of ay in da_ is given by

{da_,ayy=#{u:Rx[0,1] > M(X) | uy; S Ly, wy < LY”””tIiIgc u(-, 8) = as,d5u = 0}/R

The domain for the map u is the cylinder Rx [0, 1]. The term u,, denotes the map restricted to the boundary of
the cylinder at a fixed time, while dyu = 0 is the Cauchy-Riemann equation for a J-holomorphic curve, where
J is a chosen compatible almost complex structure on M(X). The quotient by R accounts for translational
symmetry in the domain. The geometric setup for this is shown in the following figure:

t
_—

Ui

s

/

Yl
R x [0,1]

This diagram shows the domain of the maps u used to define the Floer differential. It is a cylinder with ends
extending infinitely in either direction, representing a flow between two intersection points «_ and a.. The
flow lines are constrained to lie within the two Lagrangian submanifolds Ly, and Ly~ at the boundaries.

Theorem 3.28 (Daemi-Fukaya-Lipyankij). The map d satisfies d*> = 0, so (Cy,d) is a chain complex. Its
homology HF (Ly,), L(y) is a topological invariant of the pair (N,w), where N is a closed 3-manifold
and w is a properly embedded 1-manifold.

This result follows from gluing the two 3-manifolds along their boundaries to obtain a closed 3-manifold.
The geometric gluing process is depicted below:
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This figure illustrates the topological gluing of two 3-manifolds, (Y,v) and (—=Y’, —+’), where the minus sign
denotes a reversal of orientation. They are glued along their common boundary Y. The resulting object is
a closed 3-manifold N which contains a closed 1-manifold w.

The homology can then be identified as an invariant of the closed 3-manifold.

Theorem 3.29 (Wehrheim-Woodward). The symplectic framed instanton homology, denoted SI#(N), is
an invariant of the closed 3-manifold N with a properly embedded 1-manifold w. It is defined by the Floer
homology of the Lagrangians associated with a Heegaard splitting of N :

SI#(N) = HF (L%, L%)

where N = H ux,_, H' is a Heegaard splitting of genus g — 1.

3.3 Lecture 3

The moduli space of flat connections on a closed 3-manifold N can be understood as the intersection of
two Lagrangian submanifolds derived from a Heegaard splitting of N. Given a pair of 3-manifolds (Y,~)
and (Y’,~') with a common boundary ¥, the intersection points Ly, N Ly’ ) correspond to pairs of flat
connections on the respective manifolds that agree on the boundary. Gluing the two 3-manifolds along their
boundary, we obtain a closed 3-manifold N = Y usY”’. A flat connection on this closed manifold corresponds
to an equivalence class of such pairs.

Liy,p) e~_ Cj)

A (Y, )
) (2
O ¥

The diagram above illustrates how the intersection of two Lagrangians Ly ) and Ly~ /) corresponds to the
gluing of the two 3-manifolds (Y,v) and (Y’,v’), yielding a closed 3-manifold N. The intersection points of
the Lagrangians represent the flat connections on this closed manifold.

L(Y',E')é-\f\

The moduli space of flat connections on the closed 3-manifold N with a fixed SO(3)-bundle Q@ — N (deter-
mined by wy(Q) = PD(w)) is denoted by R(N,w). The expected dimension of this moduli space is zero.
We will now provide another justification for this fact by considering the Chern-Simons functional.
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3.3.1 Chern-Simons Functional
The Chern-Simons functional provides a real-valued invariant of connections on a 3-manifold.

Definition 3.30. Let Q — N be a principal SO(3)-bundle over a 3-manifold N. The Chern-Simons
Sfunctional CS : A(Q) — R is defined by firing a reference connection Ag € A(Q). For any other connection
A e A(Q), we choose an auziliary connection A on the cylinder [—1,1] x N such that Al{_1yxny = A and
Alpyxn = Ao. Then, the functional is given by

1
OS(4) = J[_LHXN@A A FD

The diagram below visualizes the cylinder over the 3-manifold IV which is used as the domain for the auxiliary
connection A.

A

[-1,1] x N
The Chern-Simons functional has several key properties:

e The value of C'S(A) depends only on the connection A (and the reference connection Ap), not on the
choice of the auxiliary connection A.

e It is not gauge invariant in general. However, for a gauge transformation u € G (P), the value changes
by an integer, i.e., CS(u*A) = CS(A) (mod )Z.

e As a consequence, C'S descends to a map CS : A(Q)/G — R/Z, where G is the group of gauge
transformations that are based, but not necessarily trivial at infinity.

Another important result is that the critical points of the Chern-Simons functional are precisely the flat
connections on N. Thus, the set of critical points is isomorphic to the moduli space of flat connections,
Crit(CS) =~ R(N,w). This provides a functional-theoretic justification for the expected zero-dimensionality
of the moduli space.

Definition 3.31. A pair (N, w) is called admissible if there exists a properly embedded surface S — N
such that the pullback of the second Stiefel-Whitney class, s*w, is non-zero in Hy(S,0S;Zs2). This condition
ensures that the moduli space is non-empty and well-behaved.

Example 3.32. The pair (N,w) = (Y,v) v (Y',v'), formed by gluing two 3-manifolds as described in the
previously, is an admissible pair.

Exercise 3.33. Prove that the stabilizer of any flat connection A € R(N,w) under the action of the group
of based gauge transformations G(Q) is trivial, consisting only of {+1}.

The instanton homology (N, w) is defined as the Morse homology of the Chern-Simons functional, I(N, w) =
H(Cy,d). The chain complex Cj is a free abelian group generated by the critical points of C'S, which are the
flat connections in R(N,w). The differential d counts the number of unparameterized downward gradient
flow lines of the functional, connecting critical points.

The gradient flow lines of CS are closely related to the anti-self-duality (ASD) equation. The flow line
equation d‘zit) = —VC(CS is equivalent to the ASD equation, F4 + *F4 = 0, for a connection A on the
cylinder R x N with the product metric. This establishes a connection between the Morse theory of the

Chern-Simons functional and solutions to a gauge-theoretic PDE.
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3.3.2 Atiyah-Floer Conjecture for Admissible Bundles

The Atiyah-Floer conjecture is the central result that links the two homologies we have discussed. It states
that the instanton homology and the symplectic instanton homology are isomorphic.

Theorem 3.34 (Daemi, Fukaya, Lipyanskiy). For any admissible pair (N, w), there is a natural isomorphism
between the instanton homology and the symplectic instanton homology:

I+(N,w) = ST (N, w)

This theorem provides a powerful statement that a homology theory defined by counting solutions to the anti-
self-duality equations on a closed 3-manifold is isomorphic to a Floer homology theory defined by counting
J-holomorphic curves in a symplectic moduli space on a surface.

Corollary 3.35 (Dostoglou, Salamon). Let ¢ : ¥, — X, be a diffeomorphism, and let My = Xy x I/(x,1) ~
(¢(x),0) be the mapping torus. The diffeomorphism induces a symplectomorphism ¢, : M(Xy) — M(Z,).
The graph of this map, T'y, = —M(X,) x M(E,), is a Lagrangian submanifold. The instanton homology of
the mapping torus is isomorphic to the Floer homology of the diagonal and the graph of the induced map:

I*(M¢,w¢) = HF(A,F¢*)

The diagram below shows the mapping torus construction. The two boundary components of the cylinder
Y4 x I are identified by the diffeomorphism ¢. This gluing process creates a closed 3-manifold My and is
the context for the above corollary.

Corollary 3.36. There is a natural isomorphism between framed instanton homology and symplectic framed

instanton homology:
SI#(N) = I*(N) := I(N#T3,w = {pt} x S')
where the first term is the symplectic framed instanton homology, and the second is the framed instanton

homology as defined by Kronheimer, Mrowka, and Floer.

Exercise 3.37. Conclude the previous corollary from the main Theorem by considering the specific case of
the connected sum with a 3-torus.

The proof of the main theorem is quite complicated and we do not have enough time to explain it in depth.
However, there are two main approaches:

1. The adiabatic approach, which involves analyzing the limiting behavior of the ASD equation as a
parameter is sent to infinity.

2. The functorial approach, which constructs an explicit chain map ® : (Cy,d) — (Cj,d’) that is a
quasi-isomorphism, proving that the two homology theories are isomorphic. The map @ is defined
using solutions to a “mixed equation” that combines features of both the ASD and Cauchy-Riemann
equations.
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The differential d is defined by counting solutions to the ASD equation, while the differential d’ is defined
by counting solutions to the Cauchy-Riemann equation. The map ® is constructed by counting solutions to
a hybrid equation defined on a domain that interpolates between the two.

Consider the following:

The diagram shows a disk split into two semicircles, D, and D_. This provides the domain for the mixed
equation, allowing for a connection on one half and a map to the moduli space on the other.

The mixed equation for a pair (A, u) consists of a connection A on D_ x ¥ and a map u : Dy — M(X),
satisfying the following conditions:

e A is a solution to the ASD equation, Fa + *F4 =0, on D_ x 3.
e u is a J-holomorphic curve, satisfying the Cauchy-Riemann equation ou = 0, on D,..

e On the shared boundary between D and D_, the two solutions are required to match: the holonomy
of the connection A must equal the value of the map u in the moduli space, i.e., A; = Al4 <5 is flat,
and its gauge equivalence class [4,] must be equal to u(g) for all ¢ on the boundary.
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RESEARCH TALKS

There were 9 research talks, each one hour long.

1.
2.
3.

8.
9.

An Invitation to Seidel/Shift Operators by Eduardo Gonzalez (UMass Boston)
A Symplectic Look at Contractible Affine Surfaces of Log Kodaira Dimension One by Yin Li (Uppsala)

The Mapping Class Group Action on the Odd Character Variety is Faithful by Aliakbar Daemi (Wash-
ington University in St. Louis)

Immersed Exact Lagrangian Fillings and Augmentations to Arbitrary Fields by Zijun Li (Duke)

Sectorial Decompositions of Symmetric Products of Surfaces and Homological Mirror Symmetry by
Xinle Dai (Harvard)

Towards the HZ- and Multiplicity Conjectures for Dynamically Convex Reeb Flows by Basak Gurel
(University of Central Florida)

On Wrapped Floer Homology Barcode Entropy and Hyperbolic Sets Restricted to the Hyperbolic Set
by Rafeal Fernandez (UC Santa Cruz)

Symplectic vs. Algebraic Log Maps by Mohammad Farajzadeh Tehrani (University of Iowa)
Manin Configurations of Lagrangians in del Pezzos by Chris Woodward (Rutgers)

I have scribed notes for all four of the chalkboard talks. The remaining talks were given via beamer slides,
which I do not have any notes for.
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4 Eduardo Gonzalez: An Invitation to Seidel/Shift Operators

Abstract: We will review several applications of Seidel/shift operators in quantum cohomology, including
recent joint work with D. Pomerleano and C. Y. Mak on its relation to Coulomb branches.

4.1 Introduction to Quantum Cohomology

Let (M,w) be a symplectic manifold. We consider a specific case where the symplectic form w is a multiple
of the first Chern class, i.e., w = Ac; for some constant A > 0. In this context, the quantum cohomology ring,
denoted QH (M), can be described as a tensor product H(M)® A, where H(M) is the ordinary cohomology
ring of M and A = k[q,q '] is a Novikov ring with formal variable q.

The quantum cohomology ring is a deformation of the ordinary cup product. This deformed product, often
denoted by x, is defined via Gromov-Witten invariants. For cohomology classes a,b, c € H(M), the structure
coefficients of the deformed product are given by

(a xb,c)= Z {a,b, C>0,3qd7

deHo (M)

where {a, b, ) 3 is the three-point Gromov-Witten invariant counting the number of genus-0 curves in a
given homology class d that pass through representatives of the cohomology classes a, b, and c.

Example 4.1. Consider the compler projective space P™. Its ordinary cohomology ring is H(P™) = ;,L[ﬁ]l ,

where p is a generator of H*(P™). The quantum multiplication of powers of p is given by

@ ifl+m+k=n
P xp™pF)={q" ifltntk=2n+1

0 otherwise

Here, the integer n corresponds to the first Chern class. The term {a,b, ) 3,4 is the number of curves in a
class d passing through a, b, c.

4.2 Toric Varieties

Quantum cohomology can be applied to toric varieties, which can be expressed as a symplectic quotient
M = C"//TY. In 1995, Seidel introduced an operator S, associated with a loop v : S — Aut(M) in
the group of symplectomorphisms of M. This operator acts on the quantum cohomology ring QH (M)
and is defined via a count of holomorphic disks. The operator is defined using a pairing (Sy(a),b) =
Dde Ha( M)<a, b>0’270+dqd and is invertible on QH (M). The relationship between loops in the automorphism

group of M and quantum cohomology is captured by a homomorphism from 7 (Aut(M)) to the group of
units in the quantum cohomology ring, QH (M)*.

Theorem 4.2 (McDuff-Tolman). For certain symplectic manifolds, the Seidel operator has a leading term
given by the homology class of the maximal fixed point component.

Sy(a) = [Frnaz) + lower order terms,

where Fa, € MY is the mazimal fixed point set.
A key challenge is that the lower order terms are not well-understood.

Theorem 4.3 (Batyrev). For a toric variety X, the quantum cohomology ring QH(X) can be expressed as
an algebraic structure.
Alw, ..., wN] )

additive relations

QH(X) = Bat(

This algebra is subject to multiplicative relations of the form H<D’d>>0 q¢ H<Di’d><0 w;<Di’di>.
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Theorem 4.4. The operators S; satisfy the multiplicative relations but do not satisfy the additive relations.

Letting W; = S; only works for Fano varieties where the anticanonical class — K, is positive. For cases
where —Kj; > 0, we have an additional curve correction term. This is similar to the approach taken by
Giventhal using mirror maps. This raises the question of whether S; is equal to the mirror map itself.

. This relation

is derived from the mirror map w = z + q/z by setting z0, = 0, which implies z — q/z = 0, or 2% = q.

Example 4.5. Consider the projective line PL. Its Jacobian ring is given by Jac(P!) = %

4.3 Equivariant Quantum Cohomology and Coulomb Branches

The theory can be extended to an equivariant setting by considering a Hamiltonian action of a torus T on
a symplectic manifold M. This leads to the definition of equivariant quantum cohomology QHy(M). The
Seidel operator S, can be generalized to this setting, acting on the equivariant quantum cohomology ring
Syt QHp(M) — QHp(M), where T = Uy x T.

A result by Iritani and Liebenschutz-Jones proves that, under very good conditions, the Jacobian ring of
the equivariant mirror potential, Jac(WW*°?), is isomorphic to the equivariant quantum cohomology ring,

QHr(M).
Example 4.6. Consider a U(1) action on P1. If U(1) acts on C? with weight (0,1), then the equivariant

cohomology of P! is HU(U(]P’l) = p"c(g)p:g). This corresponds to the relation p(p + u) = 0. The equivariant
potential is related to the non-equivariant one by W = WHY 1 ylogz. Substituting the non-equivariant

potential for P, we get W = z + q/z + ulog z. Setting the derivative with respect to z to zero, we obtain

22 — q+ uz = 0, which simplifies to z(z + u) = q.

At his ICM lectures, Teleman proposed a connection between the quantum cohomology of a manifold and a
Coulomb branch of a gauge theory: If a group G acts on a manifold M, then there exists a Lagrangian with
certain categorical aspects that lives inside a Coulomb branch M(GY,0).

Coulomb branches for specific groups are known.
1. M(T,0) =T*T¢.
2. (T*G¢® = Ge x g¢®)//Ge.
3. M(GY,0) = Spec(HS (2(g)))-

For U(1), its Coulomb branch is C x C*. A result by Mak-Pomerleano demonstrates a connection between
the equivariant quantum cohomology and the homology of the based loop group. Specifically, there is an
action of H} (LG/T) on QH (M), where LG/T is the flat affine variety. This action allows the spectrum of
the equivariant quantum cohomology to be viewed as a sheaf over the spectrum of the equivariant homology
of the based loop group. The action is given by a convolution product, where the homology of the loop group
is decomposed as HI (LG/T) = @ R[S#,] based on a decomposition of LG/T = |  Sow. This gives a

module structure via the action Sfl wy © 552 ws = O (o1,w1)0(0s,ws) O fixed points.

This theory provides a way to construct the Coulomb branch M (U(1), V@ V) via two charts whose gluing
is determined by the Seidel operators. This construction yields the space C2\{(0,0)}. This framework can
also be developed in a K-theory setting. The concepts have natural applications in other fields, such as
symplectic reduction, where T*(G/H) can be obtained by studying 7%*//H. In this context, QH(X//U(1))
can be recovered from QHy(1)(X) by setting the Seidel operator to the identity.
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5 Aliakbar Daemi: The Mapping Class Group Action on the Odd
Character Variety is Faithful

Abstract: The odd character variety of a Riemann surface is a moduli space of SO(3) representations of
the fundamental group which can be interpreted as the moduli space of stable holomorphic rank 2 bundles
of odd degree and fixed determinant. This is a symplectic manifold, and there is a homomorphism from (a
finite extension of) the mapping class group of the surface to the symplectic mapping class group of this
moduli space. In this talk, I will discuss a result establishing that this homomorphism is injective when the
genus is at least 2. This answers a question posed by Dostoglou and Salamon and generalizes a theorem
of Smith from the genus 2 case to arbitrary genus. Our appraoch also yields a result on the faithfulness of
the action on the Fukaya category of the odd character variety. The proofs use instanton Floer homology,
a version of the Atiyah-Floer Conjecture, and aspects of a strategy used by Clarkson in the Heegaard Floer
setting.

5.1 The Odd Character Variety

Let ¥ be a Riemann surface of genus g. We recall the definition of the odd character variety, denoted M,
or M(X), as the space of certain SU(2)-representations of the fundamental group of the punctured surface
m1(24\{pt}). Specifically, we have

My = M(X) = {p: m(Xg\{pt}) — SU(2) | p(n) = —1}/SU(2)
where the relation is conjugation, and u is any meridian around the puncture.

This variety has several equivalent descriptions. It can also be seen as the set of connections A on a principal
SO(3)-bundle P over ¥, with a non-trivial second Stiefel-Whitney class, wa(P) # 0, all modded out by
gauge transformations.

P

2

Furthermore, M, is equivalent to the moduli space of holomorphic stable bundles of rank 2 and degree 1
with a fixed determinant. The space M, is known to be a smooth symplectic manifold of dimension 6g — 6
with trivial fundamental group, i.e., m (M) = 0.

SO(3) ——

Example 5.1. For g = 1, the odd character variety is a single point, My = {pt}. For g = 2, M, is the
complete intersection of two quadrics in P'.

An important object of study is the mapping class group of the surface 3,. A diffecomorphism @ : (£4,p) —
(X4, p) naturally induces a diffeomorphism ®* : M, — M, via pullback. A basic property is that ®* depends
only on the isotopy class of ® and, importantly, ®* preserves the symplectic structure of M,.

Definition 5.2. Let MCG(X,,p) be the group of diffeomorphisms of (X4,p) up to isotopy. The group
moSymp(My) consists of the symplectomorphisms of M, considered up to symplectic isotopy.

The induced action described above gives a map p : MCG(X,,p) — moSymp(M,;). This map fits into a
Birman exact sequence:

00— m(8,) DR ATOG(S,,p) —— MCG(Z,) —— 0

| j

0 —— HY(Z,;Z/2) T, MCG(%,) — 0

The maps in this diagram are related as follows: The map from MCG(X,,p) to MCG(E,) is the forgetful
map that forgets the puncture. The map from m (£,) to MCG (X, p) is the push map. The group fg is an
extension of MCG(Z,) by H'(X,;Z/2). The action on the coordinates of the character variety is given by
p(V)((Ai, By)?_,) = (—1)"4 A;, ..., (—1)7Pi B;. This leads to a map p : T'y — moSymp(M,) where p = jo j.
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Problem 5.3 (Dostoghan-Salamon, 1993). For g = 2, is the map p injective?
Theorem 5.4 (Smith, 2012). The answer is yes for g = 2.
Theorem 5.5 (Daemi-Scaduto). The answer is yes for any g.

The action of f‘g on M, can be viewed in two ways: via its symplectic action and its smooth action. This
leads to the following diagram:

fg Psm ﬂoDiﬁeO(Mg) = MCG(MQ)
X‘ ml map
m)Symp(Mg)

There is also a related result about the kernel of the smooth action:

Theorem 5.6 (Daemi-Scaduto). For g = 2, the kernel of the smooth action, ker(psmootn), 18 not finitely
generated.

The proof of this theorem relies on the work of Kreck-Su which provides tools to study MCG(M,) for
manifolds with m; = 0 and a specific dimension and cohomology ring.

5.2 Lagrangian Floer Theory and the Proof Strategy

To prove the main theorem concerning the injectivity of p, the strategy is to use Lagrangian Floer theory. The
core idea is to show that any non-trivial element ¢ € I';\{0} acts non-trivially on the space of Lagrangians
in M,.

The strategy can be summarized as follows: it is sufficient to show that for any ¢ € f‘g\{O}, there exist
Lagrangians L,L" € M, such that their Lagrangian Floer cohomology groups are not isomorphic after
applying the action of ¢.

HF(L, L) % HF(L, p(6)(L))

This result implies that p(¢) is not Hamiltonian isotopic to the identity, which in turn proves injectivity.

To do this, we need to find a source of Lagrangians in M,. These Lagrangians are constructed from three-
manifolds with boundary. Consider a three-manifold ¥ with a boundary that is a surface ¥, and a knot
inside it.

Y

%@,‘9

In this diagram, we see a 3-manifold Y with a boundary composed of two surfaces, 31 and 5. A knot ~ is
shown passing through the manifold, intersecting the boundary at a point on each surface.

The Lagrangian Ly ) is defined as the moduli space of SU(2)-representations of the fundamental group of
the three-manifold complement, Y'\y, with a specific condition on the meridian y of the knot ~:

Ly =1{p:m(Y\y) —» SU(2) | p(n) = —I for any meridian p of ~v}/conj.
By restricting these representations to the boundary surfaces, we obtain a map L : L(y,,) — My x M.

Theorem 5.7 (Herald). The space Ly, is an immersed Lagrangian submanifold in the product manifold
Mgy x Mgy, possibly after a perturbation.
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Theorem 5.8 (Daemi, Fukaya, Lipyanskiy). The Lagrangian Floer cohomology HF(L,L’) of any two em-
bedded Lagrangians L and L' is a well-defined invariant.

Let us define a subgroup G < f‘g.
G ={pel,| for any pair of embedded 3-manifold Lagrangians L, L', HF (L, L) = HF (L, p(¢)(L'))}.

The main result is a classification of this subgroup G.

Theorem 5.9. For g > 3, the subgroup G is trivial, i.e., G = 1. For g =2, G is a subgroup of {1,7}, where
T s the hyperelliptic involution on .

Corollary 5.10. The action of fg on the Fukaya category Fuk(M,) is non-trivial for g > 3.

5.3 Proof of Main Theorem
The proof proceeds by establishing several key properties of the subgroup G:

1. G is a normal subgroup of f‘g.
2. The intersection of G with the normal subgroup H'(¥,7/2) < Ty is trivial, i.e., G n H'(%,Z/2) = 0.

3. We relate the group G to the Torelli subgroup of the mapping class group. The Torelli subgroup I(X,) <
MCG(X,) is defined as the subgroup of mapping classes that act trivially on the first cohomology group

H'(2,;Z). If an element ¢ € T, has a projection () that is a pseudo-Anosov element of the Torelli
group, then ¢ ¢ G.

4. A result on subgroups of T', that satisfy properties (1)-(3) implies that G is trivial for g > 3 and is a
subgroup of (1, 7) for g = 2. This deduction requires showing that the projection of G to MCG(X,)
is trivial, which follows from the works of Ivanov and Long.

The proof of property (3) utilizes the Atiyah-Floer conjecture, applied to admissible bundles. The conjecture
relates the Lagrangian Floer cohomology of our Lagrangians to the instanton Floer homology of a specific
3-manifold. Specifically, for Lagrangians Ly, gy and Ly gy constructed from three-manifolds ¥ and Y, we
have

HF (Ly,p), Ly ,g)) = Le(=Y#sY', 7#9")

Here, —Y#s5Y"’ denotes the connected sum of the three-manifolds along their boundary, and y#~' is the
connected sum of the knots. We denote N = —Y#5xY” and w = y#+'.

Theorem 5.11 (Kronheimer-Mrawka). The instanton Floer homology I.(N,w) is non-zero if the 3-manifold
N s irreducible.

The action of p(¢) on the Lagrangian Ly, gy corresponds to an action on the underlying 3-manifold, which
transforms the instanton Floer homology.

HF(L{E)), Do) = T (Y #89Y" A#y)

We denote the transformed manifold and knot as N, and 7.

To complete the proof of property (3), we must find a suitable pair of 3-manifolds with knots, (Y,~) and
(Y',~"), that satisfy two conditions:

1. The Lagrangians are disjoint, leading to zero Floer cohomology:
L(y7,y) (@) L(Y',"/') = @ - HF(L(Y,V)JL(Y’,'W)) =0.

2. After the action of p(y), the Floer cohomology becomes non-zero: The manifold N, is irreducible,

which by the Kronheimer-Mrawka theorem implies I, (N, 7,) # 0, and thus HI*"‘(L'('%(;:OP)J)7 Ly gy) # 0.
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The existence of such pairs (Y,~) and (Y’,+’) is established using the works of Clarkson, which themselves
rely on the foundational work of Hemples. Hemples’s work on defining a distance and Heegaard-splittings
of 3-manifolds was used by Clarkson to guarantee the existence of the pseudo-Anosov and Torelli elements
needed for the proof.
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6 Xinle Dai: Sectorial Decomposition of Symmetric Products and
Homological Mirror Symmetry

Abstract: Symmetric products of Riemann surfaces play a important role in symplectic geometry and
low-dimensional topology. For example, they are essential ingredients in the definition of Heegaard Floer
homology and serve as important examples of Liouville manifolds when the surfaces are open. In this talk,
I will discuss work in progress on the symplectic topology of these spaces using Liouville sectorial methods.

6.1 Symmetric Products of Surfaces

We begin with the concept of a symmetric product of a topological surface, a fundamental construction in
topology and algebraic geometry.

Definition 6.1. Let X be a topological surface. The n-th symmetric product of &, denoted Sym™(X), is
the quotient space of the Cartesian product ¥ x --- x 3 (with n factors) by the action of the symmetric group
Sn permuting the factors.

Sym™(X) =Y x -+ x X/S,

This construction provides a natural way to consider unordered n-tuples of points on a surface. The geometric
properties of Sym™(X) depend on the structure of X.:

1. If ¥ is a Riemann surface, then Sym™(X) inherits a natural complex structure, making it a complex
manifold.

2. If ¥ is a compact Riemann surface, Sym™(X) is a projective variety.
3. If ¥ is an open quasi-projective Riemann surface, Sym™(X) is a quasi-projective variety.
Example 6.2. A classic ezample is the symmetric product of the complex plane C.

1. Sym™(C) is isomorphic to C™. The isomorphism is given by mapping an unordered n-tuple of complex
numbers {z1,...,2zn} to the elementary symmetric polynomials (o1,...,0,) in these variables.

2. For any Riemann surface &3, Sym™(X) is a complex manifold.

The space Sym™(P'\{(n + 2) pts}) is isomorphic to P™\{(n — 2) hyperplanes}. These spaces are a type of
n-dimensional pair of pants.

6.2 Liouville Manifolds and Sectors

Liouville manifolds form a special class of symplectic manifolds characterized by a particular vector field or
form. These structures provide a natural way to define an ”exact at infinity” condition, which is important
for applications in Floer theory.

Definition 6.3. A Liouville vector field on a symplectic manifold (X,w) is a vector field Z that satisfies
the condition Lyw = w.

The condition Lzw = w implies that the symplectic form w is not only preserved but scaled by the flow of
7. This concept has a dual formulation in terms of differential forms.

Definition 6.4. A Liouville form X\ on a symplectic manifold (X,w) is a primitive for w, meaning that
w = d\. This form is related to the Liouville vector field Z by the identity A = tzw, where 1y denotes the
interior product.

Definition 6.5. A Liouville manifold is an exact symplectic manifold (X,w = d)\) that, near infinity, is
modeled on the product (Ra, x Y,d(e®«)), where Y is a compact manifold and « is a contact form on'Y .

The following image shows a Liouville manifold, where the end is modelled on a product of a ray and a
compact manifold Y.
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Y R>0

Example 6.6. Fvery cotangent bundle or Stein manifold is a Liouville manifold.

The notion of a Liouville manifold can be extended to include boundaries. This leads to the concept of a
Liouville sector, which is a foundational object in the study of wrapped Fukaya categories.

Definition 6.7. A Liouville sector X is a Liouville manifold with boundaries, 0X. The Liouville vector
field Z must be tangent to 0X near infinity. Additionally, there exists a function I : 0X — R such that
Z1 = I near infinity and the Hamiltonian vector field X is transverse to 0X and points outward along it.
This condition is equivalent to the positivity of the differential of I restricted to the characteristic foliation,
i.e., dlchar fol > 0.

The image shows a Liouville sector, which is a Liouville manifold with a boundary. The shaded region
denotes the interior of the sector.

Example 6.8.
1. The cotangent bundle of any manifold with boundary is a Liouville sector.

2. Any punctured bounded Riemann surface with no boundary components is a Liouville sector, which is
homeomorphic to S*.

The following image displays various examples of Liouville sectors. These are: a half-plane, a square, a
hexagon, and a more complex genus two surface with a boundary. The shaded regions denote the interior of
each sector.

Example 6.9. Consider the manifold X = Cpeso, the right half-plane in the complex numbers. A Liouville

form is A = w, which gives the standard symplectic form w = d\ = dx A dy. The Liouville vector

field is Z = 29z+udy
Ty

This image illustrates the Liouville sector on the right half-plane. The central curved dashed line represents
the boundary at infinity, d, X, while the vertical line is the finite boundary, 0X. Arrows indicate the
direction of the Liouville vector field.
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Every Liouville sector X possesses a wrapped Fukaya category, denoted W(X). For an inclusion of
Liouville sectors X < X', this structure induces a map W(X) — W(X').

6.3 Sectorial Decomposition and Homological Invariants

This section delves into the main topic of the talk: using a specific structure on a Riemann surface to
decompose its symmetric product into Liouville sectors. This decomposition provides a powerful tool to
study the geometry of the symmetric product and its relationship to other algebraic objects through the lens
of Homological Mirror Symmetry (HMS).

Definition 6.10. Let ¥ be a Riemann surface and ¢ a proper plurisubharmonic function on ¥. Let {s;}ier
be the saddles (critical points of Morse index 1) of p. For each saddle s;, let ~y; be the stable manifold of s;.
If the function ¢ is quadratic in a neighborhood of each saddle, i.c., ©|n(,) is of the form ax? + by? with
ab < 0, we say that (X, ) is a Riemann surface with a quadratic Stein structure.

An important result establishes the existence of such structures on a wide class of surfaces.

Proposition 6.11. For any orientable topological surface ¥ with a set of disjoint proper embedded arcs
{vi}icr, one can construct a quadratic Stein structure ¢ on X. This structure is built such that ¢ has a
saddle s; on each arc v; and one minimum mj on each component of the complement ¥\ | J;c; vi-

This existence result allows us to apply the theory of Liouville sectors to the symmetric product. The main
theorem establishes a decomposition of Sym?(X) based on this structure.

Theorem 6.12 (Sectorial Decomposition). In the setting of a Riemann surface with a quadratic Stein
structure as described above, the structure determines a decomposition of the second symmetric product into
Liouwille sectors:
Sme(E) = U Umj,mk
H

Si,mj

where the sets Uy, m, are Liowville sectors (with corners) for j < k. These sectors are separated by smooth
hypersurfaces Hs, m, which intersect at corners Cs, s, .

The image above shows a decomposition of a space X with two minima, mg and mi, and a saddle s. This
structure leads to a decomposition of Sym?(X).

Let’s consider the specific case of a 2-dimensional Liouville sector X. A related corollary simplifies the
structure of its symmetric product.

Corollary 6.13. For a 2-dimensional Liouville sector X, the space Sym?(X) is deformation equivalent to
a Liouwille sector'Y .
Sym*(X) ~Y

where ~ denotes deformation equivalence.
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The sectorial decomposition allows for a local-to-global approach, where a larger space is understood by
piecing together simpler, more manageable sectors.

To further understand this decomposition, we can study a local model.

1. Let ¢ be a plurisubharmonic Morse function on C. The associated symplectic form and Liouville form
are w = dd°p and A = d°p respectively. Let g, be the Riemannian metric and Z =V, ¢ the gradient
vector field.

2. Assume ¢ has only one index 1 critical point at 0, with a local form ¢(z + yi) = —222 + 2¢°.

3. The gradient flow of this function has specific asymptotic properties. Under the gradient flow of a
related function I, as |21 — z9| — +o0, the real part of the Liouville form R(w) — +o0 and the
imaginary part of the symplectic form I'm(w) — 0 as ¢ — o0.

4. The gradient flow moves faster near the origin.
5. For large time ¢, the gradient flow will align with one of the diagonals.

The local model provides a guide for the decomposition. The different asymptotic regions of the space
correspond to the Liouville sectors in the decomposition. Specifically, for points (z1, 22):

e (—o0, —0) corresponds to the sector U_ _.
e (—00,0) corresponds to the hypersurface Hy .
e (—0, +00) corresponds to the sector U_ ;.
e (0,+00) corresponds to the hypersurface Hy .
e (400, +00) corresponds to the sector Uj .
This correspondence is visualized in the following diagram.

Re(z)

U_’_.ﬁ U-+

6.4 Homological Mirror Symmetry of a Pair of Pants

The main application of this decomposition is in HMS. We explore a concrete example of this conjecture for
a 2-dimensional pair of pants.

The geometric setting is Sym?(P'{po, p1, P2, p3}), a symmetric product of a sphere with four punctures. This
surface can be cut by a single separating arc.

The separating arc divides the surface into two components: ¥_, which is a pair of pants, and X, which is
a cylinder.
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By applying the sectorial decomposition to this specific surface, we find that the Liouville sectors have
familiar geometric forms:
e U_ _ is deformation equivalent to Sym?(pants), which is isomorphic to the Liouville manifold (C*)2.
e H _ is deformation equivalent to pants x R.

A central claim links the wrapped Fukaya category of these sectors to derived categories of coherent sheaves
on algebraic varieties.

Proposition 6.14. The wrapped Fukaya category of the sector U_ _, which is isomorphic to ((C*)*,W =
21 + 22), corresponds under Homological Mirror Symmetry to the derived category of coherent sheaves on the
algebraic variety C* defined by the relation {xy = 0}.

We can learn more about the mirror correspondence by studying the inclusion maps between sectors.

W(Fy,_) —*— W(U__)
D({ay = 0}) —— D*(C?)
The wrapped Fukaya category of the hypersurface Fy _ maps to the derived category of the line {zy = 0},
while the wrapped Fukaya category of the sector U_ _ maps to the derived category of C2.
Extending this analysis to other sectors in the decomposition yields a more general mirror symmetry:
e U_ , is deformation equivalent to pants x cylinder. This is conjectured to be mirror to {zy = 0} x C.
e U, ; is deformation equivalent to cylinder x torus.
The complete picture of the sectorial decomposition and its mirror correspondence is summarized in the

following diagram.

W(U- + YH,, _ Ut +)

W(P — (3pts)) DbCoh({zy = 0} ><\(C) W(Sym? (%))

=T ~<
lé ~ lCorollary

DCoh({zy = 0}) W(U__) \\}DbCoh({xyz =0})

\ F /

DbCoh((C%e(z):O)

This diagram illustrates the correspondence between the symplectic side (top, wrapped Fukaya categories)
and the algebraic side (bottom, derived categories). The key maps, such as the inclusions of sectors, are
mirrored by maps of derived categories. The top part of the diagram represents the geometric objects and
their inclusions, ending with Sym?(X), while the bottom part represents their mirror duals. The horizontal
arrows show how smaller pieces are glued together, and the vertical arrows represent the mirror map s.
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7 Chris Woodward: Disk Counting for Tropical Lagrangians

Abstract: Manin assigned to any del Pezzo surface (compact complex surface with positive first Chern class)
a root system, given by the set of second homology classes with square -2, perpendicular to the symplectic
form. For example, the del Pezzo surface of degree one, which is obtained by blowing up the projective plane
at eight points, corresponds to the root system ES8. I will explain how to realize these homology classes as
Lagrangian spheres, and outline the proof that they split-generate all of the Fukaya eigencategories with
integer eigenvalues with non-maximal modulus.

7.1 Introduction

The central object of study in this section is the disk count for tropical Lagrangians, which provides a way
to relate the geometric properties of a symplectic manifold to combinatorial data. We begin by setting up
the necessary definitions and a key theorem.

Let ® : X — B be a compact almost toric manifold. Let L < X be a tropical Lagrangian that is both
compact and oriented spin. We assume that both X and L are monotone. Given these conditions, we can
define a number wy € Z as a disk count of holomorphic, Maslov index two disks. This integer count is
related to a polyhedral decomposition of the base manifold B. Let R = {P < B} be a good polyhedral
decomposition. We then choose a dual complex BY = (Jpep PY.

Theorem 7.1. The disk count wy, can be expressed as a sum over tropical graphs in the dual complex BY :

1
ULt o P

tropical graphs in BY
In "good cases,” the multiplicity term m(I") simplifies to a product over the vertices of the graph: m(I") =
[Ivevery m(v). The vertex multiplicities m(v) are given by explicit formulas.

An important application of this theory is found in the study of Fukaya categories. Specifically, the Fukaya
category of a del Pezzo surface with a monotone symplectic form is split generated by monotone tori and
Manin configurations of spheres.

Example 7.2. Let X = BI*(P?) be the blow-up of P? at three points. Manin observed that a certain
configuration of spheres in this space can be used to visualize the ADFE root system. The following diagram
illustrates this for the As and As systems, showing a tropical graph representation within a hexagon-shaped
base manifold. Fach graph is associated with a specific disk count wy,.

L=T?% Manin Ay system Manin As system

wy, =6 wr = —3

wr = —2

The spectrum of the quantum cohomology ring QH (X) of the manifold X = BI*(P?) is given by the set of
disk counts {6,—2,—3}. This set split generates the Fukaya category, Fuk(X).

7.2 Almost Toric Manifold

To understand tropical Lagrangians, we first need to define an almost toric manifold.
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Definition 7.3. A symplectic manifold X is an almost toric manifold if there exists a map ¢ : X — R"
with a certain local structure. The components of this map, ®;, are required to commute with respect to the
Poisson bracket, i.e., {®;,®;} =0 for all i,j. The local structure of this map is a product of three types of
components:

o A regular component: (q,p) — po.
e An elliptic component: (q,p) — (¢ + p?)/2.

o A focus-focus component: (qi,p1,q2,02) — (q1P2 — @201, q1P1 + q2D2)-

Example 7.4. Let X = T*S? — R? represent a spherical pendulum. The map ® can be chosen to be the
energy and angular momentum. The behavior of the system can be visualized in the base space B = R? via the
image of the map ®. The following diagram shows the image of the momentum map for a spherical pendulum.
The upper point by corresponds to an elliptic rank 1 singularity, while the lower point b_ corresponds to an
elliptic rank 0 singularity.

by
°

7
elliptic rank 1 \ fiber S

o b_
elliptic rank 0 fiberpoint

The diagram shows two critical points: an unstable equilibrium point x, corresponding to a focus-focus
singularity in the fiber, and a stable equilibrium point x_ corresponding to an elliptic rank 0 singularity. The
fiber over ®(x) is given by the manifold X shown in the next diagram.

T+

The diagram shows a double torus-like structure. The central point corresponds to the unstable equilibrium
Ty

The existence of almost toric structures is known for a broad class of manifolds.

Example 7.5 (Vienna). All monotone del Pezzo surfaces are almost toric. This follows from work by
McDuff, which showed that the monotone symplectic form on such a surface is unique up to isomorphism.

Example 7.6. The blow-up of P? at four points, BI*P?, is also an almost toric manifold. The base diagram
for such a manifold is shown below. This diagram represents a square with eight interior points, a central
point, and four points on the edges.

7.3 Tropical Lagrangians

Tropical Lagrangians are a class of Lagrangian submanifolds whose projections onto the base of a toric
fibration have a specific combinatorial structure.



Theorem 7.7 (Mikhalkin). Let ® : X — B be a toric variety. Let Il = B be a tropical graph. We assume
for simplicity that dim(X) = 4. Then the univalent vertices of the tropical graph are bisectrices, as shown in
the diagram.

The wvertices can also be trivalent. The following diagram shows a trivalent vertexr with vectors pi,ps and
their sum p; + pa.

P1 b2

p1+p2
The vectors p1 and pa must satisfy the condition | det p1pa| = 1.

An addendum to this theorem states that for almost toric manifolds, vanishing thimbles are also allowed, as
represented by a simple graph.

Roughly speaking, this implies the existence of a family of Lagrangians L whose image under the map ®
approaches the tropical graph II.

Example 7.8. Returning to the blow-up of P? at five points, BI°P?, we obtain the affine Dynkin diagram
of type Ds.

7.4 Holomorphic Disk Counts

The computation of disk counts relies on techniques developed by Venugopalan and Woodward, building on
earlier works by lanel, B. Parker, and Tehrani. This method involves constructing a dual complex from a
polyhedral decomposition of the base manifold.

Let P = {P} be a good polyhedral decomposition of the base manifold. We choose a dual complex P for
each P. For instance, the following diagram shows a polyhedral decomposition of a diamond shape with its
dual complex lines in red.
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ONX);

o

The process of holomorphic disk counting can be understood by considering a degeneration process where
we obtain long necks, as shown in the diagram. This corresponds to the limit as ¢ — co.

This framework also applies to Lagrangians that are locally invariant on neck regions, mapping to Uy. In
this case, the moduli space splits as a product of components associated to the vertices, and the vertex
multiplicity m(v) is the number of maps from a compact Riemann surface with boundary ¢y to the manifold
Xp(v) associated with the vertex v.

m(v) = #uy : cv — Xp(y)

The multiplicities are known for certain special cases. For example, for a type (d,0) singularity, the Bryan-
Pandharipande formula states that m(v) = (—=1)?"1/d?. The multiplicity for a half pair of pants with type
(d,0) is also known to be (—1)%, as illustrated by the diagram showing a half-pants-like shape.

a4

Example 7.9. For X = BI3(P?), the spectrum of the first Chern class ¢y in the quantum cohomology is
c1 & QH(BIPP?)) = {6,-2, 3}. This is consistent with the disk counts. The graph for wr = 6 is the

following.

The value wy, = —2 is explained by the following tropical graph T' = BY .

The total disk count is the sum of the multiplicities of the components: wy, = =1+ —1 = —=2.



Example 7.10. The value wy, = —3 from the quantum cohomology spectrum is explained by the following
tropical graph.

I''\ I's

r
2F4

In this case, the total disk count is given by the sum of multiplicities of four components: —1+—1+—1/2+
—1/2 = -3.

Example 7.11. For the monotone torus, the disk count is wy, = 12. The corresponding tropical graph is
shown below, represented by lines on a diamond-shaped base manifold.

The diagram shows a cross-shaped tropical graph on the dual complex. We can count in a similar way to
obtain —12.
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