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Abstract
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MINICOURSES

There were three minicourses, each three hours long:

1. Global Kuranishi Charts by Mohan Swaminathan (Stanford)

2. Introduction to Contact Homology by Erkao Bao (University of Minnesota)

3. Quantitative Symplectic Geometry by Mike Usher (University of Georgia)
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1 Mohan Swaminathan: Global Kuranishi Charts

There were three lectures:

1. Day 1: Local Structure of Holomorphic Curve Moduli Spaces

We discuss how the implicit function theorem and gluing analysis give rise to ’local Kuranishi charts’ for
holomorphic curve moduli spaces. We also explain what it means for two or more such local Kuranishi
charts to be ’compatible’ on their overlap and briefly discuss how an atlas of Kuranishi charts allows
us to ’virtually count’ points in a compact moduli space of expected dimension 0.

2. Day 2: Global Kuranishi Charts: Definitions and Preliminaries

We introduce the notion of a ’global Kuranishi chart’ and explain how having one of these substantially
simplifies the previous discussion. We also explain what it means for two global Kuranishi charts to
be ’equivalent’, which is analogous to the notion of compatibility for local Kuranishi charts. For the
remainder, we discuss some geometric preliminaries necessary to understand the construction of global
Kuranishi charts for moduli spaces of closed holomorphic curves of genus 0.

3. Day 3: Global Kuranishi Charts: Construction

Following Abouzaid–McLean–Smith 2021, we explain the construction of global Kuranishi charts for
genus 0 Gromov–Witten moduli spaces and show that the outcome of the construction is unique up
to equivalence. Time permitting, we will also briefly discuss how one can extend this construction to
settings beyond genus 0 GW theory.

1.1 Local Structure of Holomorphic Curve Moduli Spaces

1.1.1 The Moduli Space of Stable Maps

Let pX2n, ωq be a closed symplectic manifold and J be an almost complex structure on X tamed by ω,
meaning ωpv, Jvq ą 0 for all non-zero v P TxX. Let A P H2pX;Zq be a homology class. We are interested
in studying the space of J-holomorphic maps from genus-zero Riemann surfaces to X.

To obtain a compact space, one must consider not just maps from the smooth Riemann sphere CP1, but also
maps from nodal genus-zero curves. A nodal curve is formed by gluing several copies of CP1 together at
pairs of points, forming a tree-like structure.

Definition 1.1. Let m ě 0 be an integer. The moduli space of genus-zero, m-marked, J-holomorphic
stable maps in the class A, denoted M0,mpX,A, Jq, is the set of equivalence classes of tuples pΣ, x1, . . . , xm, uq,
where:

1. Σ is a nodal genus-zero curve (a tree of CP1s).

2. x1, . . . , xm P Σ are distinct marked points located on the smooth part of Σ.

3. u : Σ Ñ X is a J-holomorphic map such that u˚rΣs “ A.

4. The tuple is stable, meaning the group of automorphisms of pΣ, x1, . . . , xmq that are compatible with
u is finite. This is equivalent to requiring that on any irreducible component of Σ where u is constant,
there are at least three ”special points” (marked points or nodes).

Two such tuples pΣ, txiu, uq and pΣ1, tx1
iu, u

1q are equivalent if there exists a biholomorphism ϕ : Σ Ñ Σ1

such that ϕpxiq “ x1
i for all i and u “ u1 ˝ ϕ.

We present two basic properties of this moduli space:

Theorem 1.2 (Gromov Compactness). The moduli space M0,mpX,A, Jq is compact and Hausdorff.

Theorem 1.3 (Virtual Dimension). The moduli space M0,mpX,A, Jq has an virtual dimension given by

d “ 2pn` c1pTXq ¨A`m´ 3q.
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Now, we move on to discuss a motivating problem:

Problem 1.4. Can we define enumerative invariants by ”counting” the number of points in M0,mpX,A, Jq

when its virtual dimension is zero?

The primary obstruction is that, for a generic J , M0,mpX,A, Jq is not a manifold of the expected dimension.
It is typically a more complicated object, an orbifold with singularities.

1.1.2 The Transverse Case

We now investigate the local structure of M0,mpX,A, Jq near a given point.

Problem 1.5. Given an element pΣ, x1, . . . , xm, uq P M0,mpX,A, Jq, what is the local structure of the moduli
space near this point?

The analysis proceeds in two cases, depending on whether the domain Σ is smooth or nodal.

Σ is Smooth Here, ”smooth” means Σ – CP1. The local analysis is best framed in the language of
infinite-dimensional geometry. We define:

• The Banach manifold of maps B “ C8pΣ, XqA “ tv : Σ Ñ X | v is C8, v˚rΣs “ Au.

• The infinite-rank Banach vector bundle E Ñ B, whose fiber over v P B is Ev “ Ω0,1pΣ, v˚TXq “

HomCpTΣ, v˚TXq.

• The section σ of E over B given by v ÞÑ BJv, where BJv “ 1
2 pv. ` Jpvq ˝ v. ˝ jΣq.

Note that the space of holomorphic maps is precisely the zero set of this section: σ´1p0q “ HolpΣ, X,A, Jq.
For a solution u P σ´1p0q, the linearization of σ at u is a well-defined operator

Duσ : TuB Ñ Eu.

More explicitly, identifying TuB with Ω0pΣ, u˚TXq, this map is

DpBJqu : Ω0pΣ, u˚TXq Ñ Ω0,1pΣ, u˚TXq.

In local holomorphic coordinates z “ s` it on Σ, the operator BJ is

BJu “
1

2

ˆ

Bu

Bs
` Jpuq

Bu

Bt

˙

b ps. ´ it.q.

For a variation ξ P Ω0pΣ, u˚TXq, its derivative is

DpBJquξ “
1

2

ˆ

Bξ

Bs
` Jpuq

Bξ

Bt
` pBξJqpuq

Bu

Bt

˙

b ps. ´ it.q.

The term Bξ
Bs ` Jpuq

Bξ
Bt is a first-order differential operator, while pBξJqpuq Bu

Bt is a zeroth-order term. For

notational convenience, let Du :“ DpBJqu. This operator is Fredholm, and by the Riemann–Roch theorem,
its index is

indpDuq “ dimpkerDuq ´ dimpcokerDuq “ 2pn` c1pTXq ¨Aq.

The implicit function theorem for Banach manifolds states that if Du is surjective, then near pΣ, txiu, uq,
the moduli space M0,mpX,A, Jq is an orbifold of the expected dimension. In this case, we conclude that

M0,mpX,A, Jq “
HolpCP1, X,A, Jq ˆ ppCP1

qmz∆q

PSL2pCq
,

where ∆ “ tpx1, . . . , xmq | xi “ xj for some i ‰ ju.
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Σ is Nodal Here, Σ is a tree of CP1s. Let Σ̃ be the normalization of Σ, which is a disjoint union of spheres.
The map u : Σ Ñ X lifts to a map ũ : Σ̃ Ñ X. The linearized operator Du acts on the subspace of sections
in Ω0pΣ̃, ũ˚TXq that satisfy gluing conditions at the nodes, i.e., sections in Ω0pΣ, u˚TXq.

Exercise 1.6. Check that indpDuq “ 2pn` c1pTXq ¨Aq.

Theorem 1.7 (Gluing Theorem). If Du is surjective, then M0,mpX,A, Jq has a local chart near pΣ, x1, . . . , xm, uq

of the form V {Γ, where V is a vector space of the expected dimension and Γ is a finite group acting linearly
on V .

1.1.3 Local Kuranishi Charts

Let B be a Banach manifold, E Ñ B a Banach vector bundle, and B a smooth section whose linearizations
are Fredholm operators. The object of study is the zero set of this section, M “ pBq´1p0q Ă B.

Consider an element u P M. In the case where the linearized operator pDBqu is surjective, the implicit
function theorem for Banach spaces ensures that M is a smooth manifold in a neighborhood of u. The
tangent space at this point is given by TuM “ kerpDBqu. In this case, we are done.

So let’s assume that the linearization Du : TuB Ñ Eu is not surjective. The standard approach, known as
the Kuranishi method, is to augment the problem. We choose a finite-dimensional vector space E and a
linear map λ : E Ñ Eu such that the image of λ is a complement to the image of Du, yielding a surjective
operator Du ‘ λ : TuB ‘ E Ñ Eu. We then choose a neighborhood U Ă B of u and extend λ to a smooth
map λ : U ˆ E Ñ E |U .

This allows us to define a perturbed moduli space,

MU,E,λ “ tpv, eq P U ˆ E | Bv ` λpv, eq “ 0u.

The original moduli space, intersected with U , embeds into this larger space: M X U ãÑ MU,E,λ. There is
a natural projection map s : MU,E,λ Ñ E.

The linearization of the perturbed system at the point pu, 0q P MU,E,λ is given by the map from TuB ‘ E
to Eu defined by

pξ, eq ÞÑ Duξ ` λpu, eq.

By construction, this operator is surjective. This ensures that MU,E,λ is a finite-dimensional manifold near
pu, 0q. This motivates the following definition:

Definition 1.8. Suppose M is a compact Hausdorff space. A local Kuranishi chart of virtual dimen-
sion d for M is a quintuple pMα, Eα,Γα, sα, ψαq where:

• Mα is a finite-dimensional topological manifold.

• Eα is a finite-dimensional vector space such that dimMα “ d` dimEα.

• Γα is a finite group which acts on Mα and Eα.

• sα : Mα Ñ Eα is a Γα-equivariant function.

• ψα : s´1
α p0q{Γα

–
Ñ Uα Ă M is a homeomorphism onto an open subset.

The upshot is that the entire moduli space M0,mpX,A, Jq can be covered by a finite atlas of such local
Kuranishi charts. A local Kuranishi chart induces a local virtual fundamental class on Uα through the
composition of maps:

qHd
c pUα;Qq

1
|Γα|

ψ˚
α

ÝÝÝÝÝÑ
–

qHd
c ps´1

α p0q;QqΓα

Pardon
ÝÝÝÝÑ

–
HdimEα

pMα,Mαzs´1
α p0q;QqΓα

psαq˚
ÝÝÝÝÑ HdimEα

pEα, Eαzt0u;QqΓα

orientation
ÝÝÝÝÝÝÝÑ

–
Q
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where Pardon is the map found in [Pardon, 2016, Appendix A].

Definition 1.9. The local virtual fundamental class is the map

rvαsvirlocal :
qHd
c pUα;Qq Ñ Q

defined by the composition above.

Example 1.10. Consider a chart where Mα “ C, Eα “ C, Γα “ t1u, and the section is given by sαpzq “ zn.
The local contribution to the virtual count of points is n, so

rvαsvirlocal “ nrpts.

1.2 Global Kuranishi Charts: Definitions and Preliminaries

1.2.1 Global Kuranishi Charts and Equivalence

Definition 1.11. Let M be a compact Hausdorff space. A global Kuranishi chart of virtual dimension
d for M consists of a tuple pG, T , E , sq, where:

• T is a finite-dimensional topological manifold, called the thickening.

• E Ñ T is a finite-rank vector bundle, called the obstruction bundle.

• s : T Ñ E is a section, called the obstruction section.

• G is a compact Lie group, the symmetry group, which acts on the bundle E Ñ T such that the action
on T has finite stabilizers.

• The dimensions satisfy the relation dim T “ d` rank E ` dimG.

• A homeomorphism s´1p0q{G
„

ÝÑ M, called the footprint map.

The allowance of a infinite Lie group G is very important. It turns out that allowing only finite groups is
not flexible enough. For example, if we take CP1 and consider a disk D at the origin with a Z{2 action, we
need an infinite group G. On the other hand, the current condition is sufficient: every orbifold is a global
quotient M{G for some manifold M and Lie group G.

A global Kuranishi chart, equipped with compatible orientations on the manifold T , the bundle E , and the
Lie algebra g “ LiepGq, induces a virtual fundamental class for M. This class is constructed via the following
sequence of maps in equivariant (co)homology:

qH˚pM;Qq
Poincaré Duality

ÝÝÝÝÝÝÝÝÝÝÑ HG
rank EpT , T zs´1p0q;Qq

s˚
ÝÑ HG

rank EpE , Ez0E ;Qq

τG
E

ÝÝÑ HG
0 ppt;Qq – Q,

where the first map is an isomorphism and the final map is induced by the equivariant Thom class of E .

Problem 1.12. When are two global Kuranishi charts to be considered equivalent?

The appropriate notion of equivalence is one that preserves the induced virtual fundamental class.

Proposition 1.13. Two global Kuranishi charts are equivalent if one can be obtained from the other
through a finite sequence of the following operations:

1. Germ equivalence: Replace pT , E , sq with its restriction to a G-invariant open neighborhood U of
s´1p0q in T , yielding the chart pG,U , E |U , s|U q.

2. Group enlargement: Given another compact Lie group H and a G-equivariant principal H-bundle
p : P Ñ T , form the new chart pGˆH,P, p˚E , p˚sq.

3. Stabilization: Given a G-equivariant vector bundle π : W Ñ T , form the new chart pG,W, π˚pE ‘

Wq, π˚s‘ ∆Wq, where ∆W is the diagonal section.

These operations should be thought of as analogous to the Reidemeister moves in knot theory.
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1.2.2 Complex Geometry Background

The construction of global charts relies on several basic results from complex geometry. On CPn, the
tautological line bundle is denoted Op´1q ãÑ CPn ˆ Cn`1, and its dual is the hyperplane bundle Op1q. We
define Opkq :“ Op1qbk.

Holomorphic Line Bundles on Curves (Riemann Surfaces)

Lemma 1.14. Suppose Σ is a Riemann surface, L Ñ Σ is a C8 complex line bundle, and ∇ is a C-linear
connection on it. Then the operator ∇0,1 defines a unique holomorphic structure on L.

Proof. Given p P Σ, choose a C8 section τ of L defined near p such that τppq ‰ 0. Then, ∇0,1pτq “ g b τ
where g P Ω0,1pΣq. The B-Poincaré lemma guarantees the existence of a local C8-function f such that
g “ Bf . We define a new section σ “ e´fτ . A direct calculation shows that σ is annihilated by ∇0,1:

∇0,1σ “ ∇0,1pe´fτq “ e´f∇0,1τ ` pBe´f q b τ

“ e´f pg b τq ´ fe´f pBfq b τ

“ e´f pg b τ ´ g b τq “ 0.

Thus, σ is a local holomorphic section, defining the holomorphic structure.

Lemma 1.15. Suppose Σ is a nodal genus-zero curve. The isomorphism class of a holomorphic line bundle
L on Σ is determined by the degree of L on each irreducible component of Σ.

Corollary 1.16. Consider L Ñ Σ as above. If L has total degree d and has degree ě 0 on each component,
then dimCH

0pΣ;Lq “ d` 1 and dimCH
1pΣ;Lq “ 0.

Genus-Zero Curves in CPn A holomorphic map into projective space can be specified either geometri-
cally or algebraically.

1. A holomorphic map f : X Ñ CPn.

2. A holomorphic line bundle L Ñ X with holomorphic sections s0, . . . , sn that have no common zero in
X.

The correspondence between these two perspectives is given by:

pX
f

ÝÑ CPnrx0:¨¨¨:xnsq ÞÑ pf˚Op1q, f˚x0, . . . , f
˚xnq

pL, s0, . . . , snq ÞÑ pX
rs0:¨¨¨:sns

ÝÝÝÝÝÝÑ CPnq.

One important example where transversality holds without perturbation is the moduli space of maps into
projective space.

Lemma 1.17. For n, d ě 1 and m ě 0, the space M0,mpCPn, dq is a complex orbifold of the expected
dimension.

Proof. Let f : Σ Ñ CPn be a genus-zero nodal stable map. Transversality holds if the linearized operator Df

is surjective, which is equivalent to the vanishing of its cokernel, cokerDf “ H1pΣ; f˚TCPnq. The tangent
bundle of CPn fits into the Euler exact sequence:

0 Ñ O Ñ Op1q‘pn`1q Ñ TCPn Ñ 0.

Pulling back this sequence by f and taking the long exact sequence in cohomology yields the segment

¨ ¨ ¨ Ñ H1pΣ; f˚Op1qq‘pn`1q Ñ H1pΣ; f˚TCPnq Ñ H2pΣ;Oq Ñ ¨ ¨ ¨

Since Σ is a genus-zero curve, H2pΣ;Oq “ 0. The line bundle f˚Op1q has degree d ě 1 and non-
negative degree on each component, so by the previous corollary, H1pΣ; f˚Op1qq “ 0. It follows that
H1pΣ; f˚TCPnq “ 0, establishing surjectivity.

9



1.3 Global Kuranishi Charts: Construction

1.3.1 The AMS Trick

Let pX2n, ωq be a closed symplectic manifold, A P H2pX;Zq a homology class, and J an ω-tame almost
complex structure on X. These data define the moduli space M0pX,A, Jq, which consists of equivalence
classes of J-holomorphic maps u : Σ Ñ X from nodal genus-zero curves Σ such that u˚rΣs “ A. The main
result is the following.

Theorem 1.18 (Abouzaid, McLean, Smith, 2021). The moduli space M0pX,A, Jq admits a global Kuranishi
chart. Although the construction involves choices, the resulting chart is unique up to equivalence.

A key ingredient in the construction is the moduli space of non-degenerate maps into projective space.

Proposition 1.19. The space

M˚

0 pCPd, dq :“
!

f : Σ Ñ CPd | f is a degree d genus-0 stable map and f is non-degenerate
)

is a smooth quasi-projective variety of the expected dimension. A map f is non-degenerate if its image is not
contained in any hyperplane of CPd.

Example 1.20. The rational normal curve provides a canonical example of a non-degenerate map:

CP1
Ñ CPd

ru : vs ÞÑ rud : ud´1v : ¨ ¨ ¨ : vds.

Associated with this moduli space is a universal family, described by the diagram below, where C is the
universal curve.

C CPd

M˚

0 pCPd, dq

The space C is also a smooth, quasi-projective variety.

Recall that a map to projective space Z Ñ CPn is induced by a line bundle L Ñ Z and a choice of global
sections s0, . . . , sn P H0pZ;Lq with no common zeros.

Definition 1.21. A line bundle L is very ample if there exist sections s0, . . . , sn P H0pZ;Lq that define
an embedding Z ãÑ CPn.

Definition 1.22. A line bundle L is ample if there exists an integer m ě 1 such that Lbm is very ample.

Proposition 1.23. If Z is a nodal curve, a line bundle L on Z is ample if and only if degpL|Cq ą 0 for
every irreducible component C Ă Z.

We now state the main technical lemma.

Lemma 1.24 (AMS Trick). Suppose Z is a compact complex manifold, L Ñ Z is an ample line bundle, and
E Ñ Z is a holomorphic vector bundle. Endow these bundles with Hermitian metrics. For k " 1, define the
finite-dimensional space of sections

Wk :“ Im

ˆ

H0pZ; E b Lbkq bC H0pZ;Lbkq
x¨,¨y

ÝÝÑ Ω0pZ, Eq

˙

.

As k Ñ 8, the spaces Wk provide an L2-dense subspace of Ω0pZ, Eq. That is, for any ξ P Ω0pZ, Eq, there
exists k0 such that for all k ě k0, there is an η P Wk with xξ, ηyL2 ‰ 0.
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1.3.2 Construction

Line Bundles on X First, approximate the symplectic form ω by another symplectic form Ω which also
tames J and satisfies rΩs P H2pX;Qq. By clearing denominators, we may assume rΩs P H2pX;Zq{torsion.
This condition implies the existence of a C8 complex line bundle LΩ Ñ X with first Chern class c1pLΩq “ rΩs.

From Chern-Weil theory, we have the following lemma:

Lemma 1.25. There exists a Hermitian metric and a compatible Hermitian connection ∇ on LΩ such that
its curvature form is ´2πiΩ.

Let us fix the notation d :“ rΩs ¨A.

Framed Genus-Zero Curves Consider a J-holomorphic stable map u : Σ Ñ X. The pullback bundle
u˚LΩ Ñ Σ is endowed with a holomorphic structure induced by the operator pu˚∇q0,1. Since Ω tames J ,
the integral

ş

C
u˚Ω ě 0 for every component C Ă Σ, and this integral is strictly positive for any unstable

component. Consequently, the line bundle u˚LΩ has non-negative degree on each component of Σ and
positive degree on each unstable component. From the results of the previous section, it follows that

dimCH
0pΣ;u˚LΩq “ d` 1 and H1pΣ;u˚LΩq “ 0.

A framing is a choice of basis F “ pf0, . . . , fdq forH0pΣ;u˚LΩq. Such a choice induces a degree-d, genus-zero
stable map

ΦF “ rf0 : ¨ ¨ ¨ : fds : Σ Ñ CPd.

If this map is non-degenerate, then pΣ,ΦF q is a point in M˚

0 pCPd, dq, and the curve Σ can be identified with
a fiber of the universal curve via an embedding iF . The following diagram illustrates this relationship:

Σ C CPd

pΣ,ΦF q M˚

0 pCPd, dq

iF

P

Associated to a framed curve is the matrix

HpΣ, u, F q :“

ˆ
ż

Σ

xfi, fjyu˚LΩ
u˚Ω

˙

0ďi,jďd

,

which is a Hermitian positive-definite pd` 1q ˆ pd` 1q matrix.

Definition 1.26. A framed genus-zero curve in X is a tuple pΣ, u, F q where

1. Σ is a nodal genus-zero curve.

2. u : Σ Ñ X is a C8 map in the class A such that
ş

C
u˚Ω ě 0 on each component C Ă Σ and

ş

C
u˚Ω ą 0

on each unstable component.

3. F “ pf0, . . . , fdq is a basis of H0pΣ;u˚LΩq such that the matrix HpΣ, u, F q is positive-definite.

Two framed curves pΣ, u, F q and pΣ1, u1, F 1q are equivalent if there exists a biholomorphism φ : Σ Ñ Σ1 such
that u “ u1 ˝ φ. The diagram describing this equivalence is as follows:

Σ

X

Σ1

u

φ –

u1

11



Achieving Transversality To achieve transversality in the construction, we make the following choices:

1. A relatively ample line bundle L on C Ñ M˚

0 pCPd, dq equipped with a Upd ` 1q-invariant Hermitian
metric.

2. A Upd` 1q-invariant C-linear connection on T˚0,1C.

3. A C-linear connection on TX (viewed as a complex vector bundle via J).

4. A sufficiently large integer k " 1.

For more details, see [Horschi, Swaminathan, 2021, Section 2.1]. With this data, the components of the
global Kuranishi chart are defined as follows.

Proposition 1.27. The thickening T is the space of tuples pΣ, u, F, ηq, where

1. pΣ, u, F q is a framed genus-zero curve in X.

2. η is an element of the finite-dimensional space

H0pΣ;u˚TX b i˚F pT˚0,1C b Lbkqq bC H0pΣ; i˚FLbkq

satisfying the perturbed equation
BJu` xηy ˝ i.F “ 0.

Proposition 1.28. The obstruction bundle E Ñ T is a vector bundle whose fiber over pΣ, u, F, ηq is

EpΣ,u,F q ‘ Hd`1,

where Hd`1 is the space of pd ` 1q ˆ pd ` 1q Hermitian matrices and EpΣ,u,F q is another finite-dimensional
space of sections constructed via the AMS trick.

Proposition 1.29. The obstruction section s : T Ñ E is given by

spΣ, u, F, ηq “ pη, logHpΣ, u, F qq.

Proposition 1.30. The symmetry group is G “ Upd` 1q, which acts on the space of framings.

The key point of the construction is that for k " 1, the AMS trick ensures that the defining equation for the
thickening T is transverse.
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2 Erkao Bao: Introduction to Contact Homology

There were three lectures:

1. Day 1: Moduli Spaces of J-holomorphic Curves and Compactness

In this lecture, we begin with an introduction to basic contact geometry. We then introduce J-
holomorphic curves as the gradient of the action functional. The focus will be on the moduli space
of J-holomorphic curves, with a discussion on compactness. We will provide heuristic definitions of
cylindrical contact homology and full contact homology.

2. Day 2: Cylindrical Contact Homology in Dimension Three via Obstruction Bundle Gluing

This lecture addresses the transversality issues associated with the moduli space of J-holomorphic
curves. We specifically focus on cylindrical contact homology in the 3-dimensional case. The lecture
will cover the resolution of transversality issues using obstruction bundle gluing techniques.

3. Day 3: Semi-Global Kuranishi Structure and Full Contact Homology

In this lecture, we introduce the semi-global Kuranishi structure. We explore its application in relation
to obstruction bundle gluing, including computations of simple examples. The discussion will culminate
in the rigorous definition of full contact homology, facilitated by the semi-global Kuranishi structure.

2.1 Moduli Spaces of J-Holomorphic Curves and Compactness

2.1.1 Introduction

Definition 2.1. Let M be a manifold of dimension 2n ` 1, and let ξ be a hyperplane distribution on M ,
i.e., a subbundle of the tangent bundle TM of rank 2n. We say ξ is a contact structure if there exists a
1-form α on M , called the contact form, such that

• ξ “ kerα.

• α ^ pdαqn ‰ 0.

The second condition is equivalent to the statement that dα is a symplectic form on each fiber of the bundle
ξ. Together, these two conditions imply that the distribution ξ is non-integrable, which is the defining
property of a contact structure.

Example 2.2. Consider the standard contact structure on R2n`1, defined by the contact form αstd “ dz ´
řn
i“1 yi dxi. The corresponding contact planes ξstd “ kerαstd at a point px, y, zq P R2n`1 are given by the

equation dz “
ř

yi dxi. When n “ 1, at the origin, the contact form is dz ´ y dx, and the contact plane is
given by dz “ 0, a simple 2-plane in R3.

The non-integrability of contact structures distinguishes them from their symplectic counterparts. However,
locally, they all share the same canonical form, as shown by the Darboux Theorem.

Theorem 2.3 (Darboux Theorem). All contact structures on a p2n ` 1q-dimensional manifold are locally
isomorphic to the standard contact structure.

This result implies that the local geometry of contact manifolds is trivial. Thus, the interesting invariants
of contact structures must be of a global nature. This is the idea behind the Gray Stability Theorem:

Theorem 2.4 (Gray Stability Theorem). Consider a one-parameter family of contact structures tξtu0ďtď1 on
a closed manifold M . There exists a one-parameter family of diffeomorphisms ϕt of M such that pϕtq˚ξt “ ξ0
for all t, with ϕ0 “ id.

2.1.2 Contact Homology

Contact homologies are a class of invariants used to distinguish non-isotopic contact structures. They are
constructed using geometric data related to the dynamics on the contact manifold. Before we define them,
we consider some applications of these invariants.
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• [Ustilovsky, 1999]: For S4m`1, there exist infinitely many non-isotopic contact structures within each
homotopy class of almost contact structures pξ, J, ξ Ñ ξ, J2 “ ´idq where ξ is a hyperplane.

• [Bourgeois, 2004]: Similarly, T 5 and T 2 ˆ S3 admit infinitely many non-isotopic contact structures in
some homotopy class of almost contact structures.

• [Giroux, 1994; Eliashberg, Hofer, Givental, 2000]: On the 3-torus T 3, the contact forms αn “ cosp2πnzq dx`

sinp2πnzq dy define contact structures ξn “ kerαn that are pairwise non-isomorphic for different inte-
gers n.

One of the main objects in contact geometry is the Reeb vector field.

Definition 2.5. Given a contact form α, the unique vector field Rα satisfying

• αpRαq “ 1.

• dαpRα, ¨q “ 0.

is called the Reeb vector field. The first condition implies that Rα is positively transverse to the contact
planes ξ, while the second means that the flow of Rα preserves the contact planes.

Definition 2.6. A periodic orbit of the Reeb vector field Rα is called a Reeb orbit.

The existence of Reeb orbits is a basic question in contact geometry, formalized by the Weinstein Conjecture.

Conjecture 2.7 (Weinstein Conjecture). If a manifoldM of dimension 2n`1 is closed, then for any contact
form α, there exists at least one Reeb orbit.

Theorem 2.8 (Taubes, 2007). The Weinstein conjecture holds for n “ 1.

To construct a chain complex from Reeb orbits, we need to define a grading. This is achieved through the
Conley-Zehnder index.

Definition 2.9. Let γ be a Reeb orbit with period T , and let φt be the time-t flow of Rα. We say that γ is
non-degenerate if the linearized return map dφT : ξγp0q Ñ ξγpT q does not have 1 as an eigenvalue.

Definition 2.10. By symplectically trivializing the contact planes along a Reeb orbit γ, we obtain a path of
symplectic matrices given by dφt. The Conley-Zehnder index µczpγq is an integer invariant defined for
such a path.

The general definition is complicated so we will only present simple examples:

Example 2.11. In the case of a 3-dimensional manifold (n “ 1), we can classify the Conley-Zehnder index
based on the eigenvalues of the linearized return map.

• A positive hyperbolic orbit has eigenvalues that are positive real numbers. If the linearized flow dφtpvq

for an eigenvector v winds around the origin k times, the Conley-Zehnder index is µcz “ 2k.

• A negative hyperbolic orbit has negative real eigenvalues. If dφtpvq winds around the origin k` 1
2 times,

the index is µczpγq “ 2k ` 1.

• An elliptic orbit has non-real eigenvalues. If dφtpwq for a vector w in the contact plane winds between
k and k ` 1 times, the index is µczpγq “ 2k ` 1.

Consider the actional functional A : C8pst,Mq Ñ R, γ ÞÑ
ş

S1 γ
˚pαq with Reeb orbits crit A, with a complex

structure J : ξ acting on itself with T 2 “ ´id and xu, vy “ dαpu, Tvq for any u, v P ξ. Then x¨, ¨y defines an
inner product which implies

• dαpu, vq “ dαpJu, Jvq

• dαpu, Juq ą 0 for any u ‰ 0 P ξ.

Take η1, η2 P TγC
8pS1,Mq with

xη1, η2y “

ż

S1

xη1, η2y ` αpη1qαpη2q dt.
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Take u : R Ñ C8pS1,Mq with s P R and t P C8pS1,Mq with dimupsq are Reeb orbits as s Ñ ˘8. Then

du

ds
“ ´grad A

with u : R ˆ S1 Ñ M . This gives
dpu˚α ¨ jq “ 0πξus ` Jπξut “ 0

where j is a complex structure on R ˆ S1.

Let’s require u˚dα ¨ j “ da where a : R ˆ S1 Ñ R. Let ũ “ pa, uq : R ˆ S1 Ñ R ˆ M . Now, we extend J :
T pR ˆMq “ RpBaq ‘ RpRαq ‘ ξ where a P R, and extend J : RpBaq Ñ RpRαq. ũ is J-holomorphic, i.e.

Bũ “
1

2
pdũ` Jpũqdũ ¨ jq “ 0

or
ũs ` Jpũqũt “ 0

Next time, we will study the compactification of moduli spaces of J-holomorphic cylinders.

2.2 Cylindrical Contact Homology in Dimension Three via Obstruction Bundle
Gluing

2.2.1 Compactification

Let M̃pγ`, γ´q denote the set of J-holomorphic curves from RˆS1 to RˆM that are asymptotic to the Reeb
orbits γ` and γ´. We are interested in the moduli space M “ M̃{R, where the action is by translation along
the R factor. The compactness of these moduli spaces is crucial for counting them to define the boundary
map in the chain complex. However, sequences of J-holomorphic cylinders can degenerate, or ”break,” into
unions of simpler curves. This phenomenon is illustrated in the diagram below, showing a cylinder breaking
into multiple components:

ùR ˆ M

γ`

γ´ γ´

γ1 or

γ`

γ´γ1

γ`

or

R ˆ M

R ˆ M R ˆ M

R ˆ M

R ˆ M

The leftmost figure represents a single J-holomorphic cylinder. The other figures represent a sequence of
such cylinders converging to a ”broken” curve, which consists of a concatenation of cylinders and spheres.
The rightmost image depicts a single cylinder broken into multiple cylinders and spheres, with the bottom
components mapping to Rn.

The notion of Hofer energy provides a quantitative measure for the asymptotic behavior of these curves.

Definition 2.12. Let pF, jq be a Riemann surface with a finite set of punctures 9F “ F ztp1, . . . , pku, and let
u : p 9F , jq Ñ pR ˆM,Jq be a J-holomorphic curve. The Hofer energy of u is defined as

Epuq “ sup
ϕPC

ż

9F

u˚dpϕ, αq,

where

C “

$

’

’

&

’

’

%

ϕ : R Ñ r1, 2s

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

lim
sÑ´8

ϕpsq “ 1,

lim
sÑ`8

ϕpsq “ 2,

ϕ1psq ě 0 @s P R

,

/

/

.

/

/

-
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Proposition 2.13. The Hofer energy can be expressed in terms of the action of the asymptotic Reeb orbits:

Epuq “ 2

k`
ÿ

i“1

Apγ`,iq ´

k´
ÿ

i“1

Apγ´,iq

ě 0.

The Hofer energy is finite if and only if the curve is well-behaved at its punctures.

Theorem 2.14. If u : p 9F , jq Ñ R ˆM is a J-holomorphic curve, the following are equivalent:

• Epuq ă 8.

• For any puncture p of 9F , either p is removable, or u converges to some Reeb orbit as the domain
approaches p.

2.2.2 Grading

To define a chain complex, we need a grading for the generators (Reeb orbits) and a well-defined boundary
operator.

Assume H1pM ;Zq is torsion-free. If H1pMq “ 0, then for each Reeb orbit γ, we can fix a capping surface
Fγ Ă M with BFγ “ γ. If H1pM ;Zq ‰ 0, we choose a basis tciu for H1pMq and fix trivializations of ξ over
these cycles. For any Reeb orbit γ, we choose a surface Fγ such that rBFγs “ rγs ´

ř

nircis in H1pMq. A
trivialization of ξ|γ that extends over Fγ and is compatible with the trivializations over the ci allows for a
well-defined Conley-Zehnder index µCZpγq.

A J-holomorphic cylinder u P Mpγ`, γ´q together with capping disks Fγ`
and Fγ´

defines a closed surface
whose image under u represents a homology class A P H2pMq.

γ`

γ´

Fγ`

Fγ´

Assuming there are no contractible Reeb orbits, we define a chain complex pC˚, Bq. The chain group C˚ is
the free QrH2pMqs-module generated by ”good” Reeb orbits. The grading of a generator γ is defined as
|γ| “ µCZpγq ` n´ 3. The boundary operator is defined by

Bγ` “
ÿ

γ´,A

#M1
Apγ`, γ´qeA

1

mpγ´q
γ´,

where M1
Apγ`, γ´q is the moduli space of index 1 curves in the class A, mpγ´q is the multiplicity of γ´, and

eA is the formal variable corresponding to A P H2pMq. The index is such that |γ`| ´ |γ´| ´ |A| “ 1, where
|A| “ ´2c1pξqrAs.

Definition 2.15. A Reeb orbit γ is bad if it is a multiple cover of an embedded orbit γ1 and µCZpγq´µCZpγ1q

is odd. We exclude bad orbits from our set of generators.

Example 2.16. In dimension 3, an orbit γ is bad if and only if it is an even multiple cover of a negative
hyperbolic orbit.

If contractible Reeb orbits exist, the differential becomes more complex, counting configurations of curves
with multiple outputs. This leads to the richer structure of (Rational) Symplectic Field Theory (SFT). The
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differential can take the form:

Bγ` “
ÿ

γ´

#Mpγ`, γ´qγ´ `
ÿ

γ´1,γ´2

#Mpγ`; γ´1, γ´2qγ´1γ´2 ` . . .

where the terms correspond to cylinders, pairs of pants, and other punctured Riemann surfaces.

Example 2.17. In dimension three, if γ is a hyperbolic orbit, its Conley–Zehnder index is given by the
formula

µczpγ, kq “ kµczpγq,

where k is the covering number.

Let u be a J-holomorphic curve. Its Fredholm index is defined as indpuq “ µpγ`q ´µpγq ´ |A|, where µ is the
Conley–Zehnder index of the Reeb orbit and |A| is the area of the curve. If u is a k-fold cover of a simple
curve u1 and there are no elliptic orbits, then the Fredholm index scales linearly with the covering number:
indpuq “ k ¨ indpu1q.

If the index of the simple curve u1 is greater than or equal to one and the curve intersects the index one
manifold transversely, then indpuq ě k. From the definition of the boundary operator, an index of one for u
implies that the covering number k must also be one.

We can always eliminate elliptic orbits up to any action.

‚ ‚ ‚Ñ

elliptic hyperbolic

The two illustrated contact manifolds have the same contact structure but are endowed with different contact
forms.

2.3 Semi-Global Kuranishi Structure and Full Contact Homology

2.3.1 Introduction

When the moduli spaces of J-holomorphic curves are not regular (i.e., not smooth manifolds of the expected
dimension), one cannot simply count their points to define homological invariants. The theory of Kuranishi
structures provides a way to deal with such situations by constructing a virtual fundamental class for these
moduli spaces.

Consider an exact symplectic cobordism pW,dαq with boundary BW “ W` Y W´, where α|W˘
is a contact

form on W˘. Let J be a compatible almost complex structure on the completion xW . Counting index-0

J-holomorphic cylinders in xW defines a chain map:

Φ : C˚pW`, α`, J`q Ñ C˚pW´, α´, J´q.

Given a 1-parameter family of such data pWt, dαt, Jtq, one expects the induced maps Φ0 and Φ1 to be
chain homotopic. Proving this requires analyzing the 1-dimensional moduli space of parameter-dependent
solutions, which is given by

Mpγ`, γ´q “
ğ

tPr0,1s

ttu ˆ Mind“0
Jt pγ`, γ´q.

We aim to show the existence of a chain homotopy operator K : C˚pW`, α`, J`q Ñ C˚´1pW´, α´, J´q such
that Φ0 ´ Φ1 “ KB ` BK. This requires counting curves in a 1-dimensional moduli space whose boundaries
correspond to broken configurations, as depicted in the figure below:
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For the right-most cylinder shown in the figure, we can attach a configuration U to the top half and a
configuration from a moduli space M to the bottom half. For each such U , we have a map S´1 : O Ñ

rR,8q ˆ M . A vector space is attached to the domain O, defined by kerD˚
u{RxY y, where Y comes from

the variation of the almost complex structure. The set S´1p0q is then the set of curves in M that can be
successfully glued with U .

2.3.2 Semi-Global Kuranishi Structure

The concept is best introduced by analogy with the finite-dimensional case of Morse homology. Let pX, f, gq

be a closed manifold with a Morse function and a Riemannian metric. The moduli space of gradient flow
lines between critical points p, q is Mpp, qq “ pAq X Dpq{R, where Aq is the ascending manifold of q and
Dp is the descending manifold of p. When this intersection is not transverse, Mpp, qq is not a manifold. An
interior semi-global Kuranishi chart provides a local model for this space as the zero set of a section of a
vector bundle.

Definition 2.18. An interior semi-global Kuranishi chart for a space M is a quadruple pK,πV : E Ñ

V,L, ψq where:

1. K Ă M is a compact subset.

2. πV : E Ñ V is a finite-rank vector bundle over a finite-dimensional manifold V .

3. L : V Ñ E is a smooth section.

4. ψ : L´1p0q Ñ M is a homeomorphism onto an open neighborhood of K.

5. The virtual dimension is given by dimV ´ rankE “ vir dim M.

We order the moduli space M1,M2, ... such that the energy increases. Let

Mi “ Mppi, qiq, EpMiq “ fppiq ´ fpqiq.

and suppose we have an index tuple I “ pi1, ..., inq such that pim “ qim`1 . Suppose S Ă I is a subindex
tuple. Then I{S is the index tuple obtained by replacing S by an integer which is the index of Mpps1 , qskq

if S “ ps1, ..., skq, and S⃗ Ă I is a disjoint union of subindex tuples. We say I ă J if there exists S⃗ Ă J such

that I “ J{S⃗.

Definition 2.19. A semi-global Kuranishi structure for M1, ...,Mp for any 1 ď i ď p such that

1. For each index tuple I corresponding to a stratum of Mi (denoted I{I “ i), there is an associated
Kuranishi chart:

CI “ pπI : EI Ñ VI ,LI : VI Ñ EI , ψI : L´1
I p0q Ñ Miq.

2. For each pair of index tuples I 1 ă I, there exists a coordinate change map defined on an open subset
VI1I Ă VI1 . This map consists of a bundle map ϕ#I1I and an embedding ϕII1 that form the following
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commutative diagram:

EI1 |VI1I
EI

VI1 VI1I VI

ϕ#

I1I

Ą

LI1

ϕII1

LI

where the bundle map ϕ#I1I is injective.

3. The sections are compatible with the coordinate change:

LI ˝ ϕI1I “ ϕ#I1I ˝ LI1 |VI1I
.

4. The linearization of the section, pdLIq˚, descends to an isomorphism:

pdLqI : TVI{TVI¨I
–

ÝÑ EI{EI .

5. The composition of coordinate change maps, pϕI1I , ϕ
#
I1Iq, is associative.

6. The union of the zero sets of the charts covers the moduli space Mi:

Mi “
ď

I,I{I“i

ψIpL´1
I p0qq.

2.3.3 Strata Compatibility

Definition 2.20. For an index tuple I “ pi1, . . . , imq, we form the product spaces corresponding to the
unglued components:

VI “ Vi1 ˆ ¨ ¨ ¨ ˆ Vim ˆ rR,8qm´1,

EI “ Ei1 ‘ ¨ ¨ ¨ ‘ Eim .

Suppose that GI a diffeomorphism onto its image, G#
I is a bundle isomorphism, and LI are C 1-close as

T1, ...., Tm´1 Ñ 8.

For all i, a bundle map satisfies the strata compatibility conditions if the following map commutes

EI EI

VI VI

G#
I

pL1,L2,...,Lmq

GI

LI

Here, the perturbation section is
σ “ tGI : VI Ñ FI | I{I “ iu

where σI transverses LI , σI is small, the section is compatible with pϕI1I , ϕ
#
I1Iq, and both σI and pσi1,i2,...,inq

are C1-close as T1, ..., Tn´1 Ñ 8. The resulting perturbed moduli space is

Zi “
ž

I{I“i

L´1
I pσIq{ „
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2.3.4 Construction of Semi-Global Kuranishi Structures for Cylindrical Contact Homology

Suppose we have an interior chart E Ñ B and B on the inverse.

Theorem 2.21. Given any compact set K Ă M, there exists a finite rank subbundle E of the relevant
obstruction bundle over a neighborhood of K such that the section defined by the B̄-operator is transverse to
E.

Sketch of Proof. The core idea is to model the non-linear equation B̄Ju “ 0 as the zero set of a section
transverse to a finite-dimensional vector bundle.

First, we analyze the equation in the asymptotic region of a curve u. For a small constant ϵ ą 0, we can
find s0 P R such that for s ą s0, the action Apups ´ s0qq is within ϵ of its asymptotic value Apγ`q. In this
regime, for a suitable choice of J , the equation B̄Ju “ 0 can be approximated by its linearization:

Bsu`Au “ 0,

where A is a linear, self-adjoint operator acting on sections along the asymptotic Reeb orbit.

Let tλiuiPZ and tfiuiPZ be the eigenvalues and corresponding eigenvectors of A, ordered such that ¨ ¨ ¨ ď

λ´1 ă 0 ă λ1 ď . . . . Using these, we construct a family of sections of the relevant cotangent bundle:

f̃jps, tq “ βpsqfkptq b pds´ i dtq,

where βpsq is a cutoff function that localizes the section to the asymptotic region.

The key step is to define a finite-dimensional vector bundle E as the span of a suitable finite collection of
these sections, E “ spantf̃1, . . . , f̃ℓu. One can then show that the section defined by B̄ is transverse to E.
The domain of the Kuranishi chart, V , is then defined as the preimage of this bundle:

V :“ B̄´1pEq.

By construction, V is a finite-dimensional manifold, and the pair pV,Eq with the section B̄ forms the local
chart.

Finally, this local construction must be shown to be compatible with the gluing operations that define the
boundary strata of the moduli space. We do this by showing the commutativity of the following diagram,
which relates the charts for broken trajectories to the chart for the glued trajectory:

O` ‘ O´ O`´

M` ˆ M´ ˆ rR,8q V

G#

p0,0q

G

L

This ensures that the charts defined for different strata fit together properly.
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3 Mike Usher: Quantitative Symplectic Geometry

There were three lectures:

1. Day 1: Symplectic Embedding Obstructions and Constructions

The question of which subsets of R2n embed symplectically into which others has turned out to be
quite rich and has led to the development of many techniques over the past 40 years. In my first
lecture, I will explain proofs of classic results of Gromov that give obstructions to symplectic squeezing
and packing, and will contrast this with cases where an explicit construction allows one to give a
non-obvious positive answer to a symplectic embedding question.

2. Day 2: Capacities and Symplectic Homology

The second lecture will formally introduce the notion of a symplectic capacity, and will discuss two
examples of these: the Hofer-Zehnder capacity based on periodic orbits of Hamiltonian systems, and
the Floer-Hofer-Wysocki capacity based on symplectic homology.

3. Day 3: Obstructing Embeddings Using Equivariant Symplectic Homology

The third lecture will explain how S1-equivariant symplectic homology supplies additional restrictions
on symplectic embeddings, both via a sequence of capacities coming from spectral invariants associated
to various homology classes, and via chain-level information that vanishes in homology but can in some
cases be used to show that two known embeddings are not symplectically isotopic.

3.1 Symplectic Embedding Obstructions and Constructions

3.1.1 Introduction

Quantitative symplectic geometry is concerned with several fundamental questions regarding the existence
and properties of symplectic embeddings. Important examples of such questions include:

1. Suppose Xpr⃗q and Y ps⃗q are symplectic manifolds depending on parameters r⃗ and s⃗. For what values
of these parameters do there exist symplectic embeddings Xpr⃗q ãÑ Y ps⃗q? For instance, for which a ą 0
and sj ą 0 does a symplectic embedding exist from the ball

Xpaq “ B2npaq “

#

px⃗, y⃗q P R2n | π
n
ÿ

j“1

px2j ` y2j q ď a

+

into the ellipsoid

Y ps⃗q “ E2nps1, . . . , snq “

#

px⃗, y⃗q P R2n | π
n
ÿ

j“1

x2j ` y2j
sj

ď 1

+

?

2. If X Ă R2n is a domain with a contact-type boundary, what can be said about the action of closed
characteristics on BX? What is the connection between this question and the previous one?

3. For a Hamiltonian diffeomorphism ϕ : M Ñ M , what is the asymptotic behavior of the number of
fixed points of its iterates, #Fixpϕkq, and the Hofer norm, ||ϕk||Hofer, as k Ñ 8?

For the remainder of this discussion, we will focus primarily on the first question, which led to the first result
that got mathematicians interested in studying quantitative symplectic geometry.

Theorem 3.1 (Gromov’s Non-Squeezing Theorem, 1985). Let the standard ball and cylinder in R2n be
defined as

B2npaq “

#

px⃗, y⃗q P R2n | π
n
ÿ

j“1

px2j ` y2j q ď a

+

and
Z2npAq “

␣

px⃗, y⃗q P R2n | πpx21 ` y21q ď A
(

“ B2pAq ˆ R2n´2.
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A symplectic embedding B2npaq ãÑ Z2npAq exists only if a ď A.

Basically, this result states that it is impossible to deform a ball to fit into a cylinder of a smaller radius
while preserving the symplectic structure.

3.1.2 Proof of Gromov’s Non-Squeezing Theorem

We present a sketch of the proof. Suppose there exists a symplectic embedding ϕ : B2npaq ãÑ Z2npAq. For
any ϵ ą 0, we wish to show that a ď A; it suffices to show a´ ϵ ă A` ϵ.

Choose a length L such that the image of ϕ is contained in B2pAq ˆ p´L,Lq2n´2. We can regard B2pAq as
a subset of the 2-sphere S2pA ` ϵq of area A ` ϵ. The map ϕ can then be viewed as embedding into the
symplectic manifold pM,ωq “ pS2pA` ϵq ˆ pR{2LZq2n´2, ωstd ‘ ωstdq.

The proof relies on two key facts:

Proposition 3.2 (Fact #1). For any ω-compatible almost complex structure J on M , there exists a J-
holomorphic map u : S2 Ñ M such that ϕp⃗0q P Impuq and u˚rS2s “ rS2 ˆ tptus P H2pMq. This holds in
particular for any J that agrees with ϕ˚J0 on the image ϕpB2npa ´ ϵ{2qq, where J0 is the standard complex
structure.

Proposition 3.3 (Fact #2). For any J0-holomorphic map v : Σ Ñ B2npcq, where Σ is a compact surface
with boundary and c P pa ´ ϵ, a ´ ϵ{2q, such that vpBΣq Ă BB2npcq and 0⃗ P Impvq, the area of the image is
bounded below: Areapvq ě c.

Assuming these facts, the theorem follows. For a generic c P pa´ ϵ, a´ ϵ{2q, let Σ “ u´1pϕpB2npcqqq. Define
v : Σ Ñ B2npcq by v “ ϕ´1 ˝ u|Σ. Then

a´ ϵ ă c ď Areapvq “

ż

Σ

v˚ω0 “

ż

Σ

pϕ´1 ˝ uq˚ω0 “

ż

Σ

u˚ω “ Areapu|Σq ď Areapuq “ A` ϵ.

Since this holds for any ϵ ą 0, we conclude that a ď A.

Proof Sketch of Fact 1. For any ω-compatible J , consider the moduli space of curves passing through the
specified point:

MJ “

!

u : S2 Ñ M | u˚rS2s “ rS2 ˆ tptus, uporiginq “ ϕp⃗0q

)

.

If J “ J0 is a standard complex structure, MJ0 consists of a single element. For contradiction, suppose
MJ1 “ H for some other compatible J1. For a generic path of almost complex structures tJtutPr0,1s from J0
to J1, the parameterized moduli space

Ť

tPr0,1sttu ˆ MJt would be a compact 1-manifold whose boundary
is MJ0 Y MJ1 . But this implies its boundary consists of a single point, which is impossible as compact
1-manifolds have an even number of boundary points.

The proof of Fact 2 is omitted.

3.1.3 4-Dimensional Packing Problem

Problem 3.4 (4-Dimensional Packing Problem). Given k P N and a ą 0, does there exist a symplectic
embedding of k disjoint copies of the 4-ball of capacity a into the unit 4-ball?

ž

k

B4paq ãÑ B4p1q

By a result of McDuff and Polterovich, we have the identification B4p1q – CP2
p1q, the complex projective

plane of area 1. The volume of
š

k B
4paq is k a

2

2 , while VolpB4p1qq “ 1
2 . The fraction of the total volume

filled by the packing is ka2. The question is whether this fraction can approach 1.

Theorem 3.5 (2-Ball Theorem). If k “ 2, an embedding
š

2B
4paq ãÑ B4p1q exists only if a ď 1

2 .
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Proof. We present two distinct proof sketches.

1. Let ϕ1, ϕ2 : B4paq ãÑ CP2
p1q be symplectic embeddings with disjoint images. One can construct an

almost complex structure J that agrees with ϕ1˚J0 and ϕ2˚J0 on the respective images. There exists
a J-holomorphic curve u passing through both ϕ1p⃗0q and ϕ2p⃗0q and representing the class of a line
rCP1

s P H2pCP2
q. The area of this curve must be the sum of its areas inside each ball and its area

outside, giving

1 “ Areapuq ě a` a ùñ a ď
1

2
.

2. By blowing up the centers of the two embedded balls, we obtain a symplectic manifold CP2#2CP2.
The symplectic form is such that the class of the proper transform of the line, L “ rCP1

s, has area 1,
and the two exceptional divisors E1, E2 both have area a. The class L´E1´E2 can be represented by a
holomorphic sphere, which must have non-negative area. This implies the area inequality 1´a´a ě 0,
which gives a ď 1

2 .

3.2 Capacities and Symplectic Homology

3.2.1 Symplectic Capacities

Let C be a collection of 2n-dimensional symplectic manifolds closed under scaling of the symplectic form;
that is, if pM,ωq P C, then pM,aωq P C for all a ą 0.

Definition 3.6. A symplectic capacity on C is a function c : C Ñ r0,8s satisfying:

1. Monotonicity: If there exists a symplectic embedding pM,ωq ãÑ pM 1, ω1q, then cpM,ωq ď cpM 1, ω1q.

2. Conformality: For any a ą 0, cpM,aωq “ a ¨ cpM,ωq.

3. Nontriviality: cpB2np1qq ą 0 and cpZ2np1qq ă 8.

Remark 3.7. A stronger version of nontriviality is normalization, which requires cpB2np1qq “ cpZ2np1qq “

1.

When C consists of subsets of pR2n, ω0q, the conformality axiom is often phrased in terms of scaling the
domain: for a domain U , let aU :“ t

?
az⃗ | z⃗ P Uu. Then cpaUq “ a ¨ cpUq.

Let’s look at some examples of capacities:

Example 3.8 (Gromov Capacity). The Gromov capacity is defined as

cBpM,ωq :“ supta | D a symplectic embedding B2npaq ãÑ pM,ωqu.

One major source of symplectic capacities are Hamiltonian systems. Suppose pM,ωq is a symplectic manifold
and H : R{Z ˆ M Ñ R is a smooth Hamiltonian, denoted pt,mq ÞÑ Htpmq. The corresponding time-
dependent Hamiltonian vector field XHt

, given by ωp¨, XHt
q “ dHt, generates a Hamiltonian flow φtH :M Ñ

M satisfying
dφtHpmq

dt
“ XHtpφtHpmqq.

We can study symplectic capacities via filtered Floer homology or symplectic homology, which are built from
the dynamics of such flows.

Example 3.9 (Hofer-Zehnder Capacity). The Hofer-Zehnder capacity is defined for compactly supported
Hamiltonians. Let HpMq be the set of smooth Hamiltonians H : M Ñ R that are compactly supported and
vanish on some non-empty open set. Then

cHZpM,ωq :“ suptmaxH | H P HpMq and all 1-periodic orbits of XH are constantu.
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3.2.2 (Filtered) Floer Homology

For the remainder of this section, we assume pM,ωq is an exact symplectic manifold, ω “ dλ. For example,
take the Euler vector field EX ,M Ă R2n, and λ “ λ0 :“ 1

2

ř

jpxjdyj ´ yjdxjq. For a 1-periodic Hamiltonian
H : R{Z ˆ M Ñ R, Floer homology, HFpHq, is defined as the Morse homology of the action functional
AH : C8pR{Z,Mq Ñ R, given by

AHpγq “ ´

ż

S1

γ˚λ`

ż 1

0

Hpt, γptqq dt.

The critical points of AH are the 1-periodic orbits of the Hamiltonian vector field XHt
:

CritpAHq “ tγ : R{Z Ñ M | 9γptq “ XHtpγptqqu.

There is a 1-to-1 correspondence between CritpAHq and Fixpφ1
Hq given by γ ÞÑ γp0q. The negative gradient

flow lines of AH are solutions u : R ˆ R{Z Ñ M to Floer’s equation:

Bu

Bs
` Jtpups, tqq

ˆ

Bu

Bt
´XHtpups, tqq

˙

“ 0.

The Floer chain complex, CFpHq, is the vector space spanned by CritpAHq, graded by the Conley-Zehnder
index µCZ. The boundary operator B : CFkpHq Ñ CFk´1pHq is defined on a generator γ´ by

Bγ´ “
ÿ

γ`

#pflow lines from γ´ to γ`qγ`,

where the sum is over generators γ` with index difference indpγ´q ´ indpγ`q “ 1.

Proposition 3.10. Under suitable compactness and transversality assumptions:

• The differential satisfies B2 “ 0, which gives the Floer homology HFpHq.

• For Hamiltonians H and H 1 satisfying the same asymptotic conditions, there exist continuation maps
CFpHq Ô CFpH 1q inducing isomorphisms on homology.

The filtered version can be given as follows: The action functional provides a natural filtration on the Floer
complex. For any real number t P R, we define the filtered Floer complex as the subspace

CF tpHq :“ span tγ P CritpAHq | AHpγq ď tu .

Since the action functional AH strictly decreases along non-constant negative gradient flow lines, the Floer
differential maps this subcomplex to itself, i.e., BpCF tpHqq Ă CF tpHq. Consequently, we may take the
homology of this subcomplex, which defines the filtered Floer homology, HF tpHq, for each t P R.

The natural inclusions of chain complexes CF spHq ãÑ CF tpHq for s ď t induce homomorphisms on ho-
mology, HF spHq Ñ HF tpHq. Furthermore, if H,H 1 are two Hamiltonians such that H ě H 1, there exist
continuation chain maps CF tpHq Ñ CF tpH 1q that respect the filtration level. These two structures are
compatible, as expressed by the following commutative diagram for any s ď t and H ě H 1:

HFspHq HFspH 1q

HFtpHq HFtpH 1q

3.2.3 Liouville Embeddings

Definition 3.11. A Liouville domain pW,ωq is a compact manifold with boundary, equipped with a 1-form
λ such that ω “ dλ is symplectic and the associated Liouville vector field Vλ (defined by ιVλ

ω “ λ) points
strictly outwards along BW .
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Example 3.12. For λ0 “ 1
2

ř

pxj dyj ´ yj dxjq, we have Vλ0 “ 1
2

ř

pxjBxj ` yjByj q, so we can take W to be
the strongly star-shaped around the region in R2n.

In this case, α :“ λ |BW for α P Ω1pBW q is a contact form on BW , and there exists a collar neighborhood U
of BW such that pU, λq « pr1 ´ ϵ, 1s ˆ BW, rαq. From the completion, we have

´

Ŵ , λ̂
¯

“ pW,λq
ď

BW

pr1,8q ˆ BW, rαq.

Example 3.13. Let λ0 “ 1
2

ř

jpxj dyj ´ yj dxjq be the standard Liouville form on R2n. The corresponding

Liouville vector field is the radial vector field Vλ0 “ 1
2

ř

jpxjBxj ` yjByj q. Consequently, any strongly star-

shaped domain in R2n is a Liouville domain with respect to the restriction of λ0.

In this setting, the restriction α :“ λ|BW is a contact form on the boundary BW . There exists a collar
neighborhood U of BW in W on which the Liouville structure is standard, i.e., pU, λq – pr1´ ϵ, 1s ˆ BW, rαq.
This allows for the construction of the completion of W , a non-compact manifold defined by attaching a
cylindrical end:

pŴ , λ̂q :“ pW,λq YBW pr1,8q ˆ BW, rαq.

For a strongly star-shaped domain in R2n, the completion Ŵ is symplectomorphic to R2n. The relation
Ŵ » R2n is called the Liouville isomorphism.

The homology theory is defined using a specific class of Hamiltonians on the completion.

Definition 3.14. Given a Liouville domain pW,λq, a Hamiltonian H : R{Z ˆ Ŵ Ñ R is W -admissible if
it satisfies two conditions:

1. H is non-negative on W .

2. On the cylindrical end r1,8q ˆ BW , the Hamiltonian is linear in the radial coordinate. That is, there
exist constants a ą 0 and b P R such that for all pr, yq P r1,8q ˆ BW ,

Hpt, pr, yqq “ ar ` b,

where a is chosen not to be the period of any closed Reeb orbit of the contact form α.

Remark 3.15. The condition on the slope a ensures that all 1-periodic orbits of the Hamiltonian flow are
contained within W . The linear behavior on the end implies that the Hamiltonian vector field is purely
rotational: XH “ aRα on p1,8q ˆ BW , where Rα is the Reeb vector field.

Let HW be the set of all W -admissible Hamiltonians. This set is directed under the pointwise inequality
H ě H 1. For any such pair, there exist continuation maps HF tpHq Ñ HF tpH 1q for each filtration level
t P R.

Definition 3.16. For a Liouville domain W and any t P R, the symplectic homology SHtpW q is defined
as the direct limit of the filtered Floer homology groups over the directed set of admissible Hamiltonians:

SHtpW q :“ lim
ÝÑ

HPHW

HF tpHq.

The resulting homology groups form a filtered system, with maps SHspW q Ñ SHtpW q for all s ď t. This
structure is a powerful invariant of the Liouville domain:

Proposition 3.17. The completed symplectic homology, SH8pW q, depends only on the Liouville isomor-
phism type of the completion Ŵ . For any strongly star-shaped domain W Ă R2n, SH8pW q “ 0.

Symplectic homology is functorial with respect to Liouville embeddings.

Proposition 3.18. If W 1 is a Liouville domain contained in the interior of W , there are induced transfer
maps

SHtpW q Ñ SHtpW 1q.
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More generally:

Proposition 3.19. A Liouville embedding φ :W 1 ãÑ intpW q (meaning φ˚λ´ λ1 “ df for some function f)
induces transfer maps φ˚ : SHtpW q Ñ SHtpW 1q.

3.2.4 Floer-Hofer-Wysocki Capacity

We discuss the Floer-Hofer-Wysocki Capacity for a strongly star-shaped W Ă R2n. We begin with the
following result:

Proposition 3.20. For a strongly star-shaped domain W Ă R2n, for sufficiently small ϵ ą 0, the low-level
filtered symplectic homology is isomorphic to the relative homology of the domain:

SHϵ˚pW q – H˚`npW, BW q.

In particular, SHϵnpW q – Q.

This motivates the following definition:

Definition 3.21. The Floer-Hofer-Wysocki capacity of a strongly star-shaped Liouville domain W Ă

R2n is
cFHWpW q :“ inftt P R | the map SHϵnpW q Ñ SHtnpW q is zero for small ϵ ą 0u.

Theorem 3.22. cFHW defines a symplectic capacity.

Proof. We verify that cFHW satisfies the three axioms of a symplectic capacity.

• Monotonicity: LetW 1 ãÑ intpW q be a Liouville embedding. This induces transfer maps on symplectic
homology which fit into the following commutative diagram for any t P R and small ϵ ą 0:

SHϵpW q SHϵpW 1q

SHtpW q SHtpW 1q

φ1

–

φ

By definition, if t ą cFHWpW q, the left vertical map is zero. By commutativity, the composition
SHϵ

npW q Ñ SHϵ
npW 1q Ñ SHt

npW 1q is also zero. Since the top horizontal map is an isomorphism
(as both groups are isomorphic to the top relative homology of the domains), the right vertical map
must be zero. This implies that t ě inftt1 | SHϵ

npW 1q Ñ SHt1

n pW 1q is zerou “ cFHWpW 1q. Therefore,
cFHWpW q ě cFHWpW 1q, establishing monotonicity.

• Conformality: The property cFHWpW,aωq “ a ¨ cFHWpW,ωq follows from the behavior of the action
functional under scaling of the symplectic form. A scaling of ω by a factor of a scales the action values
by the same factor, and thus the filtration levels defining the capacity are scaled accordingly.

• Nontriviality: The conditions cFHWpB2np1qq ą 0 and cFHWpZ2np1qq ă 8 hold by the construction
of symplectic homology and its relation to the Reeb dynamics on the boundaries of these standard
domains.

This completes the proof.

Example 3.23. For the standard ellipsoid W “ Epa1, . . . , anq “

!

řn
j“1

πpx2
j`y2j q

aj
ď 1

)

with 0 ă a1 ď a2 ď

¨ ¨ ¨ ď an, the Floer-Hofer-Wysocki capacity is given by the smallest action value:

cFHWpW q “ a1.
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3.3 Obstructing Embeddings Using Equivariant Symplectic Homology

3.3.1 Symplectic Homology

Suppose we have pW,λq a Liouville domain, η “ BW , a contact form α “ λY , and C a scalar of Y such that
pCλq – pp1 ´ ϵ, 1s ˆ Y, rαq. The completion is

Ŵ :“ W
č

Y

pr1,8s ˆ Y, rαq.

Define
HW :“ tW -admissible Hamiltoniansu

where H : R{Zˆ Ŵ Ñ R such that H |R{ZˆHě 0 and for r ě 1, y P Y , Hpt, pr, yqq “ ´ar` b for a ą 0, b P R
such that a is not the closed period of any Reeb orbit for α.

Suppose H,H P HW and H ě H 1. Then for t P R autonomous, we have construction maps HFtpHq Ñ

HFtpH 1q.

Definition 3.24.
SHtpW q “ lim

ÝÑ

HPHW

HFtpHq.

A family of H’s approaching the limit might look like the following: take H |W to be a small Morse function
W Ñ r0,8q that is C2 small in the complement of the collar, with H |BW“ 0.

• On C – p1 ´ ϵ, 1s ˆ Y , we have Hpr, yq “ ´hprq, where h1 increases rapidly from δ « 0 to a " 0.

• On Ŵ zW “ p1,8q ˆ Y , we have Hpr, yq “ ´apr ´ 1q.

Note that the Hamiltonian vector field given by Hpr, yq “ ´hprq is XH “ ´h1prqRα.

Recall that for γ : R{Z Ñ M ,

AHpγq “ ´

ż

R{Z
γ˚λ`

ż 1

0

Hpt, γptqq dt.

For these H, Crit AH consist of

• Constants at critical points of HW zC with AH “ Hppq « 0.

• In C “ r1 ´ ϵ, 1s ˆ Y , the critical points are given by reparameterizations of closed orbits of Rα with
period h1prq, with AH « h1prq.

If t0 ă the minimal action of a Reeb orbit,

SHt˚pW q “ H˚`npMorse complex of H |W q

“ H˚`npW,Y q.

Once t is bigger than the minimal period of a Reeb orbit, SHt is affected by the Reeb orbits, any of which
gives an S1 family in CritpAHq. Morse-Bott perturbation splits these into two orbits different in index by
1, both with action approximately the period of the original orbit.

Example 3.25. Consider the ellipsoid

Epa1, ..., anq “

#

ÿ

j

πpx2j ` y2j q

aj
ď 1

+

.

with a1 ă ... ă an. Assume that aj are linearly independent over Q. The Reeb orbits are circles in xjyj
planes (and their m-fold covers) with action maj. After Morse-Bott perturbation, there exists 1 orbit in each
index starting at n` 1 arranged in increasing order of action.
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3.3.2 Positive Symplectic Homology

A useful variation of symplectic homology is obtained by quotienting out the low-action part of the complex,
which isolates the dynamics on the boundary from the topology of the domain itself.

Definition 3.26. For a Liouville domain W , the positive symplectic homology, denoted SH`,t
pW q, is

defined for any t P R as the direct limit

SH`,t
pW q :“ lim

ÝÑ
HPHW

H˚

ˆ

HFtpHq

HFϵpHq

˙

,

where the limit is taken over all W -admissible Hamiltonians H and for all sufficiently small ϵ ą 0.

Example 3.27. For any strongly star-shaped domain W Ă R2n, the completed positive symplectic homology
is concentrated in a single degree:

SH`,8
˚ pW q “

#

Q if ˚ “ n` 1,

0 otherwise.

A more powerful invariant arises from incorporating the natural S1-action on the free loop space C8pS1, Ŵ q.
This leads to the construction of S1-equivariant symplectic homology. Rigorously, this is the filtered
Morse homology of the action functional on the Borel construction of the loop space, pLŴ ˆ ES1q{S1.

When working with Q coefficients, an important feature of the equivariant theory is that its underlying
chain complex is generated by one generator for each closed Reeb orbit, rather than the two generators that
typically appear in the non-equivariant, Morse-Bott setting.

Example 3.28. Let CHt˚pW q denote the filtered, positive, S1-equivariant symplectic homology, i.e., CHt˚pW q :“

SHS
1,`,t

˚ pW q. For any strongly star-shaped domain in R2n, the completed version is given by

CH8
˚ pW q “

#

Q if ˚ “ n´ 1 ` 2k for k ě 1,

0 otherwise.

3.3.3 The Gutt-Hutchings Capacity

Equivariant symplectic homology does not give rise to only a single capacity, but rather to an infinite sequence
of them, indexed by the degree of the homology classes.

Definition 3.29. For an integer k ě 1 and a strongly star-shaped domain W Ă R2n, the k-th Gutt-
Hutchings capacity is defined as

cGH
k pW q :“ inf

␣

t P R | the map CHtn´1`2kpW q Ñ CH8
n´1`2kpW q is nonzero

(

.

Example 3.30. For the ellipsoid Epa1, . . . , anq, the k-th Gutt-Hutchings capacity is the k-th smallest value
in the ordered set of all Reeb orbit actions:

cGH
k pEpa1, . . . , anqq “ kth smallest number in the set tmaj | m ě 1, j “ 1, . . . , nu.

Example 3.31. For the polydisc W “ B2pa1q ˆ ¨ ¨ ¨ ˆ B2panq, the capacities are given by integer multiples
of the smallest radius:

cGH
k pB2pa1q ˆ ¨ ¨ ¨ ˆB2panqq “ k ¨ min

j
aj .
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3.3.4 Symplectic Banach-Mazur Distances

The capacities derived from equivariant symplectic homology can be applied to problems beyond embedding
obstructions, such as measuring a notion of distance between symplectic domains.

Definition 3.32. The symplectic Banach-Mazur distance between two Liouville domains X and Y is
given by

δpX,Y q :“ inf
␣

λ ě 1 | D a Liouville embedding φ : X ãÑ intpλY q such that λ´1Y Ă φpXq
(

.

A powerful strategy for obtaining lower bounds on this distance involves the transfer maps in equivariant
symplectic homology. The existence of a Liouville embedding φ satisfying the ”sandwich” condition λ´1Y Ă

φpXq Ă λY for a given λ implies the existence of a sequence of transfer maps on homology:

CHtkpλY q Ñ CHtkpXq Ñ CHtkpλ´1Y q.

By the conformality property of the filtration with respect to scaling, this sequence of maps is equivalent to

CHλ
´1t
k pY q Ñ CHtkpXq Ñ CHλtk pY q.

Therefore, if the known algebraic structures of the homology groups CH˚
kpXq and CH˚

kpY q preclude the
existence of such a factorization of maps for a given λ, one can conclude that no such embedding exists.
This provides a lower bound on the distance, δpX,Y q ą λ.
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RESEARCH TALKS

There were 10 research talks, each one hour long.

1. Symplectic Orbifold Gromov-Witten Invariants by Mark McLean (Stony Brook)

2. Spectral equivalence of nearby Lagrangians by Alex Pieloch (MIT)

3. Low-action holomorphic curves and invariant sets by Dan Cristofaro-Gardiner (University of Maryland)

4. High-dimensional families of holomorphic curves and three-dimensional energy surfaces by Rohil Prasad
(University of California, Berkeley)

5. Deformation inequivalent symplectic structures and Donaldson’s four-six question by LuyaWang (Stan-
ford)

6. Taut foliations through a contact lens by Thomas Massoni (MIT)

7. Symplectic annular Khovanov homology and knot symmetry by Kristen Hendricks (Rutgers University)

8. How to construct symplectic homotopy theory by Vardan Oganesyan (University of California, Santa
Cruz)

9. Homological mirror symmetry for Batyrev mirror pairs by Daniel Pomerleano (University of Mas-
sachusetts, Boston)

10. Derived moduli spaces of pseudo-holomorphic curves by John Pardon (Simons Center for Geometry
and Physics)
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4 Mark McLean: Symplectic Orbifold Gromov-Witten Invariants

Abstract: Chen and Ruan constructed symplectic orbifold Gromov-Witten invariants more than 20 years
ago. In ongoing work with Alex Ritter, we show that moduli spaces of pseudo-holomorphic curves mapping
to a symplectic orbifold admit global Kuranishi charts. This allows us to construct other types of Gromov-
Witten invariants, such as K-theoretic counts. The construction relies on an orbifold embedding theorem of
Ross and Thomas.

4.1 Introduction

The primary objective of this work is the construction of Gromov-Witten type invariants for symplectic
orbifolds. This theory was previously developed over the field of rational numbers, Q, by Chen and Ruan.
The approach here uses global Kuranishi charts. This is part of a larger research project aimed at proving a
version of the crepant resolution conjecture. Related work on the global quotient case is concurrently being
developed by Mak, Seyfaddini, and Smith. This entire talk is joint work with Ritter.

Informally, an orbifold is like a manifold, but the charts look like V {Γ, where V Ă Rn is an open finite subset
and Γ Ñ GLnpRq. For example, tptu{Z{2 is an orbifold. We will not define an orbifold formally, but the
following construction provides the important intuition:

Suppose a compact Lie group G acts on a smooth manifold M such that all stabilizer subgroups are finite.
The resulting quotient space, denoted rM{Gs, is a canonical example of an orbifold. The local structure is
described by the Slice Theorem.

Theorem 4.1 (The Slice Theorem). For each point x P M , there exists a Gx-equivariant submanifold
Sx Ď M containing x and a G-equivariant neighborhood Ux Ď M of x such that the map

GˆGx Sx Ñ Ux

is a diffeomorphism. Here, Gx denotes the stabilizer subgroup of x.

Definition 4.2. If the slice Sx admits a global Gx-equivariant coordinate system, then the pair pSx, Gxq is
an orbifold chart for rM{Gs centered at the point corresponding to the orbit of x.

Theorem 4.3 (Pardon). Every compact orbifold is diffeomorphic to a global quotient rM{Gs for some
compact Lie group G acting on a smooth manifold M with finite stabilizers.

Morphisms between orbifolds are defined in the framework of Hilsum-Skandalis maps.

Definition 4.4. A Hilsum-Skandalis morphism between two orbifolds rM1{G1s and rM2{G2s is repre-
sented by a diagram

P M2

M1

f

π

where P is a manifold equipped with a G1 ˆG2 action, π : P Ñ M1 is a G1-equivariant principal G2-bundle,
and f : P Ñ M2 is a G2-equivariant map.

This framework allows for definitions of geometric structures on orbifolds, such as symplectic or complex
structures.

Definition 4.5. If X “ rM{Gs is an orbifold, its underlying coarse moduli space, denoted X, is the
topological quotient space M{G.

4.2 Twisted Nodal Curves

Let pX,ω, Jq be a compact symplectic orbifold, where ω is a symplectic form and J is a compatible almost
complex structure that tames ω. Let β P H2pX;Zq be a homology class. The objects of study are maps from
certain singular domains into X.
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Definition 4.6. A twisted nodal domain Σ is a topological space obtained from a one-dimensional complex
orbifold Σ̃ by an equivalence relation „. This relation identifies distinct pairs of smooth points p „ q, subject
to the following balancing condition:

• The point p admits an orbifold chart with a coordinate z centered at p where the stabilizer group,
isomorphic to Z{kZ, acts via pm, zq ÞÑ e2πim{kz.

• The point q admits an orbifold chart with a coordinate w centered at q where its stabilizer group, also
Z{kZ, acts via pm,wq ÞÑ e´2πim{kw.

Remark 4.7. Near a node where two points with stabilizer group Z{kZ are identified, the local model for Σ
is given by tpx, yq P C2 | xy “ 0u{pZ{kZq, where the group action is px, yq ÞÑ pζx, ζ´1yq for ζ “ e2πi{k. This
singularity can be smoothed to tpx, yq P C2 | xy “ tu{pZ{kZq.

Definition 4.8. A marking on a twisted nodal domain Σ is a collection of distinct smooth points p1, . . . , pn
that are disjoint from the nodes. This set must include all smooth points with non-trivial stabilizer groups.

For a detailed exposition of the category of twisted curves, see Abramovich and Vistoli.

Definition 4.9. A twisted nodal curve is a map u : Σ Ñ X, where Σ is a twisted nodal domain and u is
a J-holomorphic Hilsum-Skandalis morphism satisfying:

• The map descends to a continuous map from the domain to the coarse moduli space, u : Σ Ñ X.

• For every point σ P Σ̃, the induced map of stabilizer groups Gσ Ñ Gupσq is injective.

Remark 4.10.

• Abramovich and Vistoli studied the case where the target orbifold is the point with a Z2 stabilizer,
X “ rpt{Z2s.

• For comparison, in the classical smooth, genus-zero case, a map u : Σ Ñ X is analyzed by choosing
a line bundle L Ñ X and a framing F (a basis for H0pΣ, u˚Lq). This framing induces a map into
projective space, ϕF : Σ Ñ Pd, where d “ dimH0pΣ, u˚Lq ´ 1. This technique restates the problem in
a more well-understood framework of the moduli space of stable maps to projective space.

4.3 Problems

Generalizing the established theory of Gromov-Witten invariants from smooth domains to the orbifold setting
presents several significant challenges. For instance, in the smooth genus-zero case, one can embed the curve
into a projective space Pd using a basis for the sections of a line bundle. This approach faces two primary
obstacles in the orbifold context:

1. For curves of higher genus, the space of line bundles of a fixed degree forms its own moduli space,
adding a layer of complexity.

2. Twisted nodal curves with non-trivial stabilizer groups generally do not admit maps to a standard
projective space CPd.

To address the second challenge, we adopt an idea introduced by Ross and Thomas. Instead of mapping to
standard projective spaces, the target space is replaced by a weighted projective space.

Definition 4.11. A weighted projective space Ppw0, . . . , wdq with weights wi P Z` is the quotient space

Ppw0, . . . , wdq “ pCd`1zt0uq{Cˆ,

where the Cˆ-action is given by t ¨ pz0, . . . , zdq “ ptw0z0, . . . , t
wdzdq.

Let Y be a compact complex orbifold with only cyclic stabilizer groups (for instance, the domain Σ̃ of a
twisted curve).

Definition 4.12. A line bundle L on Y is locally ample if for every point y P Y , the stabilizer group at y
acts faithfully on the fiber Ly.
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Definition 4.13. A line bundle L is globally positive if for some integer N ą 0, the power LbN is the
pullback of an ample line bundle from the coarse moduli space Y .

Definition 4.14. A line bundle L on Y is orbi-ample if it is both locally ample and globally positive.

Using an orbi-ample line bundle, one can construct an embedding.

Definition 4.15. Let L be a line bundle and let ni “ dimH0pY,Lbiq. For a fixed integer k ą 0, a k-framing
of L is a tuple of bases

pfijqiPtk,...,2ku,jPt1,...,niu,

where for each i, the set tfi1, . . . , fini
u is a basis for the vector space of global sections H0pY, Lbiq.

Theorem 4.16 (Ross-Thomas Embedding). Let L be an orbi-ample line bundle on Y and let F “ pfijq be
a k-framing for sufficiently large k. Define the weighted projective space

PkpLq “ Ppk, . . . , k
looomooon

nk times

, k ` 1, . . . , k ` 1
loooooooomoooooooon

nk`1 times

, . . . , 2k, . . . , 2k
loooomoooon

n2k times

q.

Then the map ϕF : Y Ñ PkpLq defined by
y ÞÑ rfijpsqsi,j

for any non-zero section s P Ly, is an embedding of orbifolds.
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5 Dan Cristofaro-Gardiner: Low-Action Holomorphic Curves and
Invariant Sets

Abstract: I will discuss a new compactness theorem for sequences of low-action punctured holomorphic
curves of controlled topology, in any dimension, without imposing the typical assumption of uniformly
bounded Hofer energy; in the limit, we extract a family of closed Reeb-invariant subsets. I will also explain
why such sequences exist in abundance in low-dimensional symplectic dynamics, via the theory of embedded
contact homology. This has various applications: the one I want to focus on in my talk is a generalization
to higher genus surfaces and three-manifolds of the celebrated Le Calvez-Yoccoz theorem. All of this is joint
with Rohil Prasad.

5.1 Introduction

5.1.1 A New Compactness Theorem

Consider a closed, oriented p2n` 1q-manifold Y . We are interested in framed Hamiltonian structures.

Definition 5.1. A framed Hamiltonian structure is a pair pλ, ωq where λ is a 1-form, ω is a closed
2-form, and the condition λ^ ωn ą 0 holds.

Example 5.2. The following are examples of framed Hamiltonian structures:

1. Let λ be a contact form and ω “ dλ. Consider a symplectic automorphism ϕ : pM2n, ωq Ñ pM2n, ωq.
The mapping torus is given by

Y “ pM2n ˆ r0, 1sq{ „

where px, 1q „ pϕpxq, 0q. The pair pdt, ωq defines a framed Hamiltonian structure on Y .

2. Let H : pM2n, ωq Ñ R be a proper Hamiltonian function. If c is a regular value of H, then the level
set H´1pcq admits a framed Hamiltonian structure.

3. Any non-singular, volume-preserving flow on a closed 3-manifold corresponds to a framed Hamiltonian
structure.

Given a framed Hamiltonian structure pλ, ωq, there exists a vector field R satisfying ωpR, ¨q “ 0 and λpRq “ 1.

Example 5.3. In the contact case, where ω “ dλ, the vector field R is the Reeb vector field.

Our objective is to find non-trivial (i.e., non-empty and proper) closed invariant sets of the flow generated
by R.

Example 5.4. Examples of such invariant sets include:

• A periodic orbit of the flow.

• Invariant tori, as arise in KAM theory.

• The closure of an orbit for a proper flow.

Consider the symplectization X “ R ˆ Y equipped with an almost complex structure J : TX Ñ TX such
that J2 “ ´1. We require J to satisfy JpBsq “ R and to preserve the kernel of λ, kerpλq, compatibly with
ω. We are interested in sequences of proper J-holomorphic curves

uk : Ck Ñ R ˆ Y

where each Ck is a closed Riemann surface minus a finite number of punctures. For such a sequence, we
define the limit set Lpu˚q as the collection of all closed subsets K Ă p´1, 1q ˆ Y for which there exists a
sequence of shifts sk P R such that the translated curves ukpCkq ´ psk, 0q converge to K within the slab
p´1, 1q ˆ Y . This can be interpreted as the set of subsequential limits of height-2 slices of the curves.

Proposition 5.5. The limit set Lpu˚q is connected.

Associated with each holomorphic curve u are two classical quantities:
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• The action, defined as

Apuq “

ż

C

u˚ω

• The Hofer energy, defined as

Epuq “ sup
sPR

ż

CXu´1ptsuˆY q

u˚λ

Theorem 5.6. Let uk : Ck Ñ R ˆ Y be a sequence of proper J-holomorphic curves such that the action
vanishes in the limit, limkÑ8 Apukq “ 0, and the Euler characteristic is uniformly bounded from below,
infk χpCkq ą ´8. Then every element K P Lpu˚q is of the form K “ p´1, 1q ˆ Λ for some closed, non-
empty, R-invariant set Λ Ă Y .

The upshot is that a sequence satisfying the hypotheses of this theorem yields a connected family of of
invariant sets.

Remark 5.7. The main novelty of this theorem is the absence of any requirement for a uniform bound on
the Hofer energy Epukq.

5.2 Dynamical Applications

The upshot is that the theorem widely applicable in low dimensions. In higher dimensions, related problems
are more open. Of particular importance is the connection to generalizations of the Le Calvez–Yoccoz
theorem.

Definition 5.8 (Birkhoff). A dynamical system is minimal if every orbit is dense in the phase space.

One motivation for studying invariant sets is that if a dynamical system on Y is not minimal, then there
exists a non-trivial, proper, closed invariant set K Ă Y . The existence of such a set provides a decomposition
of the space.

Problem 5.9 (Ulam). Does there exist a minimal homeomorphism of Rn or of Rnztpu for some point p?

Theorem 5.10 (Le Calvez, Yoccoz, 1997). A homeomorphism of S2ztp1, . . . , pku is never minimal.

This motivates the following definition.

Definition 5.11. A system has the (strong) Le Calvez–Yoccoz property if for any non-trivial closed
invariant set, the dynamics on its complement is never minimal.

Theorem 5.12 (Cristofaro-Gardiner, Prasad). The following systems have the strong Le Calvez–Yoccoz
property:

1. Any Hamiltonian diffeomorphism of a closed surface.

2. Any Reeb flow on a rational homology 3-sphere.

3. Any geodesic flow on a closed surface (considered as a flow on its unit tangent bundle).

Remark 5.13. No genericity assumptions are required for this result to hold.

Corollary 5.14. For the systems (1)–(3) listed above, the union of all non-trivial, proper, closed invariant
sets is dense in the phase space.

Corollary 5.15. For any geodesic flow on a closed surface, there exists a dense set of points such that for
each point in this set, there is more than one non-dense geodesic passing through it.
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5.3 Proof Ideas

5.3.1 Finding Low Action Curves of Controlled Topology

This component of the proof utilizes the theory of Embedded Contact Homology (ECH). For a closed, oriented
3-manifold pY, λq with a contact form, ECHpY, λq is the homology of a chain complex whose generators are
certain finite sets of Reeb orbits and whose differential counts specific (mostly embedded) J-holomorphic
curves in the symplectization.

Theorem 5.16. The Embedded Contact Homology is isomorphic to a version of Heegaard Floer or Monopole
homology:

ECHpY, λq – HMpY q

There exists a map U : ECH Ñ ECH defined by counting holomorphic curves that pass through a generic
marked point in the symplectization. The Weyl law for the ECH spectrum, combined with properties of the
U -map, allows us to produce sequences of holomorphic curves with vanishing action.

Problem 5.17. How do we bound the Euler characteristic, χpCkq, for the sequence of curves Ck produced
by this method?

A priori, there is no bound on the genus of these curves.

Theorem 5.18 (Cristofaro-Gardiner, Prasad). The curves Ck in the sequence can be chosen such that their
Euler characteristic is bounded from below:

χpCkq ě ´2.

5.3.2 Proving the Compactness Theorem

The central idea in this proof is a new estimate. This estimate provides a bound on the portion of a
holomorphic curve C contained within a small ball, provided that the curve has low action. The bound is
given in terms of the Euler characteristic χpCq.
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6 Alex Pieloch: Spectral Equivalence of Nearby Lagrangians

Abstract: Fix a commutative ring spectrum R. In this talk, we will show that any nearby Lagrangian in
a cotangent bundle of a closed manifold is equivalent in the wrapped Fukaya category with R-coefficients
to an R-brane supported on the zero section. As an application, we impose topological restrictions on the
embeddings of exact Lagrangian fillings of the standard Legendrian unknot in sub-critical Stein domains.
This is joint work with Johan Asplund and Yash Deshmukh.

6.1 Introduction

The main result of this work is a generalization of a theorem by Abouzaid to the setting of arbitrary
commutative ring spectra.

Theorem 6.1 (Abouzaid). Let L Ă T˚Q be an exact compact Lagrangian submanifold (a nearby Lagrangian)
equipped with a rank-1 local system. Then in the wrapped Fukaya category WpT˚Q;Zq, L is equivalent to
the zero section endowed with some rank-1 local system.

Our goal is to extend this result by replacing integer coefficients with coefficients in a commutative ring
spectrum R. A spectrum is an object from stable homotopy theory that generalizes the notion of a topological
space, admitting a richer algebraic structure suitable for defining generalized homology theories.

Example 6.2. The homology of a manifoldM with coefficients in a ring spectrum R is given by the homotopy
groups of the smash product:

π˚pM ^Rq “ H˚pM ;Rq.

For specific choices of R, we recover familiar theories:

• If R “ HK for some ring K, then π˚pM ^HKq “ H˚pM ;Kq, the ordinary singular homology.

• If R “ MO, the real cobordism spectrum, then π˚pM ^ MOq “ ΩMO
˚ pMq, the bordism groups of M .

Our main theorem is stated as follows:

Theorem 6.3. Let L Ă T˚Q be a nearby Lagrangian equipped with an R-brane. In the wrapped Fukaya
category WpT˚Q;Rq, L is equivalent to an R-brane supported on the zero section.

This result has applications in constraining the topology of Lagrangian fillings.

Theorem 6.4. Let X be a subcritical Weinstein domain with c1pXq “ 0 and c2pXq “ 0. Let Λ Ď BX
be a Legendrian unknot with its standard filling C. If L Ď X is any exact Lagrangian filling of Λ, then L
is homotopic to C relative to Λ in the space X{Xn´2, which is homotopy equivalent to a wedge of spheres
Ž

Sn´1.

Before we prove this, we define the wrapped Fukaya category with spectral coefficients.

Definition 6.5. Let X be a Liouville domain and R be a commutative ring spectrum.

1. The wrapped Fukaya category WpX;Qq has objects which are exact Lagrangians with vanishing
Maslov class, equipped with rank-1 local systems. The morphism spaces are chain complexes built from
Floer intersection theory.

2. The category WpX;Rq has objects which are exact Lagrangians with vanishing Maslov class, equipped
with R-branes. The morphism spaces are R-module spectra constructed from Floer theory.

6.2 R-Branes and their Properties

The notion of an R-brane generalizes that of a local system. It is defined in terms of an R-orientation.

Definition 6.6. A vector bundle E Ñ B is R-orientable if the classifying map composed with the map to
the classifying space of the general linear group of R is null-homotopic:

B E
ÝÑ BO Ñ BGL1pSq Ñ BGL1pRq.
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Example 6.7. Let R “ HZ. The unit map induces a map BGL1pHZq » BAutpZq » BpZ{2q. An HZ-
orientation is then a null-homotopy of the composite map B Ñ BO Ñ BpZ{2q, which is equivalent to a spin
structure on the vector bundle.

Now, assume X is a Weinstein domain such that its tangent bundle is symplectically trivializable, i.e.,
TX – C b Rn. For a Lagrangian L Ă X, let GLL : L Ñ U{O be the classifying map of its tangent bundle
viewed in the Lagrangian Grassmannian.

Definition 6.8. An R-brane on a Lagrangian L is a choice of null-homotopy for the composite map:

L
GLL

ÝÝÝÑ U{O
Bott

ÝÝÝÑ B2pZ ˆ BOq Ñ B2BGL1pSq Ñ B2BGL1pRq.

Remark 6.9.

1. The set of homotopy classes of R-branes on L is given by rL,BGL1pRqs. For specific choices of R,
this recovers the classical notion of a rank-1 local system.

2. For the Eilenberg-MacLane spectrum R “ HZ, we have rL,BGL1pHZqs – rL,BpZ{2qs. These corre-
spond to rank-1 local systems with fiber Z and monodromy in AutpZq – Z{2.

3. Let ML “ tpD, BDq Ñ pX,Lq | B̄u “ 0, basedu be the moduli space of based pseudo-holomorphic
disks with boundary on L. A key consistency condition in Floer theory requires the compatibility of
orientations on this moduli space with the brane structure on L, often visualized via a diagram ensuring
two maps are homotopic. The following diagram illustrates this relationship:

ML BO BGL1pRq

ΩL BGL1pRq

TML

˚

ΩGL

Bott

The morphism spectra in WpX;Rq have several key properties.

Proposition 6.10. Let L,K be objects in WpX,Rq.

1. The endomorphism spectrum of L is given by HWpL,L;Rq » L^R.

2. If L is compact, the homotopy groups of the morphism spectra are abelian groups. In particular,
π˚pHWpL,L;Rqq – H˚pL;Rq.

3. Change of Coefficients: If S is a module spectrum over R, then WpX;Sq » WpX;Rq ^R S.

From here, assume R is a connective spectrum, π0pRq “ K is a discrete ring, and the Hurewicz map
Hw : R Ñ HK is the identity on π0.

Proposition 6.11. Let M,M 1 be connected R-module spectra.

1. If π˚pM ^R HKq is K in degree 0 and vanishes otherwise, then M » R.

2. Given a map f :M Ñ M 1, if the induced map on homology π˚pfq ^RHK is an equivalence, then f is
an equivalence.

Sketch of Proof of Main Theorem. The proof relies on showing that the natural map from the zero section
Q to a nearby Lagrangian L is an equivalence in WpT˚Q,Rq. Using the previous proposition, it suffices to
show this after applying the functor p´q ^RHK. This reduces the problem to the known case of the Fukaya
category with coefficients in the ring K “ π0pRq, where Abouzaid’s argument applies. Let F be the fiber
of the map from the zero section to L. One shows that HWpF, F ;Rq » ΩQ ^ R and HWpF,L;Rq » R. A
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commutative diagram involving the category’s product structure

HWpF, F q ^R HWpF,Lq HWpF,Lq

pΩQ^Rq ^R R R

µ2

implies that the necessary structures on L are induced by a map Q Ñ BGL1pRq, which corresponds to a
rank-1 local system on Q. All such systems can be realized, allowing us to build an equivalence.

6.3 Proof

We now prove the theorem restricting Lagrangian fillings of the Legendrian unknot.

Proposition 6.12. Let L and C be two exact Lagrangian fillings of the Legendrian unknot Λ Ă BX. It
suffices to show that the class of the glued sphere rL YΛ Cs vanishes in the spin bordism group Ω̃spin

n pXq “

H̃npX,MSpinq.

Proof. The condition rL YΛ Cs “ 0 P Ω̃spin
n pXq implies that the sphere Sn “ L YΛ C is null-bordant in

X. By the Pontryagin-Thom construction, this is equivalent to the corresponding map Sn Ñ X being
null-homotopic after composing with the projection X Ñ X{Xn´2. For a subcritical domain X, the space
X{Xn´2 is a wedge of pn ´ 1q-spheres. The homotopy class is detected by πnpX{Xn´2q, and the vanishing
of the bordism class ensures the homotopy class is trivial, implying L is homotopic to C relative to Λ.

Let’s prove the application of the theorem from earlier. Recall that X is a subcritical Weinstein domain if
c1pXq “ 0 “ apXq, dimCX ě 4, Λ Ă BX the unknown with standard filling C, and L Ă X is an exact filling
of L (where L “ Dn).

Proposition 6.13. It suffices to show that rLYΛ Cs “ 0 P Ω̃spin
n pXq “ H̃XpX,MSpinq

Proof. It suffices to show that L YΛ C – Sn implies that its image in X{Xn´2 is based null. We have a
sequence

Z{2Z – πnpSn´1q Ñ Ω̃spin
n pSn´1q

–
ÝÑ Ωspin

1 pptq – Z{2Z

which is an isomorphism by the Pontryagin-Thom construction. If X{Xn´2 » Sn´1, the claim holds. If
X{Xn´2 »

Ž

Sn´1, then the claim holds by the Hilton-Milnor theorem.

Let X̂ “ XYΛH
n be the Weinstein domain obtained by attaching a standard handle along Λ. Let L̂ “ L Ă X̂

and let Ĉ Ă Hn be the core disk of the attached handle.

Proposition 6.14. In the spin bordism group of X̂, we have the equality of classes rL̂s “ rĈs P Ω̃spin
n pX̂q.

Proof. Take a map f : X̂ Ñ X such that the induced map on bordism sends f̂prL̂sq “ rL YΛ Cs. We have
fprĈsq “ 0 P ΩnpB2nq.

The obstruction to constructing an MSpin-brane lies in cohomology. We can assume π1pLq “ 0, w2pLq “ 0,
and H3pL;Z{2Zq “ 0. Additionally, we have

X̂ “ psubcritical handlesq Y T˚Sn ùñ WpX̂, Rq – WpT˚Sn, Rq.

In this category, L̂ and Ĉ are nearby Lagrangians and thus L̂ – Ĉ in WpX̂, Rq. We conclude by considering
the map

HWpL,L,Rq Ñ HnpX̂;Rq “ Ωspin
n pX̂q.
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7 Rohil Prasad: High-Dimensional Families of Holomorphic Curves
and Three-Dimensional Energy Surfaces

Abstract: Let H be any smooth function on R4. I’ll discuss some recent dynamical theorems for the
Hamiltonian flow on level sets of H (“energy surfaces”). The results are proved using holomorphic curves
and neck stretching. One important tool is the compactness theorem from Dan’s talk.

7.1 Basics

Let’s establish our setting. Consider the standard symplectic manifold pR2n, ω “
řn
i“1 dxi ^ dyiq. Let

H : R2n Ñ R be a smooth function, referred to as the Hamiltonian. The associated Hamiltonian vector field,
denoted XH , is defined by the relation dHp¨q “ ωpXH , ¨q.

Lemma 7.1. The flow of the Hamiltonian vector field XH preserves the Hamiltonian H.

Corollary 7.2. The flow of XH preserves the level sets of H.

Remark 7.3. Historically, the level sets of a Hamiltonian function were termed energy surfaces.

Definition 7.4. Let s P R be a regular value of H. The level set Ys :“ H´1psq is a smooth p2n ´ 1q-
dimensional manifold. An energy surface that arises in this way is called a regular energy surface.

7.2 Invariant Sets

A basic question in Hamiltonian dynamics is about the structure of the flow on a given energy surface. The
central problem in this area was asked by Herman.

Problem 7.5 (Herman, ICM 1998). Let H : R2n Ñ R be a Hamiltonian and let Y be a compact, regular
energy surface. Does Y necessarily contain a proper, closed, XH-invariant subset?

Significant progress has been made on this problem. For the case n “ 2, the question was answered in the
affirmative.

Theorem 7.6 (Fish-Hofer, 2018). For n “ 2, the answer to Problem 7.5 is yes.

Prior results established the existence of closed orbits, which are the simplest type of closed invariant subsets,
under certain geometric assumptions.

Theorem 7.7 (Weinstein, Rabinowitz, Viterbo). If a compact, regular energy surface Y is of contact type,
then it contains a closed orbit of XH .

However, closed orbits do not always exist, motivating the search for more general invariant structures.

Theorem 7.8. Examples of compact, regular energy surfaces Y with no closed orbits have been constructed:

• For n ě 3 by Ginzburg, Gurel, and Herman.

• For n ě 2 with a C2-smooth Hamiltonian by Ginzburg and Gurel.

Recent work provides a more complete answer to Herman’s problem, showing the existence of a family of
invariant sets.

Theorem 7.9 (Prasad, 2024; Theorem A). Let H : R2n Ñ R and let Y be a compact, regular energy surface.
There exists an infinite family of distinct, proper, closed, XH-invariant subsets whose union is dense in Y .

Let RegcpHq denote the set of regular values s of H for which the level set H´1psq is compact. A related
result concerns the dynamics on the quotient space after identifying a closed orbit.

Theorem 7.10 (Prasad, 2024; Theorem B). Let H : R2n Ñ R. For almost every s P RegcpHq, the energy
surface H´1psq has the following property: for any closed orbit Λ Ă H´1psq, the induced flow on the quotient
space H´1psq{Λ is not minimal.
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Remark 7.11. The property described in Theorem 7.10 is related to the Le Calvez-Yoccoz property and
implies the dense existence of invariant sets.

7.3 Closed Orbits and Closed Holomorphic Curves

The study of closed orbits has a long history, with many results on their existence.

Theorem 7.12 (Hofer-Zehnder, 1987). Let H : R2n Ñ R. For almost every s P RegcpHq, the energy surface
H´1psq contains a closed orbit.

Further results provide lower bounds on the number of closed orbits.

Theorem 7.13. For any H : R2n Ñ R, almost every s P RegcpHq is such that H´1psq contains at least two
closed orbits. This bound is sharp.

Proof. Consider the Hamiltonian H : R4 Ñ R given by

Hpx1, y1, x2, y2q “
x21 ` y21

a
`
x22 ` y22

b
,

where the ratio a{b is irrational. Each regular energy surface for this Hamiltonian is a torus on which the flow
is a linear irrational flow, and it contains exactly two closed orbits, corresponding to the circles tx2 “ y2 “ 0u

and tx1 “ y1 “ 0u.

Under generic conditions, a much stronger statement holds in dimension four.

Theorem 7.14. Let H : R4 Ñ R. For a C8-generic set of Hamiltonians H, almost every compact, regular
energy surface contains infinitely many closed orbits.

Sketch of Proof. The result follows from a strictly stronger version of Theorem 7.10 combined with known
results concerning the dynamics of generic Hamiltonians.

The proofs of these modern results rely on constructing families of pseudoholomorphic curves, using tech-
niques introduced by Gromov and further developed by Taubes in the context of Seiberg-Witten theory.

Theorem 7.15 (Taubes). Let pCP2, ωq be the complex projective plane with its standard symplectic form.
For any compatible almost complex structure J and for any sufficiently large integer d, there exists a set
S Ă CP2 with #S « d2 such that there exists a closed, J-holomorphic curve u : C Ñ CP2 satisfying:

1. S Ă upCq,

2.
ş

C
u˚ω “ d,

3. χpCq „ ´d2, where χpCq is the Euler characteristic of the domain curve C.

7.4 Theorem A Proof Idea

The proof of Theorem 7.9 involves a neck-stretching argument applied to a sequence of holomorphic curves.
We consider a symplectic manifold constructed by gluing a long neck r´k, ksˆY to a symplectic cap, modeled
on CP2

zB4. Let this manifold be Wk. We then study a sequence of holomorphic curves uk : Ck Ñ Wk of
degree d.

As k Ñ 8, the sequence of curves can be analyzed by considering its limit in the neck region. This leads to
the notion of a stretched limit set.

Definition 7.16. The stretched limit set of the sequence tuku is a subset χptukuq Ă Ppp´1, 1q ˆ Y q ˆ

r´1, 1s. We say pΞ, sq P χptukuq if there exists a sequence of points tzku in the domains Ck and a sequence
of shifts tsku Ă r´k, ks such that:
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1. The sequence of translated curves ukp¨q in the neighborhood of zk, viewed in the coordinates of the neck,
converges to a limit curve set Ξ Ă p´1, 1q ˆ Y .

2. The normalized height converges: sk{k Ñ s.

Let Ud,k be the set of degree d curves in Wk. The main result concerning the stretched limit set is the
following proposition:

Proposition 7.17. Let tuku be a sequence with uk P Ud,k.

1. For almost every s P r´1, 1s, if pΞ, sq P χptukuq, then the limit set Ξ has the structure of a trivial
cylinder Ξ “ p´1, 1q ˆ Λ, where Λ Ă Y is an XH-invariant set.

2. For all but approximately d2 heights s P r´1, 1s, every pΞ, sq P χptukuq is such that Ξ is ϵ-almost
invariant, where ϵ Ñ 0 as d Ñ 8.

42



8 Luya Wang: Deformation Inequivalent Symplectic Structures
and Donaldson’s Four-Six Question

Abstract: Studying symplectic structures up to deformation equivalences is a fundamental question in
symplectic geometry. Donaldson asked: given two homeomorphic closed symplectic four-manifolds, are they
diffeomorphic if and only if their stabilized symplectic six-manifolds, obtained by taking products with CP1

with the standard symplectic form, are deformation equivalent? I will discuss joint work with Amanda Hirschi
on showing how deformation inequivalent symplectic forms remain deformation inequivalent when stabilized,
under certain algebraic conditions. This gives the first counterexamples to one direction of Donaldson’s “four-
six” question and the related Stabilizing Conjecture by Ruan. In the other direction, I will also discuss more
supporting evidence via Gromov-Witten invariants.

8.1 Introduction

We begin by defining the central notion of equivalence used throughout this work.

Definition 8.1. Two symplectic manifolds pX1, ω1q and pX2, ω2q are said to be deformation equivalent,
denoted pX1, ω1q » pX2, ω2q, if there exists a diffeomorphism φ : X1 Ñ X2 such that the pullback form
φ˚ω2 is in the same path-component as ω1 in the space of symplectic forms on X1. We denote this path-
connectedness by φ˚ω2 ù ω1.

The primary motivation for our investigation is a question posed by Donaldson, which connects the diffeo-
morphism problem in dimension four to a symplectic equivalence problem in dimension six.

Problem 8.2 (Donaldson’s Four-Six Question). Let pX4
1 , ω1q and pX4

2 , ω2q be two closed, simply-connected,
and homeomorphic symplectic four-manifolds. Is it true that X1 is diffeomorphic to X2 if and only if their
stabilized counterparts are deformation equivalent? That is,

pX1 ˆ S2, ω1 ‘ ωstdq » pX2 ˆ S2, ω2 ‘ ωstdq,

where S2 is equipped with a standard area form ωstd.

This question is related to the exotic nature of four-dimensional topology. While Freedman’s work classifies
topological four-manifolds, the classification of smooth structures remains largely open. The h-cobordism
theorem, which provides a powerful tool for classifying manifolds in higher dimensions, fails in dimension
four.

Theorem 8.3 (Wall, 1964). Two closed, simply-connected, homeomorphic 4-manifolds are h-cobordant.

Theorem 8.4 (Smale, 1962). For n ě 5, if two closed, simply-connected n-manifolds are h-cobordant, then
they are diffeomorphic.

The failure of the h-cobordism theorem in dimension four leads to the existence of exotic smooth structures.
Donaldson’s question can be seen as an attempt to understand this failure through the lens of symplectic
geometry. The historical context for this problem includes:

• Ruan (1994): Provided examples of homeomorphic but not diffeomorphic Kähler surfaces, namely

the blow-up of the complex plane at nine points, CP2#9CP2
, and the Barlow surface.

• Ruan, Tian (1997): Formulated the Stabilizing Conjecture for simply-connected elliptic surfaces,
which is closely related to Donaldson’s question.

• Ionel, Parker (1999): Constructed exotic smooth structures on elliptic surfaces Epnq using knot
surgery techniques.

• Smith (2000): Constructed, for any integer n ě 2, n distinct symplectic structures on a fixed
simply-connected four-manifold Z4 that could be distinguished by their first Chern classes. This
demonstrated that Donaldson’s question cannot be simplified by replacing the six-manifold stabilization
with a product with CP2.
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This work provides a negative answer to one direction of Donaldson’s question. Specifically, we construct
examples of diffeomorphic four-manifolds with symplectic structures that become deformation inequivalent
after stabilization.

Theorem 8.5 (Hirschi, Wang, 2023). There exist infinitely many pairs of symplectic four-manifolds pX,ω1q

and pX,ω2q such that the underlying smooth manifold X is the same, but their stabilizations are not defor-
mation equivalent:

pX ˆ S2, ω1 ‘ ωstdq fi pX ˆ S2, ω2 ‘ ωstdq.

Conversely, we provide evidence for the other direction of the question, showing that the deformation equiv-
alence of stabilized manifolds imposes strong constraints on the Gromov-Witten invariants of the original
four-manifolds.

Theorem 8.6 (Hirschi, Wang, 2023). Let pX1, ω1q and pX2, ω2q be closed, simply-connected symplectic
4-manifolds. If their stabilizations are deformation equivalent,

pX1 ˆ S2, ω1 ‘ ωstdq » pX2 ˆ S2, ω2 ‘ ωstdq,

then the Gromov-Witten invariants of X1 and X2 are equal, i.e., GWpX1q “ GWpX2q.

A direct consequence relates this to Seiberg-Witten theory via the Taubes-Bryan-Pandharipande theorem.

Corollary 8.7. If pX1, ω1q and pX2, ω2q satisfy the hypotheses of Theorem 8.6 and have b`
2 ě 2, then their

Seiberg-Witten invariants are equal, i.e., SWpX1q “ SWpX2q.

Our approach to proving Theorem 8.5 relies on a new invariant derived from the first Chern class. The
invariant is the orbit of c1pTX, Jq under the action of the group of cohomology equivalences, where J is any
almost complex structure tamed by the symplectic form ω.

8.2 Proof of Theorem 8.5

The strategy to prove Theorem 8.5 is to construct a smooth four-manifold X admitting two symplectic forms
ω1 and ω2 whose first Chern classes are inequivalent in a carefully defined sense, and then show that this
inequivalence persists after stabilization.

The key invariant is the orbit of the first Chern class under a group of automorphisms of the cohomology
ring. Let pX,ωq be a symplectic manifold. We can choose an almost complex structure J tamed by ω, and
consider its first Chern class c1pωq :“ c1pTX, Jq P H2pX;Zq.

Definition 8.8. Let X and Y be smooth manifolds. We define GX,Y to be the group of ring isomorphisms
ψ˚ : H˚pX ˆ Y ;Zq Ñ H˚pX ˆ Y ;Zq that respect the product structure in the following sense: ψ˚ must
induce an automorphism on H˚pX;Zq via the map α ÞÑ prX˚pψ˚pα b 1qq, where prX : X ˆ Y Ñ X is the
projection.

The proof of Theorem 8.5 proceeds in three main steps:

1. Find a smooth four-manifold X that admits two symplectic forms, ω1 and ω2, such that their first
Chern classes, c1pω1q and c1pω2q, lie in different orbits under the action of the group of cohomology
self-equivalences of X.

2. Show that if c1pω1q and c1pω2q lie in different orbits of cohomology equivalences on X, then the
stabilized Chern classes, c1pω1 ‘ ωstdq and c1pω2 ‘ ωstdq, lie in different orbits under the action of
GX,S2 .

3. Show that any diffeomorphism of the product manifold X ˆ S2 induces a cohomology automorphism
that lies in the group GX,S2 .

Steps (2) and (3) establish that the orbit of the stabilized first Chern class under GX,S2 is a symplectic defor-
mation invariant. Step (1) then provides the necessary examples to produce counterexamples to Donaldson’s
question.
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8.2.1 Lifting Inequivalence of Chern Classes

Let’s prove the assertion in step (2). We use the Künneth isomorphism H˚pX ˆS2;Zq – H˚pX;Zqrhs{xh2y,
where h is the generator of H2pS2;Zq. The first Chern class of the stabilized manifold is c1pω ‘ ωstdq “

c1pωq b 1 ` 1 b c1pωstdq “ c1pωq ` 2h.

Proof of Step (2). Suppose, for the sake of contradiction, that there exists ψ˚ P GX,S2 such that ψ˚c1pω2 ‘

ωstdq “ c1pω1 ‘ ωstdq. By the definition of GX,S2 , the action of ψ˚ on the generator h must be of the form
ψ˚h “ ˘h ` α for some α P H2pX;Zq. The condition ψ˚ph2q “ 0 implies p˘h ` αq2 “ 0. Expanding this
gives h2 ˘ 2αh`α2 “ 0. Since h2 “ 0 and α2 P H4pXq, while αh P H4pX ˆS2q with the h-component, this
implies 2α “ 0. For integer coefficients, this means α is a 2-torsion class. Let us assume for simplicity that
ψ˚h “ h` α. Then the initial assumption becomes:

c1pω1q ` 2h “ ψ˚pc1pω2q ` 2hq

“ ψ˚c1pω2q ` 2ψ˚h

“ ψ˚c1pω2q ` 2ph` αq

“ ψ˚c1pω2q ` 2h` 2α.

This simplifies to c1pω1q “ ψ˚c1pω2q ` 2α. Let ψ̂˚ be the automorphism on H˚pX;Zq induced by ψ˚.
We have thus found an automorphism relating c1pω1q and c1pω2q up to a torsion class, which contradicts

the initial assumption that they lie in different orbits. We can also show that ψ̂˚ is indeed a cohomology
equivalence on X, and for the examples we construct, this is sufficient to establish a contradiction.

8.2.2 Construction of the Counterexample

For steps (1) and (3), we rely on specific constructions. The required manifold X can be constructed using
fiber sums. Let Ep1q be the rational elliptic surface. Consider the manifold Z :“ T4#5Ep1q, where the sum
is a fiber sum. Smith constructed symplectic forms on such manifolds with distinct Chern classes. For our
purposes, we can take X to be a related manifold where we can find a basis of homology classes with certain
intersection properties. Smith’s work provides a key result:

Theorem 8.9 (Smith). For certain symplectic manifolds pZ, ωq, the first Chern class c1pTZ, ωq is a prime
(indivisible) class in H2pZ;Zq.

By carefully choosing the manifold and applying techniques from rational blowdowns and knot surgery, one
can construct symplectic forms ω1, ω2 on a single manifold X whose Chern classes lie in different orbits of the
automorphism group of H˚pX;Zq, satisfying step (1). A further argument shows that for these manifolds,
the condition in step (3) holds, completing the proof of Theorem 8.5.

8.3 Proof of Theorem 8.6

We now turn to the proof of Theorem 8.6, which states that the deformation equivalence of stabilized
manifolds implies the equality of Gromov-Witten invariants of the original four-manifolds.

Let pX0, ω0q and pX1, ω1q be simply-connected symplectic four-manifolds. Suppose that their stabilizations
are deformation equivalent:

pX0 ˆ S2, ω0 ‘ ωstdq » pX1 ˆ S2, ω1 ‘ ωstdq.

This implies there is a diffeomorphism Φ : X0ˆS2 Ñ X1ˆS2 such that Φ˚pω1‘ωstdq is deformation equivalent
to ω0 ‘ ωstd. The invariance of Gromov-Witten theory under deformation equivalence and diffeomorphisms
implies that for any genus g, number of markings n, and homology class B P H2pX0 ˆ S2;Zq,

GWX0ˆS2,ω0‘ωstd

g,n,B “ GWX1ˆS2,ω1‘ωstd

g,n,Φ˚B
.

Our goal is to relate these six-dimensional invariants back to the four-dimensional invariants of X0 and X1.
This is achieved using a product formula for Gromov-Witten invariants.
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Theorem 8.10 (Hirschi-Swaminathan Product Formula). Let pX,ωXq and pY, ωY q be symplectic manifolds
with H1pX;Zq and H1pY ;Zq torsion-free. Let B “ pBX , BY q P H2pXq ‘ H2pY q – H2pX ˆ Y q. Then for
cohomology classes αi P H˚pXq and βi P H˚pY q, the following equality holds in H˚pMg,n;Qq:

GWXˆY,ωX‘ωY

g,n,B pα1 b β1, . . . , αn b βnq “ GWX,ωX

g,n,BX
pα1, . . . , αnq ¨ GWY,ωY

g,n,BY
pβ1, . . . , βnq.

To use this formula to extract information about GWpX0q, we need to choose classes βi on S
2 such that the

corresponding Gromov-Witten invariant of S2 is non-zero.

Problem 8.11. For which parameters pg, n, dq and classes β1, . . . , βn P H˚pS2;Qq is the Gromov-Witten

invariant GWS2

g,n,dpβ1, . . . , βnq non-zero?

Lemma 8.12. For any odd genus g, number of markings n, and degree d, if we choose all βi “ 1 P H0pS2q,
the point-evaluator of the invariant is non-zero. Specifically,

GWS2

g,n,dp1bnqprptsq “ 2g.

With this non-vanishing result, we can apply the product formula. Assume there exists a homeomorphism
ϕ : X0 Ñ X1 induced by the six-dimensional diffeomorphism Φ. Let the induced map on cohomology be ϕ̃˚.
We can choose the diffeomorphism Φ such that its action on cohomology is of the form Φ˚ “ ϕ˚ b id. Let
A P H2pX0q and d P Zą0. Applying the product formula to both sides of the invariant equality gives:

GWX0,ω0

g,n,A pα1, . . . , αnq ¨ GWS2

g,n,dp1, . . . , 1q

“ GWX0ˆS2

g,n,pA,dq
pα1 b 1, . . . , αn b 1q

“ GWX1ˆS2

g,n,Φ˚pA,dq
pΦ˚´1pα1 b 1q, . . . ,Φ˚´1pαn b 1qq

“ GWX1ˆS2

g,n,pϕ˚A,dq
ppϕ˚q´1α1 b 1, . . . , pϕ˚q´1αn b 1q

“ GWX1,ω1

g,n,ϕ˚A
ppϕ˚q´1α1, . . . , pϕ

˚q´1αnq ¨ GWS2

g,n,dp1, . . . , 1q.

Since GWS2

is non-zero, we can cancel it from both sides, yielding

GWX0,ω0

g,n,A pα1, . . . , αnq “ GWX1,ω1

g,n,ϕ˚A
ppϕ˚q´1α1, . . . , pϕ

˚q´1αnq.

This establishes an isomorphism between the Gromov-Witten theories of pX0, ω0q and pX1, ω1q, proving
Theorem 8.6.
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9 Thomas Massoni: Taut Foliations Through a Contact Lens

Abstract: In the late ’90s, Eliashberg and Thurston established a remarkable connection between foliations
and contact structures in dimension three: any co-oriented, aspherical foliation on a closed, oriented 3-
manifold can be approximated by both positive and negative contact structures. Additionally, if the foliation
is taut then its contact approximations are tight. In this talk, I will present a converse result on constructing
taut foliations from suitable pairs of contact structures. While taut foliations are rather rigid objects, this
viewpoint reveals some degree of flexibility and offers a new perspective on the L-space conjecture.

9.1 Introduction

LetM be a closed, oriented, connected 3-manifold. Informally, a foliation F ofM is a decomposition of the
manifold into a collection of disjoint, injectively immersed 2-dimensional submanifolds, known as the leaves
of the foliation. When the foliation is smooth, its tangent bundle TF is a 2-plane field that can be expressed
locally as the kernel of a 1-form α. This plane field is integrable, a condition captured by the Frobenius
Integrability Theorem.

Theorem 9.1 (Frobenius Integrability Theorem). A smooth 2-plane field ξ “ kerpαq is integrable (i.e.,
tangent to a foliation) if and only if the 1-form α satisfies the condition

α ^ dα “ 0.

In contrast, a plane field that is ”maximally non-integrable” gives rise to a contact structure.

Definition 9.2. A contact structure is a completely non-integrable 2-plane field ξ. Such a field can be
described as ξ “ kerpαq, where the 1-form α, called a contact form, satisfies

α ^ dα ‰ 0

at every point on M .

Locally, every contact structure is equivalent to a standard model, as described by Darboux’s Theorem.

Theorem 9.3 (Darboux). For any contact form α on a 3-manifold M , there exist local coordinates px, y, zq

such that α takes the form α “ dz ` x dy.

The theory of foliations and contact structures are linked through the study of 2-plane fields. The h-principle
from differential geometry tells us about their connection.

Theorem 9.4. Every 2-plane field on a closed 3-manifold is homotopic to an integrable plane field (i.e., one
that is tangent to a foliation).

Proof. This is a direct consequence of the h-principle for foliations.

A similar result holds for contact structures.

Theorem 9.5 (Eliashberg). Every 2-plane field on a closed 3-manifold is homotopic to a contact structure.

Among all foliations, a particularly important class is that of taut foliations.

Definition 9.6. A co-oriented foliation F is said to be taut if it satisfies the following two conditions:

1. For every point p P M , there exists a closed loop γ passing through p that is everywhere transverse to
the leaves of F .

2. There exists a closed 2-form ω (a volume form for the leaves) such that ω restricts to a positive area
form on each leaf, i.e., ω|TF ą 0.

The corresponding notion of ”well-behaved” in contact geometry is tightness.

Definition 9.7. A contact structure is called tight if it is not overtwisted. An overtwisted contact structure
is one that contains an embedded disk (an overtwisted disk) whose boundary is tangent to the contact planes.
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This leads to several existence questions in 3-manifold topology.

Problem 9.8. Which 3-manifoldsM admit a taut foliation? A Reebless foliation? A tight contact structure?

A classical result provides a partial answer for manifolds with positive first Betti number.

Theorem 9.9. If the first Betti number b1pMq ą 0, then M admits a taut foliation.

Theorem 9.10 (Eliashberg, Thurston). If a 3-manifold M admits a taut foliation, then it also admits a
tight contact structure.

Problem 9.11. The situation is more subtle when b1pMq “ 0, that is, for rational homology 3-spheres
(QHS3). Which rational homology spheres admit a taut foliation?

This question is at the heart of the L-space conjecture, which connects taut foliations, Heegaard Floer
homology, and the algebraic properties of the fundamental group.

Conjecture 9.12 (L-Space Conjecture). Let M be an irreducible rational homology 3-sphere. The following
are equivalent:

1. M admits a taut foliation.

2. M is not an L-space (i.e., its reduced Heegaard Floer homology, yHF pMq, is non-trivial).

3. The fundamental group π1pMq is left-orderable.

Significant progress has been made on this conjecture.

Theorem 9.13 (Ozsváth, Szabó). If an irreducible rational homology sphere M admits a co-orientable taut
foliation, then it is not an L-space. That is, p1q ùñ p2q.

However, the full conjecture remains open, and there is considerable skepticism regarding its validity in full
generality.

9.2 From Foliations to Contact Structures

The basic result connecting foliations and contact structures is the following theorem of Eliashberg and
Thurston.

Theorem 9.14 (Eliashberg, Thurston, 1998). Let F be a co-oriented, C2-smooth foliation on a closed,
oriented 3-manifold M .

1. If F has no spherical leaves, then its tangent plane field TF can be C0-approximated by both a positive
contact structure ξ` and a negative contact structure ξ´.

2. If, in addition, F is taut, then the approximating contact structures ξ` and ξ´ can be chosen to be
tight.

Sketch of Proof for (2). Consider the manifold r´1, 1s ˆ M . Since F is taut, there exists a closed 2-form
ω on M such that its restriction to the leaves is an area form, ω|TF ą 0. Let α be a 1-form such that
TF “ kerpαq. We can construct a 2-form on the product manifold, Ω “ dptαq `ω, where t is the coordinate
on r´1, 1s. For small perturbations, this form can be made symplectic.

The boundary of this manifold is p´M, ξ´q \ pM, ξ`q, where ξ˘ are contact structures that are C0-close to
TF . This setup provides a weak symplectic filling of the boundary components. By a theorem of Gromov
and Eliashberg on the properties of symplectic fillings, the contact structure ξ` must be tight. A similar
argument applies to ξ´.

Recent advancements have extended this theorem to foliations with less regularity.

Definition 9.15. A C0-foliation with smooth leaves is a topological foliation whose leaves are smoothly
immersed submanifolds and whose tangent plane field TF is continuous.
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Theorem 9.16 (Bowden, Kazez, Roberts). The Eliashberg-Thurston approximation theorem holds for C0-
foliations with smooth leaves.

The Eliashberg-Thurston theorem can be thought of as a procedure that transforms a suitable foliation F
into a pair of contact structures pξ´, ξ`q.

9.3 From Positive Constant Pairs to Foliations

We now explore the converse direction: constructing a foliation from a pair of contact structures.

Definition 9.17. A pair pξ´, ξ`q is a positive contact pair if ξ` is a positive contact structure, ξ´ is a
negative contact structure, and there exists a vector field Z that is positively transverse to both ξ´ and ξ`.

Given a fixed positive contact pair pξ`, ξ´q and a transverse vector field Z, we can construct a foliation
under certain conditions.

Theorem 9.18 (Massoni, 2024). Let pξ´, ξ`q be a positive contact pair on M . Assume that either ξ´ and
ξ` are transverse as plane fields, or that at least one of them is tight. Then there exists a foliation F that
is transverse to the vector field Z.

Definition 9.19. A positive contact pair pξ´, ξ`q is called strongly tight if there exists a volume-preserving
vector field Z that is transverse to both ξ´ and ξ`.

This leads to a characterization of manifolds admitting taut foliations.

Corollary 9.20. A closed 3-manifold M (where M ‰ S1 ˆ S2) admits a taut foliation if and only if it
admits a strongly tight contact pair.

The proof of the theorem involves constructing a limiting plane field from the contact pair.

Let X be a vector field contained in the intersection ξ´ X ξ` which vanishes precisely along the set where
the planes coincide:

∆ “ tp P M | ξ´ppq “ ξ`ppqu.

Let ϕtX be the flow generated by X. Consider the family of plane fields ξt˘ “ pϕtXq˚ξ˘. The core of the
argument relies on the following propositions.

Proposition 9.21. As t Ñ 8, the plane fields ξt´ and ξt` converge to a common continuous plane field η.

Proposition 9.22. The map pξ´, ξ`q ÞÑ η that sends a contact pair to its limiting plane field is continuous
with respect to the C0 topology.

Proposition 9.23. For a generic choice of the pair pξ´, ξ`q, the resulting plane field η is integrable.

Remark 9.24. The limiting plane field η is, in general, only continuous (C0) and may not be uniquely
integrable. It is also related to a more complex object known as a branching foliation, which we will not
define.

Proposition 9.25. Assume that there is no immersed disk D Ñ M that is tangent to η and has its boundary
BD tangent to the vector field X. Then η is tangent to a branching foliation.

Proposition 9.26. The plane field η can be approximated by integrable plane fields.

9.4 Future Directions

The idea of constructing foliations from contact pairs opens several avenues for future research. While
strongly tight pairs are difficult to construct and analyze, they motivate several interesting conjectures and
problems.

Conjecture 9.27 (Massoni). If pξ´, ξ`q is a positive pair and both ξ´ and ξ` are tight, then M admits a
Reebless foliation.
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A central goal is to formulate an intrinsic condition on the isotopy classes of ξ´ and ξ` that guarantees the
existence of a foliation.

Problem 9.28. Consider a contact pair pξ´, ξ`q on M , not necessarily positive. Assume that:

1. Both ξ´ and ξ` are tight.

2. They are homotopic as 2-plane fields.

3. Their contact invariants in Heegaard Floer homology satisfy xcpξ`q, cpξ´qy “ 1.

Does M necessarily admit a Reebless foliation?

The third condition is motivated by the following result concerning the contact invariants of Eliashberg-
Thurston approximations.

Theorem 9.29 (Lin). If F is a taut foliation and ξ˘ are its tight contact approximations, then the pairing

of their contact class invariants cpξ˘q P yHF p´Mq is xcpξ`q, cpξ´qy “ 1.

This machinery has applications in Dehn surgery theory.

Theorem 9.30. Let F be a taut foliation on a 3-manifold M (with M ‰ S1ˆS2), and let K be a transverse,
framed knot inM . Then there exists a constant s0 ą 0 such that for every rational number s P Q with |s| ě s0,
the manifold MKpsq obtained by s-Dehn surgery on K admits a taut foliation. Furthermore, this foliation is
transverse to the core of the surgery torus.
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10 Kristen Hendricks: Symplectic Annular Khovanov Homology
and Knot Symmetry

Abstract: Khovanov homology is a combinatorially-defined invariant which has proved to contain a wealth
of geometric information. In 2006 Seidel and Smith introduced a candidate Lagrangian Floer analog of the
theory, which has been shown by Abouzaid and Smith to be isomorphic to the original theory over fields of
characteristic zero. The relationship between the theories is still unknown over other fields. In 2010 Seidel
and Smith showed there is a spectral sequence relating the symplectic Khovanov homology of a two-periodic
knot to the symplectic Khovanov homology of its quotient; in contrast, in 2018 Stoffregen and Zhang used
the Khovanov homotopy type to show that there is a spectral sequence from the combinatorial Khovanov
homology of a two-periodic knot to the annular Khovanov homology of its quotient. (An alternate proof
of this result was subsequently given by Borodzik, Politarczyk, and Silvero.) These results necessarily use
coefficients in the field of two elements. This inspired investigations of Mak and Seidel into an annular version
of symplectic Khovanov homology, which they defined over characteristic zero. In this talk we introduce a
new, conceptually straightforward, formulation of symplectic annular Khovanov homology, defined over any
field. Using this theory, we show how to recover the Stoffregen-Zhang spectral sequence on the symplectic
side. We further give an analog of recent results of Lipshitz and Sarkar for the Khovanov homology of
strongly invertible knots. This is work in progress with Cheuk Yu Mak and Sriram Raghunath.

10.1 (Symplectic) Khovanov Homology

Khovanov homology assigns to a link L Ď S3 a bigraded vector space KhpLq over a field F, whose graded
Euler characteristic is the Jones polynomial. It is connected to other invariants in low-dimensional topology,
such as Heegaard Floer homology.

Theorem 10.1 (Ozsváth-Szabó). There exists a spectral sequence from the reduced Khovanov homology of
a link L to the Heegaard Floer homology of its branched double cover:

xKhpL;F2q ùñ yHF pΣpLqq.

The construction of symplectic Khovanov homology is analogous to the setup of Lagrangian Floer homology.
We briefly recall the essential components of this setup.

• Let pM,ωq be an exact symplectic manifold, ω “ dλ, which is convex at infinity.

• Let L0, L1 be two exact, compact Lagrangian submanifolds satisfying λ|Li
“ dfi for some functions

fi : Li Ñ R.

• This data pM,L0, L1q gives rise to the Lagrangian Floer cochain complex CFpL0, L1q “ pFxL0&L1y, Bq,
whose homology is the Floer homology HFpL0, L1q.

To define symplectic Khovanov homology, let ppzq “
śn
i“1pz ´ kiq be a polynomial with distinct real roots.

Consider the surface S in C3 defined by the equation:

S :“
␣

pu, v, zq P C3 | u2 ` v2 ` ppzq “ 0
(

.

Within the n-fold symmetric product Symn
pSq, we define two totally real submanifolds ΣA and ΣB . These

submanifolds are constructed from collections of “thimbles” attached to the critical points of ppzq. This
construction takes place within a resolution of singularities of Symn

pSq, namely a space Yn which is a subset
of the Hilbert scheme of n points on S, HilbnpSq. The space Yn is defined via the Hilbert–Chow map
HC : HilbnpSq Ñ Symn

pSq as

Yn :“ HC´1
pttpu1, v1, z1q, . . . , pun, vn, znqu | zi “ zj ùñ pui, viq “ puj , vjquq .

The submanifolds ΣA,ΣB Ă Yn are Lagrangian.

Definition 10.2. The symplectic Khovanov homology of a link L, denoted KhsymppLq, is defined as the
Lagrangian Floer homology of the pair pΣA,ΣBq:

KhsymppLq :“ HFpΣA,ΣBq.
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Theorem 10.3 (Abouzaid-Smith). Over a field of characteristic zero, there is an isomorphism of bigraded
vector spaces:

KhpLq – KhsymppLq.

The group Op2q acts on the pu, vq-plane, which induces a symplectic action on the triple pYn,ΣA,ΣBq. The
existence of such symmetries leads to powerful results via equivariant Floer theory.

Example 10.4 (Smith, Borel). Let τ be an involution on a topological space X, and let XFix denote the
fixed-point set of τ . We have a spectral sequence relating the homology of X to the homology of its fixed-point
set. In the context of Borel homology, this takes the form:

H˚pX;F2q b F2rθ, θ´1s ùñ H˚
Z{2ZpX;F2q

– H˚pXFix;F2q b F2rθ, θ´1s,

where H˚
Z{2ZpX;F2q is the Z{2Z-equivariant cohomology of X and H˚pBZ{2Z;F2q – F2rθs.

The terms in the spectral sequence are related as follows:

F2rθ, θ´1s “ H˚pBZ{2Z;F2q

and
HZ{2ZpX;F2q “ ExtF2rZ2spC˚pXq,F2q

Example 10.5 (Seidel-Smith, 2010). This principle extends to Lagrangian Floer homology. Let τ be a
symplectic involution on M such that τpLiq “ Li for i “ 0, 1. Then there is a spectral sequence relating the
Floer homology of pM,L0, L1q to that of the fixed-point sets pMFix, LFix

0 , LFix
1 q:

HFpM,L0, L1q b F2rθ, θ´1s ùñ HFpMFix, LFix
0 , LFix

1 q b F2rθ, θ´1s.

An important symmetry is the intrinsic symmetry given by the involution pu, v, zq ÞÑ pu,´v, zq. Manolescu
studied its consequences.

Theorem 10.6 (Manolescu). The intrinsic symmetry pu, v, zq ÞÑ pu,´v, zq induces a spectral sequence:

KhsymppLq b F2rθ, θ´1s ùñ gyHF pΣpLqq bH˚pS1q b F2rθ, θ´1s.

An extrinsic symmetry arises when the link L itself is symmetric, for example, a two-periodic link. Let L be
a two-periodic link with quotient L. This periodicity corresponds to an involution τ : pu, v, zq ÞÑ pu, v,´zq

on the surface S. The quotient surface is S “ S{τ .

Theorem 10.7. The involution τ on S induces an involution on HilbnpSq and Symn
pSq, and the spaces

for the quotient link L embed into the fixed-point sets. This relationship is summarized by the following
commutative diagram:

Hilbn{2
pSq HilbnpSqτ

Symn{2
pSq Symn

pSqτ

HC HC

Theorem 10.8 (Seidel-Smith). For a two-periodic link L with quotient L, there is a spectral sequence:

KhsymppLq b F2rθ, θ´1s ùñ KhsymppLq b F2rθ, θ´1s.

This result has a combinatorial counterpart involving annular Khovanov homology.

Theorem 10.9 (Stoffregen-Zhang, 2018; Borodzik-Politarczyk-Silvero). For a two-periodic link L with quo-
tient L, there is a spectral sequence:

KhpLq b F2rθ, θ´1s ùñ AKhpLq b F2rθ, θ´1s.
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10.2 Annular (Symplectic) Khovanov Homology

Annular Khovanov homology, AKhpLq, is a refinement of Khovanov homology for links in the solid torus,
introduced by Asaeda, Przytycki, and Sikora, and further developed by Roberts. It can be understood as the
associated graded object of a filtration on the Khovanov complex. Mak and Seidel later defined a symplectic
version over characteristic zero.

Theorem 10.10 (Mak-Seidel, 2019). Over a field of characteristic zero, there is an isomorphism

AKhHHsymppLq – AKhpLq,

where AKhHHsymp is defined using Hochschild homology.

We present a new, more direct definition of symplectic annular Khovanov homology, AKhsymp. This theory
is constructed by replacing the ambient space HilbnpSq with HilbnpSzDq, where D is a divisor over z “ 0.
This geometric modification corresponds to working with an annulus instead of a disk.

Theorem 10.11 (Hendricks-Mak-Raghunath). The resulting homology theory, AKhsymppLq, is an invariant
of the link L.

Conjecture 10.12. Over a field of characteristic zero, this newly defined AKhsymppLq is isomorphic to the

Hochschild homology version AKhHHsymppLq.

This new framework allows us to analyze the effect of symmetries in the annular setting.

• For the intrinsic symmetry pu, v, zq ÞÑ pu,´v, zq, we obtain a spectral sequence

AKhsymppLq b F2rθ, θ´1s ùñ {CFKpΣpmLq, Ãq bH˚pS1q b F2rθ, θ´1s.

• For the extrinsic symmetry pu, v, zq ÞÑ pu, v,´zq of a two-periodic link, we obtain

AKhsymppLq b F2rθ, θ´1s ùñ AKhsymppLq b F2rθ, θ´1s.

This provides a symplectic analogue of the Stoffregen–Zhang spectral sequence.

• For a strongly invertible link, with symmetry pu, v, zq ÞÑ p´u,´v,´zq, we consider the induced ac-
tion on the original (non-annular) symplectic Khovanov homology. The fixed-point set of the action
tpu, v, zq, p´u,´v,´zqu relates to the annular theory for the quotient. This yields a spectral sequence

KhsymppLq b F2rθ, θ´1s ùñ AKhsymppLq b F2rθ, θ´1s.

10.3 Summary of Results

We can summarize the results in the following table:

Table 1: Symmetries and Induced Spectral Sequences

Action on pu, v, zq Spectral Sequence Consequence Combinatorial Analog

pu,´v, zq KhsymppLq to gxHF pΣpmLqq Ozsvath-Szabo

pu, v,´zq KhsymppLq to Khsymp

`

L
˘

None

pu,´v, zq AKhsymppLq to xHF
´

ΣpmLq, Â
¯

Roberts

pu, v,´zq AKhsymppLq to AKhsymp

`

L
˘

Zhang

p´u,´v,´zq KhsymppLq to AKhsymp

`

L
˘

Szabó-Ozsváth; Borodzik-Politarczyk-Silvero
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11 Vardan Oganesyan: How to Construct Symplectic Homotopy
Theory

Abstract: In 1968 Dold and Thom proved that singular homology groups of X are isomorphic to homotopy
groups of infinite symmetric product of X. In 1990-2000 Morel, Suslin, and Voevodsky used a similar definition
to define motivic cohomology groups of algebraic varieties. Moreover, they defined homotopy theory for
algebraic varieties. Motivated by these results, we construct homotopy theory for symplectic manifolds. In
particular, we define some new homology groups for symplectic manifolds and prove that these homology
groups have all required properties. We will not discuss details, but we will show that these new homology
groups appear in a very natural way. If time permits, we will also discuss some possible applications.

11.1 Introduction to the Dold-Thom Construction

Let pX, eq be a pointed topological space. The n-th symmetric product of X, denoted SPnpXq, is defined as
the quotient space

SPnpXq “ Xn{Sn,

where Sn is the symmetric group on n letters acting by permutation of coordinates.

We can define a sequence of inclusions by stabilizing with the basepoint e P X:

SPnpXq ãÑ SPn`1
pXq

given by the map tp1, . . . , pnu ÞÑ tp1, . . . , pn, eu. This yields a filtration

SP0
pXq ãÑ SP1

pXq ãÑ ¨ ¨ ¨ ãÑ SPnpXq ãÑ . . .

where SP0
pXq is a point corresponding to the empty set.

Definition 11.1. The infinite symmetric product of X is the direct limit of this sequence:

SPpXq “
ď

ně0

SPnpXq.

The space SPpXq is an abelian semigroup with the operation given by the union of finite sets:

tp1, . . . , pnu ` tq1, . . . , qku “ tp1, . . . , pn, q1, . . . , qku.

An element in SPpXq can be viewed as a formal finite sum of points in X.

Let ∆n be the standard topological n-simplex. The set of continuous maps Mapp∆n,SPpXqq forms a semi-
group. We can turn this into an abelian group via the Grothendieck group construction, which we denote
by CnpXq:

CnpXq “ Mapp∆n,SPpXqq`.

The elements of CnpXq are formal differences of maps f ´ g. The collection of these groups forms a chain
complex C˚pXq with a boundary operator d : CnpXq Ñ Cn´1pXq defined by the alternating sum of face
maps Bk : CnpXq Ñ Cn´1pXq:

d “

n
ÿ

k“0

p´1qkBk,

where Bk is induced by pre-composition with the standard inclusion of the k-th face ∆n´1 ãÑ ∆n. It is a
standard result that this operator satisfies d2 “ 0.
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11.2 The Dold-Thom Theorems

The homology of the chain complex constructed above recovers the singular homology of the original space.
This remarkable result is the content of the Dold-Thom theorem.

Theorem 11.2 (Dold, Thom, 1968). The homology groups of the chain complex pC˚pXq, dq are naturally
isomorphic to the singular homology groups of X with integer coefficients. Furthermore, these homology
groups are the homotopy groups of the infinite symmetric product space:

H˚pC˚pXq, dq – π˚pSPpXqq – Hsing
˚ pX;Zq.

This framework was adapted by Morel, Suslin, and Voevodsky to the setting of algebraic geometry to define
motivic cohomology.

Theorem 11.3 (Voevodsky, Suslin, Morel, 1990s). Let X be a smooth algebraic variety over a field. Let
∆n

alg be the algebraic n-simplex, defined as tpz0, . . . , znq P An`1 |
ř

zi “ 1u. Consider the abelian group of
algebraic maps

Calg
n pXq “ Mapalgp∆n

alg,SPpXqq`.

The homology of the resulting algebraic chain complex pCalg
˚ pXq, dq defines the Suslin homology of X,

denoted Hsus
˚ pXq.

Remark 11.4. The Suslin homology groups can contain rich geometric information. For example:

Hsus
0 pT 2q “ Z ˆ T 2

Hsus
0 pΣgq “ Z ˆ JacpΣgq

where T 2 is the two-torus and Σg is a compact Riemann surface of genus g, with JacpΣgq its Jacobian variety.

11.3 A Framework for Symplectic Homotopy Theory

We aim to construct a similar theory for symplectic manifolds. A key step is to define the appropriate
category and the corresponding notion of ”maps” into the symmetric product.

11.3.1 Categories and Sheaves

Let X be a symplectic manifold. Similar to the algebraic case, for an open set U in a variety Y , we can
consider the set of maps from U into SPpXq to define a presheaf. Sheafification then yields a sheaf on Y .

U ÞÑ C˚pU , Xq

To adapt this to the symplectic setting, we must define an appropriate category of maps. We consider several
possibilities:

1. Morphisms are symplectic embeddings.

2. Morphisms are generalized Lagrangian correspondences.

3. Morphisms are J-holomorphic maps.

The second option, involving Lagrangian correspondences, appears to be the most powerful but is also the
most technically challenging.

Problem 11.5. What is the symplectic analogue of the simplex ∆n? What is the correct notion of a map
from a symplectic manifold Y to SPpXq?

To address this, we introduce the notion of a symplectic correspondence. Let pY, ωY q and pX,ωXq be
symplectic manifolds. A symplectic correspondence from an open set U Ď Y to SPnpXq is a symplectic
embedding U ãÑ Xn{Sn. A more concrete description involves a collection of maps tf1, . . . , fnu from U to
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X satisfying a certain condition on the symplectic forms. For instance, we can consider unordered n-tuples
of maps fi : U Ñ X such that

n
ÿ

i“1

f˚
i ωX “ ωU .

This defines a presheaf. After sheafification, the global sections form a set we denote SCornpY,Xq. This set
is our analogue of MappY,SPnpXqq.

To construct a group structure, we introduce isotropic correspondences. An isotropic correspondence
U Ñ Xk is a map whose graph is an isotropic submanifold. We denote the set of such correspondences by
ICorkpY,Xq.

Definition 11.6. Let F1 P SCornpY,Xq and F2 P SCorn`kpY,Xq. We say F1 and F2 are equivalent, denoted
F1 „ F2, if there exists an isotropic correspondence G P ICorkpY,Xq such that F2 “ F1 `G.

This equivalence relation allows us to define the space of symplectic correspondences as

SCorpY,Xq “

˜

ğ

ně0

SCornpY,Xq

¸

{ „,

which is the desired symplectic analogue of MappY,SPpXqq.

11.3.2 A Symplectic Chain Complex

Fix a symplectic manifold M with two disjoint Lagrangian submanifolds p0 and p1, which we will call a
”segment.” An example is M “ T˚r0, 1s. We define the n-chains from Y to X as

SCnpY,Xq “ SCorpY ˆMn, Xq.

Face maps Bk,ϵ : SCnpY,Xq Ñ SCn´1pY,Xq are defined by restriction to the faces Y ˆMk´1 ˆ tpϵu ˆMn´k

for ϵ P t0, 1u and k “ 1, . . . , n. The boundary operator is the alternating sum of these face maps:

d “

n
ÿ

k“1

p´1qkpBk,1 ´ Bk,0q.

One can verify that d2 “ 0.

Definition 11.7. The homology of this chain complex defines the embedded homology groups, denoted
EH˚pY,Xq.

HpSC˚pY,Xq; dq “ EH˚pY,Xq.

It can be shown that any standard symplectic embedding from Y to X defines a non-trivial class in
SCorpY,Xq. For example, if Y is contractible, then SCorpY,Xq is non-empty.

11.4 Properties and Applications

11.4.1 Homotopy Invariance

The notion of homotopy translates naturally into this framework. Let M be our segment with boundaries
p0, p1.

Definition 11.8. Two correspondences F0, F1 P SCorpY,Xq are M-homotopic if there exists a correspon-
dence H P SCorpY ˆM,Xq such that

H|Yˆtp0u “ F0 and H|Yˆtp1u “ F1.

This definition leads to the expected properties for the resulting homology theory.

Proposition 11.9. The embedded homology groups EH˚pY,Xq have the following properties:

56



1. M -homotopy is an equivalence relation on SCorpY,Xq.

2. If ϕt : Y Ñ Y is a Hamiltonian isotopy, then the induced correspondences ϕ˚
0 and ϕ˚

1 are M -homotopic.

3. The assignment pY,Xq ÞÑ EH˚pY,Xq is functorial with respect to composition of correspondences.

4. The groups EH˚pY,Xq are homotopy invariant in the sense that if F : Y Ñ X and G : Y 1 Ñ X are
homotopic correspondences, they induce the same map on homology.

5. The theory admits long exact sequences, analogous to those in singular homology.

11.4.2 Triangulated Persistence Categories and Further Directions

The category whose objects are symplectic manifolds and whose morphisms are MorpY,Xq “ SCorpY,Xq

forms an additive category. Following ideas of Biran, Cornea, and Zhang, one can construct a triangulated
persistence category on chain complexes over this category.

A variant of this theory can be defined using J-holomorphic curves, leading to groups we denote JH˚pY,Xq.
This connects our construction to enumerative symplectic geometry.

Theorem 11.10. Let M “ CP1
zt0,8u. If X is a Kähler manifold such that JH0ppt, Xq “ 0, then X is a

projective algebraic variety.
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12 Daniel Pomerleano: Homological Mirror Symmetry for Batyrev
Mirror Pairs

Abstract: I will survey a recent proof of a version of Kontsevich’s homological mirror symmetry conjecture
for a large class of mirror pairs of Calabi-Yau hypersurfaces in toric varieties. These mirror pairs were
constructed by Batyrev from dual reflexive polytopes. The theorem holds in characteristic zero and in all
but finitely many positive characteristics. This is joint work with Ganatra, Hanlon, Hicks, and Sheridan.

12.1 Introduction and Setup

We begin by establishing the geometric setting. Let K be a field. We fix a lattice M – Zn of rank n ě 4,
and let MR :“ M bZ R be the associated real vector space. Let ∆ Ă MR be a reflexive polytope. The dual
polytope is denoted ∆˚ Ă M˚

R , where M
˚
R is the dual vector space.

From this data, we construct two fans:

1. Let Σ Ă M˚
R be the fan whose one-dimensional cones (rays) are generated by the vertices of ∆˚. This

is the normal fan of the polytope ∆.

2. Let Σ˚ Ă MR be the fan whose rays are generated by the vertices of ∆. This is the normal fan of ∆˚.

These fans give rise to toric varieties Y :“ YΣ and Y ˚ :“ YΣ˚ , respectively. Throughout, we make the
following assumptions:

• The fan Σ˚ is smooth, which implies that the toric variety Y ˚ is smooth.

• Let P :“ ∆˚ X M˚ denote the set of integer lattice points in the dual polytope ∆˚. Let P 0 Ă P be
the subset of lattice points which lie on a face of codimension ě 2.

12.1.1 The B-Side: Complex Geometry

The B-side of the mirror correspondence is constructed from the smooth toric variety Y ˚. Let L∆˚ Ñ Y ˚

be the line bundle associated with the polytope ∆˚. We define a family of hypersurfaces within Y ˚ using a
superpotential Wr.

Let ΛK :“
␣
ř8

i“0 aiT
bi | ai P K, bi P R, limiÑ8 bi “ 8

(

be the Novikov ring over the field K. The superpo-
tential is a section of L∆˚ given by

Wr “ ´z0 `
ÿ

pPP

rpz
p,

where the coefficients prpqpPP are elements of ΛPK . The Calabi-Yau hypersurface on the B-side is the zero
locus of this section:

X˚
r :“ tWr “ 0u Ă Y ˚.

The derived category of coherent sheaves on this hypersurface, DbCohpX˚
r q, is the categorical object of

interest on the B-side.

12.1.2 The A-Side: Symplectic Geometry

On the A-side, we start with the toric variety Y “ YΣ, which is not assumed to be smooth. Let A :“ ∆XM
be the set of integer lattice points in ∆. The global sections of the line bundle L∆ over Y include monomials
zα for each α P A.

We consider a family of hypersurfaces in Y defined by the equation

Xt “

$

&

%

´tz0 `
ÿ

αPAzt0u

zα “ 0

,

.

-

Ă Y ,
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where t is a parameter. To obtain a smooth model, we take a refinement Σ of the fan Σ such that the
corresponding toric variety Y :“ YΣ is smooth away from a subset of high codimension. The A-side Calabi-
Yau manifold, Xt, is the proper transform of Xt in Y .

The symplectic geometry of Xt is determined by a Kähler class rωs on Y , which we restrict to Xt. We
consider Kähler classes of the form

rωs “
ÿ

pPP

ℓpPDprDY
p sq, ℓp P Rą0,

where DY
p are the toric divisors of Y corresponding to the rays of Σ, and PDp¨q denotes the Poincaré dual.

The categorical object on the A-side is a variant of the Fukaya category, denoted FukpXt, D; Λq, where
D “ YpPP pXt X DY

p q is the toric boundary divisor in Xt. The objects of this category are compact exact
Lagrangian submanifolds in the complement XtzD. The Floer cochains are defined over the Novikov ring Λ,
where holomorphic disks u with boundary on a Lagrangian are weighted by the factor T

ř

ℓppu¨Dpq.

12.2 Main Result

We can now state the main theorem, which establishes an equivalence between the A-side and B-side cate-
gories.

Theorem 12.1. Suppose that the toric divisors Dp are connected. Away from a finite set of ”bad” charac-
teristics for the field K, there exist coefficients bpΛq “ pbpΛqpqpPP P ΛP with valpbpΛqpq “ ℓp for each p P P ,
and an equivalence of triangulated categories:

FukpXt, D; Λq – DbCohpX˚
bpΛq

q.

Remark 12.2. In characteristic 0, Homological Mirror Symmetry is known to imply Givental’s Hodge-
theoretic mirror symmetry, which relates the Gromov-Witten invariants of Xt to the period integrals of the
mirror family X˚

r .

This result naturally leads to the following question concerning the implications of HMS in positive charac-
teristic.

Problem 12.3. Is there an analogue of the Gromov-Witten implications of Homological Mirror Symmetry
when working over a field of positive characteristic?

12.3 Strategy of Proof

The proof strategy builds upon the groundbreaking work of Seidel (in the case of the quartic surface in P3)
and proceeds in two main steps:

1. Open Equivalence: Establish an equivalence FukpXtzDq – DbCohpBY ˚q, where BY ˚ is the toric
boundary divisor in Y ˚ cut out by the coordinate z0.

2. Deformation Theory: Employ a deformation theory argument to extend the equivalence from the
open subvarieties to the compact Calabi-Yau hypersurfaces Xt and X

˚
bpΛq

.

The remainder of this discussion will focus on the key ideas behind Step 1.

Let H :“ XtzD Ă pCˆqn. The central object of study is the wrapped Fukaya category WpHq, which
allows for certain non-compact Lagrangians. This category relates to the wrapped Fukaya category of the
ambient torus, WppCˆqn, Hq. An important result by Gammage and Shende provides the toric part of the
correspondence.
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Theorem 12.4 (Gammage, Shende). There are equivalences of categories, indicated by the following dia-
gram:

WHq DbCohpBY ˚q

WpCˆqn, Hq DbCohpY ˚q

–

Y

–

Further insight comes from a result of Abouzaid for toric varieties, which connects a ”tropical” Fukaya
category to the derived category of the Picard group.

FtropppCˆqn, Hq » PicdgpY ˚q

These equivalences can be assembled into a larger commutative diagram that illustrates the interplay between
the different categorical constructions.

Theorem 12.5. The following diagram of categories and functors commutes:

WpHq DCohpBY ˆq

W
`

pCˆq
n
, H

˘

DbCohpY ˆq

Ftrop

`

pCˆq
n
, H

˘

PicdgpY ˆq

–

GS

pYq
˚

KGPS
–

Cˆ

Ă with the fiber

–
A

A key tool that was unavailable in the original work of Seidel and Sheridan, is the isomorphism between
Symplectic Cohomology and Hochschild Cohomology provided by the closed-open string map:

CO : SH˚
pXtzDq

–
ÝÑ HH˚

pWpXtzDqq
–

ÝÑ HH˚
pFukpXtzDqq.

This is particularly powerful because the Symplectic Cohomology group SH˚
pXtzDq can be computed directly

from the topology of the pair pXt, Dq.
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13 John Pardon: Derived Moduli Spaces of Pseudo-Holomorphic
Curves

Abstract: We will present the derived representability approach to working with moduli spaces of pseudo-
holomorphic curves.

13.1 Introduction

We are interested in the properties and structures of moduli spaces of solutions to elliptic partial differential
equations, which in turn lead to the definition of enumerative invariants. These properties can be broadly
categorized as follows:

1. Global Topological Property: Compactness of the moduli space, as established by Uhlenbeck and
Gromov.

2. Local Structure: Regularity of the moduli space. This property can be understood in two different,
though related, ways:

(a) Classical Regularity: The moduli space M is locally isomorphic to Rn (or, more generally,
spaces like R ˆ Rmě0). Achieving classical regularity typically requires transversality, which is
often established by choosing ”generic” data for the partial differential equation.

(b) Derived Regularity: The moduli space M is locally isomorphic to the zero set of a smooth
function on Rn (or a similar space). Derived regularity holds in much wider generality. However,
describing the precise structure on M that encodes such a chart is technically demanding, as seen
in the work of Fukaya, Ono, Oh, Ohta, Li, Tian, Ruan, Seibert, and others.

Our primary goal is to associate a well-behaved moduli space with every relevant moduli problem, from
which an enumerative invariant can be extracted. We will focus on the construction of the moduli space
itself.

Problem 13.1. Why is the notion of derived regularity significantly more complicated than its classical
counterpart?

The essential answer is that derived regularity is fundamentally a homological or ”derived” structure, not
simply a set-theoretic one.

Example 13.2. Consider a proper submersion Q Ñ B, and let E,F be vector bundles over Q. Let L :
C8pQ,Eq Ñ C8pQ,F q be a vertical elliptic operator. We are interested in the pushforward π˚L, which is a
2-term complex of vector bundles on B. The cohomology of this complex at a point b P B is given by kerLb
and cokerLb, where Lb is the restriction of L to the fiber Qb.

This pushforward π˚L is unique up to a contractible choice in the 2-category of 2-term vector bundles on B. A

contractible choice relates two complexes pV
d

ÝÑ W q and pV 1 d1

ÝÑ W 1q via maps f, g : V Ñ V 1, f, g :W Ñ W 1,
and a homotopy h : W Ñ V 1 such that d1h ` hd “ f ´ g. This relationship is illustrated by the following
diagram:

V W

V 1 W 1

d

f g h gf

d1

To formalize this, we work within the framework of derived algebraic geometry. Let Sm be the category
of smooth manifolds. We introduce DSm, the 8-category of derived smooth manifolds. There is a functor
Sm Ñ DSm that freely adjoints finite limits while preserving finite products.

Concretely, a derived smooth manifold can be thought of as a formal symbol limK p for some finite diagram
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p : K Ñ Sm. For instance, the derived intersection of y “ x2 and y “ 0 in R is given by the limit:

lim

¨

˚

˚

˚

˚

˚

˝

R

˚ R

x ÞÑx2

0

˛

‹

‹

‹

‹

‹

‚

P DSm

Furthermore, the mapping space between two derived smooth manifolds is given by:

HomDSmplim
K
p, lim

L
qq “ sheafification on lim

K
|p|

´

lim
L

colimK∆
HomSmpp∆, qq

¯

Example 13.3. Let τ be the derived point defined in the example above:

τ :“ lim

¨

˚

˚

˚

˚

˚

˝

R

˚ R

x ÞÑx2

0

˛

‹

‹

‹

‹

‹

‚

A map from τ to a smooth manifold M P Sm corresponds to a point p P M together with a tangent vector
v P TpM .

Remark 13.4. The category of topological manifolds is a full subcategory of the 8-category of derived
topological spaces, DpTopological Manifoldsq Ă DpTopq.

Crucially, every derived smooth manifold X P DSm has an associated tangent complex TX P Perfě0
pXq,

which is a perfect complex of quasi-coherent sheaves on X concentrated in non-negative degrees.

13.2 Representability

We can now define families of pseudo-holomorphic curves in the derived setting.

Definition 13.5. Let C be a Riemann surface and pX, Jq be an almost complex manifold. A family of
ψ-holomorphic maps from C to X parameterized by a derived smooth manifold Z is a map u : Z ˆ C Ñ X
together with an isomorphism between the zero section and the anti-holomorphic derivative of u:

pDCuq0,1 : Z ˆ C Ñ TX bC T˚C

This isomorphism must hold in the appropriate derived sense.

The central result is that the moduli problem for such maps is representable in the category of derived
smooth manifolds.

Theorem 13.6 (Pardon, Steffens). There exists a derived smooth manifold HolpC,Xq and a natural bijection
for any Z P DSm:

tMaps Z Ñ HolpC,Xqu
„

ÝÑ tFamilies of ψ-holomorphic maps C Ñ X parameterized by Zu .

Remark 13.7. For a classical ψ-holomorphic map u : C Ñ X, which corresponds to a point in the underlying
classical space of HolpC,Xq, we have a canonical isomorphism for the cohomology of the tangent complex:

HkpTuHolpC,Xqq “

#

kerDu k “ 0

cokerDu k “ 1

where Du is the linearized Cauchy-Riemann operator:

Du : C8pC, u˚TXq Ñ C8pC, u˚TX bC T˚Cq
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Example 13.8. If cokerDu “ 0 for a map u, then the tangent complex TuHolpC,Xq has cohomology
supported only in degree 0. This implies that HolpC,Xq is a smooth manifold in a neighborhood of u. The
existence of this derived moduli space allows one to define enumerative invariants via a map L from the
classical bordism ring to the derived bordism ring:

tCompact smooth mfds Ñ Au{bordism “ Ω`pAq

tCompact derived smooth mfds Ñ Au{bordism “ Ωder
` pAq Q rHolpC,Xqs

L

The proof of the representability theorem relies on the following key proposition, which allows one to extend
maps from derived parameter spaces to classical ones.

Proposition 13.9. For any Z P DSm and any map u : Z ˆC Ñ X (not necessarily ψ-holomorphic), there
exists a map from Z to a smooth manifold Q and an isomorphism u – v|Z , where v : Qˆ C Ñ X is a map
from a classical parameter space.

This type of result has applications beyond the theory of pseudo-holomorphic curves. For instance, it can
be used to extend classical results about stacks to the derived setting.

Theorem 13.10 (Zung). If X is a smooth stack with a submersive atlas and a proper diagonal, then X is
locally isomorphic to a quotient stack rM{Gs, where G is a compact Lie group acting on a manifold M .

Using the proposition above, one can show that the same local structure theorem holds for any derived
smooth stack.
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