
MIT 6.875 - Foundations of Cryptography

Lectures by Vinod Vaikuntanathan, Notes by Gary Hu

Fall 2021

These are my notes for MIT 6.875, taught by Vinod Vaikuntanathan.

Contents

1 Introduction 3
1.1 Themes . 3
1.2 The Setup . 3
1.3 Shannon’s Perfect Secrecy . 3
1.4 One-time Pad Construction . 5
1.5 Limitations of Perfect Secrecy . 6

2 Circumventing Shannon’s Lower Bound Using PRGs 7
2.1 Computationally Bounded Adversaries 7
2.2 Negligible Functions . 7
2.3 Pseudorandom Generators . 8

3 Stateless Secret-key Encryption Leads to PRFs 10
3.1 Next-bit Unpredictability (NBU) 10
3.2 Proof of NBU ⇔ Indistinguishability 10
3.3 Length Extension . 13
3.4 Pseudorandom Functions (PRFs) 13
3.5 PRFs Imply Stateless Secret-key Encryption 14

4 More on Pseudorandom Functions 15
4.1 Definitions . 15
4.2 Example . 15
4.3 Goldreich-Goldwasser-Micali (GGM) PRF Construction 16
4.4 Security Analysis . 16

5 Message Authentication Codes 19
5.1 PRF Applications . 19
5.2 Unpredictability of PRFs . 19
5.3 Challenge-Response Protocol . 19
5.4 PRFs for Message Authentication Codes (MACs) 20

1

http://mit6875.org/

5.5 Applications to Learning Theory 20

6 Number Theory 21

7 The Goldreich-Levin Theorem 22
7.1 One-Way Functions . 22
7.2 Hardcore Bits . 22
7.3 OWFs Imply PRGs . 23
7.4 The Goldreich-Levin Theorem . 23
7.5 The Coding-Theoretic View of Goldreich-Levin 24

2

1 Introduction

1.1 Themes

The following themes will be central to the course and will recur throughout
the lectures:

1. Model the worst-case adversary: Understand what the adversary knows,
what they can do, and what their objectives are.

2. Leverage computational hardness to ”control” the adversary.

3. Provide security proofs via reductions.

1.2 The Setup

Cryptography aims to enable secure communication between Alice and Bob,
such that Alice can send a messageM to Bob without Eve being able to intercept
or decipher it.

Before Alice and Bob can exchange messages, they must first agree on a secret
key k.

For simplicity, we assume Alice and Bob are using secret-key encryption. This
involves an encryption scheme consisting of three (potentially probabilistic)
polynomial-time algorithms:

• Key Generation Algorithm (Gen): k ← Gen(1n).

• Encryption Algorithm (Enc): c← Enc(k,m).

• Decryption Algorithm (Dec): m← Dec(k, c).

Note that the key generation algorithm is inherently probabilistic.

We assume the worst-case adversary, Eve, who has the following abilities:

• Eve is an arbitrary computationally unbounded algorithm.

• Kerckhoff’s Principle: Eve knows Alice and Bob’s algorithms Gen,Enc,
and Dec, but does not have knowledge of the key k or any internal ran-
domness.

• Eve can observe the ciphertexts transmitted through the channel, but, for
now, is unable to modify them.

1.3 Shannon’s Perfect Secrecy

The fundamental idea behind perfect secrecy is that the a-posteriori probability
of a message should equal the a-priori probability. More formally:

3

Definition 1.1 (Shannon’s Perfect Secrecy). An encryption scheme is perfectly
secure if

∀M,∀m ∈ Supp(M),∀c ∈ Supp(C),

Pr[M = m | Enc(K,M) = c] = Pr[M = m]

Now, let’s examine an equivalent definition based on perfect indistinguishability.

Definition 1.2 (Perfect Indistinguishability). An encryption scheme exhibits
perfect indistinguishability if

∀M,∀m,m′ ∈ Supp(M),∀c ∈ Supp(C),

Pr[Enc(K,m) = c] = Pr[Enc(K,m′) = c]

We will now prove that these two definitions are equivalent.

Theorem 1.3. An encryption scheme satisfies perfect secrecy if and only if it
satisfies perfect indistinguishability.

Proof. We begin with the ”if” direction. The key observation is that for all
messages m,

Pr[Enc(K,M) = c] = Pr[Enc(K,m) = c]

This follows from the fact that:

Pr[Enc(K,M) = c] =
∑

Pr[Enc(K,M) = c | M = m] Pr[M = m]

=
∑

Pr[Enc(K,m) = c] Pr[M = m]

= α
∑

Pr[M = m]

= α

where α = Pr[Enc(K,m) = c] = Pr[Enc(K,m′) = c].

From this, we can proceed as follows:

Pr[M = m | Enc(K,M) = c] =
Pr[Enc(K,M) = c | M = m] Pr[M = m]

Pr[Enc(K,M) = c]

=
Pr[Enc(K,m) = c] Pr[M = m]

Pr[Enc(K,M) = c]

=
αPr[M = m]

α
= Pr[M = m]

This concludes the ”if” direction.

Now, for the ”only if” direction, we assume the perfect secrecy condition holds,
and we show that it implies perfect indistinguishability.

4

Pr[Enc(K,m) = c] = Pr[Enc(K,M) = c | M = m]

=
Pr[M = m | Enc(K,M) = c] Pr[Enc(K,M) = c]

Pr[M = m]

= Pr[Enc(K,M) = c]

= Pr[Enc(K,m′) = c]

Thus, we conclude that perfect secrecy implies perfect indistinguishability.

1.4 One-time Pad Construction

Let us now describe a simple construction of a perfectly secure encryption
scheme: the one-time pad.

Definition 1.4 (One-time Pad). The one-time pad encryption scheme is defined
as follows:

• Gen: Choose an n-bit string k at random.

• Enc(k,m): Given a message m (an n-bit string), the ciphertext c is com-
puted as c = m⊕ k, where ⊕ denotes bitwise addition modulo 2.

• Dec(k, c): Given the ciphertext c, the message is recovered by computing
m = c⊕ k.

We now show that this construction is indeed perfectly secure.

Theorem 1.5. The one-time pad is perfectly secure.

Proof. To demonstrate that the one-time pad achieves perfect secrecy, consider
any message m and ciphertext c ∈ {0, 1}n. The probability that the encryption
of m results in c is:

Pr[Enc(k,m) = c] = Pr[m⊕ k = c] = Pr[k = c⊕m] =
1

2n

Thus, the probability of obtaining any ciphertext c is the same regardless of the
message m, implying that:

Pr[Enc(K,m) = c] = Pr[Enc(K,m′) = c]

which confirms that the one-time pad is perfectly secure.

However, the one-time pad has a critical limitation: it cannot be reused. If the
same key is used for encrypting multiple messages, Eve can XOR the ciphertexts
and gain information about the messages.

5

1.5 Limitations of Perfect Secrecy

While perfect secrecy is often considered the ideal in cryptography, it has certain
limitations. Specifically, the following theorem highlights one key constraint:

Theorem 1.6. For any perfectly secure encryption scheme, the size of the key
space must be at least as large as the size of the message space:

|K| ≥ |M|

Proof. Assume for contradiction that |K| < |M|. Let c ∈ C be any ciphertext.
Consider the set of all possible messages that could be encrypted to c. The set
of keys mapping these messages to c must be distinct, leading to a contradiction.
There must exist a message m̃ ∈ M that is not encrypted to c, which violates
the definition of perfect indistinguishability because:

Pr[Enc(K,m) = c] > 0 but Pr[Enc(K, m̃) = c] = 0

Thus, we conclude that |K| ≥ |M| must hold for perfect secrecy.

In subsequent lectures, we will relax some of the definitions and explore more
practical cryptographic schemes.

6

2 Circumventing Shannon’s Lower Bound Using
PRGs

2.1 Computationally Bounded Adversaries

In the previous post, we discussed the limitations of perfect security. Today, we
explore how we can circumvent this limitation.

The key idea is to assume computationally bounded adversaries. We assume
the Church-Turing Thesis holds, meaning feasible computation is defined as
probabilistic polynomial time (p.p.t.). In this context, Alice and Bob are fixed
p.p.t. algorithms, and Eve is any p.p.t. adversary.

Let’s attempt to define computational indistinguishability. A natural approach
would be to define computational indistinguishability as follows:

For all p.p.t. Eve and for all messages m0,m1, the following condition should
hold:

Pr[k ← K; b← {0, 1}; c = Enc(k,mb) : Eve(c) = b] =
1

2

However, there is a critical flaw in this approach: it is impossible to have an
encryption scheme that encrypts an n+ 1-bit message with an n-bit key.

Let m0 be a message that can be encrypted to a ciphertext c, and let m1 be a
message that cannot be encrypted to c. Suppose Eve picks a random key k and:

• Outputs 0 if Dec(k, c) = m0

• Outputs 1 if Dec(k, c) = m1

• Outputs a random bit if neither of the above conditions hold

Then the probability of the first case occurring is at least 1
2n , but the second

case has a probability of 0, leading to a contradiction.

Thus, we must relax the definition of computational indistinguishability. Before
proceeding, we first need to introduce the concept of negligible functions.

2.2 Negligible Functions

Definition 2.1. A function µ : N → R is negligible if, for every polynomial
function p, there exists an n0 such that for all n ≥ n0, µ(n) <

1
p(n) .

Example 2.2. 1. Let µ(n) = 1
nlog n . Is µ negligible?

2. Let µ(n) = 1
n100 if n is prime and µ(n) = 1

2n otherwise. Is µ negligible?

3. Let µ(n) be a negligible function and q(n) be a polynomial function. Is
µ(n) · q(n) negligible?

7

Here are the answers:

1. No.

2. No, because there are infinitely many primes.

3. Yes.

Now that we understand negligible functions, we can proceed to define compu-
tational indistinguishability.

Definition 2.3. Computational Indistinguishability: For all p.p.t. Eve,
there exists a negligible function µ such that for all messages m0,m1, we have:

Pr[k ← K; b← {0, 1}; c = Enc(k,mb) : Eve(c) = b] ≤ 1

2
+ µ(n)

2.3 Pseudorandom Generators

Informally, pseudorandom generators (PRGs) are deterministic algorithms that
can stretch a ”truly random” seed into a much longer sequence of ”seemingly
random” bits.

There are several equivalent ways to think about pseudorandom generators:

• Indistinguishability: No polynomial-time algorithm can distinguish be-
tween the output of a PRG on a random seed and a truly random string.

• Next-bit unpredictability: No polynomial-time algorithm can predict
the (i+1)-th bit of the output of a PRG given the first i bits better than
random chance.

• Incompressibility: No polynomial-time algorithm can compress the out-
put of a PRG into a shorter string.

We can now formalize the definition of indistinguishability for a PRG:

Definition 2.4. Indistinguishability: A deterministic polynomial-time com-
putable function G : {0, 1}n → {0, 1}m is a PRG if:

1. It is expanding: m > n.

2. For every p.p.t. algorithm D, there exists a negligible function µ such that

|Pr[D(G(Un)) = 1]− Pr[D(Um) = 1]| = µ(n),

where Un denotes the uniform distribution over n-bit strings.

The purpose of PRGs is to allow us to encrypt n + 1 bits using an n-bit key.
We achieve this using the following construction:

• Gen(1n): Generate a random n-bit key k.

• Enc(k,m), where m is an m(n)-bit message: Expand k into an n+1-
bit pseudorandom string k′ = G(k). Perform a one-time pad with k′, and
the ciphertext is k′ ⊕m.

8

• Dec(k, c): Output G(k)⊕ c.

Theorem 2.5. Suppose G is a PRG. Then the above encryption scheme is
computationally secure.

Proof. Suppose for contradiction that there exists a p.p.t. Eve, a polynomial
function p, and messages m0,m1 such that

ρ = Pr[k ← {0, 1}n; b← {0, 1}; c = G(k)⊕mb : Eve(c) = b] ≥ 1

2
+

1

p(n)
.

Let

ρ′ = Pr[k ← {0, 1}n+1; b← {0, 1}; c = k′ ⊕mb : Eve(c) = b] =
1

2
.

Now, we construct a distinguisher Eve’ for G, which leads to a contradiction.

Given an input string y, run Eve(y⊕mb) for a random b, and let Eve′’s output
be b′. Output ”PRG” if b = b′, and ”random” otherwise. Then:

Pr[Eve’ outputs ”PRG”|y is pseudorandom] = ρ ≥ 1

2
+

1

p(n)
,

and

Pr[Eve’ outputs ”PRG”|y is random] = ρ′ =
1

2
.

Therefore,

Pr[Eve’ outputs ”PRG”|y is pseudorandom]−Pr[Eve’ outputs ”PRG”|y is random] ≥ 1

p(n)
,

which is a contradiction. Hence, the encryption scheme is secure.

In the next post, we will explore PRGs in more detail.

9

3 Stateless Secret-key Encryption Leads to PRFs

3.1 Next-bit Unpredictability (NBU)

The question for today is: How do you encrypt a polynomial number of messages
with a fixed key?

In the previous lecture, we introduced next-bit unpredictability informally. Now,
we will define it rigorously.

Definition 3.1 (Next-bit Unpredictability). A deterministic polynomial-time
computable function G : {0, 1}n → {0, 1}m is next-bit unpredictable if for
every p.p.t. algorithm P and every i ∈ {1, . . . ,m}, there exists a negligible
function µ(n) such that

Pr[y ← G(Un) : P (y1y2 . . . yi−1) = yi] =
1

2
+ µ(n)

This definition is useful due to the following theorem:

Theorem 3.2. A PRG G passes all polynomial-time statistical tests if and only
if it passes all polynomial-time next-bit tests.

3.2 Proof of NBU ⇔ Indistinguishability

The proof is lengthy, so I will break it into sections.

First, let’s prove that indistinguishability implies next-bit unpredictability.

Suppose, for the sake of contradiction, that there exists a p.p.t. predictor P , a
polynomial function p(n), and an index i ∈ {1, . . . ,m} such that

Pr[y ← G(Un) : P (y1y2 . . . yi−1) = yi] ≥
1

2
+ µ(n)

Now, let’s construct the distinguisher D. Consider D, which receives an m-bit
string y and proceeds as follows:

1. Run P on the (i− 1)-bit prefix y1y2 . . . yi−1.

2. If P returns the i-th bit yi, output 1 (”PRG”); otherwise, output 0 (”Ran-
dom”).

Let’s show that D works. We have the following:

Pr[y ← G(Un) : D(y) = 1] = Pr[y ← G(Un) : P (y1y2 . . . yi−1) = yi]

≥ 1

2
+

1

p(n)

and

10

Pr[y ← Um : D(y) = 1] = Pr[y ← Um : P (y1y2 . . . yi−1) = yi]

=
1

2

which implies

|Pr[y ← G(Un) : D(y) = 1]− Pr[y ← Um : D(y) = 1]| ≥ 1

p(n)

This is a contradiction, so we conclude that indistinguishability implies next-bit
unpredictability.

Next, we prove the reverse direction: next-bit unpredictability implies indistin-
guishability.

Suppose, for contradiction, that there exists a distinguisher D and a polynomial
function p(n) such that

|Pr[y ← G(Un) : D(y) = 1]− Pr[y ← Um : D(y) = 1]| ≥ 1

p′(n)

Let ϵ := 1
p′(n) for simplicity. Before proceeding, we need the following lemma:

Lemma 3.3. Let p0, p1, p2, . . . , pm be real numbers such that

pm − p0 ≥ ϵ

Then, there exists an index i such that

pi − pi−1 ≥
ϵ

m

Proof.

pm − p0 = (pm − pm−1) + (pm−1 − pm−2) + · · ·+ (p1 − p0) ≥ ϵ

Averaging the terms completes the proof.

Using the lemma, we have that for each i such that D distinguishes between
Hi−1 and Hi with advantage greater than or equal to ϵ

m ,

Pr[D(Hi) = 1]− Pr[D(Hi−1) = 1] ≥ ϵ

m

Define pi := Pr[D(Hi) = 1], p0 := Pr[D(Um) = 1], and pm := Pr[D(G(Un))].
It’s clear that pi − pi−1 ≥ ϵ

m . The key intuition is that the only difference

11

between the hybrid distributions Hi−1 and Hi is the i-th bit. So, D can tell
whether the given bit is the correct i-th bit or not.

Now, let’s define a new variable Hi := 1 − y1 and pi := Pr[D(Hi) = 1]. To
continue, we need another lemma:

Lemma 3.4.

pi−1 =
pi + pi

2

Proof. This follows from the fact that pi is the probability that D outputs 1
when given 0 in the i-th bit, and pi is the probability that D outputs 1 when
given 1 in the i-th bit.

This leads to the following corollary:

Corollary 3.5.

pi − pi ≥ 2
ϵ

m

Proof. This is immediate.

This shows that D outputs 1 more frequently when given the correct bit than
when given the wrong bit. Finally, we can construct our predictor P :

1. Pick a random bit b.

2. Feed D with the input y1y2 . . . yi−1|b|ui+1 . . . um, where u’s are random.

3. If D outputs 1, output b as the prediction for yi; otherwise, output b.

To finish, we need to show that our predictor works:

Pr[x← {0, 1}n; y = G(x) : P (y1y2 . . . yi−1) = yi]

=Pr[D(y1y2 . . . yi−1b . . .) = 1 | b = yi] · Pr[b = yi] + Pr[D(y1y2 . . . yi−1b . . .) = 0 | b ̸= yi] · Pr[b ̸= yi]

=
1

2
(Pr[D(y1y2 . . . yi−1b . . .) = 1 | b = yi] + Pr[D(y1y2 . . . yi−1b . . .) = 0 | b ̸= yi])

=
1

2
(Pr[D(y1y2 . . . yi−1yi . . .) = 1] + Pr[D(y1y2 . . . yi−1yi . . .) = 0])

=
1

2

(
1 + 2

ϵ

m

)
≥1

2
+

1

p(n)

Thus, we have completed the proof of the theorem.

12

3.3 Length Extension

Here’s how you can use a PRG to turn an n-bit seed into a longer message of
arbitrary length.

1. Take the n-bit seed and input it into a PRG G to get an n+1-bit message.

2. Remove the (n+ 1)-th bit and store it separately.

3. Repeat steps 1 and 2 L times to obtain the original message and L pseu-
dorandom bits.

4. Attach the pseudorandom bits to the end of the seed.

The important question now becomes: How can we achieve this without main-
taining state?

Here are some ideas:

1. Alice picks a random index from b1, b2, . . . , bn100 and sends Bob (bn,m ⊕
bn). However, this doesn’t work due to collisions: Pr[Alice’s first two indices collide] ≥

1
n100 , which leads to Alice using the same one-time pad bit twice.

2. Alice picks a random index from b1, . . . , b2n . Now we have Pr[∃collision in t =

poly(n) indices] ≤ t2

2n , which is negligible, but Alice and Bob are no longer
polynomial-time computable.

Instead, we want a function fk(x) = bx, where x is the index in an implicitly
defined string, computable in polynomial time. Then, fk(x1), fk(x2), . . . must
be computationally indistinguishable from random bits for random x1, x2,
This motivates the idea behind pseudorandom functions.

3.4 Pseudorandom Functions (PRFs)

Definition 3.6 (Pseudorandom Function). A pseudorandom function is a
collection of functions Fℓ = {fk : {0, 1}ℓ → {0, 1}m}k∈{0,1}n

• indexed by a key k

• n: key length, ℓ: input length, m: output length

• independent parameters, all poly(sec-param) = poly(n)

• the number of functions in Fℓ ≤ 2n

with the following algorithms:

• Gen(1n): Generate a random n-bit key k.

• Eval(k, x): A polynomial-time algorithm that outputs fk(x).

We want this to be indistinguishable from the collection of all functions ALLℓ =

{f : {0, 1}ℓ → {0, 1}m}, where the number of functions in ALLℓ ≤ 2m2ℓ .

13

In the pseudorandom world, the distinguisher D is given f ← Fℓ, x, and receives
f(x). In the random world, D is given f ← ALLℓ, x, and receives f(x).

Thus, for all p.p.t. D, there is a negligible function µ(n) such that

∣∣∣Pr[f ← Fℓ : D
f (1n) = 1]− Pr[f ← ALLℓ : D

f (1n) = 1]
∣∣∣ ≤ µ(n)

3.5 PRFs Imply Stateless Secret-key Encryption

Theorem 3.7 (PRFs Imply Stateless Secret-key Encryption). PRFs imply stateless secret-key encryption.

Proof. The following construction works:

1. Gen(1n): Generate a random n-bit key k that defines fk : {0, 1}ℓ →
{0, 1}m.

2. Enc(k,m): Pick a random x and let the ciphertext c be the pair (x, y =
fk(x)⊕m).

3. Dec(k, c = (x, y)): Output fk(x)⊕ y.

It remains to show correctness, which is trivial.

Next time: More on PRFs and their connections to PRGs.

14

4 More on Pseudorandom Functions

4.1 Definitions

With a Pseudorandom Generator (PRG), accessing the 2ℓ-th bit requires time
2ℓ, while for a Pseudorandom Function (PRF), accessing the i-th bit only re-
quires time ℓ. Consequently, we can think of a PRF as a locally accessible
PRG.

Let’s define secret-key encryption for a single message rigorously:

Definition 4.1 (Secret-key Encryption for One Message). For all m0,m1 and
all p.p.t. distinguishers D, there exists a negligible function µ(n) such that

|Pr[k ← K : D(Enc(k,m0)) = 1]− Pr[k ← K : D(Enc(k,m1)) = 1]| ≤ µ(n)

But what if we want to define secret-key encryption for multiple messages?
Let’s introduce the following oracles, both of which only take strings of the
same length:

• Left Oracle: Left(·, ·) has k ← K and c ← Enc(k,mL), gives the distin-
guisher D the ciphertext c, and receives mL,mR back.

• Right Oracle: Right(·, ·) has k ← K and c ← Enc(k,mR), gives the
distinguisher D the ciphertext c, and receives mL,mR back.

Now we can proceed with the definition.

Definition 4.2 (Secret-key Encryption for Many Messages). For all p.p.t. dis-
tinguishers D, there exists a negligible function µ(n) such that

|Pr[k ← K : DLeft(·,·)(1n) = 1]− Pr[k ← K : DRight(·,·)(1n) = 1]| ≤ µ(n)

4.2 Example

Theorem 4.3. Our PRF encryption scheme from the previous lecture satisfies
this definition.

Consider the following sequence of hybrids:

• Hybrid 0: D gets access to the left oracle, with ciphertext c = (x, y =
fk(x)⊕mL).

• Hybrid 1: Replace fk with a random function, so c = (x, y = rx ⊕mL).

• Hybrid 2: Replace fk with a random function, so c = (x, y = rx).

• Hybrid 3: Replace fk with a random function, so c = (x, y = rx ⊕mR).

15

• Hybrid 4: D gets access to the right oracle, with ciphertext c = (x, y =
fk(x)⊕mR).

The rest is straightforward.

4.3 Goldreich-Goldwasser-Micali (GGM) PRF Construc-
tion

Let G(s) = G0(s) ∥ G1(s), where G0(s) is 1 bit and G1(s) is n bits. However,
accessing the i-th output bit takes time i. We need a new theorem, which we
will leave unproved for now:

Theorem 4.4. Let G be a PRG. Then, for every polynomial ℓ = ℓ(n) and
m = m(n), there exists a PRG family Fℓ = {fs : {0, 1}ℓ → {0, 1}m}s∈{0,1}n .

Now, let’s look at the GGM PRF construction.

Definition 4.5 (GGM PRF Construction). Let G(s) = G0(s) ∥ G1(s), where
both G0(s) and G1(s) are n-bit strings.

The pseudorandom function family Fℓ is defined by a collection of functions fs,
where:

fs(x1x2 . . . xℓ) = Gxℓ
(Gxℓ−1

(...Gx1(s)))

Note that:

• fs defines 2ℓ pseudorandom bits.

• The x-th bit can be computed using ℓ evaluations of the PRG G.

4.4 Security Analysis

Let’s now analyze the security of the GGM PRF. We begin with a useful lemma:

Lemma 4.6 (PRG Repetition Lemma). Let G be a PRG. Then, for every
polynomial L = L(n), the following two distributions are computationally indis-
tinguishable:

(G(s1), G(s2), . . . , G(sL)) ≈ (u1, u2, . . . , uL)

Proof. Here is an outline of the proof, with the rest left as an exercise to the
reader: If there exists a p.p.t. distinguisher between the two distributions with
distinguishing advantage ϵ, then there exists a p.p.t. distinguisher for G with
advantage ≥ ϵ

L .

Now, we are ready to prove that the GGM PRF is secure.

Theorem 4.7. The GGM PRF construction is secure over many messages.

16

As with the previous lecture, this proof is lengthy, so we will split it into its own
section.

Proof

Assume for contradiction that there is a p.p.t. distinguisher D and a polynomial
function p(n) such that

|Pr[k ← K : DLeft(·,·)(1n) = 1]− Pr[k ← K : DRight(·,·)(1n) = 1]| ≥ 1

p(n)

We now proceed with the hybrid argument, applying it layer by layer:

• Hybrid 0: The standard GGM PRF tree.

• Hybrid 1: The GGM PRF tree, but the top layer is cut off, and G0(s)
and G1(s) are replaced with random strings s0 and s1, respectively.

• Hybrid 2: Cut off s0, s1 and replace the next layer with random strings
s00, s01, s10, s11.

• Continue this process until Hybrid ℓ, where each leaf contains a truly
random string. These hybrids are efficiently computable through lazy
evaluation.

Define pi := Pr[f ← Hi : Df (1n) = 1]. We know that p0 − pℓ ≥ ϵ. By the
hybrid argument, for some i, we have pi− pi+1 ≥ ϵ

ℓ , where ℓ is the depth of the
tree.

Next, we will prove the following lemma:

Lemma 4.8. A distinguisher with advantage ϵ
ℓ between the hybrids i− 1 and i

implies a distinguisher with advantage ≥ ϵ
qℓ for the PRG, where q is the number

of queries that D makes.

Proof. By the PRG repetition lemma, it suffices to design a repeated PRG
breaker D′(y1 . . . yq) where yi is either a random 2n-bit string yLi or a pseudo-
random bit string yRi .

Take the i-th level of the tree and label the node that the query passes through
as yLi (left) and yRi (right).

Here is the construction:

1. Parse yi → (yLi , y
R
i).

2. Construct an oracle: Place these yi into the i-th level of the tree, creating
a truncated GGM tree. Now, check if (y1, y2, . . .) is pseudorandom or
random. The former implies Hybrid i, while the latter implies Hybrid
i+ 1.

17

3. Let the distinguisher D interact with this oracle. If D queries Hybrid i, D′

outputs ’pseudorandom’. If D queries Hybrid i+1, D′ outputs ’random’.

Next time, we will look at Message Authentication Codes (MACs).

18

5 Message Authentication Codes

5.1 PRF Applications

Now that we have a solid understanding of Pseudorandom Functions (PRFs),
let’s explore their applications. Suppose that Eve can eavesdrop on and modify
communications and wishes to impersonate Alice. We’ll show how PRFs can
mitigate this problem.

5.2 Unpredictability of PRFs

Let fs : {0, 1}ℓ → {0, 1}m be a PRF, and consider an adversary Eve who requests
and receives fs(x1), fs(x2), . . . , fs(xq) for a polynomial number of queries q =
q(n). There are two key questions:

• Can Eve predict fs(x
∗) for some x∗ of her choosing, where x∗ /∈ {x1, x2, . . . , xq}?

• How well can she do this?

Here’s a useful lemma to address this issue:

Lemma 5.1. If Eve succeeds with probability 1
2m + 1

p(n) , then she has broken

the PRF security.

Proof. This probability is negligible in n if m is sufficiently large, i.e., ω(log n).

In Lecture 3, we established that unpredictability is equivalent to indistinguisha-
bility for individual bits. For PRFs, we will show that indistinguishability im-
plies unpredictability, but the converse does not necessarily hold.

5.3 Challenge-Response Protocol

Consider an interaction between an ID card, which has a PRF key s, and a
device that knows everyone’s ID number ID and the PRF key s. The protocol
for interactions is as follows:

1. The device sends a random challenge r to the ID card.

2. The ID card computes fs(r) and sends (ID, fs(r)) back to the device.

Theorem 5.2. This protocol is secure.

Proof. Proof sketch: The adversary collects (ri, fs(ri)) for a polynomial number
of challenges ri, and must produce fs(r

∗) for a fresh random r∗ in order to
impersonate Alice. This is computationally difficult as long as the input and
output lengths of the PRF are sufficiently large, i.e., ω(log n).

19

5.4 PRFs for Message Authentication Codes (MACs)

One issue with the one-time pad is that it is malleable—an adversary can modify
the message m to m′. Similarly, in stateless secret-key encryption, an adversary
can modify a ciphertext (r, fk(r)⊕m) into a different ciphertext (r, fk(r)⊕m′).
This is where Message Authentication Codes (MACs) come into play.

A MAC produces a tag for a given message, and the resulting message and tag
can be verified. However, someone who possesses several messages and their
corresponding tags cannot generate a new valid message-tag pair.

For instance, if Alice and Bob share a key k, Alice can send MACk(m) = fs(m)
to Bob. If Alice and Bob use two keys k and k′, Alice sends Bob the ciphertext
(c = (x, fk(x)⊕m), tag = fk′(c)). An adversary has two possible options:

• Change the tag. The ciphertext will fail verification because each message
has a unique tag.

• Modify c. This requires computing the PRF on the new ciphertext, which
is computationally infeasible.

MACs provide integrity but not privacy. However, combining encryption with
a MAC solves this problem.

5.5 Applications to Learning Theory

Here is an example of how PRFs are applied outside of cryptography, in the
field of learning theory:

Theorem 5.3 (Kearns and Valiant, 1994). Assuming the existence of PRFs,
there are hypothesis classes that cannot be learned by polynomial-time algo-
rithms.

20

6 Number Theory

The remainder of Lecture 5, all of Lecture 6, and the first part of Lecture 7
cover a comprehensive set of resources on number theory, specifically created
for this class. I will refer you to the following handouts:

• Number Theory Handout for MIT 6.875

• Lecture Notes on the Complexity of Some Problems in Number Theory

These resources are exhaustive, so I will not repeat the material here.

21

https://mit6875.github.io/HANDOUTS/numbertheory-lecnotes.pdf
https://people.csail.mit.edu/vinodv/6892-Fall2013/Angluin.pdf

7 The Goldreich-Levin Theorem

7.1 One-Way Functions

One-way functions (OWFs) were introduced intuitively in the handout. Now,
let’s define them more rigorously.

Definition 7.1. A function (family) {Fn}n∈N where Fn : {0, 1}n → {0, 1}m(n)

is one-way if, for every probabilistic polynomial-time (ppt) adversary A, there
is a negligible function µ such that:

Pr[x← {0, 1}n; y = Fn(x);A(1n, y) = x′ | y = Fn(x
′)] ≤ µ(n)

Note that while we can always find an inverse with unbounded time, finding an
inverse should be hard for ppt algorithms.

Definition 7.2. A one-way permutation is a one-to-one one-way function
with m(n) = n.

7.2 Hardcore Bits

If F is a one-way function (OWF), it is hard to compute a preimage of F (x)
for a randomly chosen x. But is there a bit of x that is hard to guess with
probability significantly better than 1

2?

More rigorously:

Definition 7.3. For any function (family) F : {0, 1}n → {0, 1}m, a bit i = i(n)
is hardcore if, for every ppt adversary A, there is a negligible function µ such
that:

Pr[x← {0, 1}n; y = Fn(x);A(y) = xi] ≤
1

2
+ µ(n)

Here’s an exercise: Prove that there exist functions that are one-way, yet every
bit is relatively easy to predict.

Now, we generalize.

Definition 7.4. For any function (family) F : {0, 1}n → {0, 1}m, a function
B : {0, 1}n → {0, 1} is a hardcore predicate if, for every ppt adversary A,
there is a negligible function µ such that:

Pr[x← {0, 1}n; y = F (x);A(y) = B(x)] ≤ 1

2
+ µ(n)

For the purposes of this class, a hardcore bit is equivalent to a hardcore predi-
cate.

22

https://mit6875.github.io/HANDOUTS/numbertheory-lecnotes.pdf

7.3 OWFs Imply PRGs

Let’s now construct a Pseudorandom Generator (PRG) from a one-way function.

Let F be a one-way permutation, and B an associated hardcore predicate for
F . Then, define the PRG G(x) = F (x)∥B(x).

Theorem 7.5. G is a PRG, assuming F is a one-way permutation.

Proof. Assume, for contradiction, that G is not a PRG. Therefore, there exists
a next-bit predictor D, an index i, and a polynomial function p such that:

Pr[x← {0, 1}n; y = G(x) : D(y1...i−1) = yi] ≥
1

2
+

1

p(n)

The index i must be n+ 1, because the first n bits are random. Thus:

Pr[x← {0, 1}n;D(F (x)) = B(x)] ≥ 1

2
+

1

p(n)

This implies that D is a hardcore predictor, as desired.

7.4 The Goldreich-Levin Theorem

Let’s now aim for a universal hardcore predicate: a single predicate B such that
it is hard to guess B(x) given F (x).

Unfortunately, this is not possible. If f(x) is a one-way function, then f ′(x) =
f(x)∥B(x) is also one-way. However, B(x) is not a hardcore predicate for f ′(x),
leading to a contradiction.

Fortunately, we can fix this by tweaking the statement.

Theorem 7.6. (Goldreich-Levin Theorem)

Let {Br : {0, 1}n → {0, 1}} be a collection of predicates (one for each r) where:

Br(x) = ⟨r, x⟩ =
n∑

i=1

rixi mod 2

Then, a random Br is hardcore for every one-way function F . Specifically, for
every OWF F , and every ppt A, there exists a negligible function µ such that:

Pr[x← {0, 1}n; r ← {0, 1}n;A(F (x), r) = Br(x)] ≤
1

2
+ µ(n)

23

A proof of this result was presented in class, assuming both a perfect and a
nearly-perfect predictor (simplified versions of the theorem). However, some
details were omitted, and it felt somewhat handwavy, so I won’t include it here.

Two interesting interpretations:

• For every one-way function F , there is a related one-way function F ′(x, r) =
(F (x), r), which has a deterministic hardcore predicate.

• For every one-way function F , there exists a (non-uniform) hardcore pred-
icate ⟨rF , x⟩. (Open problem: remove the non-uniformity of this
statement.)

7.5 The Coding-Theoretic View of Goldreich-Levin

The Goldreich-Levin theorem has significantly influenced a branch of coding
theory. Here are some related results:

• x → (⟨x, r⟩)r∈{0,1}n can be viewed as a highly redundant, exponentially
long encoding of x, which is the Hadamard code.

• P (F (x), r) can be thought of as providing access to a noisy codeword.

• What we proved is a unique decoding algorithm for the Hadamard code
with an error rate of 1

4 −
1

p(n) .

• The real proof involves a list-decoding algorithm for the Hadamard code
with an error rate of 1

2 −
1

p(n) .

24

	Introduction
	Themes
	The Setup
	Shannon's Perfect Secrecy
	One-time Pad Construction
	Limitations of Perfect Secrecy

	Circumventing Shannon's Lower Bound Using PRGs
	Computationally Bounded Adversaries
	Negligible Functions
	Pseudorandom Generators

	Stateless Secret-key Encryption Leads to PRFs
	Next-bit Unpredictability (NBU)
	Proof of NBU Indistinguishability
	Length Extension
	Pseudorandom Functions (PRFs)
	PRFs Imply Stateless Secret-key Encryption

	More on Pseudorandom Functions
	Definitions
	Example
	Goldreich-Goldwasser-Micali (GGM) PRF Construction
	Security Analysis

	Message Authentication Codes
	PRF Applications
	Unpredictability of PRFs
	Challenge-Response Protocol
	PRFs for Message Authentication Codes (MACs)
	Applications to Learning Theory

	Number Theory
	The Goldreich-Levin Theorem
	One-Way Functions
	Hardcore Bits
	OWFs Imply PRGs
	The Goldreich-Levin Theorem
	The Coding-Theoretic View of Goldreich-Levin

