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Program abstract: Quantum Field Theory (QFT) and Quantum Statistical
Mechanics are central to high energy physics and condensed matter physics; they
also raise deep questions in mathematics. The application of operator algebras
to these areas of physics is well-known. Recent developments indicate that to
understand some aspects QFT properly a further ingredient is needed: homo-
topy theory and infinity-categories. One such development is the recognition
that symmetry in a QFT is better described by a homotopy type rather than
a group (so-called generalized symmetries). Another one is the work of Lurie
and others on extended Topological Field Theory (TFT) and the Baez-Dolan
cobordism hypothesis. Finally, there is a conjecture of Kitaev that invertible
phases of matter are classified by homotopy groups of an Omega-spectrum. This
workshop will bring together researchers and students approaching this physics
using different mathematical techniques: operator algebras, homotopy theory,
higher category theory, etc. The goal is to catalyze new interactions between
different communities. At the workshop recent developments will be reviewed
and hopefully progress can be made on two outstanding problems: the Kitaev
conjecture as well as the long-standing goal of finding a proper mathematical
formulation for QFT.

This is an unofficial set of notes scribed by Gary Hu for the first week of lectures
only. He is responsible for all mistakes. If you find any errors, please report
them to: gh7@williams.edu
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1.1 Lecture 1

1.1.1 Introduction to Quantum Lattice States of Matter

These lectures will treat the subject of quantum lattice states of matter from
a mathematical perspective. However, it’s crucial to remember the physical
motivation behind this study. We are driven by the existence of real-world
materials and engineered systems that exhibit remarkable phenomena rooted
in topology and quantum mechanics. At very low temperatures, matter can
exist in highly entangled states, which dictate their response to external probes,
their transport properties, and more. This field also forms the foundation of
quantum information science, where the goal is to build devices that leverage
these entangled states.

While we won’t dive deeply into the physics, it’s important to understand the
origin of lattice systems. These are many-body systems with several key com-
ponents:

1. Atoms (Spins/Qudits): These are the fundamental units, often possess-
ing internal degrees of freedom called spins or, more generally, qudits.
We typically model them as being located at regular positions in space,
which we represent with a lattice or, more abstractly, a graph.

2. Fermions (e.g., Electrons): In addition to fixed atoms, there can be
mobile particles, like electrons, that move between atomic sites.

3. Phonons: The locations of the atoms are not truly fixed. The vibrations
of the crystal lattice are quantized into bosonic particles called phonons.
They can play a role in mediating interactions between spins and electrons.

Our primary focus will be on spin systems, where the Hilbert space associated
with each site is finite-dimensional. We will stick to the basics and the general
framework for describing these important problems, assuming a foundational
knowledge of quantum mechanics (Hilbert spaces, Banach spaces, etc.).

1.1.2 The General Setup: Lattices and Observables

The Lattice

The mathematical setting for our quantum spin systems begins with the ”space”
where our spins reside. We will take our lattice, Γ, to be a discrete metric
space (Γ, d). This means that for any point x ∈ Γ and any radius r > 0, the
ball of radius r centered at x, defined as Bx(r) := {y ∈ Γ | d(x, y) ≤ r}, contains
a finite number of points.

We often assume additional properties for Γ.

Definition 1.1 (ν-regularity). A discrete metric space (Γ, d) is ν-regular if
there exist constants κ, ν > 0 such that the number of points in a ball of radius
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n grows at most polynomially:

|Bx(n)| ≤ κnν .

for all n ≥ 1.

Definition 1.2 (Delone Set). A set Γ ⊂ Rν is a Delone set if it is both uni-
formly discrete and relatively dense. This implies the existence of two constants:

• The minimal distance: ϵ := infx ̸=y∈Γ d(x, y) > 0.

• The covering radius: ∆ := supz∈Rν infy∈Γ d(z, y) <∞.

Often, for simplicity, results are formulated for the regular integer lattice Γ =
Zν , but generalization to spaces with these properties is usually straightforward.

Observables

With the space defined, we can describe the quantum mechanical observables.

Definition 1.3 (Single-Site Algebra). For each site x ∈ Γ, the associated ob-
servables form the algebra Ax, which is a copy of the dx× dx complex matrices,
Mdx(C). The corresponding Hilbert space is Hx ∼= Cdx .

Definition 1.4 (Local Algebra). For any finite subset Λ ⊂ Γ, the algebra of
observables is the tensor product of the single-site algebras:

AΛ =
⊗
x∈Λ

Ax

This algebra acts on the Hilbert space HΛ =
⊗

x∈ΛHx.

Definition 1.5 (Algebra of Local Observables). The algebra of strictly local
observables is the union over all finite subsets of Γ:

Alocal =
⋃

Λ⊂Γ,|Λ|<∞

AΛ

This is a norm-dense *-subalgebra, but it is not complete. For any two finite sets
Λ0 ⊂ Λ1, the algebra AΛ0

is embedded into AΛ1
via the map A 7→ A⊗ 1Λ1\Λ0

.

Definition 1.6 (Quasi-Local Algebra). The quasi-local algebra, AΓ, is the
C*-norm completion of the algebra of local observables:

AΓ := Alocal
∥·∥

By definition, any observable A ∈ AΓ can be approximated by a sequence of local
observables. That is, for any A ∈ AΓ and any sequence of finite sets Λn that
grows to encompass the whole lattice (Λn ↗ Γ), there exists a sequence of local
operators An ∈ AΛn

such that:

lim
n→∞

∥A−An∥ = 0
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1.1.3 Dynamics of Infinite Systems

Interactions and Hamiltonians

The interesting physics arises from interactions between the spins.

Definition 1.7 (Interaction). An interaction, Φ, is a map that assigns a
self-adjoint local observable to each finite subset of the lattice:

Φ : {finite X ⊂ Γ} → Alocal

such that for each finite set X, the interaction term Φ(X) is an element of AX
and is self-adjoint, Φ(X)∗ = Φ(X).

For any finite region Λ ⊂ Γ, we can now define the local Hamiltonian by
summing all interaction terms supported within that region:

HΛ =
∑
X⊂Λ

Φ(X)

This Hamiltonian generates the time evolution (Heisenberg dynamics) for ob-
servables within the finite system Λ:

τΛt (A) = eitHΛAe−itHΛ

for A ∈ AΛ.

The Thermodynamic Limit

To define the dynamics on the infinite lattice, we must take the thermody-
namic limit (Λ → Γ). This limit doesn’t exist for any arbitrary interaction.
We need to impose locality conditions.

Definition 1.8. An interaction Φ is called:

• Finite-range if there is a radius R > 0 such that Φ(X) = 0 whenever the
diameter of the set X is greater than R.

• Uniformly bounded if there is a constantM > 0 such that ∥Φ(X)∥ ≤M
for all finite sets X.

Theorem 1.9 (Lieb, Robinson). If the interaction Φ is finite-range and uni-
formly bounded, then for any quasi-local observable A ∈ AΓ, the thermodynamic
limit of the dynamics exists:

τt(A) = lim
Λ↑Γ

τΛt (A)

The limit exists in the norm topology. This limiting evolution {τt}t∈R forms a
strongly continuous one-parameter group of *-automorphisms of the
quasi-local algebra AΓ. This means that for any A ∈ AΓ, the map t 7→ τt(A) is
continuous. The pair (AΓ, τt) is called a C*-dynamical system.

The Generator of Dynamics (Derivation)
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Definition 1.10 (Generator of Dynamics). From the general theory of strongly
continuous one-parameter groups, there exists a generator, δ. This generator
is a densely-defined, generally unbounded, closed operator. Its domain, Dom(δ),
consists of all observables A ∈ AΓ for which the map t 7→ τt(A) is differentiable.
For any A ∈ Dom(δ), the generator is defined as:

δ(A) =
1

i

d

dt
τt(A)

∣∣∣∣
t=0

This generator δ is a *-derivation, meaning it satisfies the Leibniz rule:

δ(A∗) = δ(A)∗ and δ(AB) = δ(A)B +Aδ(B)

In a finite system, this generator is simply the commutator with the Hamiltonian:
δ(A) = [HΛ, A].

1.1.4 States and Ground States

States on Quantum Systems

In a finite quantum system on Λ, a state is described by a density matrix
ρ, which is a positive semi-definite matrix (ρ ≥ 0) with unit trace (Tr(ρ) = 1).
The expectation value of an observable A ∈ AΛ is then given by Tr(ρA). A
state is pure if ρ is a rank-one projection, ρ = |ψ⟩⟨ψ|. This concept generalizes
to the infinite C*-algebra AΓ.

Definition 1.11. A state on the quasi-local algebra AΓ is a linear functional
ω : AΓ → C that is:

1. Positive: ω(A∗A) ≥ 0 for all A ∈ AΓ.

2. Normalized: ω(1) = 1.

Ground States

At very low temperatures, physical systems tend to settle into their ground
state, or the state of minimum energy. For a finite system with Hamiltonian
HΛ, the ground states are those whose density matrices ρ have support only on
the eigenspace corresponding to the lowest eigenvalue of HΛ. For the infinite
system, we no longer have a well-defined Hamiltonian operator in the algebra.
However, we have its generator of dynamics, δ.

Definition 1.12. A state ω on the C*-dynamical system (AΓ, τt) is called a
ground state if:

ω(A∗δ(A)) ≥ 0

for all A ∈ Dom(δ).

This is a robust definition. For a finite system, this condition is equivalent to
the standard definition of a ground state. Furthermore, if you take a sequence
of ground states of finite systems HΛn

and take a weak-* limit as Λn → Γ, the
resulting limit state will be a ground state of the infinite system according to
this definition.
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1.1.5 Key Examples

We will keep two famous models in mind as we develop the theory.

1. The AKLT Chain: Introduced by Affleck, Kennedy, Lieb, and Tasaki
(1987).

• Lattice: A 1D chain, Γ = Z.

• Spins: A spin-1 system, meaning the local dimension is dx = 3 for
all x ∈ Z.

2. The Toric Code: Introduced by Kitaev (∼2003).

• Lattice: The edges of the 2D square lattice, Γ = E(Z2).

• Spins: A qubit system, meaning the local dimension is dx = 2 for
all x ∈ Γ.

Both of these models have Hamiltonians built from finite-range, bounded inter-
actions, and their properties, particularly their ground states, can be analyzed
within the framework we have just established.
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1.2 Lecture 2

1.2.1 Recap: Ground States of Infinite Systems

We recall the definition of a ground state for a C*-dynamical system (AΓ, τt)
with generator δ.

Definition 1.13 (Ground State). A state ω on the quasi-local algebra AΓ is a
ground state for the dynamics generated by δ if

ω(A∗δ(A)) ≥ 0 ∀A ∈ Dom(δ).

It is a well-known result for finite-range interactions that the algebra of local
observables, Alocal, forms a core for the generator δ. Therefore, it is sufficient
to check this condition for all A ∈ Alocal.

This definition is equivalent to the standard physical definition for finite sys-
tems. A powerful way to motivate and understand this definition is through the
Gelfand-Naimark-Segal (GNS) construction.

1.2.2 The GNS Representation

The GNS construction shows that any state on a C*-algebra can be represented
as a vector state in some Hilbert space representation.

Theorem 1.14 (GNS Construction). Let A be any C*-algebra and let ω be a
state on A. Then, there exists a Hilbert space Hω, a representation πω : A →
B(Hω), and a unit vector Ωω ∈ Hω (called the cyclic vector) with the following
properties:

1. The state ω is recovered as a vector state:

ω(A) = ⟨Ωω, πω(A)Ωω⟩ ∀A ∈ A.

2. The set of vectors πω(A)Ωω = {πω(A)Ωω | A ∈ A} is dense in Hω.

Moreover, this representation is unique up to unitary equivalence. That is, if
(H1, π1,Ω1) and (H2, π2,Ω2) are two such representations for the same state
ω, then there exists a unitary operator U : H1 → H2 such that UΩ1 = Ω2 and
Uπ1(A) = π2(A)U for all A ∈ A.

For finite-dimensional matrix algebras, all irreducible representations are uni-
tarily equivalent. For infinite systems, this is not the case; there can be many
unitarily inequivalent representations, and this is directly related to the classi-
fication of different physical phases of matter.

Symmetries in the GNS Representation

The GNS construction is particularly useful for understanding symmetries.

Proposition 1.15. Let ω be a state on a C*-algebra A, and let α : A → A be
a *-automorphism that leaves the state invariant, i.e., ω ◦ α = ω. Then α is
implementable by a unitary operator in the GNS representation of ω.
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Proof Sketch. Let (Hω, πω,Ωω) be the GNS representation for ω. We can con-
struct a second representation (Hω, πω ◦ α,Ωω). We check that this new triple
also represents the state ω:

⟨Ωω, (πω ◦ α)(A)Ωω⟩ = ω(α(A)) = ω(A).

Since this new representation represents the same state ω on the same Hilbert
space, by the uniqueness part of the GNS theorem, it must be unitarily equiv-
alent to the original one. This means there exists a unitary operator U on Hω
such that πω(α(A)) = U∗πω(A)U and UΩω = Ωω.

Dynamics and the GNS Hamiltonian

We can apply this result to the time evolution τt. A stationary state is one that
is invariant under the dynamics, ω ◦ τt = ω. A simple calculation shows that
any ground state is stationary:

ω(δ(A)) =
1

i

d

dt
ω(τt(A))

∣∣∣
t=0

= 0.

Since a ground state ω is invariant under τt, the proposition above implies that
the dynamics is implemented by a unitary group {Ut}t∈R in the GNS Hilbert
space.

πω(τt(A)) = U∗
t πω(A)Ut and UtΩω = Ωω.

The strong continuity of the automorphism group τt implies that the unitary
group Ut is also strongly continuous. By Stone’s Theorem, such a group has a
densely defined, self-adjoint generator Hω, which we call the GNS Hamilto-
nian.

Ut = e−itHω .

1.2.3 Gapped Ground States

Proposition 1.16. For a ground state ω, the GNS Hamiltonian Hω is positive
semi-definite, i.e., Hω ≥ 0.

Proof Sketch. The ground state condition ω(A∗δ(A)) ≥ 0 can be rewritten in
the GNS representation. For any A ∈ Dom(δ):

0 ≤ ω(A∗δ(A)) = ⟨Ωω, πω(A∗)πω(δ(A))Ωω⟩ = ⟨πω(A)Ωω, Hωπω(A)Ωω⟩.

Since the vectors πω(A)Ωω are dense in Hω, this implies Hω ≥ 0. The spectrum
of the GNS Hamiltonian is therefore contained in [0,∞), and the ground state
vector Ωω is an eigenvector with eigenvalue 0.

This motivates the definition of a spectral gap.

Definition 1.17 (Gapped Ground State). A ground state ω is said to be gapped
if there exists a constant γ > 0 such that the spectrum of the GNS Hamiltonian
Hω is contained in {0} ∪ [γ,∞).
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This physical condition on the energy spectrum has an equivalent algebraic
formulation.

Proposition 1.18. A ground state ω has a spectral gap of at least γ > 0 if and
only if

ω(A∗δ(A)) ≥ γ ω(A∗A)

for all A ∈ Dom(δ) such that ω(A) = 0. The condition ω(A) = 0 is equivalent
to the GNS vector πω(A)Ωω being orthogonal to the ground state vector Ωω.

1.2.4 Pure and Mixed States

Definition 1.19. A state ω on a C*-algebra A is pure if it cannot be written as
a non-trivial convex combination of other states. That is, if ω = tω1+(1− t)ω2

for t ∈ (0, 1) implies that ω1 = ω2 = ω. If a state is not pure, it is called mixed.

A state is pure if and only if its GNS representation is irreducible. The set
of all ground states for a given interaction forms a convex set. The physically
relevant ground states are often the extreme points of this set, which are the
pure ground states.

1.2.5 Examples

The AKLT Model

The Affleck-Kennedy-Lieb-Tasaki (AKLT) model is a spin-1 chain on Γ = Z.
The interaction is nearest-neighbor and given by the projection onto the total
spin-2 subspace of two adjacent spins.

Φ({x, x+ 1}) = P
(2)
x,x+1 =

1

3
I+

1

2
Sx · Sx+1 +

1

6
(Sx · Sx+1)

2

where Sx = (Sxx , S
y
x , S

z
x) are the spin-1 matrices at site x.

• There exists a unique ground state ω for this model.

• This ground state is ”frustration-free,” meaning it has zero energy with

respect to every local term in the Hamiltonian: ω(P
(2)
x,x+1) = 0 for all x.

• The ground state is proven to be gapped, with a gap known to be at least
≈ 0.1.

The Toric Code

The Toric Code model is defined on the edges of the 2D square lattice Z2, with
a qubit (dx = 2) on each edge.

• The set of ground states is not unique. Instead, it consists of 4 unitarily
inequivalent classes, corresponding to different ”superselection sectors.”

• These sectors correspond to the vacuum state (no charge), an electric
charge sector, a magnetic charge sector, and a fused dyonic charge sector.
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• Each sector contains a ground state, and these states cannot be distin-
guished by any local observable.

1.2.6 Outlook: Local Approximations

A key tool for analyzing locality is the conditional expectation. Given the tracial
state on the whole lattice, ρ =

⊗
x∈Γ

1
dx
1x, we can define a map πΛ : AΓ → AΛ

for any finite region Λ ⊂ Γ. This map acts as the identity on AΛ and takes the
partial trace over the complement Γ \ Λ. For any A ∈ AΓ, we have

lim
Λ↑Γ
∥A− πΛ(A)∥ = 0.

This provides a canonical way to approximate any quasi-local observable with
a sequence of strictly local ones, which will be a crucial tool going forward.
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1.3 Lecture 3

1.3.1 Quantifying Locality

Conditional Expectation and Commutators

We begin with a recap of the conditional expectation map πΛ : AΓ → AΛ ⊂ AΓ,
which is defined by taking the partial trace over the complement of Λ. For
any A ∈ AΓ and any increasing sequence of finite volumes Λn ↑ Γ, we have
limn ∥πΛn(A)−A∥ = 0.

The error in this approximation can be related to commutators. For a finite-
dimensional algebra, the normalized trace can be represented by averaging over
the unitary group: ( 1

DTrA)1 =
∫
UAU∗dU . A similar representation for the

partial trace gives:

A− πΛ(A) =
∫
U(HΓ\Λ)

dU U [U∗, A] ,

where the integral is over the unitary group acting on the complement of Λ.
This leads to a useful bound.

Proposition 1.20. The norm of the error of the local approximation is bounded
by the norm of commutators with observables in the complement:

∥A− πΛ(A)∥ ≤ sup
B∈AΓ\Λ
∥B∥=1

∥[A,B]∥ ≤ 2∥A− πΛ(A)∥.

Algebras of Localized Observables We can use this connection to define
new Banach algebras of observables with specific decay properties.

Definition 1.21 (Decay Function). A decay function is a function g : [0,∞)→
(0,∞) that is non-increasing and vanishes at infinity, limr→∞ g(r) = 0.

Given a decay function g and an increasing sequence of finite volumes (Λn), we
can define a new norm.

Definition 1.22 (g-local Norm). The g-local norm of an observable A with
respect to a sequence (Λn) is

∥A∥(Λn),g = ∥A∥+ sup
n

∥A− πΛn
(A)∥

g(n)
.

The completion of the local observables Alocal with respect to this norm, denoted
A(Λn),g, is a Banach algebra.

If we choose Λn to be balls of increasing radius, Λn = bx(n), we can define
an algebra AgΓ =

⋃
x∈ΓA(bx(n)),g. If g satisfies a subadditivity condition like

g(n)g(m) ≤ Cg(n +m), then the norms ∥ · ∥x,g are equivalent for all x, y ∈ Γ,
and the union is trivial. We call AgΓ the algebra of g-local observables.
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Definition 1.23 (Almost Local Observables). For the family of power-law decay
functions gα(r) = (1+r)−α for α > 0, the algebra of almost local observables
is defined as the intersection of all such g-local algebras:

Aal
Γ =

⋂
α>0

AgαΓ .

This is a Fréchet space whose topology is defined by the family of norms {∥ ·
∥gα}α>0.

1.3.2 Banach Spaces of Interactions

We can similarly define normed spaces for interactions. We first need a suitable
class of decay functions.

Definition 1.24 (F-function). A decay function g is called an F-function if
it satisfies:

1. Uniform Summability: The function is summable over the lattice, uni-
formly in the starting point:

∥g∥1 = sup
x∈Γ

∑
y∈Γ

g(d(x, y)) <∞.

2. Convolution Inequality: There exists a constant Cg > 0 such that∑
z∈Γ

g(d(x, z))g(d(z, y)) ≤ Cgg(d(x, y)), ∀x, y ∈ Γ.

A common example of F-functions are of the form g(r) = (1 + r)−ξe−ar for
sufficiently large ξ.

Definition 1.25 (Interaction Norm). For an interaction Φ and an F-function
g, we define the norm:

∥Φ∥g = sup
x,y∈Γ

1

g(d(x, y))

∑
X∈P0(Γ)
x,y∈X

∥Φ(X)∥.

The space of all interactions for which this norm is finite is a Banach space,
which we denote by Bg. If the interaction is time-dependent, we can define
spaces like Bg([0, 1]) by taking the supremum of ∥Φt∥g over the time interval.

1.3.3 Lieb-Robinson Bounds

The dynamics of systems with suitably decaying interactions are constrained
by Lieb-Robinson (LR) bounds, which establish an effective ”speed of light” for
the propagation of information.
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Dynamics for Time-Dependent Hamiltonians For a finite system with a
time-dependent Hamiltonian H(s), the dynamics is governed by the Schrödinger
equation d

dsU(s, 0) = −iH(s)U(s, 0). In the Heisenberg picture, the time evo-
lution of an observable A is given by τs,0(A) = U∗(s, 0)AU(s, 0), which satisfies
d
dsτs,0(A) = iτs,0([H(s), A]).

The Main Bound

Theorem 1.26 (Basic Lieb-Robinson Bound). Let Φ ∈ Bg(I) be a time-dependent
interaction where g is an F-function. For any two disjoint finite sets X,Y ⊂ Γ
(X ∩ Y = ∅), any A ∈ AX , B ∈ AY , and any s, t ∈ I, the following bound
holds:

∥[τΦt,s(A), B]∥ ≤ 2∥A∥∥B∥
(
e2|

∫ t
s
∥Φr∥gdr| − 1

)
D(X,Y ),

where D(X,Y ) = 1
Cg

∑
x∈X

∑
y∈Y g(d(x, y)).

This theorem shows that the commutator between a time-evolved observable
and a distant observable is small, with the decay governed by the function g.

Consequences and the Light Cone

• Time-Independent Case: If Φ is time-independent, the time-dependent
factor becomes (e2|t−s|∥Φ∥g − 1).

• Exponential Decay: If g(r) decays exponentially, e.g., g(r) ∼ e−ar, then
the spatial factor D(X,Y ) also decays exponentially with the distance
between the sets: D(X,Y ) ≤ Cmin(|X|, |Y |)e−ad(X,Y ). This leads to
the famous ”light cone” picture, where the support of a time-evolved local
observable τt(A) is essentially contained within a region that grows linearly
with time. More precisely, the part of τt(A) outside a ball of radius v|t|
(where v ∼ ∥Φ∥g/a) is exponentially small.

Existence of Infinite-Volume Dynamics LR bounds are the key to proving
the existence of the dynamics in the thermodynamic limit.

Theorem 1.27. Let X ⊂ Λ0 ⊂ Λ1 be finite volumes. For any A ∈ AX , the
difference between the dynamics in the two volumes is bounded:

∥τΛ1
t (A)− τΛ0

t (A)∥ ≤ C∥A∥∥Φ∥ge2∥Φ∥g|t|
∑
x∈X

∑
y∈Λ1\Λ0

g(d(x, y)).

As Λ0,Λ1 → Γ, the sum on the right-hand side goes to zero because of the
summability of g. This shows that for any local observable A, the sequence
{τΛn
t (A)}n∈N is a Cauchy sequence.

Corollary 1.28. For any interaction Φ ∈ Bg, the thermodynamic limit limn τ
Λn
t (A) =

τt(A) exists for all A ∈ Alocal. This limit extends to a strongly continuous group
of automorphisms on the entire quasi-local algebra AΓ.
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1.3.4 Introduction to Quasi-Adiabatic Evolution

A powerful application of LR bounds is the construction of the quasi-adiabatic
evolution, introduced by Hastings. This is a tool for relating systems with
different Hamiltonians. Consider a smooth path of interactions Φs for s ∈ [0, 1].
We can define a special norm on this path:

|||Φ|||1 = sup
s∈[0,1]

sup
x,y∈Γ

1

g(d(x, y))

∑
X∈P0(Γ)
x,y∈X

(∥Φs(X)∥+ |X|∥Φ̇s(X)∥).

The quasi-adiabatic evolution is generated by an effective interaction, often
called the Hastings generator, which is constructed from the path derivative
d
dsΦs. Its terms are given by an integral over time-evolved derivatives:

D(Φ)
X (s) =

∫ ∞

−∞
W (t)τΦs

t

Å
d

ds
Φs(X)

ã
dt,

where W (t) is a suitable rapidly decaying weight function. This construction
allows one to build an automorphism that connects the ground states of Hamil-
tonians at different points along the path, which has profound implications for
the classification of gapped phases of matter.
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1.4 Lecture 4

1.4.1 Defining Gapped Phases of Matter

The central goal is to develop a rigorous framework for classifying phases of
matter in quantum spin systems, particularly those characterized by a spectral
gap above the ground state. This leads to the notion of a ”gapped phase.” We
will explore two primary, and ultimately equivalent, definitions for when two
Hamiltonians (or their ground states) belong to the same phase.

Let A be the C*-algebra of quasi-local observables on a discrete metric space
(Γ, d). We consider interactions Φ which are collections of local Hamiltonian
terms, for which we can define suitable norms that capture spatial decay prop-
erties. A key example is the space Ba,θ of interactions with exponential decay.

Suppose we have two interactions, Φ0 and Φ1, belonging to such a class, e.g.,
Φ0,Φ1 ∈ Ba,θ for some a, θ > 0. Assume these interactions give rise to Hamilto-
nians with unique, gapped ground states, denoted ω0 and ω1, respectively. The
fundamental question is: when should we consider these systems to be in the
same phase?

Definition 1.29 (Equivalence via Gapped Path (Chen-Gu-Wen ’10)). Two
interactions Φ0 and Φ1 are in the same gapped phase, written Φ0 ∼ Φ1, if there
exists a C1-curve of interactions Φ : [0, 1] → Ba′,θ′ for some a′, θ′ > 0, such
that:

1. The curve interpolates between the two interactions: Φ(0) = Φ0 and
Φ(1) = Φ1.

2. The spectral gap of the Hamiltonian H(Φ(s)) is uniformly bounded from
below along the entire path. That is, there exists a γ > 0 such that for all
s ∈ [0, 1], the gap of H(Φ(s)) is at least γ.

This defines an equivalence relation on the set of gapped interactions. The
differentiability condition can be relaxed, but it is mathematically convenient for
proving the equivalence to the next definition.

An alternative perspective emphasizes the ground states themselves, rather than
the Hamiltonians that produce them. This leads to a definition based on the
existence of a special type of automorphism of the observable algebra.

Definition 1.30 (Equivalence via Automorphism). Two ground states ω0 and
ω1 (or sets of ground states) are in the same phase if there exists a continu-
ous path of automorphisms αs : A → A for s ∈ [0, 1], generated by a suitable
parameter-dependent, quasi-local interaction Ψ(s), such that ω1 = ω0 ◦ α1. The
automorphism path αs is the solution to the differential equation for the dynam-
ics, where s plays the role of time and Ψ(s) is the generator.
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1.4.2 The Quasi-Adiabatic Evolution

The bridge between the two definitions is the quasi-adiabatic evolution, a
technique pioneered by M. Hastings. It provides a method to construct an
automorphism that ”follows” the ground state of a system as its Hamiltonian
is slowly changed, provided the spectral gap never closes.

Constructing the Hastings Generator Given a C1-curve of interactions
Φ(s), we construct a new, time-dependent interaction, Ψ(s), known as theHast-
ings generator. First, we define an intermediate object Ψ̃(s) ∈ A:

Ψ̃(s) = i

∫ ∞

−∞
Wa(t) τ

Φ(s)
t

Å
dΦ(s)

ds

ã
dt

where:

• τ
Φ(s)
t is the Heisenberg dynamics generated by the (time-independent)
Hamiltonian H(Φ(s)).

• dΦ(s)/ds is the derivative of the interaction path.

• Wa(t) is a rapidly decaying, odd weight function in L1(R). It is con-
structed to satisfy certain moment conditions and has exponential decay
|Wa(t)| ≤ Ce−α|t|. The parameter a controls the decay rate and must be
chosen sufficiently small relative to the uniform spectral gap γ.

This Ψ̃(s) is a quasi-local observable, but it is not an interaction in the sense of
being a sum of strictly local terms. To obtain a proper interaction, we decompose
it using conditional expectations. This process effectively ”cuts up” the quasi-
local observable Ψ̃(s) into a sum of local terms, Ψ(s) =

∑
X ΨX(s), with rapidly

decaying norms, yielding a well-defined interaction. The local terms can be
defined via a telescoping sum:

ΨX1
(s) = EX1

(Ψ̃(s))

ΨXn(s) = EXn(Ψ̃(s))− EXn−1(Ψ̃(s)) for n > 1

where Xn is an increasing sequence of finite regions (e.g., balls of increasing
radius) and EXn is the conditional expectation onto the local algebra AXn .
Summing these terms recovers the original Ψ̃(s) in the limit.

1.4.3 Equivalence of Definitions and Stability of the Gap

The Hastings generator is precisely the object needed to connect the two defi-
nitions of a phase.

Theorem 1.31 (Equivalence of Definitions). Suppose two interactions Φ0 and
Φ1 are equivalent according to Definition 1, connected by a C1-path Φ(s) with
a uniform spectral gap γ > 0. Let Ψ(s) be the Hastings generator constructed
from this path with a suitable choice of weight function Wa(t) (where a is small
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enough with respect to γ). Then the family of automorphisms αs, generated by
solving the dynamics from time 0 to s with generator Ψ(s), satisfies

ωs = ω0 ◦ αs for all s ∈ [0, 1],

where ωs is the unique gapped ground state of H(Φ(s)). In particular, ω1 =
ω0 ◦ α1, establishing equivalence under Definition 2.

Remark 1.32. This construction preserves any symmetries of the original path
Φ(s). If each Φ(s) is invariant under a certain symmetry group, the resulting
generator Ψ(s) and automorphism αs will also be invariant under that sym-
metry. This is crucial for the classification of Symmetry-Protected Topological
(SPT) phases.

Stability of the Spectral Gap A fundamental question is whether the exis-
tence of a spectral gap is a stable property. The following theorem addresses
this for a broad class of frustration-free systems.

Assumptions for Gap Stability Let H0 =
∑
x hx be the unperturbed,

frustration-free Hamiltonian.

1. Lattice Regularity: The underlying metric space (Γ, d) is of ‘new-
regularity’ and admits ‘decomposable partitions’, which prevents points
from bunching up and allows for certain coloring schemes. The lattice Zν
is a standard example.

2. Finite Range: The unperturbed interaction is finite-range. There exists
R > 0 such that hx ∈ AB(x,R) for all x ∈ Γ.

3. Frustration-Freeness: There exists a ground state ω0 such that ω0(hx) =
0 for all x ∈ Γ (since hx ≥ 0).

4. Uniform Boundedness: The local terms are uniformly bounded: supx ∥hx∥ <
∞.

5. Bulk Gap: The GNS Hamiltonian for the infinite-volume ground state
ω0 has a spectral gap γ0 > 0. Spec(Hω0

) ⊂ {0} ∪ [γ0,∞).

6. Vanishing of Edge Modes: The gap of the finite-volume Hamiltonian
H0,Λ =

∑
x∈Λ hx may close as |Λ| → ∞, but not too quickly (e.g., polyno-

mially). This allows for gapless edge modes in the thermodynamic limit
of half-spaces, while the bulk remains gapped.

7. Perturbation Decay: The perturbation Φ has summable, exponentially
decaying tails, i.e., it belongs to a space like Ba,θ.

8. Local Topological Quantum Order (LTQO): The ground state sub-
space of finite-volume Hamiltonians is locally indistinguishable from the
global ground state. For any local observableA supported in a ballB(x, k),
its matrix elements are constrained. For any finite volume Λ containing
B(x,m) with m > k:

∥ΠΛAΠΛ − ω0(A)ΠΛ∥ ≤ ∥A∥ ·G(m− k)
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where ΠΛ is the projection onto the ground state space of H0,Λ, and the
function G decays fast enough to have a finite moment of a sufficiently
high order.

Theorem 1.33 (Stability of the Bulk Spectral Gap). Assume the unperturbed
model H0 and the perturbation Φ satisfy assumptions 1-8. Then the spectral
gap is stable. For any target gap γ ∈ (0, γ0), there exists a constant β > 0
such that for all perturbation strengths |s| ≤ γ0−γ

β , the perturbed Hamiltonian

H(s) = H0 + sΦ has a gapped ground state ωs with a spectral gap of at least γ.
Furthermore, the state ωs is connected to ω0 by the quasi-adiabatic evolution.

1.4.4 Application: O(n) Spin Chains

The theoretical framework can be applied to concrete physical models. A rich ex-
ample is the family of O(n)-invariant spin-1 chains, which generalize the AKLT
model. The Hamiltonian for the original AKLT model (n = 3) involves a pro-
jector P (2) onto the total spin-2 subspace for two neighboring spin-1’s. This
interaction can be written in an equivalent form using the swap operator Tx,x+1

and a rank-1 projector Qx,x+1:

P
(2)
x,x+1 =

1

3
⊮+

1

2
Sx · Sx+1 +

1

6
(Sx · Sx+1)

2 ∼=
1

2
(⊮+ Tx,x+1 − 2Qx,x+1)

This form motivates a general family of O(n)-invariant nearest-neighbor inter-
actions for n-dimensional spins:

H =
∑
x

(uTx,x+1 + vQx,x+1)

where u, v ∈ R and Q is the projection onto the maximally entangled state
ψ = 1√

n

∑n
α=1 |α, α⟩ in some orthonormal basis {|α⟩}.

This family of models exhibits a rich phase structure. Key points and regions
in the phase diagram include:

• A Bethe ansatz integrable point at v = −2nu/(n−2) for n ≥ 3 (Reshetikhin,
1983).

• A frustration-free point at v = −2u. This point is gapped for all n.
The stability theorem ensures the gap persists in an open neighborhood,
defining the stable, red ”Haldane-like” phase. The ground state is unique
for odd n but doubly degenerate (2-periodic) for even n (Nachtergaele-
Sims-Young, 2022).

• At u = 0, v = −1, the model is equivalent to the SU(n) Temperley-Lieb
chain, which is dimerized and gapped for all n ≥ 3 (Aizenman, et al.
2020).

The framework of gapped phases allows for a sharp distinction between these
regions. For example, in the Haldane-like phase (v ≈ −2u):
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• For odd n (like the AKLT model), the system has a unique gapped ground
state in a non-trivial SPT phase protected by symmetries like inversion
and SO(n).

• For even n, the ground states spontaneously break the fullO(n) symmetry
down to SO(n) and also break translation symmetry.

The yellow dimerized phase, in contrast, preserves the full O(n) symmetry while
breaking translation symmetry. Because the red (for even n) and yellow phases
have different symmetry breaking patterns, they cannot be connected by a
gapped path that preserves the O(n) symmetry. Therefore, they represent dis-
tinct phases of matter, and a phase transition must occur between them. This
illustrates the power of the quasi-adiabatic evolution framework in rigorously
classifying phases of matter.
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2.1 Lecture 1

2.1.1 Gapped Hamiltonian Systems

Consider a metric space analogous to Rn, and let ℓ ∈ L index a family of Hilbert
spacesHℓ, each of constant finite dimension. LetH denote a Hamiltonian acting
on the tensor product space ⊗

ℓ∈L

Hℓ.

We are interested in the class of Hamiltonians that possess a spectral gap. Define
L(X) to be the collection of such gapped Hamiltonian systems supported on a
topological space X.

We can define an operation

L(X)× L(X) −→ L(X), (H1, H2) 7→ H1 ⊗ 1 + 1⊗H2,

which corresponds to taking the external sum of independent systems. The new
Hamiltonian H1 ⊠H2 acts on the space(⊗

ℓ1

H(1)
ℓ1

)
⊗

(⊗
ℓ2

H(2)
ℓ2

)
.

Definition 2.1. A Hamiltonian model H ∈ L(X) is called invertible if there
exists H ′ ∈ L(X) such that

H ⊗H ′ ≃ 1,

where 1 denotes the trivial system defined by Hℓ = C and H = 0.

Let K(X) ⊂ L(X) denote the subcollection of invertible systems.

Theorem 2.2 (Kitaev). The space K(Rn) defines a spectrum:

ΩK(Rn+1) ≃ K(Rn).

Problem 2.3. Identify the spectrum represented by K(Rn).

2.1.2 Spectra and Cohomology Theories

A cohomology theory is a contravariant functor X 7→ E(X) from topological
spaces to abelian groups, satisfying exactness. In particular, for X = U ∪ V ,
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the following Mayer-Vietoris exact sequence holds:

E∗(X) E∗(U)⊗ E∗(V ) E∗(U ∩ V )

En+1(X) ...

Theorem 2.4 (Brown Representability). Every cohomology theory E∗ is rep-
resentable by a spectrum {En}, meaning

En(X) ∼= [X,En], En ≃ ΩEn+1.

Define the spectrum K by

Kn := K(Rn−1) (n ≥ 1), Kn ≃ ΩKn+1.

For R0, a point, we have:

L(R0) ∼=
⊔
p,q

Gr(Cp|q).

Each Hamiltonian acts on a graded vector space Cp|q, and the invertible systems
correspond to graded lines (superlines):

K(R0) ∼= Z2 × CP 0.

Hence,
K1 ∼= Z2 × CP 0, K0 = Ω(Z2 × CP 0) ∼= S1 ≃ C×.

Definition 2.5. The homotopy groups of a spectrum E are defined as

πn(E) := πn(E
0) = [Sn, E0].

Definition 2.6 (Brown–Comenetz Dual). Given a spectrum E and an injective
abelian group A, define the dual spectrum IA(E) via

IA(E)0(X) := Hom(E0(X), A),

where
E0(X) := lim−→

k→∞
πn+k(Ek ∧X).
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Let A = C×. Then
IC×(E) = Maps(E, IC×).

Example 2.7. Let E = S, the sphere spectrum. Then:

πiIC× = 0 for i > 0,

π0IC× = Hom(π1S
0,C×) ∼= Z2,

π−1IC× = Hom(π0S
0,C×) ∼= C×.

More generally,
E1(IC×) = Hom(π0E,C×).

There is a sequence of duals:

IZ → IC → IC× → ΣIZ.

Conjecture 2.1 (Kitaev).

1. There exists a commuting diagram of spectra:

K IC×

ISpinC

∃

2. This map is an equivalence of spectra.

Conjecture 2.2. The spectrum K is equivalent to the Anderson or Brown–
Comenetz dual of MSpin.

The Spin-invariance of the map K → IC× corresponds physically to unitarity, or
reflection positivity. It also implies emergent Lorentz symmetry in the associated
quantum system.
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2.2 Lecture 2

2.2.1 Introduction and Central Objects

Framing the Discussion This lecture series aims to explore the deep connec-
tions between the physical theory of gapped phases of matter and the mathe-
matical framework of homotopy theory, particularly as motivated by the Kitaev
conjecture. The goal is to take lessons from the homotopy theory side and for-
mulate clear questions about the Hamiltonian lattice model side, and vice versa.
Even for those unfamiliar with one side of this correspondence, the hope is that
there is still something to be learned from the interplay of ideas. As the lectures
progress, the explicit use of homotopy theory will lessen in favor of focusing on
these core questions.

Defining the Spaces of Phases We begin by defining the primary objects of
study, which represent the physical systems we wish to classify.

Definition 2.8. Let (Γ, d) be a discrete metric space, such as Rn with a lattice
structure.

1. We denote by L(Γ) the space of all gapped Hamiltonian lattice sys-
tems on Γ.

2. We denote by K(Γ) ⊂ L(Γ) the subspace of invertible gapped Hamilto-
nian systems. Invertibility is understood in the sense of stacking, where
a system and its inverse can be combined to form a trivial system, up to
some local equivalence.

From these spaces, which encode the physics, we can construct a central object
in algebraic topology: a spectrum. A spectrum is a sequence of spaces {En},
where each space is (up to homotopy) the loop space of the next, En ≃ ΩEn+1.
Such an object represents a generalized (co)homology theory.

Definition 2.9. The Kitaev Spectrum, denoted K, is the spectrum whose
n-th space is given by the space of invertible phases on Rn:

Kn := K(Rn)

Remark 2.10 (On Indexing). In previous discussions, the n-th space might
have been denoted K(Rn−1). The index is shifted here to conform with the
notation used by Alexei Kitaev. While the previous indexing was convenient
for certain homotopy-theoretic statements, this convention is more convenient
for other purposes, including direct comparison with Kitaev’s work. The path-
components of the space Kn, denoted π0(Kn), are interpreted as the distinct
phases of n-dimensional, invertible, gapped Hamiltonian systems (with no extra
imposed symmetries).
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2.2.2 The Kitaev Conjecture

The central conjecture, proposed by Alexei Kitaev, provides a precise homotopy-
theoretic classification of these phases of matter. It identifies the physically-
defined Kitaev spectrumK with a well-known spectrum from algebraic topology
related to spin bordism and Anderson duality.

Conjecture 2.3 (Kitaev). The Kitaev spectrum K is equivalent to the spectrum
of maps from the spin bordism spectrum, MSpin, to a shifted Anderson dual
of the integers. There are two closely related formulations for these fermionic
systems:

1. K ≃ Maps(MSpin,Σ2IZ)

2. K ≃ Maps(MSpin,ΣIC∗)

where Σk denotes the k-fold suspension, and IZ and IC∗ are the Anderson duals
to the Eilenberg-MacLane spectra for the integers and the circle group, respec-
tively.

Remark 2.11 (Bosonic and Other Systems). The use of MSpin specifies that
we are classifying fermionic systems. For bosonic systems, one would replace
MSpin with MSO. For systems with other symmetries, such as time-reversal,
one would use other bordism theories, like one of the Pin or MO theories.

This conjecture implies that the classification of these physical systems can be
computed using the tools of algebraic topology. The phases of n-dimensional
systems, π0(Kn), are given by homotopy classes of maps:

π0(Kn) = π0(Σ
nK) ≃ π0(Maps(MSpin,ΣnΣIC∗))

= [S0,Maps(MSpin,Σn+1IC∗)]hTop

= [MSpin,Σn+1IC∗ ]hTop

= Hom(πn+1(MSpin),C∗)

This remarkable statement asserts that the phases of n-dimensional invertible
fermionic systems are classified by the C∗-valued cobordism invariants of
closed (n+ 1)-dimensional spin manifolds.

Spin Bordism Groups To understand the classification, we need the homo-
topy groups of the spectrum MSpin. These are the spin bordism groups of a
point, πk(MSpin) = ΩSpink , which are well-known and computed by Anderson,
Brown, and Peterson in the 1960s.

Definition 2.12 (The MSpin Spectrum). MSpin is a spectrum representing
spin bordism. As a homology theory, for a space X, MSpink(X) is the group
of equivalence classes of maps f : Mk → X from k-dimensional closed spin
manifolds, where two are equivalent if they form the boundary of a map from
an (k + 1)-dimensional spin manifold with boundary. As a cohomology theory,
it classifies families of manifolds moving through cobordisms over a base space.
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The coefficient groups are:

• π0(MSpin) = Z (Counting oriented points)

• π1(MSpin) = Z2 (Generated by the circle with the non-bounding spin
structure)

• π2(MSpin) = Z2 (Generated by the torus with the non-bounding spin
structure)

• π3(MSpin) = 0

• π4(MSpin) = Z (Given by the index of the Dirac operator, the Â-genus)

• π5(MSpin) = 0

• π6(MSpin) = 0

• π7(MSpin) = 0

• π8(MSpin) = Z ⊕ Z (From the Dirac operator and the Dirac operator
coupled to the tangent bundle)

These invariants are largely determined by K-theory (via index theory) and mod
2 cohomology invariants (related to Stiefel-Whitney classes).

The Role of Anderson Duality: Torsion vs. Free Parts The two versions
of the conjecture (IZ and IC∗) are related by a fiber sequence of spectra:

IZ → IC → IC∗

This sequence induces a long exact sequence of homotopy groups for mapping
spectra, which effectively separates the classification into free and torsion parts,
analogous to the Universal Coefficient Theorem. For a spectrum E, this se-
quence is:

· · · → [E,ΣmIZ]→ [E,ΣmIC]→ [E,ΣmIC∗)→ [E,Σm−1IZ]→ . . .

• [E,ΣmIC] ∼= Hom(πm(E),C).

• The image of the map from [E,ΣmIZ] corresponds to the integer-valued
invariants, i.e., homomorphisms πm(E)→ Z ⊂ C.

• The kernel of the map from [E,ΣmIC∗ ] is the image from [E,ΣmIC]. The
cokernel, which maps to [E,Σm−1IZ], is related to the torsion subgroup.
Specifically, the kernel of this boundary map identifies the characters of
the torsion subgroup of πm−1(E).

Thus, the IZ formulation of the conjecture detects integer-valued invariants
(like the integer quantum Hall effect), while the IC∗ formulation also captures
torsion-valued invariants (phases protected by torsion elements in spin bordism
groups).
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2.2.3 Topological Field Theory Interpretation

The map from spin bordism to an Anderson dual spectrum can be understood as
a fully extended, invertible Topological Field Theory (TFT). This provides
a powerful physical and geometric picture. The development of this perspective
was deeply influenced by collaborations with M. Singer and conversations with
P. Teichner and S. Stolz.

We can model the mapping space by considering a functor from a bordism
category to a target category representing the algebraic data.

• For the C∗ theory, the functor maps an n-manifold Mn to an object
Z(Mn) ∈ C∗, and an (n + 1)-bordism N to a morphism Z(N) ∈ C such
that if M = ∂N , then Z(M) = e2πiZ(N).

• For the IZ theory, which is shifted by Σ2, the target category is richer.
It is modeled by the symmetric monoidal category of super lines (1-
dimensional Z2-graded vector spaces). A functor from the 2-category of
bordisms assigns a super line to an n-manifold, a map of super lines to an
(n+1)-bordism, and an isomorphism of maps to an (n+2)-bordism with
corners.

The physical picture is that a Hamiltonian system from K(Rn) defines a ”mate-
rial type.” To evaluate the corresponding TFT on a manifold Mn, one ”builds”
the manifold out of this material (e.g., by placing the lattice system on it) and
calculates its ground state. The lecturer provides a helpful analogy: ”you want
to make a dress out of that material... you cut your regions out of this ma-
terial and then, you sew them together to make this picture.” Since the phase
is invertible, the ground state is expected to be one-dimensional, forming the
super line LM . The holonomy of this line bundle over a family of manifolds can
recover the integer invariants.

2.2.4 Open Questions for Physics

This topological perspective raises fundamental questions about how these ab-
stract structures are realized in concrete physical models.

1. How do we recognize the Hamiltonian of a material on a generic
manifold? Given a physical system corresponding to a phase in K(Rn),
what is the procedure for placing this system on an arbitrary curved spin
manifold Mn? We are supposed to imagine the system is scaling under a
renormalization flow to an IR limit. How can we look at a local patch on
the manifold and confirm it is ”made of” the correct material from Rn?
For specific models like the toric code or Kitaev wire, we have methods,
but a general procedure for an arbitrary invertible phase is lacking.

2. Can the space of all gapped phases be organized into a higher
category? The Kitaev conjecture addresses the invertible objectsK(Rn).
These should be the invertible objects within the larger collection of all
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gapped phases L(Rn). This suggests a more general structure. Can L(Rn)
be made into the objects of a symmetric monoidal infinity n-category
with duals?

• Objects: Gapped phases on Rn.

• 1-Morphisms: Domain walls between phases (systems with a bound-
ary).

• 2-Morphisms: Defects or junctions between domain walls.

• etc.

If this structure exists, the theorem that the invertible objects form a
spectrum would be one piece of a more general story, a physical real-
ization of the Cobordism Hypothesis. A key challenge is to formulate a
precise conjecture for what this higher category should be, extending Ki-
taev’s conjecture beyond the invertible case, and to find guidance from
the Hamiltonian lattice side about what a reasonable conjecture should
be.
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2.3 Lecture 3

2.3.1 Introduction: The Two Worlds and the Bridge

To paraphrase the military strategist Helmuth von Moltke, ”No lecture plan sur-
vives first contact with the audience.” This lecture series aims to build a bridge
between two seemingly disparate fields: the mathematical world of Homotopy
Theory and the physical world of gapped Hamiltonian lattice systems.
The central pillar of this bridge is a conjecture by Alexei Kitaev, and by explor-
ing this relationship, we hope to illuminate both sides and identify promising
avenues for future research.

On the physics side, we consider the space of gapped, invertible, topological
phases of matter. These systems, when organized by dimension, are conjectured
to form the spaces of a spectrum in the sense of algebraic topology.

Definition 2.13. The Kitaev Spectrum, denoted K, is a spectrum whose n-th
space, Kn, is the space of phases of n-dimensional invertible, gapped Hamilto-
nian lattice models on Rn. The path components, π0(Kn), classify these distinct
phases.

On the mathematical side, we have topological tools for classifying manifolds,
chief among them being bordism theory. The Kitaev conjecture provides a
stunning link between these two worlds.

Conjecture 2.4 (Kitaev). The Kitaev spectrum K is equivalent to a spectrum
constructed from spin bordism theory, specifically the spectrum of maps into an
Anderson dual of the integers:

K ≃ Maps(MSpin,Σ2IZ) or equivalently K ≃ Maps(MSpin,ΣIC∗)

There is a natural map from the physical spectrum K to the simpler topological
spectrum Σ2IZ, which is constructed via a universal property related to the fact
that π0(K0) ∼= C∗. The deeper part of the conjecture is the existence of a lift
to the full spin-equivariant spectrum, Maps(MSpin,Σ2IZ). This lift is believed
to be a consequence of fundamental physical principles.

Physical Principles =⇒ Mathematical Structure
Reflection Positivity + Emergent Lorentz/Spin Symmetry =⇒ Lift

to Spin TQFT

2.3.2 A Strategy to Test the Conjecture

A powerful way to investigate this conjecture is to seek a counterexample. The
strategy is as follows:

1. Identify a topological quantum field theory (TQFT) that is framed but
provably not spin. In our diagram, this means finding an element κ in
the space of framed TQFTs, π0(Maps(S0,Σ2IZ)), that does not lift to the
space of spin TQFTs, π0(Maps(MSpin,Σ2IZ)).
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2. Attempt to construct a physical Hamiltonian lattice model for this specific
TQFT κ.

3. Analyze the outcome:

• If YES, a lattice model for κ can be constructed, then the Kitaev
conjecture is false. We would have a physical system that corresponds
to a non-spin TQFT.

• If NO, then we must investigate the obstruction. Why can’t we
build a lattice model for this TQFT? The obstruction we encounter
may reveal the physical mechanism (e.g., a necessary consequence of
locality or unitarity) that enforces the emergent spin symmetry. This
process will inform our understanding of the constraints that physics
places on the space of possible TQFTs.

2.3.3 A Concrete Test Case: The 6D TQFT from π6(S
0)

A prime candidate for such a test case ‘kappa‘ arises from the classification of
5-dimensional lattice systems. According to the conjecture (ignoring the spin
structure for a moment), the phases are classified by:

π0(K5) ∼= π0(Maps(S0,Σ5Σ2IZ)) ∼= Hom(π6(S
0),Z)

The stable homotopy groups of spheres are fundamental invariants in topology.
The first few are:

π0 = Z, π1 = Z2, π2 = Z2, π3 = Z24, π4 = 0, π5 = 0, π6 = Z2

The group we are interested in is π6(S
0) ∼= Z2. This group is generated by

a class called ν2. The corresponding TQFT, which we call κ, is a non-trivial
invariant of 6-dimensional framed manifolds.

Crucially, this invariant does not lift to spin bordism. The relevant group in
the spin case is π0(Maps(MSpin,Σ7IZ)) ∼= Hom(π6(MSpin),Z), which is zero.
This confirms that κ is a framed TQFT but not a spin TQFT.

This specific invariant is not merely a topological curiosity; it has appeared in
theoretical physics. In Witten’s work on the five-brane effective action in M-
theory, this invariant arises as the Arf invariant of a quadratic function defined
on the middle cohomology of a 6-manifold. The definition of this invariant
requires the manifold to have more structure than just an orientation; it requires
an integer lift of the fourth Stiefel-Whitney class, W4 = 0, which is a stronger
condition than a spin structure (which requires W1 =W2 = 0).

The challenge is then posed: can one construct a 5-dimensional Hamiltonian
lattice model whose low-energy physics realizes this 6D Arf-invariant TQFT?
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2.3.4 The Cobordism Hypothesis: A Framework for TQFTs

To properly discuss TQFTs and the structures involved, we need the language
of higher categories, as provided by the Cobordism Hypothesis, a theorem for-
mulated by Baez-Dolan and proven by Lurie.

Theorem 2.14 (The Cobordism Hypothesis). For any n, the bordism ∞-
n-category, Bordn(point), is the free symmetric monoidal ∞-n-category
with duals on a single object.

This powerful statement organizes manifolds and their boundaries into a co-
herent categorical structure. For a general background space (or ”tangential
structure”) B, the category BordBn is defined as follows:

• Objects (0-morphisms): Closed, oriented 0-manifolds with a map to B.

• 1-Morphisms: 1-dimensional bordisms between 0-manifolds.

• k-Morphisms (k ≤ n): k-dimensional bordisms with corners.

• Higher Morphisms (k > n): Diffeomorphisms and paths between them.
All morphisms for k > n are invertible.

A key feature is that all objects are fully dualizable. This is a hierarchical
duality property essential for defining TFTs on manifolds with boundaries.

The theorem implies that to define a symmetric monoidal functor Z : Bordn → C
(i.e., an n-dimensional TQFT with values in a target category C), one only needs
to specify the value of the functor on a single object: the point, Z(pt) ∈ C. The
space of all such TQFTs is then equivalent to the space of fully dualizable
objects in C.

2.3.5 Connecting Physics and Topology: Mismatches and Open Ques-
tions

While the Cobordism Hypothesis provides a powerful mathematical framework,
applying it to the physical world of lattice models reveals several subtle mis-
matches and deep questions.

Problem A: The Need for Non-Invertible Morphisms The Kitaev con-
jecture focuses on invertible TQFTs, which correspond to the invertible objects
in the target category C. However, the very structure of a symmetric monoidal
category with duals relies on morphisms that are not isomorphisms. For exam-
ple, the map that defines the dual of an objectW is a morphismW⊗W dual → 1,
which is certainly not invertible.

In physical terms, these non-invertible morphisms correspond to domain walls,
boundary conditions, and higher-order defects. It seems that even to prop-
erly analyze the invertible phases, one must embed them in a larger structure
that includes these non-invertible elements. This suggests that the definition
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of the physical space K(Rn) should be extended to an ∞-n-category that in-
corporates domain walls as 1-morphisms, defects as 2-morphisms, and so on.
Such a structure would naturally contain the spectrum of invertible phases as a
consequence of the Cobordism Hypothesis.

Problem B: The Spin(n) vs. Spin(n+1) Mismatch A second, more tech-
nical issue concerns the precise spin structure required.

• The Kitaev conjecture requires a ‘Spin(n)‘ structure to fully lift the map,
corresponding to the symmetries of an n-dimensional system.

• However, theorems linking physics to TQFTs often rely on reflection
positivity, a property of Euclidean field theory.

Theorem 2.15 (Freed-Hopkins). For an invertible TQFT, the property of being
reflection positive implies that the theory is a Spin(n+1) fixed point.

This gives a ‘Spin(n+1)‘ structure, not the ‘Spin(n)‘ structure needed for the
conjecture. While for invertible theories a ‘Spin(n+1)‘ action can be extended
to a ‘Spin‘ action, being a fixed point for the larger group does not automatically
imply being a fixed point for the smaller one. This subtle gap was a key difficulty
in extending these results beyond the invertible case.

There is significant ongoing work to bridge this gap. A large collaboration (in-
cluding Ferrer, Krulewski, Muller, Penneys, Reutter, Scheimbauer, Stehouwer,
and Johnson-Freyd, referred to as the ”dagger gang”) is developing the theory of
higher dagger categories, which may provide the necessary tools to understand
reflection positivity and duality in the non-invertible setting.

An Open Question for Physicists These mathematical considerations lead
to a crucial question for the physics side. Even if we understand how reflection
positivity provides a ‘Spin(n+1)‘ structure on the objects (the phases), the
morphisms (the domain walls) only carry an ‘O(n)‘ action. This leaves many
choices for what kinds of domain walls are physically permissible.

Open Question: Does the physical requirement of an emergent spin invariance
in a lattice model place restrictions on the allowed types of domain walls between
phases?

Answering this question is essential. The mathematicians need a ”boundary
condition” from the physicists to know which mathematical structures are the
correct ones to model the full, extended nature of these physical theories.

34



2.4 Lecture 4

2.4.1 Introduction

This lecture marks the culmination of a journey exploring the deep and fruitful
relationship between the physical world of lattice models and the mathemat-
ical framework of topology. I would like to begin by thanking the organizers
for creating this unique opportunity for interdisciplinary dialogue. For those
of us on the homotopy theory side, this conference has been invaluable. For a
long time, many of us have been fascinated by these connections, sparked by
conversations with physicists and mathematicians like Dan Freed, Constantine
Teleman, Alexei Kitaev, Anton Kapustin, and Mike Freedman. However, the
language and techniques of the lattice model community were often difficult to
penetrate. A turning point for many was a talk by Daniel Spiegel, based on
Peter Fieger’s work, which made the algebraic quantum field theory approach
accessible. This conference, bringing together pioneers like Peter and Bruno,
has been a dream, finally making these foundational papers truly come alive.

Our central theme has been the relationship between physical systems and topo-
logical structures, guided by the Kitaev conjecture. This relationship is not a
one-way street; each side provides crucial ”boundary conditions on the imag-
ination” for the other, inspiring new questions and revealing which abstract
structures are physically relevant.

Physics ←→ Topology

The goal of this final lecture is to explore the arrow going from right to left: how
can we begin with an abstract topological field theory and construct a concrete
lattice model? This ”inverse problem” may shed light on some of the deepest
physical principles, such as the origin of emergent Lorentz invariance.

2.4.2 The Grand Picture: A Recap

Let’s briefly recap the overarching structure we’ve developed.

• Lattice Models and Phases: The starting point on the physics side is
the universe of gapped Hamiltonian lattice models. These come in many
flavors (bosonic, fermionic, with or without time-reversal symmetry, etc.).

• Invertible Phases and Stable Homotopy: For the special case of
invertible phases, the Kitaev conjecture posits a direct link to stable ho-
motopy theory. The spectrum of phases,K, is conjectured to be equivalent
to a spectrum built from spin bordism: K ≃ Maps(MSpin,Σ2IZ).

• Non-Invertible Phases and Higher Categories: The invertible phases
should be viewed as the invertible objects within a much richer structure.
The Cobordism Hypothesis organizes TQFTs into a hierarchy of in-
finity n-categories. It is natural to ask if the world of all gapped lattice
models (including non-invertible ones) can be similarly organized, with
domain walls as 1-morphisms, defects as 2-morphisms, and so on.
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• Physical Principles as Mathematical Lifts: The conjecture that
physical fermionic systems are described by spin TQFTs (i.e., that the
map from K to TQFTs lifts from framed to spin bordism) is believed
to be a consequence of two fundamental physical principles: reflection
positivity and an emergent Lorentz invariance.

In the invertible case, the role of reflection positivity is reasonably well un-
derstood. For the more general non-invertible case, significant progress is being
made by a large collaboration working on the theory of dagger categories. As
reported by Theo Johnson-Freyd, this work appears to be quite well-developed
and provides a potential topological model for reflection positivity. The origin
of emergent Lorentz invariance, however, remains more mysterious.

2.4.3 The Inverse Problem: From TQFT to Lattice Model

Our main task today is to address the question: Given an abstract Topolog-
ical Quantum Field Theory (TQFT), how can we construct a corresponding
Hamiltonian lattice model?

A TQFT, which we’ll denote by Z, is a symmetric monoidal functor from a
bordism category to a target category. Crucially, it assigns algebraic data to
manifolds. For an (n+ 1)-dimensional TQFT:

Z(closed n-manifold) = a vector space

This presents an immediate dimensional mismatch. A lattice model requires:

1. A local Hilbert space Hi at each lattice site i (a 0-dimensional object).

2. A local Hamiltonian term hij acting on neighboring Hilbert spaces, e.g.,
Hi ⊗Hj .

How can a theory that produces vector spaces from n-dimensional manifolds
tell us what vector space to put at a 0-dimensional point?

The Role of Boundary Conditions The key idea, developed extensively by
Freed and Teleman, is that one must choose a boundary condition for the
TQFT. In the categorical language of the Cobordism Hypothesis, a TQFT is a
functor Z : Bordn+1 → Cn+1, where Cn+1 is the universal target category. A
boundary condition is a choice of object in a lower-dimensional category that
maps to the tensor unit of the higher category.

Let’s consider a 2D theory for simplicity. The universal target category, C2, is
the Morita category of superalgebras. To get a vector space, we can choose a
boundary condition, which corresponds to picking a specific algebra object A ∈
C2. This choice effectively restricts the TQFT. The theory with this boundary
condition becomes equivalent to the category of left A-modules.

This process gives us the fundamental data needed for a lattice model:
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• The Local Hilbert Space: The vector space we assign to each lattice
site is the underlying vector space of the algebra A itself.

• The Hamiltonian: The local Hamiltonian terms are constructed from
the multiplication map of the algebra, m : A⊗A→ A. This map defines
a projection operator, and the Hamiltonian is typically taken to be 1 −
Pground, resulting in a frustration-free model.

Thus, the ”finite instruction set” for building the lattice model is the finite
algebraic data of the chosen boundary condition (the algebra A).

Remark 2.16 (The Dagger Structure). A persistent issue is that TQFTs natu-
rally produce complex vector spaces, whereas quantum mechanics requires Hilbert
spaces. The promotion of a vector space to a Hilbert space requires a compatible
Hermitian structure, often called a ”dagger structure” in this context. While
this is well-understood for invertible theories, the general non-invertible case re-
lies on the developing theory of dagger categories. For this discussion, we will
set aside this subtlety and assume such a structure can be chosen.

The Tensor Network Perspective This construction process has a beautiful
and computationally practical interpretation as the contraction of a tensor
network.

1. Step 1: Triangulate. Take a manifold M on which you want to eval-
uate the theory, and choose a triangulation (or more generally, a handle
decomposition).

2. Step 2: Assign Tensors. The algebraic data from the chosen boundary
condition is used to define tensors. The algebra A itself can be represented
as a tensor, and its multiplication map m : A⊗A→ A is another. These
tensors are assigned to the vertices, edges, and faces of the triangulation.

3. Step 3: Contract. The value of the TQFT on the manifold M , Z(M),
is computed by contracting this entire tensor network—summing over all
internal indices according to the connectivity of the triangulation.

Geometrically, the process of contracting the tensor network corresponds to
performing surgery on the triangulation. Contracting along an edge corresponds
to removing that edge and merging the adjacent simplices. By sequentially
performing surgery on all internal parts of the triangulation, one simplifies the
manifold down to a disjoint union of spheres, and the value of the TQFT is
computed.

Examples and Obstructions This procedure has been successfully applied to
well-known models:

• AKLT Model: For this model, one chooses the algebra A =M2(C), the
2×2 matrices. After accounting for an SU(2) symmetry, this construction
reproduces the AKLT Hamiltonian.
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• 2D Unoriented TQFT: A 2D unoriented theory can be constructed
by choosing the algebra of quaternions, A = H. This requires specifying
additional data corresponding to how the unoriented nature is handled
(isomorphisms H ∼= Hop and H ∼= Hdual). With appropriate choices, the
partition function on a closed surface M evaluates to (−λ)χ(M), where
χ(M) is the Euler characteristic. Reflection positivity constrains λ to be
±1.

However, this construction is not universally applicable. The entire procedure
hinges on the ability to choose a suitable boundary condition for the initial
TQFT. The primary obstruction from the topological perspective is that an
arbitrary TQFT is not guaranteed to admit such boundary conditions.

2.4.4 Conclusion and a Final Question

We have seen that there is a plausible, though highly intricate, path from an ab-
stract TQFT to a concrete lattice model. The construction requires descending
through the hierarchy of universal n-categories, choosing a boundary condition
(an algebra), and interpreting its structure as the local data for a tensor network.

The upshot is that the ability to construct a lattice model appears to be deeply
tied to the existence of a rich algebraic structure of boundary conditions, domain
walls, and defects within the TQFT. This raises a final, crucial question that ties
back to our original motivation. The Kitaev conjecture requires an emergent
spin invariance in physical systems. We have seen that this is a subtle property,
not guaranteed by the standard axioms of TQFT. This leads to the question:

Does the existence of a sufficiently rich structure of boundary conditions for
a TQFT, when combined with a physical requirement like a Hermitian (dag-
ger) structure, force the emergent spin invariance needed to satisfy the Kitaev
conjecture?

This frames a precise mathematical question motivated by the physical problem.
Answering it could provide the key to understanding the origins of Lorentz
invariance and to finally, fully connecting the worlds of high-energy physics,
condensed matter, and homotopy theory.

38



3 Pieter Naaijkens: Introduction to Superselec-
tion Sector Theory

Contents

3.1 Lecture 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.2 The Toric Code . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.3 Excitations . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Lecture 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.1 The Story So Far . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.2 The Superselection Criterion . . . . . . . . . . . . . . . . 45
3.2.3 Towards a Tensor Category of Sectors . . . . . . . . . . . 46

3.3 Lecture 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.1 The Monoidal Product . . . . . . . . . . . . . . . . . . . . 49
3.3.2 Braiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.3 Fusion Rules and Direct Sums . . . . . . . . . . . . . . . 51

3.4 Lecture 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.1 Further Structure: Duality and Rigidity . . . . . . . . . . 53
3.4.2 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.3 Stability of the Sector Category . . . . . . . . . . . . . . . 55
3.4.4 Long-Range Entanglement and Trivial Sectors . . . . . . 57
3.4.5 Completeness Revisited: A Subfactor Approach . . . . . . 58
3.4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

39



3.1 Lecture 1

3.1.1 Introduction

Motivation and Goals The main issue we will consider is the classification of
gapped ground states of quantum spin systems. Our approach will have the
following features:

• We will always work in the thermodynamic limit, considering systems
on an infinite lattice.

• We are interested in gapped ground states of local Hamiltonians.

• We want to classify these states according to some equivalence relation.

• Our focus will be on states exhibiting topological order, also known as
long-range entanglement.

The central question is: can we find physically interesting invariants that allow
us to distinguish and classify these states?

Why are these states interesting? States with topological order are par-
ticularly interesting because they can host anyons. These are quasi-particle
excitations that generalize the familiar concepts of bosons and fermions. While
exchanging two identical bosons leaves a state unchanged and exchanging two
fermions introduces a minus sign, exchanging two anyons can result in more
complex, non-trivial transformations. This phenomenon is known as braided
statistics.

The algebraic properties of these anyons are described by a rich mathematical
structure known as a braided tensor C*-category (in our examples, these
will often be braided fusion or modular tensor categories). A key feature of these
systems is their robustness: due to their topological nature, the properties of
the anyons are stable against small, local perturbations of the system. This
makes the category of anyons a powerful invariant for the phase of matter.

Our main goal is to answer the following question: Given a microscopic de-
scription of a system (e.g., a Hamiltonian), how can we systematically derive its
category of anyons?

Our Approach The framework we will use is rooted in the Doplicher-Haag-
Roberts (DHR) theory of superselection sectors, which originated in alge-
braic quantum field theory (AQFT). In AQFT, one associates algebras of ob-
servables to regions of spacetime. DHR theory was developed to classify the
”charges” or superselection sectors in such theories.

• In (3+1) dimensions, DHR theory leads to Bose/Fermi statistics and cul-
minates in the Doplicher-Roberts theorem, which relates symmetric tensor
categories to representation categories of compact groups.

• In lower dimensions, the geometry allows for more interesting possibilities,
namely the braided statistics of anyons.
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Our approach is operator-algebraic, but on a technical level, it differs from clas-
sical AQFT as our local algebras are simple finite-dimensional matrix algebras.

3.1.2 The Toric Code

The toric code will serve as our guiding example. It is simple enough to be
analyzed explicitly, yet it exhibits the non-trivial features we are interested in.

The Setup We consider an infinite square lattice Z2. The quantum degrees of
freedom, or qubits, are located on the edges of this lattice.

• For each edge x, the local Hilbert space is Hx = C2.

• The local observable algebra is Ax =M2(C), the algebra of 2× 2 complex
matrices.

The observables are built from the Pauli matrices:

σx =

Å
0 1
1 0

ã
, σy =

Å
0 −i
i 0

ã
, σz =

Å
1 0
0 −1

ã
.

These matrices are self-adjoint, square to the identity, and anti-commute with
each other: {σi, σj} = 2δijI. Together with the identity matrix, they form a
basis for M2(C).

The Hamiltonian The dynamics are defined by a local, commuting-projector
Hamiltonian. We define two types of local operators:

• For each vertex (or ”star”) s, the star operator is As =
⊗

j∈s σ
x
j .

• For each face (or ”plaquette”) p, the plaquette operator isBp =
⊗

j∈p σ
z
j .

These operators all square to the identity (A2
s = B2

p = I) and they all commute
with each other ([As, As′ ] = [Bp, Bp′ ] = [As, Bp] = 0). The local Hamiltonian
for a finite region Λ is defined as:

HΛ =
∑
s⊂Λ

(I −As) +
∑
p⊂Λ

(I −Bp).

Since all terms in the sum commute and I − As, I −Bp are positive operators,
the ground state will be one that is simultaneously an eigenstate of every As
and Bp with eigenvalue 1.

The Ground State

Theorem 3.1. The toric code on the infinite lattice has a unique frustration-
free ground state, ω0. This state is pure.

Proof Sketch. A state is frustration-free if it minimizes the energy of every term
in the Hamiltonian individually. Here, this means the state ω0 must satisfy
ω0(As) = 1 and ω0(Bp) = 1 for all stars s and plaquettes p. One can show that
a state satisfying these conditions exists and is uniquely determined by them.
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Using a lemma that a state uniquely determined by such conditions must be
pure, we conclude ω0 is pure. To show it is a ground state, we must verify the
ground state condition, −iω0(A

∗δ(A)) ≥ 0. Since δ(A) is the commutator with
H =

∑
(I −As) + (I −Bp), and ω0 is invariant under multiplication by As and

Bp, the condition simplifies to showing
∑
ω0(A

∗(I − As)A) + · · · ≥ 0, which is
true since ω0 is a state and the operators are positive.

This unique state ω0 will be our reference ”vacuum” state. When the model
is defined on a surface with non-trivial topology like a torus, the ground state
becomes degenerate, which is the origin of the name ”toric code” and its appli-
cation in quantum error correction.

The GNS Representation of the Ground State The state ω0 gives rise to
a GNS representation (π0,H0,Ω0).

• The ground state vector Ω0 is a ”+1” eigenvector for all star and pla-
quette operators: AsΩ0 = Ω0 and BpΩ0 = Ω0. These are the stabilizer
conditions.

• The GNS Hamiltonian H has Ω0 as its zero-energy ground state (HΩ0 =
0) and is positive semi-definite (H ≥ 0).

• The model is known to have a spectral gap: spec(H) ∩ (0, 2) = ∅. This
gap is stable against small local perturbations.

3.1.3 Excitations

Excitations above the ground state correspond to violations of the stabilizer
conditions. These are our anyons.

Path Operators We can create excitations using string-like operators.

• A path ξ is a sequence of adjacent edges on the lattice. The associated
operator is Fξ =

⊗
j∈ξ σ

z
j .

• A dual path ξ̂ is a path on the dual lattice. The operator is Fξ̂ =⊗
j∈edges crossed by ξ̂ σ

x
j .

These path operators commute with all As and Bp operators, except at the
endpoints of the path.

• Fξ anti-commutes with the star operators As at its endpoints.

• Fξ̂ anti-commutes with the plaquette operators Bp at its endpoints.

This means applying a path operator to the ground state creates a pair of excita-
tions. For example, HΛFξΩ0 = 2NFξΩ0, where N is the number of endpoints of
ξ inside Λ. The endpoints of Fξ are called electric charges, and the endpoints
of Fξ̂ are called magnetic charges.

Single Excitations and Localized Automorphisms To describe a single
anyon, we work on the infinite lattice and send one endpoint of the path to
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infinity. This is done by considering a semi-infinite path (or ”ribbon”) ξ that
lies within some cone. The corresponding automorphism is defined as a limit:

ρZξ (A) := lim
n→∞

AdFξn
(A) = lim

n→∞
FξnAF

∗
ξn ,

where ξn is the initial segment of the path ξ of length n. This limit is well-
defined and defines an automorphism of the quasi-local algebra that is localized
in the cone containing the path.

We can define three non-trivial types of such automorphisms, corresponding to
the three types of anyons:

• ρZξ (electric charge), created by a string of σz operators.

• ρX
ξ̂

(magnetic charge), created by a string of σx operators.

• ρY (dyon/fused charge), created by a combination of both.

• We also have the trivial automorphism ρ0 = id.

The state ω0 ◦ρkξ describes the system with a single anyon of type k at the start
point of the path ξ. While the automorphism ρ depends on the entire path, the
resulting state ω0 ◦ ρ only depends on the endpoint. This is a key topological
property.

Superselection Sectors We can now classify these single-anyon states.

Definition 3.2. Two pure states ω1, ω2 are equivalent if their corresponding
GNS representations are unitarily equivalent.

A key result is that two pure states are inequivalent if and only if they can
be distinguished by an observable ”at infinity”. That is, for any finite region
Λ, there exists an observable A with support in the complement Λc such that
ω1(A) ̸= ω2(A).

Theorem 3.3. The four states corresponding to the different anyon types, ω0 ◦
ρkx for k ∈ {0, X, Y, Z}, are mutually inequivalent.

Proof Sketch. We can move the endpoint of the excitation locally, so we can
assume they are all created at the same site x. To distinguish, say, an electric
charge (k = Z) from a magnetic charge (k = X), we can use a ”Wilson loop”

operator. Consider a large closed dual loop ξ̂ that encircles the site x. The
operator Fξ̂ can be written as a product of all plaquette operators Bp inside

the loop. The automorphism for the electric charge, ρZx , commutes with Fξ̂,

so ω0 ◦ ρZx (Fξ̂) = ω0(Fξ̂) = 1. However, the automorphism for the magnetic

charge, ρXx , anti-commutes with Fξ̂, so ω0 ◦ ρXx (Fξ̂) = ω0(−Fξ̂) = −1. Since we
can make the loop arbitrarily large, we have found an operator at infinity that
distinguishes the two states. A similar argument works for all pairs.
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These four inequivalent classes of states are the superselection sectors of the
toric code. They correspond to the four types of anyons the model can host.
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3.2 Lecture 2

3.2.1 The Story So Far

In the previous lecture, we considered the toric code on the infinite Z2 lattice.
Our main achievements were:

• We constructed a unique, pure, frustration-free ground state ω0.

• We defined automorphisms ρk for k ∈ {0, X, Y, Z} that describe single
anyons (trivial, electric, magnetic, and dyonic).

• We showed that these automorphisms give rise to four unitarily inequiva-
lent classes of irreducible representations.

This raises two important questions:

1. How do we know that these are the ”correct” or physically relevant rep-
resentations to consider?

2. Does this set of representations possess additional structure, such as a
fusion product corresponding to the fusion of anyons?

3.2.2 The Superselection Criterion

Superselection Rules The concept of a superselection rule dates back to the
early days of quantum theory. It formalizes the idea that not all superpositions
of states are physically realizable.

Definition 3.4 (Superselection Rule). Consider a representation π : A →
B(H) and two unit vectors ψ1, ψ2 ∈ H. We say that ψ1 and ψ2 satisfy a
superselection rule if the state ωθ corresponding to the superposition ψθ =
(ψ1 + eiθψ2)/

√
2 is independent of the relative phase θ. This can only happen if

the representation π is not irreducible.

Definition 3.5. Two states ω1 and ω2 are called not superposable if in any
representation π that contains vectors ψ1, ψ2 implementing these states, the state
corresponding to a superposition is just an incoherent mixture:

ωαψ1+βψ2(A) = |α|2ω1(A) + |β|2ω2(A)

for all α, β ∈ C with |α|2 + |β|2 = 1.

Theorem 3.6. Two pure states ω1, ω2 are superposable if and only if their GNS
representations are unitarily equivalent.

This theorem provides the crucial link: inequivalent representations correspond
to states that cannot be coherently superposed. We can think of these inequiv-
alent classes as describing different ”charges”. An operator that is local (or
even quasi-local) cannot change the total charge of a state. This is the physical
reason why we cannot use local operators to remove a single anyon excitation
from the ground state, and why such states are also ground states despite the
local excitation energy.
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The problem is that a C*-algebra generally has a vast number of inequivalent
representations, most of which are unphysical. We need a criterion to select the
interesting ones.

The DHR Superselection Criterion The Doplicher-Haag-Roberts (DHR)
superselection criterion provides such a selection principle. It identifies repre-
sentations that are ”local perturbations” of a reference representation.

Definition 3.7 (Superselection Criterion). Let π0 be an irreducible ”reference”
representation of A (for us, the GNS representation of the ground state ω0). A
representation π satisfies the superselection criterion with respect to π0 if
for every cone Λ ⊂ Z2, the restriction of π to the algebra of observables in the
complement of the cone, A(Λc), is unitarily equivalent to the restriction of π0:

π ↾A(Λc)
∼= π0 ↾A(Λc) .

An equivalence class of such representations is called a superselection sector.

The interpretation is that sectors correspond to representations that are local-
izable (they look like the vacuum outside some cone) and transportable (we
can move the cone of non-triviality around).

Theorem 3.8. For the toric code, there are at least four irreducible superselec-
tion sectors.

Proof Sketch. The four representations πk = π0 ◦ρk that we constructed satisfy
the criterion. For a given cone Λ containing the path defining ρk, the automor-
phism is the identity on A(Λc), so πk is equal to π0 there. The transportability
follows from the topological nature of the path operators. Since we already
showed these four representations are inequivalent, they define four distinct
sectors. It can be shown that these are, in fact, all the irreducible sectors.

3.2.3 Towards a Tensor Category of Sectors

We now want to equip the set of superselection sectors with more structure,
specifically a tensor product (fusion) and a braiding.

Monoidal Categories

Definition 3.9. A monoidal category is a category C equipped with a bifunc-
tor ⊗ : C × C → C (the tensor product), a distinguished unit object 1C, and
families of natural isomorphisms:

1. Associators: αa,b,c : (a⊗ b)⊗ c ∼= a⊗ (b⊗ c).

2. Unitors: λa : 1C ⊗ a ∼= a and ρa : a⊗ 1C ∼= a.

These isomorphisms must satisfy consistency conditions known as the pentagon
and triangle axioms. If the associators and unitors are all identity morphisms,
the category is called strict.
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A Key Example: The Category of Endomorphisms Let A be a unital
C*-algebra. The category End(A) has:

• Objects: Unital *-endomorphisms ρ : A→ A.

• Morphisms: For two endomorphisms ρ, σ, a morphism is an intertwiner
T ∈ A such that Tρ(a) = σ(a)T for all a ∈ A.

This category becomes a strict monoidal category with the tensor product de-
fined as composition:

• On objects: ρ⊗ σ := ρ ◦ σ.

• On morphisms: For S : ρ1 → ρ2 and T : σ1 → σ2, their product is
S ⊗ T := Sρ1(T ).

The Challenge for Superselection Sectors Our goal is to define a similar
tensor product for our sectors. The anyon automorphisms ρk are objects in
a category like End(A). However, the morphisms are more complicated. The
charge transporters V that relate representations with different paths, V π0 ◦
ρx = π0 ◦ ρ′xV , are unitaries in B(H0), but they are generally not in the image
of the algebra, π0(A). This is a problem, because the tensor product formula
Sρ1(T ) requires us to act with an endomorphism on an intertwiner, which is
not well-defined if they live in different algebras.

Charge Transporters and von Neumann Algebras The solution lies in
understanding the nature of the charge transporters. While the sequence of
operators vn used to construct the transporter does not converge in the norm
topology of A, the sequence π0(vn) does converge in the strong operator topology
on B(H0).

This leads us to consider von Neumann algebras.

Definition 3.10. A unital *-subalgebraM⊂ B(H) is a von Neumann alge-
bra if it is equal to its double commutant,M =M′′. Equivalently,M is closed
in the weak (or strong) operator topology.

Since π0(vn) converges in the strong operator topology, its limit V must lie in
the von Neumann algebra generated by the image of A, i.e., V ∈ π0(A)′′.

Haag Duality and Localized Representations A crucial technical property
is Haag duality.

Definition 3.11 (Haag Duality). A representation π0 satisfies Haag duality
for cones if for any cone Λ, the von Neumann algebra generated by observables
in the cone equals the commutant of the algebra generated by observables in the
complement: π0(A(Λ))

′′ = π0(A(Λ
c))′.

This property holds for the toric code. It has important consequences:

1. Localization of Intertwiners: It implies that intertwiners between lo-
calized representations are themselves localized. If ρ1, ρ2 are localized in
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cones Λ1,Λ2 ⊂ Λ, any intertwiner v ∈ (ρ1, ρ2) must belong to the von
Neumann algebra of the larger cone, v ∈ π0(A(Λ))′′.

2. From Sectors to Localized Endomorphisms: Any representation π
satisfying the superselection criterion is unitarily equivalent to a represen-
tation ρΛ on the GNS space H0 which is localized in a cone Λ and maps
observables in that cone into the corresponding von Neumann algebra:
ρΛ(A(Λ)) ⊂ π0(A(Λ))′′.

This last point is key. While we don’t get endomorphisms of A, we get something
very close: endomorphisms of the von Neumann algebra π0(A)

′′. This will be
sufficient to define the tensor product, which is the topic for the next lecture.
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3.3 Lecture 3

3.3.1 The Monoidal Product

The Problem with the Tensor Product In the last lecture, we saw that
the category End(A) of endomorphisms of a C*-algebra A has a natural strict
monoidal product given by composition: ρ⊗σ = ρ◦σ. However, when we try to
apply this to our category of superselection sectors, ∆DHR, we run into a prob-
lem. The morphisms in our category (the intertwiners and charge transporters)
are operators in the GNS Hilbert space, v ∈ B(H0), and are generally not el-
ements of the C*-algebra A itself. Specifically, they lie in the von Neumann
algebra generated by the image of A, e.g., v ∈ π0(A(Λ))′′.

This means that for an endomorphism ρ and an intertwiner v, the expression
ρ(v) is not well-defined, preventing us from defining the tensor product of mor-
phisms s⊗ t = sρ1(t).

The Auxiliary Algebra To solve this, we must extend our endomorphisms to
a larger algebra that contains the intertwiners. This is done by constructing an
auxiliary algebra.

1. Fix a ”forbidden direction” by choosing a cone with angle θ ∈ [0, 2π) and
opening 0 < ϕ < π.

2. Let C(θ, ϕ) be the set of all cones whose directions do not intersect the
forbidden range (θ − ϕ, θ + ϕ). This is a directed set whose union covers
the plane.

3. We define the auxiliary algebra as the norm closure of the union of the
von Neumann algebras associated with these cones:

Aaux :=
⋃

Λ∈C(θ,ϕ)

π0(A(Λ))′′
∥·∥
.

The original algebra A is a subalgebra of Aaux.

Lemma 3.12. Let ρ : A → B(H0) be a localized and transportable represen-
tation (i.e., a sector). Then ρ can be extended to a *-homomorphism ρa :
Aaux → Aaux. This extension is weak-operator continuous on each cone algebra
π0(A(Λ))

′′.

Proof Sketch. For any cone Λ in our directed set, we can choose a disjoint cone
Λ′. By transportability, there is a unitary v and a representation ρ′ localized
in Λ′ such that ρ = Adv ◦ ρ′. For any a ∈ A(Λ), since Λ and Λ′ are disjoint,
ρ′(a) = π0(a). Thus, on this cone, ρ(a) = vπ0(a)v

∗. Since conjugation by
a unitary is weak-operator continuous, we can extend ρ from π0(A(Λ)) to its
weak closure, the von Neumann algebra π0(A(Λ))

′′. By doing this consistently
for all cones in the directed set, we obtain the full extension ρa.
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The DHR Category and its Tensor Product We can now give the final
definition of our category of sectors.

Definition 3.13 (DHR Category). The category ∆DHR has as objects the *-
homomorphisms ρ : A → Aaux that are localized and transportable. The mor-
phisms are the intertwiners in B(H0).

With the extended endomorphisms ρa, we can define the tensor product.

Definition 3.14 (Tensor Product). For objects ρ, σ ∈ ∆DHR and morphisms
s ∈ (ρ1, ρ2), t ∈ (σ1, σ2):

• ρ⊗ σ := ρa ◦ σ

• s⊗ t := sρa1(t)

Proposition 3.15. With this definition, ∆DHR is a strict monoidal C*-tensor
category. The tensor unit is the identity map ι = idA, corresponding to the
vacuum sector.

The physical interpretation of this tensor product is the fusion of anyons: ρ⊗σ
describes the sector obtained by creating an excitation of type σ and then an
excitation of type ρ.

3.3.2 Braiding

A key achievement of the DHR framework is that it naturally yields a braiding,
which describes the statistics of anyon exchange.

Definition 3.16. A braiding on a monoidal category is a family of natural
isomorphisms ϵa,b : a⊗ b→ b⊗a that satisfy certain consistency conditions (the
hexagon axioms). If ϵb,a ◦ ϵa,b = id, the braiding is a symmetry (describing
bosons/fermions).

In general, for two endomorphisms ρ, σ ∈ End(A), there is no reason for ρ ◦ σ
and σ ◦ρ to be related, so no braiding can be defined. However, the localization
and transportability of our sectors allows us to construct one.

Construction of the Braiding

1. Take two sectors ρ, σ localized in cones Λρ,Λσ.

2. Choose a new cone Λ̂σ that is ”to the left” of Λρ.

3. By transportability, there is an equivalent representation σ̂ localized in
Λ̂σ, related by a charge transporter (a unitary intertwiner) v ∈ (σ, σ̂).

4. Since Λρ and Λ̂σ are disjoint, the endomorphisms commute: ρ ◦ σ̂ = σ̂ ◦ ρ.

5. We can now define the braiding operator by moving σ to σ̂, commuting,
and moving back:

ϵρ,σ := v∗(idρ ⊗ v) = v∗ρ(v).

This defines an intertwiner from ρ⊗ σ to σ ⊗ ρ.
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This construction is independent of the choices made (up to unitary equivalence)
and defines a valid braiding on ∆DHR.

Braiding in the Toric Code The explicit construction of the charge trans-
porters in the toric code allows for an explicit calculation of the braiding. The
key step is to compute ρa(v). Since ρa is weak-operator continuous and v is a
limit of local operators vn, we have ρa(v) = limn ρ(vn). For the toric code, the
local path operators vn are products of Pauli matrices, and one can compute
that ρ(vn) = ±vn. The sign depends on whether the string defining ρ crosses
the string defining vn. This leads to the braiding table:

ϵρ1,ρ2 I X Y Z
I I I I I
X I I −I −I
Y I −I I −I
Z I −I −I I

In particular, ϵX,Z ◦ ϵZ,X = (−I) ◦ (−I) = −I. This non-trivial sign shows that
the electric (Z) and magnetic (X) charges are abelian anyons.

3.3.3 Fusion Rules and Direct Sums

The final piece of structure is the decomposition of tensor products into irre-
ducible sectors.

Direct Sums and Subobjects To decompose objects, we need to be able
to form direct sums and take subobjects. This requires the category to have
additional linear structure. The category ∆DHR is a C*-category, where Hom-
sets are C*-algebras. This allows us to talk about projections, isometries, etc.

To define direct sums, we need to be able to find isometries v1, v2 in our algebra
such that v1v

∗
1 + v2v

∗
2 = I. This is not always possible, but it is true if the

underlying von Neumann algebra is ”properly infinite”.

Lemma 3.17. For the toric code, the cone algebras π0(A(Λ))
′′ are Type II∞

factors, which are properly infinite.

Corollary 3.18. The category ∆DHR for the toric code has direct sums and
subobjects.

This means we can decompose any object into a direct sum of subobjects cor-
responding to orthogonal projections in its endomorphism algebra. An object
is irreducible (or simple) if its endomorphism algebra is trivial, (ρ, ρ) = CI.

Fusion Rules The goal is to find the fusion rules, which describe the decom-
position of the tensor product of two irreducible sectors ρi, ρj into a direct sum
of other irreducible sectors ρk:

ρi ⊗ ρj ∼=
⊕
k

Nk
ijρk.
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In general, this decomposition is not guaranteed to be finite. However, for the
toric code, the situation is very simple. The fusion rules are those of the group
Z2 × Z2:

ρX ⊗ ρX ∼= ι, ρZ ⊗ ρZ ∼= ι, ρX ⊗ ρZ ∼= ρY , etc.

Physically, the rule ρX⊗ρX ∼= ι means that a state with two electric excitations
has trivial total charge and thus belongs to the vacuum sector. The two anyons
can annihilate each other.
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3.4 Lecture 4

3.4.1 Further Structure: Duality and Rigidity

In the previous lectures, we have discussed superselection sectors, defined the
monoidal product, decomposed these products, and defined the braiding. There
is one more significant piece of structure to mention: duality, or rigidity.
Because we are working with C*-categories, we can formulate this in a symmetric
way.

Definition 3.19 (Conjugate). A conjugate for an object ρ ∈ ∆DHR is a
triple (ρ, r, r) with an object ρ and morphisms r ∈ Hom(id, ρ ⊗ ρ) and r ∈
Hom(id, ρ⊗ ρ) such that the following zig-zag equations hold:

(r∗ ⊗ idρ)(idρ ⊗ r) = idρ

(r∗ ⊗ idρ)(idρ ⊗ r) = idρ

These morphisms define a conjugate charge. Physically, the existence of r ∈
Hom(id, ρ⊗ρ) means that fusing the charge ρ with ρ yields a state containing the
trivial sector (the vacuum). This structure allows for the definition of important
concepts like the quantum dimension of a sector.

For the toric code, we can explicitly construct these conjugates; in fact, all sec-
tors are self-conjugate since they square to the identity. In many other models,
construction is also possible. However, it is not known if conjugates automati-
cally exist in the general setting of quantum spin systems. In algebraic quantum
field theory (AQFT), their existence can be guaranteed under certain conditions
(like Poincaré covariance), but there are also examples of sectors in QFT for
which a dual does not exist. In many algebraic descriptions of anyons, the ex-
istence of conjugates is often postulated. It would be valuable to find physical
conditions that guarantee their existence in this context.

A brief note on a question that was raised: in the DHR approach for the toric
code, one might construct representations involving infinite direct sums that do
not have a dual. These are typically considered unphysical or ”uninteresting”
examples. The counter-examples to the existence of duals are generally of this
”infinite type”.

3.4.2 Completeness

A crucial question arises from our construction: have we found all the possible
sectors? For the toric code, we constructed four irreducible sectors, as expected.
But are there any other irreducible representations satisfying the superselection
criterion that are not equivalent to one of these four? This is the question of
completeness.

Approach 1: The Quantum Double

One powerful way to prove completeness is by relating our sectors to the repre-
sentation theory of a known algebraic structure: the quantum double.
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The quantum double D(G) of a finite group G is a specific Hopf algebra built
from the group algebra C[G]. Its representation theory is well understood.

• The category of finite-dimensional representations, RepfD(G), is a mod-
ular tensor category.

• The irreducible representations (irreps) of D(G) are in one-to-one corre-
spondence with pairs (C, ρ), where C is a conjugacy class of G, and ρ is
an irreducible representation of the centraliser of an element g ∈ C.

A recent result by Bols and Vadnerkar provides the crucial link to our superse-
lection sectors.

Theorem 3.20 (Bols-Vadnerkar, arXiv:2310.19661). For the quantum double
model for a finite group G, for each irreducible representation (C, ρ) of D(G),
there is a corresponding anyon sector π(C,ρ). The representations {π(C,ρ)}(C,ρ)
are pairwise disjoint (i.e., not unitarily equivalent), and any anyon sector is
unitarily equivalent to one of them.

In the context of my terminology, an ”anyon sector” is an irreducible represen-
tation that satisfies the superselection criterion. For the toric code, the group
is G = Z2. This group is abelian, so its conjugacy classes are just the individual
elements, and the centralizers are the group itself. A quick calculation shows
that there are exactly four such irreps. Since the theorem states that these are
all the anyon sectors, we have indeed found all of them.

This leads to the main conclusion for the toric code model. Let ∆f
DHR be the

category of superselection sectors where we restrict to finite direct sums (or
equivalently, where morphism spaces are finite-dimensional).

Theorem 3.21. The category ∆f
DHR for the toric code is braided tensor equiv-

alent to RepfD(Z2).

Proof sketch. We have already constructed representatives of the four sectors.
The theorem by Bols and Vadnerkar establishes a one-to-one correspondence
between these sectors and the irreps of D(Z2). We can thus define a functor
mapping our sectors to these irreps. We then check that this functor preserves
the braiding and other tensor category structures. Since we have explicitly
calculated all sectors and their properties, this becomes a matter of matching
them up on both sides.

This result confirms that our framework, built from first principles, gives the
expected answer for this key example. The theory can also describe the twist
and other structures that make the category modular.

Extension to Non-Abelian Models This analysis can be extended to quan-
tum double models based on non-abelian finite groups G.

• If G is abelian, the analysis is very similar to the toric code.
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• For non-abelian G, the ”path operators” that create excitations are re-
placed by ribbon operators.

• A key difference is that irreps of D(G) can have dimension d > 1. The
corresponding ribbon operators then come inmultiplets and are generally
not unitary.

• This complicates the construction of the endomorphisms. Instead of con-
jugating by a single operator, it is easier to construct amplimorphisms,
which are *-homomorphisms of the form ρ : A → Md(A). One can think
of this as arranging the multiplet of ribbon operators into a d× d matrix
and conjugating by that matrix.

• Using the property that the cone algebras are properly infinite, we
can map these amplimorphisms back to endomorphisms of the auxiliary
algebra Aaux, returning to our original framework. The cost is that this
mapping is less explicit.

• Following this procedure, one can show that the resulting category of sec-
tors is equivalent to RepfD(G), as expected. This confirms that abelian
anyons correspond to automorphisms, while non-abelian anyons corre-
spond to proper endomorphisms.

3.4.3 Stability of the Sector Category

So far, we have analyzed the sectors of a single, specific ground state. A fun-
damental question in the study of phases of matter is whether the structures
we find are robust. Is the category of superselection sectors an invariant of
the quantum phase? To answer this, we must first define what we mean by
a phase. This is done by specifying an equivalence relation on states.

Definition 3.22 (Approximately Factorisable Automorphism (Informal)). An
automorphism α ∈ Aut(A) is approximately factorisable if for any cone Λ
and δ > 0, it can be decomposed as

α = Ad(v) ◦ Ξ ◦ (βΛ ⊗ βΛc)

where:

1. βΛ and βΛc are automorphisms localised inside Λ and its complement Λc,
respectively.

2. Ξ is an automorphism acting only ’near the boundary’ of Λ.

3. v is a unitary in the von Neumann algebra π0(A)
′′ that can be approximated

by unitaries vn localized in translates of slightly wider cones, with the error
||vn−v|| decaying sufficiently fast. A similar decomposition exists for α−1.

These automorphisms are generalizations of finite-depth quantum circuits. Cru-
cially, they arise from physical situations. Consider a gapped local Hamiltonian
H satisfying certain conditions (local topological order). If we add a sufficiently
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small local perturbation Φ, the resulting HamiltonianH ′ = H+Φ is also gapped.
A key result in mathematical physics states that the ground states of H and H ′

are related by an approximately factorisable automorphism.

Definition 3.23 (Quantum Phase). Two pure states ω1 and ω2 are in the same
quantum phase if there exists an approximately factorisable automorphism α
such that ω1 ◦ α = ω2.

Now we can state our central question more formally: If ω1 and ω2 are in
the same phase, how are their corresponding DHR categories, ∆DHR(ω1) and
∆DHR(ω2), related?

Approximate Haag Duality

A technical challenge arises because an approximately factorisable automor-
phism α does not, in general, map a cone algebra to another cone algebra.
This means that even if the GNS representation πω1

satisfies Haag duality, the
perturbed representation πω2

∼= πω1
◦ α may not. We therefore need a weaker

notion.

Definition 3.24 (Approximate Haag Duality). A representation π0 satisfies
approximate Haag duality if for every cone Λ and for small enough ϵ > 0,
there exists a unitary UΛ,ϵ and a radius Rϵ > 0 such that

π0(A(Λ
c))′ ⊂ UΛ,ϵπ0(A((Λ−Rϵ

)ϵ))
′′U∗

Λ,ϵ

where (Λ−Rϵ)ϵ denotes the cone Λ translated back by Rϵ and with its opening
angle widened by ϵ. Furthermore, the unitary UΛ,ϵ can be approximated by
unitaries in cone von Neumann algebras with sufficiently fast decay of the error.

Essentially, an operator commuting with everything outside a cone is no longer
perfectly localized inside that same cone, but rather inside a slightly larger
cone, up to a unitary conjugation. This unitary ”sweeps up” the exponentially
decaying tails created by the automorphism.

This weaker property has two crucial features:

1. If a state satisfies Haag duality, it also satisfies approximate Haag duality.

2. Stability: If a representation π satisfies approximate Haag duality, then
so does π ◦ α for any approximately factorisable automorphism α.

With this tool, the entire superselection theory can be reconstructed. The
superselection criterion remains the same, but concepts like localization of rep-
resentations and intertwiners now hold only up to decaying tails. The braiding
becomes more complicated, requiring a limiting procedure to handle the tails.
Despite these complexities, the framework remains intact. This leads to the
main stability theorem.

Theorem 3.25 (Ogata, arXiv:2106.15741). Let ω1 and ω2 be pure gapped
ground states of two uniformly bounded, finite-range interactions. Suppose they
are in the same phase, i.e., ω1 = ω2 ◦ α for some approximately factorisable
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automorphism α. If one (and hence both) of the GNS representations satisfies
approximate Haag duality, then the corresponding DHR categories are unitarily
braided monoidally equivalent.

Corollary 3.26. The category of superselection sectors is an invariant of the
quantum phase.

3.4.4 Long-Range Entanglement and Trivial Sectors

The existence of anyons in the toric code is a manifestation of the state’s long-
range entanglement. We can make this connection precise within our frame-
work.

Definition 3.27 (Product State). A pure state ω on A is a product state
with respect to a cone Λ if it is quasi-equivalent to a tensor product state, i.e.,
ω ≈ ωΛ ⊗ ωΛc , where ωΛ and ωΛc are states on the algebras of the cone and its
complement.

This is a weaker notion than the usual site-by-site product state; we only require
this structure with respect to a single partition of space into a cone and its
complement.

Proposition 3.28. Let ω be a pure product state with respect to a cone Λ. Then
the von Neumann algebra πω(A(Λ))

′′ is a Type I factor, and Haag duality holds
for this cone: πω(A(Λ

c))′ = πω(A(Λ))
′′.

This has a profound consequence for the superselection structure.

Theorem 3.29 (Naaijkens, Ogata, arXiv:2102.07707). Let ω be a pure state
which is a product state with respect to some cone Λ. Then the superselection
theory with respect to πω is trivial, in the sense that every representation satis-
fying the superselection criterion is a (possibly infinite) direct sum of copies of
πω.

Proof Sketch. By the superselection criterion, any sector π can be localized to
an endomorphism of the cone algebra πω(A(Λ))

′′. But this algebra is a Type I
factor (isomorphic to B(H) for some Hilbert spaceH), which does not admit any
”interesting” normal endomorphisms other than those corresponding to direct
sums of the identity representation.

This means that if a state is a product state, it only has the trivial anyon. We
can now define long-range entanglement in this operator algebraic setting.

Definition 3.30 (Long-Range Entanglement). A state ω is long-range en-
tangled if ω ◦ α is not a product state with respect to any cone for any approx-
imately factorisable automorphism α.

Combining the stability of the category and the triviality of sectors for product
states, we arrive at a key physical insight.
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Corollary 3.31. If a state ω is not long-range entangled, the corresponding
superselection structure ∆DHR(ω) is trivial.

In other words, you need long-range entanglement to have anyons. This rigor-
ously separates topologically ordered phases from trivial (or invertible) phases.

3.4.5 Completeness Revisited: A Subfactor Approach

The completeness proof based on the quantum double model relied on detailed
knowledge of the specific model. An alternative approach exists, based on ideas
from subfactor theory, which is more algebraic.

Consider two disjoint cones, ΛA and ΛB . We define two von Neumann algebras:

1. The algebra generated by observables in both cones: RAB := RΛA
∨RΛB

.

2. The commutant of the algebra of the region outside both cones: R̂AB :=
R′

(ΛA∪ΛB)c .

From locality, it follows that RAB ⊂ R̂AB . In general, this inclusion is strict,
even if Haag duality holds. One can show that this forms an irreducible
subfactor.

The key idea is that the larger algebra R̂AB is bigger precisely because it con-
tains the charge transporters—the intertwiners between sectors localized in
ΛA and ΛB , which are not necessarily contained in RAB .

We can quantify ”how much bigger” R̂AB is using the Jones index, denoted
[R̂AB : RAB ]. The index is ≥ 1, with equality if and only if the algebras are
equal. If the index is finite, it roughly measures the relative size of the algebras.

Theorem 3.32 (Naaijkens, J. Math. Phys. 54 (2013)). The number of irre-
ducible superselection sectors is bounded from above by the index. If each sector
has a conjugate, we have the stronger bound:∑

i

d(ρi)
2 ≤ µAB := inf

ΛA,ΛB

[R̂AB : RAB ]

where d(ρi) is the quantum dimension of the sector ρi.

For abelian quantum double models, one can compute this index. For the toric
code (G = Z2), the index is found to be |G|2 = 4. Since we have explicitly
constructed four sectors with d(ρi) = 1, we have

∑
d2i = 12 + 12 + 12 + 12 = 4.

The bound is saturated, which implies that these must be all the sectors. This
provides an alternative proof of completeness.

3.4.6 Summary

The main takeaways from this lecture series are:

• We can derive a braided C*-category of superselection sectors from
first principles, starting from the local dynamics of a quantum spin system.
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• This requires only a few general assumptions, namely a ground state gap
and (approximate) Haag duality.

• Anyons are identified with representations satisfying the DHR superselec-
tion criterion: π ↾ A(Λc) ∼= π0 ↾ A(Λc) for any cone complement Λc.

• The category can be constructed explicitly in models like the toric code or
quantum double models, yielding the expected results (e.g., RepfD(G)).

• The category is a robust invariant of the quantum phase, stable under
small, local perturbations of the dynamics.

• A non-trivial superselection structure requires the ground state to have
long-range entanglement.
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4.1 Lecture 1

4.1.1 Introduction and Conjectures

The lecture begins with conjectures regarding the classification of quantum
phases of matter. The central idea is the existence of Ω-spectra, denoted B
for bosonic systems and F for fermionic systems, which describe states of spin
and fermionic Hamiltonians, respectively.

For some integer n, one can consider a construction Bn on a sphere Sn relative
to a point. For n = 0, this space is conjectured to be:

B0 = CP∞

Similarly, for fermionic systems, there is a corresponding spectrum Fn, with:

F0 = CP∞ × Z2

With the help of Michael Hopkins and Daniel Freed, it was further conjectured
that these spectra might be related to mapping spaces from cobordism spectra
to the integer Eilenberg-MacLane spectrum IZ:

B
?
= Maps(MSO, IZ(2))

F
?
= Maps(MSpin, IZ(2))

The shift by 2 in IZ(2) is necessary because the second homotopy group of
the target is Z. While progress on these specific conjectures has been limited
without strong assumptions like Lorentz symmetry and reflection positivity,
they motivate a general program for studying gapped phases.

The general program proceeds in steps:

1. Start with concrete objects, such as ground states of gapped Hamilto-
nians.

2. Impose conditions like invertibility to abstract these into a mathematical
structure.

3. This should lead to an abstract Ω-spectrum.

4. Finally, one would calculate this to get a concrete spectrum.

This lecture focuses on the first and last steps, illustrated by the example of free
fermions, where the final concrete spectrum is that of KO-theory. The key prin-
ciples guiding the necessary definitions are locality (properties are determined
by small regions) and softness (definitions are robust under small, arbitrary
deformations).

4.1.2 The Transverse-Field Ising Model (TFIM)

We begin our concrete analysis with a canonical model in condensed matter
physics: the one-dimensional transverse-field Ising model (TFIM).
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Setup and Hamiltonian Consider a chain of N spin- 12 particles (qubits). The
Hilbert space for each spin is C2, and the total Hilbert space is (C2)⊗N . We
use the Pauli matrices to describe operators on each site ℓ:

σx =

Å
0 1
1 0

ã
, σy =

Å
0 −i
i 0

ã
, σz =

Å
1 0
0 −1

ã
An operator acting on site ℓ is written as σαℓ = I ⊗ · · · ⊗ σα ⊗ · · · ⊗ I, where σα
is at the ℓ-th position.

Definition 4.1 (TFIM Hamiltonian). The Hamiltonian for the transverse-field
Ising model on a chain of N sites is given by:

H = −h
N∑
i=1

σzi − J
N−1∑
i=1

σxi σ
x
i+1

Here, h is the strength of the transverse magnetic field, and J is the strength
of the ferromagnetic nearest-neighbor interaction. We consider an open chain
without periodic boundary conditions for now.

We define the spin-up and spin-down basis states as:

| ↑⟩ ≡ |0⟩ =
Å
1
0

ã
, | ↓⟩ ≡ |1⟩ =

Å
0
1

ã
These are the eigenstates of σz. We also use the eigenstates of σx:

| →⟩ = | ↑⟩+ | ↓⟩√
2

, | ←⟩ = | ↑⟩ − | ↓⟩√
2

Limiting Cases and Perturbation Theory We can understand the physics
of the model by examining its limiting cases.

Case 1: No Interactions (J = 0, h > 0) When J = 0, the Hamiltonian is

simply H = −h
∑N
i=1 σ

z
i . The spins are decoupled. The ground state is the one

where all spins align with the field, i.e., all spins are up:

|ψ0⟩ = | ↑↑ . . . ↑⟩

The ground state energy is E0 = −Nh. An elementary excitation consists of
flipping a single spin at site j.

|ψj⟩ = | ↑ . . . ↑ ↓︸︷︷︸
j

↑ . . . ↑⟩

The energy of this state is Ej = −Nh+2h. The energy cost to create one such
excitation (a ”quasi-particle”) is 2h. These excitations are static; a flipped spin
at site j remains at site j.
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Case 2: Ferromagnetic Limit (h = 0, J > 0) When h = 0, the Hamiltonian

is H = −J
∑N−1
i=1 σxi σ

x
i+1. To minimize the energy, all adjacent spins must have

the same orientation in the x-direction. This leads to two degenerate ground
states:

| →→ · · · →⟩ and | ←← · · · ←⟩
The elementary excitations in this case are domain walls, which are boundaries
between regions of oppositely oriented spins, e.g., | →→ | ←←⟩.

Case 3: Perturbative Regime (J ≪ h) Let’s consider a small interaction
term J as a perturbation to the J = 0 case. The full Hamiltonian is H =
H(0) + V , where H(0) = −h

∑
σzi and V = −J

∑
σxi σ

x
i+1.

The single-spin-flip states {|ψj⟩} are degenerate eigenstates of H(0) with energy
Ep = E0 + 2h. The perturbation V mixes these states. The operator σxi σ

x
i+1

flips spins at sites i and i+1. When it acts on a state with one flipped spin, say
at site j, it can move the flipped spin. For example, the term σxj−1σ

x
j acting on

|ψj⟩ produces a state proportional to |ψj−1⟩.

The effective Hamiltonian acting on the subspace of single quasi-particle states
is called the quasi-particle Hamiltonian, Hsp. We find its matrix elements by
projecting H onto this subspace.

⟨ψk|H|ψj⟩ = (E0 + 2h)δkj + ⟨ψk|V |ψj⟩

After subtracting the ground state energy E0, the effective Hamiltonian for the
quasi-particle at site j is:

Hsp|ψj⟩ = (2h)|ψj⟩ − J |ψj−1⟩ − J |ψj+1⟩

This describes a particle hopping on a 1D lattice. For a periodic chain of length
N , the eigenvectors are plane waves:

|ψ(q)⟩ =
N∑
j=1

eiqj |ψj⟩, with q =
2πk

N
for k ∈ {0, . . . , N − 1}

The corresponding eigenvalues give the energy dispersion of the quasi-particles:

E(q) = 2h− 2J cos(q)

For a chain with open boundary conditions, the eigenvectors are standing waves,
e.g., ∝ sin(qL), with quantized momenta q = πk

N+1 .

The quasi-particles are now dynamic; they propagate with a group velocity

vg =
∂E(q)
∂q = 2J sin(q).

4.1.3 Exact Solution via Jordan-Wigner Transformation

The TFIM is special because it can be solved exactly for any h and J . The key
is the Jordan-Wigner (JW) transformation, which maps the spin operators to
fermionic operators.
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Definition 4.2 (Majorana Fermion Operators). We introduce a pair of opera-
tors, C2ℓ−1 and C2ℓ, for each spin site ℓ = 1, . . . , N . They are defined in terms
of the spin operators as follows:

C2ℓ−1 =

(
ℓ−1∏
k=1

σzk

)
σxℓ

C2ℓ =

(
ℓ−1∏
k=1

σzk

)
σyℓ

The string of σzk operators is non-local. These operators Cj are Hermitian (C†
j =

Cj), square to the identity (C2
j = 1), and anti-commute for different indices

(CjCk = −CkCj for j ̸= k).

Proposition 4.3 (Clifford Algebra). The Majorana operators {Cj}2Nj=1 are gen-
erators of a real Clifford algebra, satisfying the relation:

CjCk + CkCj = 2δjkI

We can visualize this mapping by replacing each spin site ℓ with a box containing
two ”Majorana modes,” C2ℓ−1 and C2ℓ.

1 2 . . . ℓ

C1, C2 C3, C4 C2ℓ−1, C2ℓ

In terms of these Majorana operators, the TFIM Hamiltonian becomes quadratic.
We need the following identities:

• σzℓ = −iσxℓ σ
y
ℓ = −i

Ä∏ℓ−1
k=1 σ

z
k

ä−1
C2ℓ−1

Ä∏ℓ−1
k=1 σ

z
k

ä−1
C2ℓ = −iC2ℓ−1C2ℓ.

• σxℓ σ
x
ℓ+1 = C2ℓ−1(

∏
k σ

z
k)

−1(
∏
k σ

z
k)C2ℓ+1 = −iC2ℓC2ℓ+1. (A careful deriva-

tion gives σxℓ σ
x
ℓ+1 = σxℓ (σ

z
ℓ )σ

y
ℓ+1 = (−iσyℓ )σ

y
ℓ+1 = · · · = −iC2ℓC2ℓ+1)

The Hamiltonian becomes:

Theorem 4.4 (Majorana Chain Hamiltonian). The TFIM Hamiltonian is equiv-
alent to a quadratic Hamiltonian of Majorana fermions, often called the Majo-
rana chain:

H = ih

N∑
i=1

C2i−1C2i + iJ

N−1∑
i=1

C2iC2i+1

This describes nearest-neighbor ”hopping” terms for Majorana fermions. The h
term couples Majoranas within a site, and the J term couples Majoranas between
adjacent sites.

4.1.4 Quadratic Fermion Hamiltonians

The Majorana form of the TFIM is an instance of a general class of solvable
models.
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Definition 4.5 (General Quadratic Hamiltonian). A general quadratic Hamil-
tonian for Majorana fermions can be written as:

H(A) =
i

4

2N∑
j,k=1

AjkCjCk

where A is a 2N × 2N real, anti-symmetric matrix.

For the TFIM, the matrix A has a block tri-diagonal structure. For a 2×2 block
corresponding to sites i and i+ 1, the matrix of coefficients is proportional to:

A ∝

Ü
0 2h 0 0
−2h 0 2J 0
0 −2J 0 2h
0 0 −2h 0

ê
The operators −iH(A) form a representation of the Lie algebra so(2N):

[−iH(A),−iH(B)] = −iH([A,B])

where [A,B] is the matrix commutator.

Diagonalization and Ground State Any real anti-symmetric matrix A can
be brought to a canonical block-diagonal form by an orthogonal transformation
Q ∈ O(2N):

QTAQ =

N⊕
ν=1

Å
0 Eν
−Eν 0

ã
, Eν ≥ 0

The values {Eν} are related to the energies of the fermionic modes.

To find the ground state, we define a set of annihilation operators. A standard
choice is:

aℓ =
C2ℓ−1 + iC2ℓ

2
, a†ℓ =

C2ℓ−1 − iC2ℓ

2

The ”bare” vacuum |0⟩ is the state annihilated by all aℓ: aℓ|0⟩ = 0 for all ℓ. This
vacuum corresponds to a choice of complex structure, an operator B with
B2 = −1 that partitions the Majorana operators into annihilation and creation
parts. For the standard choice above, B is the matrix mapping C2ℓ−1 → C2ℓ

and C2ℓ → −C2ℓ−1.

The Hamiltonian H(A) is generally not diagonal in this basis. The orthogonal
matrix Q defines a new basis of Majorana operators C̃j =

∑
kQkjCk. In this

new basis, the Hamiltonian takes the block-diagonal form:

H =
i

4

N∑
ν=1

Eν(C̃2ν−1C̃2ν − C̃2νC̃2ν−1) =
i

2

N∑
ν=1

EνC̃2ν−1C̃2ν
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We can then define a new set of annihilation operators (”quasi-particle opera-
tors”):

ãν =
C̃2ν−1 + iC̃2ν

2

The ground state of the Hamiltonian H(A), denoted |ψA⟩, is the state annihi-
lated by all the new operators:

ãν |ψA⟩ = 0 for all ν = 1, . . . , N

This state |ψA⟩ is the true ground state of the TFIM. The operators ã†ν create
quasi-particle excitations above this ground state with energy Eν . The full
spectrum of the TFIM is thereby determined.
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4.2 Lecture 2

4.2.1 Diagonalization of Quadratic Majorana Hamiltonians: A Re-
cap

We begin by recalling the general procedure for solving a quadratic Majorana
Hamiltonian of the form H(A) = i

4

∑
j,k AjkCjCk, where A is a real, anti-

symmetric 2N × 2N matrix.

The algorithm is as follows:

1. Diagonalize A: Since A is real and anti-symmetric, its eigenvalues are
purely imaginary and come in conjugate pairs ±iϵℓ (with ϵℓ ≥ 0). We
can find an orthogonal matrix Q ∈ O(2N) such that A is brought to a
block-diagonal form:

QTAQ =

N⊕
ℓ=1

Å
0 ϵℓ
−ϵℓ 0

ã
The columns of Q are constructed from the eigenvectors of A. If AUℓ =
iϵℓUℓ, then Uℓ is a complex vector, and its real and imaginary parts can
be used to form two orthogonal columns of Q.

2. Define New Operators: We use Q to define a new basis of Majorana
operators:

C̃j =

2N∑
k=1

(QT )jkCk =

2N∑
k=1

QkjCk

From these, we form a new set of fermionic annihilation operators (quasi-
particle operators):

ãℓ =
C̃2ℓ−1 + iC̃2ℓ

2

3. Solve the System: The Hamiltonian expressed in terms of these new
operators is diagonal:

H(A) =

N∑
ℓ=1

ϵℓ
2
(2ã†ℓ ãℓ − 1) =

N∑
ℓ=1

ϵℓ

Å
ñℓ −

1

2

ã
where ñℓ = ã†ℓ ãℓ is the number operator for the ℓ-th quasi-particle mode.

The ground state (new vacuum) |Ψ̃0⟩ is the state annihilated by all ãℓ.

The excited states are created by applying ã†ℓ to the ground state. The
energy of an excitation is ϵℓ.
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4.2.2 Application to the Majorana Chain

Let’s apply this to the Majorana chain Hamiltonian, which is H(A) for a specific
A representing nearest-neighbor couplings.

H = ih

N∑
i=1

C2i−1C2i + iJ

N−1∑
i=1

C2iC2i+1

If we impose periodic boundary conditions (coupling siteN to site 1), the system
becomes translationally invariant. We can use a Fourier transform to diagonalize
the matrix A. The eigenvectors take the form of plane waves, characterized by
a momentum q. For each q, the problem reduces to diagonalizing a 2×2 matrix
A(q). The spectrum of this matrix gives the quasi-particle energy dispersion
ϵ(q).

The resulting dispersion relation is:

ϵ(q) = 2|h− Jeiq| = 2
»

(h− J cos q)2 + (J sin q)2

The system has an energy gap (all ϵ(q) > 0) unless the expression under the
square root vanishes. This happens only when q = 0 and |h| = |J |. The line
|h| = |J | is a phase boundary separating two distinct phases.

Boundary Effects and Majorana Zero Modes The analysis above for the
periodic chain reveals a subtlety. The Transverse-Field Ising Model (TFIM)
in the limit h = 0, J > 0 has two degenerate ground states (| → · · · →⟩ and
| ← · · · ←⟩). However, our Majorana chain solution with periodic boundary
conditions has a unique ground state unless |h| = |J |.

The discrepancy arises from the non-local nature of the Jordan-Wigner trans-
formation. A periodic spin chain does not map to a simple periodic Majorana
chain. If we instead consider the original open-boundary chain, the picture
becomes consistent.

Let’s analyze the two limiting cases for the open chain:

1. Trivial Phase (J = 0, h > 0): The Hamiltonian only contains terms
ihC2i−1C2i. The Majorana operators are paired up within each site. All
modes are gapped with energy 2h. The ground state is unique.

. . .
h h h h

2. Topological Phase (h = 0, J > 0): The Hamiltonian contains terms
iJC2iC2i+1. The Majorana operators are paired between adjacent sites.

. . . . . .
J J J

In this configuration, the two Majorana operators at the ends of the chain,
C1 and C2N , are left unpaired. They do not appear in the Hamiltonian.
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These two operators combine to form a single fermionic mode ã0 = (C1 +
iC2N )/2 which has exactly zero energy (ϵ0 = 0). This is a Majorana
zero mode.

The existence of this zero mode means the ground state is two-fold degenerate:
the mode can be empty (n0 = 0) or occupied (n0 = 1) at no energy cost. This
correctly reproduces the two-fold degeneracy of the ferromagnetic Ising model.
The presence of such protected, localized boundary modes is the hallmark of a
topological phase.

4.2.3 The Big Picture: A Hierarchy of Gapped Phases

The Majorana chain provides a concrete example that fits into a larger classi-
fication scheme for phases of matter. We can think of a hierarchy of classes of
systems, each contained within the next:

Free Fermion ⊆ Invertible ⊆ Topological ⊆ Gapped (in the bulk)

The defining features that distinguish these classes are:

• Gapped (in the bulk): The most general class. Excitations in the
bulk of the system cost a finite amount of energy, but the system may
have complex non-universal properties. Examples include systems with
fractons.

• Topological: These phases are robust against local perturbations and
deformations of the geometry. They are characterized by universal prop-
erties. They may host anyons (quasi-particles with non-trivial braiding
statistics, like in the Toric Code) and/or protected ungappable bound-
ary modes.

• Invertible: A special class of topological phases that do not have anyons.
They are ”invertible” in the sense that for any system, there exists an ”in-
verse” system such that their combination is trivial (can be continuously
deformed to a simple product state without closing the bulk energy gap).
They may still have ungappable boundary modes (e.g., the Integer Quan-
tum Hall Effect or our topological Majorana chain).

• Free Fermion: Systems described by quadratic Hamiltonians of fermions.
These are necessarily invertible.

4.2.4 Invertibility in Zero Dimensions

Let’s make the definition of invertibility precise, starting with the simple case
of 0-dimensional systems (i.e., just a single matrix A, not an extended system).

Definition 4.6 (Invertibility for d = 0). A gapped free fermion system described
by a real, anti-symmetric matrix A is invertible if the combined system A ⊕
(−A) can be continuously connected to a trivial gapped system without closing
the energy gap.
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Proof. Let the initial system be A ⊕ (−A), which acts on the space M ⊕M .

This can be written as the matrix A0 =

Å
A 0
0 −A

ã
. Let the trivial system be

A1 =

Å
0 A
−A 0

ã
. We want to find a path A(θ) for θ ∈ [0, π/2] that connects A0

to A1 while remaining gapped. Consider the path:

A(θ) = cos(θ)A0 + sin(θ)A1 =

Å
cos(θ)A sin(θ)A
− sin(θ)A − cos(θ)A

ã
To check the gap, we compute −A(θ)2:

−A(θ)2 = −
Å
(cos2 θ − sin2 θ)A2 0

0 (cos2 θ − sin2 θ)A2

ã
= cos(2θ)

Å
−A2 0
0 −A2

ã
For θ ∈ [0, π/4], cos(2θ) > 0. If the original system is gapped, i.e., −A2 ≥
∆2I > 0, then −A(θ)2 ≥ cos(2θ)∆2I, so the gap remains open. A similar path
connects A1 to a completely trivial matrix. Thus, A⊕ (−A) is deformable to a
trivial state.

4.2.5 A Framework for Locality

To extend these ideas to realistic, spatially extended systems, we need a rigorous
way to handle locality.

Local Matrices Let S ⊆ Rn be a set of sites. For each site x ∈ S, we associate
a finite-dimensional Euclidean space Mx. The total space is M =

⊕
x∈SMx.

Definition 4.7 (Local Matrix). A matrix (linear operator) A :M →M is called
R-local if its matrix elements Axy : My → Mx are zero whenever the distance
d(x, y) > R. The space of all R-local matrices is denoted LM(S,M,R).

A crucial tool for working with local operators is the following lemma, which
shows that a global property (like a norm bound) can be inferred from local
checks.

Lemma 4.8 (Locality Lemma). Let M be an R-local operator. If for every ball
D of radius R′ (with R′ ≫ R), the norm of the restriction of M to the subspace
associated with D is bounded, ∥MD∥ ≤ a, then the norm of the full operator M
is bounded:

∥M∥ ≤ a
Å
1 +O

Å |D|
R′

ãã
where the constant in the O(·) notation depends on the dimension n. This means
that properties that hold locally on patches of a certain size extend to the entire
system.

Bulk Gap for Extended Systems With the concept of locality, we can define
a robust notion of a bulk energy gap that is insensitive to what happens at the
boundaries. We must ignore a ”margin” near the boundary of the system.
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Definition 4.9 (Bulk Gap). An R-local, anti-symmetric matrix A has a bulk
gap ∆ if the matrix −A2 (which is 2R-local) is positive definite away from the
boundaries. More precisely, for any sub-region S′ ⊆ S that is sufficiently far
from the boundary of S, the restriction of −A2 to S′ satisfies:

(−A2)|S′ ≥ ∆2I

It is critical that we first square the operator, then restrict to the bulk.
Squaring mixes information locally (a product of two R-local operators is 2R-
local), and only after this local information has been combined do we discard
the boundary region where the physics might be gapless. This procedure can
be formalized using quotient spaces, where we mod out by operators that only
have support in the margin.

This local and soft framework allows for deformations like stretching or com-
pressing parts of the lattice. So long as these deformations are smooth enough,
properties like the bulk gap are preserved. This is the principle of softness,
which, together with locality, is essential for building a robust theory of topo-
logical phases.
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4.3 Lecture 3

4.3.1 Recap: Local Matrices and the Bulk Gap

We begin by recalling the framework of local matrices developed in the previous
lecture.

Definition 4.10 (Space of Local Matrices). Let S be a metric space of sites,
and let S0 ⊆ S be a specified boundary region. To each site x ∈ S, we associate
a finite-dimensional Euclidean space Mx. The space of r-local matrices on the
pair (S, S0), denoted LM(S,M, r), is the space of operators A on the total space
M =

⊕
x∈SMx whose matrix elements Axy : My → Mx vanish if the distance

d(x, y) > r.

For example, consider three sites {1, 2, 3} on the real line, each with an associ-
ated space R4. A matrix element coupling sites 1 and 2 with strength J might
look like:

A12 =

Ü
0 0 0 0
0 0 J 0
0 −J 0 0
0 0 0 0

ê
where J is a real number. We will often use diagrams to represent such matrices.

The definition of a bulk energy gap was formulated to be robust against trun-
cations of the system.

Definition 4.11 (Bulk Gap). An r-local anti-symmetric matrix A has a bulk
gap ∆ > 0 if the operator X = −A2 − ∆2I is positive semi-definite after
restricting to the interior of the system. We first compute the 2r-local matrix
−A2 on the full space S, and then we take its sub-matrix corresponding to the
region S \margin(S0), where the margin is an R-neighborhood of the boundary
S0. The matrix elements of A2 near the boundary are considered unreliable
(”garbage”) due to truncation effects, and this procedure discards them.

The framework relies on the Locality Lemma, which states that if a local
operator has a norm bounded by a on all small balls of radius R′, its global
norm is also bounded, ∥X∥ ≤ a(1 + O(R/R′)). This lemma is known to hold
in Euclidean space and, more generally, in spaces where the volume does not
grow too quickly (e.g., faster than polynomially). It breaks down in spaces with
exponential volume growth, such as hyperbolic spaces or some trees.

4.3.2 Softness: Fundamental Operations

The principle of softness means our definitions should be robust under small,
continuous deformations. This is realized through several key operations.

Wiggling and Enlarging We can always enlarge the local Hilbert spaces
Mx → Mx ⊕ R2k by adding trivial, gapped degrees of freedom (e.g., copies of

the matrix

Å
0 1
−1 0

ã
). This creates more ”room” in the system. This extra
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room allows us to ”wiggle” the system, meaning we can continuously move the
lattice sites around, provided the displacement is small compared to the locality
radius.

Spatial InterpolationGiven a one-parameter family of local matrices {A(t)}t∈[0,1]

on a space S′, we can construct a single, spatially-varying matrix Ã on a larger
space S. Let f : S → [0, 1] be a map from our physical space to the parameter
space (e.g., f(x) = x/L).

Definition 4.12 (Spatial Interpolation). The spatially interpolated matrix Ã is
defined by its matrix elements:

Ãxy =
1

2
((A(f(x)))xy + (A(f(y)))xy)

The averaging of f(x) and f(y) is a technical detail to ensure Ã is exactly anti-
symmetric. Conceptually, the matrix at position x is simply A(f(x)).

This allows us to ”glue” different phases together. For example, given a path
A(t) from a matrix A to another matrix B, we can construct a single system
that smoothly transitions from phase A on one side to phase B on the other.

Folding Folding is a powerful technique, analogous to the Eilenberg-Mazur
swindle, that allows us to improve the locality of a matrix at the cost of increas-
ing the number of degrees of freedom.

The process is as follows:

1. Start with a system described by a matrix A.

2. Using spatial interpolation, create a new system composed of A and its
inverse −A, glued at one end. This combined system A ⊕ (−A) can be
created from a trivial system.

3. Glue the other ends of A and −A together, forming a closed loop.

4. This process can be repeated. We can create any even number of layers,
A⊕ (−A)⊕A⊕ . . . .

5. This layered object, which exists on a 1D line, can be geometrically rear-
ranged (”wiggled”) into a new configuration where the layers are stacked
vertically. This new matrix Ã is homotopic to the original A.

(1) Start:
A

(2) Fold:

A

−A

(3) Rearrange:
A

−A
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The key insight is that by stretching this new configuration in the vertical
direction (which corresponds to enlarging the local Hilbert spaces Mx), we can
make the matrix arbitrarily local in the horizontal (physical) direction. This
allows us to take a limit where the locality radius r → 0.

4.3.3 Constructing the Ω-Spectrum

These tools allow us to define a sequence of topological spaces {Ln} and show
they form an Ω-spectrum.

Definition 4.13 (Spaces of Local Gapped Matrices). Let LA(S,M, r,∆) be
the space of r-local, anti-symmetric matrices on (S,M) with a bulk gap ∆. We
define Ln to be the space of local matrices on the n-dimensional disk Dn relative
to its boundary ∂Dn. We take a limit where the system size becomes infinite,
the locality radius r → 0, and the gap ∆→ 1 (gap amplification via folding).

Ln = lim
r→0,∆→1

⋃
M

LA(Dn,M, r,∆)

While this limit is complicated, its homotopy type can be rigorously defined using
concepts like persistent homology or by defining the space via its representable
functor of maps from test spaces X.

To show that {Ln} is an Ω-spectrum, we must construct homotopy equivalences
αn : Ln → Ω(Ln+1) and βn : Ω(Ln+1)→ Ln.

The Suspension Map αn : Ln → Ω(Ln+1) An element of Ω(Ln+1) is a map
from the circle S1 to Ln+1, i.e., a loop of (n+1)-dimensional local matrices based
at the trivial matrix. We construct this loop by ”pumping” an n-dimensional
system A ∈ Ln through the extra dimension.

The process for α0 : L0 → Ω(L1):

1. Start with a trivial 1D system (a collection of decoupled, gapped dimers).
Let this be the basepoint of our loop at time t = 0.

2. For t ∈ [0, 1/2], we use a path that deforms a pair of trivial dimers
(A0,−A0) into our desired system and its inverse (A,−A). We do this
for alternating pairs along the line.

3. For t ∈ [1/2, 1], we annihilate the pairs in a shifted pattern.

4. The net result is that after one full cycle (t = 1), the system returns to the
trivial state, but a copy of A has been effectively transported or ”pumped”
from one end of the system to the other.

This process creates a loop in the space of 1D local matrices, which is an element
of Ω(L1).

The Loop Map βn : Ω(Ln+1) → Ln The map βn is simply spatial interpola-
tion. An element of Ω(Ln+1) is a family of matrices A(t) parameterized by the
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loop coordinate t ∈ S1. We construct a single n-dimensional matrix by iden-
tifying the spatial coordinate x with the loop parameter t. We slice the loop
diagram diagonally.

Theorem 4.14. The maps αn and βn are homotopy inverses:

βn ◦ αn ≃ idLn and αn ◦ βn ≃ idΩ(Ln+1)

Therefore, the sequence of spaces {Ln} forms an Ω-spectrum.

The proof relies on the folding trick. These arguments are completely general
and rely only on the properties of invertibility, locality, and softness. They
can be applied to other systems, such as interacting Hamiltonians or quantum
cellular automata, provided these properties can be established.

4.3.4 Towards Computing the Spectrum

This general construction proves the existence of an Ω-spectrum but does not
tell us what it is. To compute the homotopy groups πk(Ln), we need more
structure.

The key is to consider matrices with additional Clifford symmetries. Let Lnp,q
be the space of n-dimensional local matrices that anti-commute with p Clifford
generators (C2

i = 1) and q anti-Clifford generators (C2
j = −1).

• Real Bott periodicity for Clifford algebras implies that the algebraic struc-
ture only depends on p− q (mod 8).

• The construction of the Ω-spectrum can be shown to respect these sym-
metries, leading to a proof of topological Bott periodicity: πk(L

n
p,q)
∼=

πk(L
n
p−q,0).

This structure provides a concrete algorithm for classifying a given free fermion
system:

1. An n-dimensional system in Ln can be mapped to an equivalent (n− 1)-
dimensional system with an extra Clifford symmetry, i.e., an element of
Ln−1
1,0 .

2. By iterating this n times, any system in Ln can be mapped to an equivalent
system in L0

n,0.

3. A system in L0
n,0 is just a single finite matrix with n Clifford symmetries.

Its classifying invariant can be computed using standard linear algebra
(e.g., by computing the sign of a Pfaffian).

This algorithm allows one to take a finite patch of any free fermion system and
compute its topological invariant, determining which phase it belongs to in the
KO-theory classification.
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4.4 Lecture 4

4.4.1 Computing the Free Fermion Spectrum via Clifford Symme-
tries

In the previous lecture, we established that the spaces of local, gapped, anti-
symmetric matrices, denoted {LAn}, form an Ω-spectrum via the maps αn :
LAn → Ω(LAn+1) and βn : Ω(LAn+1) → LAn. This abstract fact does not,
however, identify the spectrum. To compute it, we introduce additional struc-
ture: Clifford symmetries.

Definition 4.15 (Matrices with Clifford Symmetries). Let Clp,q be the real
Clifford algebra with p generators {e+i } squaring to +1 and q generators {e−j }
squaring to −1. We consider a space of matrices C (e.g., symmetric or anti-
symmetric) that act on a representation space of Clp,q and anti-commute with
all p+ q generators:

Cek = −ekC for all generators ek

The space of such n-dimensional, local, anti-symmetric matrices is denoted
LAp,qn .

There is a fundamental relationship, a form of Morita equivalence, between
matrices of different symmetry types.

Proposition 4.16 (Morita Equivalence). The space of anti-symmetric matrices
with (p, q) Clifford symmetries is isomorphic to the space of symmetric matrices
with (q + 2, p) Clifford symmetries.

LAp,qn
∼= LSq+2,p

n

Remark 4.17 (Examples of Clifford Symmetries). A common representation

for the first two positive generators on a space M ⊕M is e+1 =

Å
I 0
0 −I

ã
and

e+2 =

Å
0 I
I 0

ã
. A symmetric matrix C ∈ LS1,0

0 (anti-commuting with e+1 ) must

have the block form C =

Å
0 A
AT 0

ã
. If we further demand C2 = I, then A must

be an orthogonal matrix. This establishes a correspondence between LS1,0
0 and

orthogonal matrices.

A key fact of Clifford algebras is Bott periodicity: the algebraic structure de-
pends only on p− q (mod 8). We will show that this algebraic periodicity man-

ifests as a topological periodicity in our spectrum, LAp,qn
∼= LA

p−q (mod 8),0
n .

Decomposition of the Suspension Map The suspension map αn : LAp,qn →
Ω(LAp,qn+1) can be decomposed into two more fundamental maps, µ and ν, when
Clifford symmetries are present. Assume p > 0.

αn : LAp,qn
µ−→ LAp−1,q

n+1
ν−→ Ω(LAp,qn+1)
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1. The map µ: This map takes an n-dimensional system A ∈ LAp,qn and
produces an (n + 1)-dimensional system. The matrix A anti-commuting

with e+1 has a block form A =

Å
B C
−CT D

ã
. From these blocks, we con-

struct a new 1D matrix—a generalized Majorana chain—with on-site and
hopping terms determined by B,C,D. This new system lives in n + 1
dimensions and has lost the e+1 symmetry, so it belongs to LAp−1,q

n+1 . The
explicit construction for µ(A) is a periodic 1D chain built from the follow-
ing template:

µ(A) =

Å
I 0
0 −I

ã
⊗B +

Å
0 −I
I 0

ã
⊗ C + derivative term ∝

Å
0 I
−I 0

ã
This construction can be shown to preserve the energy gap.

2. The map ν: This is a standard construction in K-theory. To get from

LAp−1,q
n+1 to Ω(LAp,qn+1), we first ”double” a system Ã ∈ LAp−1,q

n+1 to

Ç
Ã 0

0 −Ã

å
.

This doubled system gains two new Clifford generators, e.g.,

Å
0 I
I 0

ã
andÅ

0 −iI
iI 0

ã
. Let’s say we gain a negative generator e−. We then construct

a path of matrices for t ∈ [0, 1]:

A′′(t) = cos

Å
πt

2

ã
Ã+ sin

Å
πt

2

ã
e−

This path connects Ã to e−. By creating a path from a basepoint to Ã,
then along this path, and back, we construct a loop, which is an element
of Ω(LAp,qn+1).

Algorithmic Dimensional Reduction The power of this decomposition lies
in its inverse. The composition βn◦ν gives a map that reduces dimension by one
while adding a Clifford symmetry. By iterating this procedure n times, we can
map any system in LAn to an equivalent system in LA0 with n extra Clifford
symmetries. The classification problem for an n-dimensional field theory is thus
reduced to a zero-dimensional linear algebra problem.

4.4.2 Beyond Free Fermions: Interacting Systems

The framework of local, invertible systems is more general than just free fermions.
We can consider interacting fermionic and bosonic systems. The hierarchy of
phases is:

LAn(free) ⊆ Fn(invertible fermionic) ⊆ Topon(topological) ⊆ Gappedn

We denote the corresponding spectra as LA, F , and B. Their stable homotopy
groups πk(E) classify phases in dimension −k. The table below summarizes the
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known and conjectured homotopy groups.1

n ‘πn(LA) + πn(F ) =‘ ‘πn(B)‘
3 1

2
2 Z Z
1 0 0
0 Z2 Z2

-1 Z2 Z2

n′

0 0 0
1 Z Z
2 Z2 Z2

A remarkable relation exists between the bosonic and fermionic worlds. The
generator of π−2(B) ∼= Z is the E8 state, a 2D bosonic phase whose edge theory
is the E8 WZW model (c− = 8). The generator of π−2(LA) ∼= Z is the p+ip
superconductor (c− = 1/2). The inclusion map U : LA → F and the forgetful
map V : B → F relate these generators:

16 · U(p+ip) = V (E8)

4.4.3 Connection to Cohomology and Physics

The structure of these spectra can be understood through the lens of generalized
cohomology theories.

• The space of states in 0 dimensions, B0, is the space of normalized vectors
in a Hilbert space, which is CP∞. Thus, B0 ≃ CP∞ ≃ K(Z, 2).

• This implies the existence of a map from the Eilenberg-MacLane spectrum
to the spectrum of bosonic phases: IZ[2]→ B.

• This abstract map has a physical realization. Given a symmetry group G,
it produces a map from group cohomology to SPT phases: Hn+2(BG;Z)→
[BG,Bn]. This provides a top-down derivation for the classification of
Symmetry Protected Topological phases.

A map in the other direction, from phases to cohomology, Bn(X)→ IZn+2(X),
also exists. It can be constructed abstractly from the structure of the spectra.
Physically, this map is realized by the higher Berry curvature.

This corresponds to a physical observable: the chiral central charge c−. For
a gapped 2D system, the edge will have a thermal energy flow given by:

Energy flow =
πc−
12ℏ

T 2

1The table is transcribed literally from the blackboard. The column headers are unconven-
tional. The column ‘πn(LA) + πn(F ) =‘ seems to list values for πn(F ), which are expected
to match πn(LA) where defined. Standard K-theory gives π−3(LA) = π−1(KO) = Z2, not
1
2
. The entry ‘1/2‘ may refer to a specific physical quantity like a chiral central charge.
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The map B2 → H4(X,Z) evaluated on a phase with chiral central charge c−
gives an integer value of 2c−. The argument implies that c− is well-defined
modulo 12. Further results by Nikita Satienko show it is well-defined modulo
24. While it is believed that c− is a well-defined rational number for any gapped
phase, a complete proof is still missing. The existence and quantization of this
invariant is crucial for establishing that the maps between the known phases
(LA,F,B) are isomorphisms.
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