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Part I

Courses

There were four courses, each spanning five days with sessions lasting 90 min-
utes per day.

Week 1: Monday, June 24 to Friday, June 28

e Samuel Grushevsky: The Integrable Systems Approach To The Schottky
Problem And Related Questions

We will review the integrable systems approach to the classical Schottky
problem of characterizing Jacobians of Riemann surfaces among all prin-
cipally polarized complex abelian varieties. Starting with the Krichever’s
construction of the spectral curve from a pair of commuting differential
operators, we will proceed to show that theta functions of Jacobians sat-
isfy the KP hierarchy, and will review Novikov’s conjecture (proven by
Shiota) solving the Schottky problem by the KP equation. We will finally
discuss some of the motivation for Krichever’s proof of Welters’ trisecant
conjecture, and related characterizations for Prym varieties.

e Pavel Etingof: The Hitchin System and its Quantization

Let G be a simple complex Lie group. I will review the classical Hitchin
integrable system on the cotangent bundle to the moduli space Bung(X)
of principal G-bundles on a smooth complex projective curve X (possibly
with punctures), as well as its quantization by Beilinson and Drinfeld using
the loop group LG. I will explain how this system unifies many important
integrable systems, such as Toda, Calogero-Moser, and Gaudin systems.
Then T'll discuss operators (for the dual group GV), which parameterize
the (algebraic) spectrum of the quantum Hitchin system. Finally, I will
discuss the analytic problem of defining and computing the spectrum of
the quantum Hitchin system on the Hilbert space L?(Bung(X)), and will
show that (modulo some conjectures, known in genus 0 and 1) this spec-
trum is discrete and parameterized by operators with real monodromy.
Moreover, we will see that the quantum Hitchin system commutes with
certain mutually commuting compact integral operators H, v called Hecke
operators (depending on a point z € X and a representation V of GV),
whose eigenvalues on the quantum Hitchin eigenfunction 1, corresponding
to a real operators L are real analytic solutions 3(z, %) of certain differ-
ential equations 08 = 0, 98 = 0 associated to L and V. This constitutes
the analytic Langlands correspondence, developed in my papers with E.
Frenkel and Kazhdan following previous work by Braverman—Kazhdan,
Kontsevich, Langlands, Nekrasov, Teschner, and others. I will review the



analytic Langlands correspondence and explain how it is connected with
arithmetic and geometric Langlands correspondence.

Week 2: Sunday, June 30 to Friday, July 5 (minus Tuesday, July 2 which is
Igor Krichever’s Day)

e Andrei Okounkov: From Elliptic Genera to Elliptic Quantum Groups

This course will be an example-based introduction to elliptic cohomology,
Krichever elliptic genera, rigidity, and related topics. We will work our
way towards the geometric construction of elliptic quantum groups.

e Nikita Nekrasov: Integrable Many-Body Systems and Gauge Theories

Elliptic Calogero-Moser and Toda systems, Gaudin and other spin chains
are algebraic integrable systems which have intimate connections to gauge
theories in two, three, and four dimensions. I will explain two such connec-
tions: first, classical, through Hamiltonian reduction and second, quan-
tum, through dualities of supersymmetric gauge theories.



1 Samuel Grushevsky: The Integrable Systems
Approach To The Schottky Problem And Re-
lated Questions

Abstract

We will review the integrable systems approach to the classical Schot-
tky problem of characterizing Jacobians of Riemann surfaces among all
principally polarized complex abelian varieties. Starting with the Krichever’s
construction of the spectral curve from a pair of commuting differential
operators, we will proceed to show that theta functions of Jacobians sat-
isfy the KP hierarchy, and will review Novikov’s conjecture (proven by
Shiota) solving the Schottky problem by the KP equation. We will finally
discuss some of the motivation for Krichever’s proof of Welters’ trisecant
conjecture, and related characterizations for Prym varieties.
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1.1 Motivation

There are two pieces of motivation, which we tie together:

1.1.1 Motivation #1: Solving differential equations

Our first motivation comes from solving differential equations. While this may
initially seem like a basic approach, it becomes more sophisticated as we pro-
ceed. The theory of linear differential equations is well-established and familiar
to most: for instance, linear equations such as u'+2u = 0 or v’"/+- - -+5u = 0 are
solvable with standard techniques. However, the situation becomes more compli-
cated with nonlinear differential equations, where the coefficients are functions
of z.

Introductory courses on ordinary differential equations often cover nonlinear
equations in a limited way, but the topic is far richer and more complex, leaving
room for deeper exploration.

What does it mean to solve for u7 In the case of linear differential equations, so-
lutions often take the form of elementary functions such as exponentials, which
are easy to solve using established methods. But for more complex equations,
especially those involving nonlinearities, it is unlikely that solutions can be ex-
pressed in terms of elementary functions. Consider, for example, special func-
tions like the Gamma function or hypergeometric functions. Of course, these
functions appear in other situations as well and not just as solutions of differ-
ential equations, but we will use them as an example for motivation.

In some cases, the best way to describe a function is to state that it satisfies
a given differential equation, without necessarily seeking an explicit expression.
However, in this course, ”solving” will mean more than just this minimal char-
acterization. We want to gain additional insights of the function, so our goal
shifts towards constructing the function explicitly.

We are also interested in systems of differential equations. Among these, we will
focus on completely integrable systems. Such systems are characterized by the
property that, even if explicit solutions cannot be determined, all integrals of
motion are known in some form. This naturally leads to the study of algebro-
geometric solutions, a class of solutions determined from algebraic geometry
and constructed using specific geometric data. The foundational work in this
area, and a central focus of this course, lies in the groundbreaking contributions
of Igor Krichever from the 1970s, which established the basis for much of the
modern study in this field.

1.1.2 Motivation #2: Curves

The second motivation arises from the study of curves. In these lectures, we de-
fine a curve as a complex projective curve that is algebraic, compact, connected,
and reduced. Equivalently, it is a compact Riemann surface.



Curves are associated with a wealth of geometric data, including the Jacobian
of a curve, denoted Jac(C). A curve can be embedded into its Jacobian via the
map C < Jac(C), where the Jacobian is a principally polarized abelian variety.
This is a concept we will discuss in more detail later.

The construction C' +— Jac(C) induces an embedding M, — A,, where M,
represents the moduli space of curves of genus g, and A, represents the moduli
space of principally polarized abelian varieties.

This construction is of great interest because Mg, the moduli space of curves,
is inherently a geometric object, which can be studied through complex or alge-
braic geometry. On the other hand, 4,4, the moduli space of abelian varieties,
has a more arithmetic flavor. Since all abelian varieties are quotients of complex
vector spaces, the associated data is more arithmetic in nature.

Curves are associated with a wealth of geometric data, including the Jacobian
of a curve, denoted Jac(C). A curve can be embedded into its Jacobian via the
map C < Jac(C), where the Jacobian is a principally polarized abelian variety.
This is a concept we will discuss in more detail later.

The construction C +— Jac(C) induces an embedding M, — A,, where M,
represents the moduli space of curves of genus g, and A, represents the moduli
space of principally polarized abelian varieties.

This construction is of great interest because My, the moduli space of curves,
is inherently a geometric object, which can be studied through complex or alge-
braic geometry. On the other hand, A,, the moduli space of abelian varieties,
has a more arithmetic flavor. Since all abelian varieties are quotients of complex
vector spaces, the associated data is more arithmetic in nature.

1.1.3 Linking Them Together

The main problem we are concerned with, and the most celebrated result in this
area, is the Schottky problem. This 150 year old problem asks the following
question:

Problem 1.1 (Schottky Problem, 1888). Which abelian varieties are Jacobians
of curves? That is, describe

Jac(My) C A,.

A weaker version of the problem asks:

Problem 1.2 (Weaker Version). Given an embedding C — A, is A = Jac(C)?
That is, given a curve embedded into an abelian variety, is the abelian variety
the Jacobian of a curve?

This weaker version is much simpler because we are provided with much more
data to work with: not only do we have the abelian variety, but we also have the
specific curve embedded within it. The Schottky problem, on the other hand, is



more challenging because it asks: Given an abelian variety, can we find a curve
such that this abelian variety is the Jacobian of that curve?

The connection between the two motivations lies in the idea of solving differ-
ential equations via functions originating from curves. Then, these differential
equations will solve the Schottky problem. The core idea is: starting from a
curve, we’ll be able to construct some solutions to some differential equations.
The fact that we can do this characterizes curves among all abelian varieties.
This means we can try to do similar things starting from an abelian variety and
we will succeed if and only if this abelian variety is Jacobian.

The main result, which is one of the most celebrated in this subject, is Krichever
proof of the Welter’s trisecant conjecture characterizing abelian varieties
as Jacobians among abelian varieties by the property of the Kummer variety
having certain sequences. We will not prove this fully, but rather a slightly
weaker version. We are not yet in a position to understand what these words
mean, and it will take us a while to get into that position.

1.2 Commuting Differential Operators
1.2.1 Formal Eigenfunctions of One Differential Operator
Let L be the general differential operator in one variable x € C, defined as

Z u;(x) e

=0

We are interested in finding the eigenfunctions of the equation:

L - ¥(z) = constant - U(x).
i.e., solving for a formal solution that can be expressed as a power series.
Exercise 1.3. Show that it is "enough” to consider L = ann + E?:_Oz ui(x)d%;.

Theorem 1.4. For all xy € C, there exists a unique formal solution ¥ of
LY = k™U of the form

U(zx) = i Es() ks eh@=w0)
s=0

such that &o(x) = 1 and for all s > 0,&s(xo) = 0.
Remark 1.5. We call this a solution that is normalized at x.

Note that no restriction is placed on k - the theorem holds for any k. This means
that, instead of solving for a single function, we can solve for all eigenfunctions
simultaneously for all possible values of k.

This observation highlights a key difference between this scenario and the finite-
dimensional case in linear algebra. In finite-dimensional spaces, there is a finite
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set of eigenvalues, each associated with a finite-dimensional eigenspace of so-
lutions. However, in this infinite-dimensional context, the eigenvalue can be
deformed, and the solutions will deform smoothly as the eigenvalue is varied.
This is crucial to the whole story.

We denote the solution as ¥(z, k,xg). The proof is elementary:

Proof. Take ¥ = eF(*=20) (1 4+ & (2)k~' + &(2)k~2 + ... ). Differentiating, we
get:

d’ —s k(x—z0)\ _ 1.—s dlgS ! k(x—z0)
%<£S(x)k e O)—k dxi +W+ e 0/,
Thus, at each order £7°, we simply need to solve for the next ;.

Exercise 1.6. Finish the proof.

And we are done.

Corollary 1.7. Any formal solution of LY = k™ has the form

U(x, k) = U(x,k,x0) - A(k, xo).

Once we have the solution that is normalized at z, this corollary tells us that
we can find the rest of the solutions.

Exercise 1.8. Prove the corollary.

1.2.2 Formal Eigenfunctions of Multiple Differential Operators

Consider ,
A" = d
L= () —
T * ; ui(2) dz*

and another differential operator of the same form

dm m—2
dxm + Jz: vl dxj

We assume that m and n are coprime, e.g., n =2, m = 3.

In finite-dimensional linear algebra, consider the case of two linear operators.
When do they share a common eigenfunction? Specifically, if we have two ma-
trices, we must be careful: do we want them to have one common eigenfunction,
or do we want them to have all eigenfunctions in common? This becomes an
even more interesting question in infinite-dimensional spaces. Ideally, we want

11



the operators to share all eigenfunctions, meaning that the operators must com-
mute.

Therefore, the next question to ask is:

Problem 1.9. When is the commutator

(L1, Lo] = 07

Exercise 1.10. Write everything down explicitly for n = 2,m = 3.

Theorem 1.11. Assume we are given Ly and V(x,k,xq). Then for Lo, we

have
LQ‘I’(I‘, k, 3?0)

Ly, Ly, | =
SR TR

= A(k),
where A(k) is independent of .

Proof. If [L1, La] = 0, then LoW(x, k,x¢) is also a k™-eigenfunction of Lj:
LlLQ\I/(SC, /{, Z‘()) = Lng\IJ(.T, k,CC()) = L2 . kn\IJ(l‘7 k,xo).

By the corollary, we have LoWU(x, k,xq) = U(x, k,xo) - A(k,x0). For all x, we
have LoV (z, k,z() = U(x, k, 2() - A(k, x). We want A(k, z() = A(k, x0), so:

U(z, k,xo)ek(wo_wé) = (ek(w_wo) +& (w)k_lek(w_“)>
=) (14 () +..))
which does not equal ¥(z, k, z(). But we can conclude that:
U(x, k, x0)e®®0=%0) = W(x, k,20) - B(k, ).
Comparing A(k,x() and B(k, z() gives us A(k,xzo) = A(k, z().
Exercise 1.12. Finish this.

The other direction: if
LQ\I/(x, ka $0)

\I/(l.a k, 1'0)
then [L1, Lo] = 0, or equivalently,

= A(k),

L1 LoV (x, k,x0) = L1 A(K)V (2, k,x0) = A(k) - K"V (2, k, x0)

for all zyg. Thus, [Li, Ls] has an infinite-dimensional kernel for all xg, which
implies [Ll, LQ] =0.

O

We did one differential operator previously, and two differential operators above.
What about three?
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Corollary 1.13. If [Lq, Ls] = [L1, L3] = 0, then [Ls, L3] = 0.
Proof. For all ¥(x,k,xo) (eigenfunction for Ly),
LoV (x, k,xo) = Aa(k)
and
L3VU(x, k,xo) = As(k)U(x, k, z0)

which imply
[Lg, Lg]\II(J}, k‘, .230) =0.

So [Lg, Ls] has an co-kernel for all k, 2, implying [Lo, L] = 0 and we are done.
O

Theorem 1.14 (Burchnall, Chaundy, 1923). If [L1, L] = 0, then there exists
a polynomial Q(«, B) such that Q(Ly, Ly) = 0.

Proof. Let L(E) be the space of eigenfunctions Ly ¥ = EV¥ (with finite-dimensional
eigenspaces for all ). Then Ly : L(E) — L(FE), and let Qg(a) be the charac-
teristic polynomial of L.

Claim: Qg(«) depends polynomially on FE. Thus, Q(a, 8) € Cla, 3]. Conse-
quently, Q(L1, L2)|z(g) = 0 for all E, implying Q(L1, L2) = 0.

O

Exercise 1.15. Two parts:
1. Show that if [Ly, L] = 0, then Ly = -1
2. For [L1,Ls] =0,dim Ly < m+1.

The reason for focusing on explicit computations is that they play a crucial role
in understanding Krichever’s proof that characterizes Jacobians by their classes.
These computations are an essential part of the proof.

1.3 Curves and Their Jacobians
1.3.1 Fundamental Properties

Now, let’s switch to the other side of the story, focusing on curves. While
these two perspectives will ultimately converge, for now, we can treat them as
distinct. Consider the algebraic curve {Q(«, 3) = 0} C C2, which may posess
singularities. For the purpose of this discussion, we will ignore the singularities,
although they present important challenges in many contexts.

Let C be a complex compact genus g curve. Let’s look at a couple (equivalent)
definitions of the Jacobian.

13



If we look at the fundamental group of C, m(C) has generators A, ..., Ay,
By, ..., By, subject to the relation

g
m(C) = (Ay,...,By)/[[I4:, Bi] = 1.
i=1
Exercise 1.16. Conuvince yourself that this is true.

The homology group H;(C,C) is given by the quotient 71 (C)/[m1(C), m1(C)],
which is isomorphic to Z29, generated by A1,... ,Ag,B1,...,By. Additionally,
there is a symplectic pairing on H!(C,C), defined by the following relations:

(Ai,A;) =0, (Bi,B;) =0, (A;Bj) = 6i;.
Exercise 1.17. Think about this via Poincaré duality, Hodge theory,...

1.3.2 Analytic Definition of the Jacobian and Period Matrix
The analytic definition is as follows:
Definition 1.18.
Jac(C) = HY(C,C)/H*(C, Z).
We can also give the explicit definition:

Definition 1.19. Given Ai,..., Ay, Bi,..., By, there exists a unique basis
Wi, ..., wg € HYO(C,C) such that

/ W; = 52]
Aj
Then the period matrix T of C is

Tij :/ w; € C.
B

J

Theorem 1.20 (Riemann’s Bilinear Relations). 7 is a symmetric matriz and

Imte Mat;yggmemc(R) is positive definite.
Remark 1.21. H, is the Siegel upper half space that is a subset of Matyy,

satisfying these conditions.

Viewing it from this perspective, the Jacobian of C is given by Jac(C) =
C9/(Z9 + 7729), where T € Hy is a period matrix.

14



1.3.3 Moduli Spaces and Complex Tori

Let M, denote the moduli space of genus g curves, and A, the moduli space
of complex g-dimensional tori, which can be expressed as C9/(Z9 + 779) for
7 € Hy. Here, "moduli” refers to isomorphism classes of objects, considered
up to biholomorphism. The key idea is the existence of a map from the Siegel
upper half-space H, to the moduli space of abelian varieties, described by the
quotient A, = H,/Sp(2¢, Z), where Sp(2g, Z) is the symplectic group acting on
the lattice. This map represents a quotient of a g-dimensional complex vector
space by a rank 2g integral lattice.

By Riemann’s bilinear relations, we have
(2% +71729) @z R = CY,

which implies that Z9 4+ 779 defines a non-degenerate lattice in CY9. An isomor-
phism between these lattices corresponds to a linear map that can be lifted to
CY9 — C9, mapping one lattice to another. Such isomorphisms are represented
by elements of GL(2g,Z), and the additional structure of principal polarization
ensures that these transformations are symplectic matrices. While we will not
explore this in further detail now, we will discuss this later.

Definition 1.22. A complex torus is a quotient CI/A, where A ~ Z*9 and
A®zR =CY9. A complex torus is called an abelian variety if there exists an
embedding of it into CPY.

Thus C9/A is isomorphic to an abelian variety A C CP". Why is CP" useful?
From a differential geometry perspective, it is endowed with the Fubini-Study
metric. From the viewpoint of algebraic geometry, we consider the line bun-
dle O(1). We can take the metric/bundle and restrict it to A, which gives a
positive/ample line bundle L on A.

Definition 1.23. A complex principally polarized abelian variety (A, L)
is a projective variety A with an ample line bundle L such that HO(A,L) = 1,
and there is a group structure A x A — A.

Exercise 1.24. Prove that these two definitions of a principally polarized abelian
variety are equivalent.

Remark 1.25. For the exercise, the definition is slightly imprecise. Instead of
focusing directly on the line bundle itself, we should consider its Chern class.
This is important because, in the context of an abelian variety, translation by a
group element can modify the line bundle. Specifically, in a torus, adding a point
to itself results in a translation of the line bundle, which produces a new line
bundle. To avoid this, we focus on the first Chern class c¢1 of the line bundle,
which remains invariant under such translations.

Let’s relate everything to the setup:

15



Theorem 1.26 (Torelli).

My = A
{ {
c — JGO)

18 an embedding. Equivalently, given a principally polarized abelian variety that
s a Jacobian, it is the Jacobian of a unique curve.

1.4 Principal Polarizations and Theta Functions
1.4.1 Principal Polarizations
Let X be an algebraic variety.

Definition 1.27. A polarization of X is c¢i1(L), where L is an ample line
bundle on X.

If X is smooth, is¢; € H;S (X,C)NH?(X,Z). It’s easy to see that the homology
of an abelian variety is just generated by H'.

Definition 1.28. A polarization is principle if diim H*(X, L) = 1.
A physicist would likely start thinking about Ansatz - we will not do that here.

Now, let’s define a principal polarization on a lattice 7

1.4.2 Theta Functions and the Theta Divisor
Definition 1.29. For all 7 € H, = {1 € Malyx4(C) : 77 = 7,Im 7 > 0} and
for all z € C9, we define the theta function as

0(t,z) :== Z exp (mn” (tn + 2z))

nezI
The fact that 7 is symmetric makes it nice, and the fact Im 7 > 0 makes sure
the expression converges.

Exercise 1.30. For all mi,mo € Z9, show that the theta divisor
0(z,z + my + mar) = (7, 2)

where ¢ is a non-zero factor depending on my,ms.

Corollary 1.31. The ©, C A.(= C9/Z9 + 7Z9) defined by O, := {z € A; :
0(r,z) = 0} is well-defined.

It’s easy to see that this is a well-defined holomorphic function on CY9. But this
corollary tells us that the zero locus is independent under translations by the
lattice.
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1.4.3 Principal Polarization and Moduli of Abelian Varieties
Proposition 1.32. ©, defines a principal polarization on A, .

Since O, is a codimension-1 subset of A, it is a divisor on A,. It also has a
homology class in H'! because it is a complex subvariety of dimension 1. This
subvariety is well-defined, so it corresponds to an integral class, and we claim
that it is an ample class. Furthermore, we claim that the dimension of the space
of sections is 1.

Remark 1.33. This is a bit imprecise. When we refer to polarization, we
should think of three things simultaneously: an ample line bundle, its Chern
class, and the space of sections. This is imprecise because for any v € A,, we
can translate ©, by v (consider t,0, :=z: O(1,z+v) =0).

One final point: A, is the moduli (stack) of principal abelian varieties and is

also given by H,/Sp(2¢,Z). The dimension of A, is dim A, = %.

1.5 Jacobians
1.5.1 Divisors, The Picard Group, and Jacobians

Definition 1.34. A divisor on C is an expression of the form Zf\il m;p; with
m; € Z and p; € C, satisfying the condition that degd  m;p; — (>_m;) € C.
Let f: C — P! be a map such that f # 0,00, and

div(f) = Z(multzf) zeroes z of f— Z (mult, f) poles of f

:Zm"dpf'p.

peC

Definition 1.35. The Picard group is
Pic(C) := Div(C)/divisor functions.

Div(C) is an abelian group, and Pic is a subgroup (proof is easy since div(f-g) =

divf+divg). This admits a map Pic(C') dog Z, and the divisor always has degree
0 otherwise this map would not exist which is similar to the statement that the
number of zeroes of a function is the same as the number of poles of a function
counted with multiplicity. Note that it’s fine if we have a constant map, for
example.

Definition 1.36. A divisor on C is ZZI\LI m;p; with m; € Z,p; € C satisfying
deg> mip; — O.m;) €C, f: C — P, and f # 0,00 with

div(f) = Z(multzf) zeroes z of f— Z (mult, f) poles of f

:Zm“dpf'p.

peC

17



Definition 1.37. The Picard group is

Pic(C) := Div(C)/ divisor functions.

Div(C) is an abelian group, and Pic is a subgroup (proof is easy since div(f-g) =

divf+divg). This admits a map Pic(C) dog Z, and the divisor always has degree
0 otherwise this map would not exist which is similar to the statement that the
number of zeroes of a function is the same as the number of poles of a function
counted with multiplicity. Note that it’s fine if we have a constant map, for
example.

We can define Pic?(C') C Pic(C) = degree d divisors.
We can define Pic*(C') C Pic(C) as the set of divisors of degree d.

Proposition 1.38. Picd(C’) consists of line bundles on C of degree d, up to
linear equivalence.

Definition 1.39. The Jacobian of C is given by

Jac(C) = Pic~1(C).

1.5.2 Principal Polarization and the Structure of the Jacobian

Note that this is also approximately Pic?(C), where D € Pic? " '~%(C). The
purpose of this definition is to enable the construction of the principal polariza-
tion.

Definition 1.40. The principal polarization on Pic’~*(C) is

O :={p1+...+py,_1} C Pic 1(0O).

One should convince oneself that dim(©) = g — 1, dim(Jac(C)) = g, and that
O is ample and has one section.

Remark 1.41. This is not the "best” definition of the Jacobian, since it is
not clear that the Jacobian is a group: There exists a natural map PicO(C) X
PicO(C) — PicO(C) defined by D1 x Dy — Dy + Ds, but there does not exist
a natural map Picd ' (C) x Pic? 1(C) — Pic?”*(C). However, we can take
Dy x Dy = Dy + Dy — K¢, where K¢ is the canonical divisor with deg(K¢) =
29 — 2. Moreover, Pic? *(C) has a natural involution given by D — Ko — D,
which is responsible for Serre duality. This serves as a warning that although we
would like to think of the Jacobian as Pic?~'(C) because the theta divisor can
be seen as the polarization inside it in a natural way, we are losing the natural
group structure.
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Theorem 1.42 (Riemann’s Theta Singularity Theorem). Let C' be a smooth
projective curve of genus g, and let L € Pic?'(C), where Pic?~*(C) = Jac(C)
denotes the space of line bundles of degree g—1 on C, identified with the Jacobian
variety of C. Then, for any L € Pic?~*(C), the following identity holds:

mult,© = dim H°(C, L),

where multp © denotes the multiplicity of the theta divisor © at the point cor-
responding to the line bundle L, and H°(C, L) is the space of global sections of
L.

Recall that if L is a line bundle on C' corresponding to a divisor D € Div¥(C),
then

HY(C, L) = {meromorphic functions f on C such that div(F) + D > 0}.

On Riemann surfaces, a point is the same as a divisor, which is also the same
as a line bundle. Then, we can trivialize a line bundle outside a finite collection
of points, which is how we can perceive them as sections. We won’t go too far
into this direction.

Exercise 1.43.

1. For g =1, C = Jac(C). What does Riemann’s Theta singularity theorem
say in this case? Is it true that My = A, ?

2. For g =2, how is C related to the Jacobian? And what does the Riemann’s
Theta singularity theorem say in this case?

8. For g = 3, what are the singularities of theta divisors on Jacobians?

1.6 The Schottky Problem In Genera 4 and 5
1.6.1 The Map J

Consider the map

J Mg — A,y
which assigns to a curve C its Jacobian, i.e., the abelian variety Jac(C).
The following fundamental result characterizes the injectivity of this map:
Theorem 1.44 (Torelli). The map J is injective (on the coarse spaces).

In other words, given an abelian variety and the promise that it is a Jacobian,
we can determine which curve it is the Jacobian of.

Remark 1.45. There are many proofs of this result, but we will not cover them
here. This theorem is a cornerstone of many classification problems in moduli
space theory. It is also an example of a result from Hodge theory, since the
Jacobian is a classifying space for weight 1 Hodge structures.
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The dimensions of the moduli spaces M, and A, provide important context for
the Schottky problem. For g > 1, we know that:

1
dim(M,) =3g—3 and dim(A,) = %.
For the case of genus 2 and genus 3, we have the following proposition:

Proposition 1.46. The maps J : My — As and J : M3 — Az are dominant
(i.e., their images are dense).

This implies that most 2-dimensional and 3-dimensional varieties are Jacobians
of curves, except for a small codimension subset. However, this phenomenon is
specific to g = 2 and g = 3, and can be confirmed by plugging into the dimension
formulas and comparing.

1.6.2 The Schottky Theorem for Genus 4

The complete solution to the Schottky problem for genus 4 is given by the
following theorem, which provides a characterization of Jacobians of curves in
terms of theta functions:

Theorem 1.47 (Schottky, 1880s; Igusa, 1970s). A, (with 7 € Hy) is a Jacobian
(with A. € J(My)) if and only if

€

o)

S ot H (r,0) = (Z 68
Te+ 5)

0 Lﬂ (1,0) = conste g (T, 5

and €,0 € (Z/2Z)" are the theta constants.

where

These theta constants are simply the values of the theta function at various
2-torsion points. A 2-torsion point means that when we multiply it by two,
we get the lattice factor, i.e., it is a point on the abelian variety A, such that
multiplying it by two results in the origin.

This gives us one equation, which we can expect because dim(.A44) = 10 and
dim(My) = 9. This solves the Schottky problem completely for g = 4.

1.6.3 The Schottky Problem For Genus > 5

There is no such explicit characterization of J(M,) C A, for all g > 5.

Theorem 1.48 (Grushevsky, Salvati Manni). The Schottky-Igusa equation does
not generalize to J(Ms) in the obvious way.

This disproves a conjecture of Belavin, Knizhnik, Morozov, D’Hoker, and Phong
that the cosmological constant for Eg x Eg and SO(32) type superstring theories
theories are the same. However, we do have the following result:
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Theorem 1.49 (Grushevky, Farkas, Salvati Manni). There exists an explicit set
of equations in the theta constants Fi, ..., Fy such that J(My) is an irreducible
component of {F1 = ... = Fiy =0} C A,.

This provides a ”"weak” solution to the Schottky problem, first discovered by
Andreotti and Mayer. While we do not fully characterize the Jacobian locus,
we describe it up to additional components. There is a whole theory of the
explicit Andreotti-Mayer locus, but it is quite complex and does not suffice to
fully characterize the locus.

1.7 Theta Functions
1.7.1 Theta Functions on Jacobians

Let’s consider the Theta function, which resides within the Jacobian, as a func-
tion of the curve. To do this, we first need to understand the Abel-Jacobi map
C — Pic'(C),p—1-p.

Now, suppose we neglect the difference between Pic! and Pic? ™!, which of course
we cannot do. We have a Theta function on Pic? !, where the divisor © is
defined. However, this divisor can also be interpreted as a function, implying
we have a function on the Jacobian, which we can restrict to the curve. The
goal is to determine which function on the curve arises from this restriction.

To make sense of this function, we need to make sure that the degrees match
up, as we are trying to map a point from Pic! into Pic?'. Recall that © :=
{0(7, z) = 0}, and let’s consider a divisor of dimension g. Fix points p1,...,p, €
C and let A, = Jac(C) be the Jacobian. Consider the function (7, p; + p2 +
...pg — x), where € C and 7 is the period matrix of c¢. The key observation is
p1+p2+...+pg—x=0if x =p; for all i = 1. Thus, we know g zeroes of this
function on the curve.

Proposition 1.50.
div 0(T,p1+ ... +pg —x) =p1+ ..pg <> O0(p1 + ... +pg — ) =0

if and only if x = p;.

Exercise 1.51. Show that 6(7,z) = (1, —2) for all T € Hy,z € C9. What is ©
in genus 1?2 (Can you see modularity of 0(, z) with respect to T for g =1%)

1.7.2 Meromorphic Functions

Any (nonconstant) meromorphic function C — P! can be expressed in terms of
theta functions (up to a constant factor):

N
div(f) = Zmﬂ%
i=1
where m; € Z
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Proposition 1.52.

N
flx) = constH 0" (p1 + ... + pg—1 + T — )
i=1

for any chosen points p1,...,ps—1 € C.
Proof. The divisor of the function 6™ (p; + ... + pg—1 + x; — ) is
div (6™ (p1 + ... + pg—1 + @i — ) =mi - (P1 + ... + Pg—1 + T5).

Since the degree of f at 0 and oo is the same as Y m; = 0,

N N N
Zmi(pl + .t pg-1) + Zmil’i = (Z mi) (p1+ .. +pg-1) + Zmixi-
i=1 i=1 i=1

Thus, the divisor of f(x) is consistent with the degree condition.

1.8 Weil Reducibility
1.8.1 The Weil Reducibility Theorem

Now, we move to the topic of Weil reducibility. The following theorem states
that for any curve C and for all p,q,r,s € C, the intersection of two theta
divisors behaves in a specific way:

Theorem 1.53 (Weil Reducibility). For all C and for all p,q,r,s € C, the
following inclusion holds:

©No6, ,CO, U6, ,

where the notation ©,_y refers to the translate of a — b by ©.

Here, © is a divisor. Take any point in Pic?~! and add to it a divisor p—¢ (which
is also a divisor of degree g —1). Then, on the left hand side, we have two g — 1
dimensional gadgets in an abelian variety and we have two large codimension-
1 objects that intersect. For Jacobians, this intersection is irreducible, so the
intersection will have codimension 2.

It is important to notice that the left hand side does not contain r or s anywhere,
and this theorem holds for all 7, s € C. We're defining a two parameter family of
unions of two theta divisors so that it always contains the intersection. Typically,
the intersection has two components: one in ©,_, and the other in ©,_,.
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Proof. Suppose D = [L] € ©NO,_,. We have D € © < h°(C, D) > 1 by the
Riemann Theta singularity theorem. Similarly, D € ©,_, <> h°(C,L+p—q) >
1, so these are meromorphic functions on C' with poles at D and a simple pole
at p vanishing at q.

We have two cases:

1. If h%(C, D+p) = 1 <> exists a unique (up to constant factor) s € H(C, D+
p) = s must vanish at q because H*(C, D+ P) > H°(C,D+p—q) # 0.
Then h°(C,D + p) D HY(C,D) # 0 = s has no pole at p. Thus,
s€ H(C,D —q) CH’(C,D+s—q) somultpOs_, >1,ie. D € O,_,.

2. If h9(C, D + p) > 2. Suppose we have s1,so € H°(C, D + p) not linearly
dependent. But then there exists a linear combination as; 4+ B8s2 (there

exists o, 3 € C) such that (as; + Bs2)(r) = 0 where (% = —ffgfg) If
s1(r) = 0, choose a« = 1,3 = 0. Then a3 + fs2 € Hc,D +p —r), ie.

Deo,.,.
This finishes the proof.

O

Let’s try to understand what Weil reducibility means analytically for z € C9
(or in JacC): 6(z) =0 and 0(z + p — ¢) = 0, then it follows that

0(z+p—r)-0(z+s—q)=0.

It would be lovely if we can write this as one equation. One way to do this is
to show the existence of functions F'(z) and G(z) such that

F(2)0(z) +G(2)0(z+p—q) =0(z+p—r) - theta(z + s — q) = 0.
Observe that
0(z+p—7)-0(z+s—q) C H (JacC, 20,15 r—g).
We want the equation to be an equality of sections of line bundles on the Jaco-
bian, so
G(2) € H(20p15-r—q — Op_q) = H°(20,_, — 0,_,),

where 20, ,_, =020 O(p+s—7r—q) and —O,_, = (OR O(s—7))"".
For constants A, B € C, we have

A-0(z+p+s—r—q)0(z)+B-0(z+s—1r)0(z+p—q) =0(z+p—r)0(z+s—q)

for all z € CY9. To prove the equivalence of this equation to the previous one, a
Koszul cohomology computation is required, though we omit the details of this
computation here.
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1.8.2 The Isogeny Theorem and Theta Constants

Given a Jacobian and an arbitrary quadruple of points on the curve, one observes
that such a functional equation is satisfied by the theta function. Where does
this equation take place? It involves three distinct sections of the bundle 20.
Since the bundle © itself has only one section and 20 is the square of O, we
should determine the number sections of 20. Our goal now is to extract a nice
geometric statement from this equation.

Proposition 1.54. For any principally polarized abelian variety (A, ©),

H°(A,20) =29
and a basis of H°(A,20) is given by the Theta constants of the 7th order:

{Ol€](r,2) :=0(27,22 + 2¢)}

for e € (2/2)°.

Proposition 1.55 (Isogeny Theorem/Riemann’s Bilinear Relations).

O(r,z+y)-0(re—y)= Y O[d(=)-6[d(y)
e€(Z/2)

This is known as the isogeny theorem because there is a very interesting finite
linear map of abelian varieties A x A > A x A, (2,9) — (z +y,z —y). Fur-
thermore, this map is surjective and the kernel has two torsion points, namely
x =y and 2z = 0. One might ask why 7*(0 X ©) = 20 X 20. There are many
ways to prove this, but straightforward computation works as well.

1.9 Kummer Maps

1.9.1 The Basics

Proposition 1.56. The Kummer map Kum : A fard P29=1 2 — {O[e](7, 2) Yee(z/2)

defines an embedding Kum : A/ +1 < P?'~1,

This result is not trivial and requires advanced techniques, which we will not
develop here. Let us examine the behavior of the Kummer map for different
genera:

e For g = 1, the map becomes a double cover of the elliptic curve branched
at two torsion points, yielding the map elliptic curve/ &1 — P!

e For g = 2, we get a surface/ = 1 — P3, which is called a Kummer
surface. The Kummer surfaces has 16 double points. It is possible to
write an explicit equation for the image and study the moduli of abelian
surfaces via this map, a result that has been explored in many texts.
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e For g = 3, the geometry becomes incredibly complicated because we have
a threefold embedded in P7. There are many papers on this, but the maps
are extremely complicated and we will not talk about this here.

For simplicity, define

Kum(z) - Kum(y) := Z Olel(z) - Ole|(y),
e€(Z/2)

precisely the expression in the Isogeny theorem. Now, let us revisit the explicit
equation arising from Weil reducibility and rewrite it as follows:

A(2)0(z++r—s—q)+BO(z+p—q)8(z+1r—5)+C(z+p—35)0(z+1r—¢q) =0

where A, B,C € C. This is simply a rearrangement, and the inclusion of the
constant C is valid since we are merely scaling the equation. Using our new
notation, we can express this as:

A-Kum (Z+w) - Kum (fw)

2 2
+B - Kum <Z+ w) - Kum (W#)
+C - Kum (z + w> - Kum (W%)
=0.

We factor this expression as:

p—&—r—s—q).(*)

Kum (z + 5

which holds for all z, where (x) is independent of z. Since z + Z**=1 forms
a basis of sections of 20, this equation is equivalent to saying x = 0. Thus, we
obtain the following equation:

A-Kum

(= (257

+C-Kum (w) =0.

2
1.9.2 The Major Results
This is an equation in C?’ and leads us to very important the identityL

Theorem 1.57 (Fay’s Trisecant Identity). For all C and for all p,q,r,s, the
Kummer images

ptq—r—s ptr—s—q ptqg-—r—s
2 ’ 2 ’ 2

. g .
in C% are collinear.
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The existence of this theorem is very surprising, which becomes evident when
we go into higher dimensions.

Consider CP* !, which has dimension 29 — 1, and a Kummer variety with
dimension dim(Kum(Jac(C))) = g. Given three points on the Kummer Variety,
the Welter’s conjecture states that they are collinear.

Furthermore, recall that we can pick p, q,r, s on the curve, allowing us to make
them coincide. This results in a differential equation satisfied by the theta
function in the limiting case. We will not discuss this approach in further detail
here.

Theorem 1.58 (Gunning, 1981). If (4,0) € A, is such that Kum(A) has a
1-dim family of trisecant lines, then A = Jac(C) for some C' € M,.

This result provides a solution to the Schottky problem: it tells us when a
principally polarized abelian variety is the Jacobian of a curve. However, there
is an important caveat: we require a 1-dimensional family of trisecant lines to
start with. If we are given both the abelian variety and the curve, then we know
that A is the Jacobian of the curve. This is a very useful starting point, but it
comes with certain limitations.

Theorem 1.59 (Welters, 1986). A germ of a 1-dim family of trisecants suffices.
Welters also conjectured the following:
Conjecture 1.1 (Welters). If Kum(A) has one trisecant, A = Jac(C).

At first glance, this may appear to be a very different statement, as we are not
given a curve or a germ of a curve as a starting point. However, this conjecture
was later proven by Krichever:

Theorem 1.60 (Krichever, 2015). The Welters conjecture holds.

We present this as one theorem, but it can be understood as three distinct cases
of trisecants:

1. A fully discrete trisecant
2. A trisecant tangent at one point
3. A flex line, ie. tangency contact of multiplicity 3.

The proofs for all three are different. We will see the proof of the flex line case
only. We will use Gunning’s result freely without proof because it requires a
whole set of techniques we haven’t developed, even though the proof is not hard.

1.10 The Kadomtsev-Petviashvilli Equation
1.10.1 Baker-Akhiezer Functions

We begin with a point p € C. Let k~! be a local coordinate on C' around
p, with k(p) = co. This is a lot of data. In comparison, the moduli space of
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curves is finite-dimensional, and adding a point adds one complex dimension to
the moduli space. However, here we are making an infinite-dimensional choice,
since we are selecting a local coordinate up to all orders in the Taylor series
expansion. More precisely, the space of such data is infinite-dimensional and
admits a forgetful map to the moduli space of curves, with infinite-dimensional
fibers.

Definition 1.61. For all C,p,k™!, for all general D = py+...+py,, the Baker-
Akhiezer function ¥(x,y) is a function defined for allx € C, z € C satisfying:

e v is a meromorphic function on C'—p with simple poles at D, holomorphic
on C — {pUD}.

—k(z)-x

e ) has an essential singularity at p, such that y(x, p)e is holomorphic

around p and equal to 1 at p.

Proposition 1.62. The Baker-Akhiezer function exists and is unique.
Proof. Uniqueness: if 1,1’ are two such functions, then %

e has no essential singularity at p, and is in fact equal to 1 at p = % =1.

e is holomorphic on C' — p.

Existence: The explicit formula for v is given by

o i 0(z — D + ux)
P(2) .exp(/p x~w> w

e w is a differential on C, with a douple pole of the form dk at p and
holomorphic elsewhere, with all A-periods zero, and

where

e u is a vector of B-periods of w.

1.10.2 Generalized Baker-Akhiezer function
We can generalize the Baker-Akhiezer function as follows:

Definition 1.63. Let py be a point on a curve C, and let k™ be a local
coordinate on C around py. Given parameters ti,ts,... € C and a divisor
D =pi+...4+py € Di!(C), there exists a unique function called the generalized
Baker-Akhiezer function ¥(t1,ts,...,C,po,k)(p), which is a meromorphic
function on C' —pgy with the poles at p1,...,pgy, holomorphic on C —{po,...,pg}
and satiesfies the following condition:

P>Po

lim ¢(tq1,ta,...,C,po, k)(p) - exp (Z kiti> =1.
i=1
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Similar to earlier, we can prove it’s existence with an explicit formula:

Bltntaceee Com ) i=exp ([ Sty ) HEEELDED)

where w; is the meromorphic differential on C' with an ith order pole at pg and
all A-periods zero, U; = (fBl wi, ...,fBg wl) € CY, and Z is —D as a point on
the Jacobian of C'. We want fkﬁoo w; ~ k', so we also require that w; ~ d (ki)
is holomorphic as k — oo at pg.

O(p+> Uiti+Z)

We won’t prove uniquess, but it can be done by showing that 101 7)

does not rely on A or B-periods.
Remark 1.64. Two minor remarks:

1. Notice that we did not write a lower bound: we cannot integrate from pq
or else it diverges. We have a choice of lower bound, and since we want
the limit in the definition to be 1, technically we should write

_ b N+ Uiti + Z)0(po + 2)
Yl ta,-, Copo, K)(p) := exp (/ 2t “’Z“> 6(p + 2)0(po + . Uit + 2)

et UititZ) -~ put then

to normalize it, or replace 1 in the definition by 0T 7)

this causes more difficulties to arise.

2. The statement made here is formal. Recall earlier that we solved differ-
ential equations using formal series in k='. Here, 1 is global and mero-
morphic on the Riemann surface, not merely formal. This difference is
crucial, and the advantage of the new formulation is that it allows for
geometric solutions.

It is also a good question of why exp converges, but we will ignore it because
we will stop after the first three terms.

The main point is that % are functions of the same type for different values

of ¢ (not entirely of the same sort because we haven’t stated precisely what
the exponentials and essential singularity at p looks like). There is a theorem
which states that the space of such functions is finite-dimensional, and therefore
uniqueness follows. If multiple constructions yield the same essential singularity,
they must correspond to the same function. This is a source of differential
equations.

1.10.3 Differential Operators

Theorem 1.65. For all meromorphic functions E : C — CP' with an nth
order pole at po that are holomorphic on C — po, there exists a unique nth order

differential operator L =1 u; (x)% such that

qub(tla C7p07 k)(p) = E(p)w(th o, ..., Cvpov k)(p)
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Proof. We present the proof idea only: use the study of formal solutions to the
differential equation Ly = FE1 to ensure that the essential singularity of both
sides at pg is the same, and then use uniqueness of the Baker-Akhiezer function
to complete the argment.

O

Theorem 1.66. Let t; = x,to = y,t3 = t,ty = t5 = ... = 0 and consider
Y(x,y,t,C,po)(p). There exists unique differential operators

%

2
Ly = (T, Y, 1) 5
=Dt

and
3 i
Ly = AR 7t o
=Y nleng
such that
oY oY

Ly = Fya Loy = ot

Remark 1.67. This is a shadow of a more general result: For exp(kx+Q(k)y-+
R(k)t) where Q, R € C[k], there exists unique differential operators Ly, Ly where
deg L1 = deg @ and deg Lo = deg R.

Theorem 1.68. The commutator of L1 and Lo satisfies the following relation:

0 0

Li——,Ly— =
Ly oy’ ? T ot

]=0.

Proof. Since v is a kernel of the commutator, it provides an co-dim kernel of a
differrential operator in x only, implying the commutator is 0.

O
1.10.4 The Kadomtsev-Petviashvilli Equation and Beyond
Example 1.69. Consider
U(@,y,t) = exp(kx + Ky + k) (1 + & (2, y, Ok + Eo(z,y, Ok + )

near pg. What are the corresponding differential operators?

We have

0 93 3 0

Li=gz—w le=gs-qug —v
where o o o 5
_oYs1 _q¥Ys2 g1 2

=20 3or T3z ~3ue
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Now, we can compute £1,&2 to show that

2

0
U= —2@ In§(Urz + Usy + Ust + Z)|, -

Then,
0 0

[Ll_@, Lz—g]

gives a differential equation on u, ie. on ©. Computing this gives

=0

3 0 3 1
Zuyy = % ut — iu c Uy — Ey:cacx

which is called o Kadomtsev-Petviashvilli (KP) equation.

Remark 1.70. Note that we set ty = t5 = ... = 0 for simplicity. The gen-
eralization with infinitely nonzero variables gives an integrable hierarchy of an
infinite sequence of equations.

Theorem 1.71 (Krichever). There exists a differential operators in one variable
Ly, Ly with ged(ord Ly, ord Lo) = 1 such that

[L1,Ls] = 0.

Furthermore, there exists a curve C = {Q(«a, 3) = 0} C C? satisfied by L1, Lo,
po (point at o), and k, such that ¥ (x, ¢, po, k)(p) is a common eigenfunction of
Ly and L.

Proof. We present the proof idea only. We learned earlier that there is a poly-
nomial equation Q (L1, La) = 0 but this only holds for compact curves. So we
need to compactify, and we need to decide whether we want CP? or CP* x CP!.
It turns out we need to add only one point at co and it’s a singular point at
oo which has n branches coming together. So k = z_%, and we need to check
that this is a local coordinate. Then we just need to check that the number of
branches is correct and the corresponding ) is a solution of L; and Ls.

O

1.11 The Flex Line Case
1.11.1 The Building Blocks

Recall the Welters’ trisecant conjecture. We can rewrite it as:
Kum(p+qg—r—s)AKum(p+7r—qg—s) AKum(p+s—r—¢q) =0.

where p,q,7,s € C.
To get it into the flex case, take the limit s — p. This gives:

Kum(q — r) A Kum(r — ¢) A Kum(2p —r — q¢) = 0.
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This is somewhat trivial since Kum(g — r) = Kum(r — ¢), so we need to take
the next order term as s — p. Let s = p — Ue, and we get

Kum(q —r+Ue) AKum(r —q+ Ue) AKum(2p —r —¢q) =0

Taking the limit lim._,¢ yields:

Kum(q — ) A 9yKum(q — r) A Kum(2p — r — ¢) = 0.

Next, take C' — Jac(C),p — 0 and consider the limit » — p. Let U and V
be the first and second order derivative of the Abel-Jacobi map C' — JacC at
p, respectively. To interpret the derivatives in the map C' — Jac(C'), we can
take the explicit normalized basis wy,...,w, € H9(C,C), 2z — (fpz wi), so that
U= (wi(p),...,we(p)).

This gives

Kum(q—p—Ue—Ve)AyKum(p+Ue+Ve2 —g) AKum(p—q—Ue—Ve*) =0/

Exercise 1.72. Show that the lowest order nontrivial term is
Kum(q) A 8y Kum(q) A (85 + Ov) Kum(q) =0

forallqe C.

This is an equation of a l-parameter family of flex lines. Take ¢ — p, and
expand the equation from the exercise to all orders.

Exercise 1.73. Show that lowest order term is
4 3 0
(6U — OyOy + Zav + c) Kum(0) =0

for some constant ¢, where W is the third order derivative of the Abel-Jacobi
map C — JacC' at p.

Remark 1.74. If we have a hyperelliptic curve and start with a Weierstrass
curve, this becomes simpler.

Exercise 1.75. Use Riemann’s bilinear relation to deduce from this the lowest
order term equation for ©(z).

1.11.2 The Major Theorems
Theorem 1.76 (Gunning). If A€ A,,C C A, and z1, 22, 23 € A satisfy
Kum(p + z1) A Kum(p + 22) A Kum(p + 2z3) =0

for allp € C, then A = Jac(C).
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This is weaker than a solution to the Schottky problem because the curve is
given to us as we have a 1-parameter family of trisecants which are all obtained
by translating each other.

Theorem 1.77 (Welters). If A€ A,,C C A,z € A is fized and Kum(p + z) is
a flex point for allp € C. Then A = Jac(C).

We can strengthen the condition from needing a geometric curve to having an
oo-order germ of a family of curve.

Theorem 1.78 (KP Hierarchy). An oo-order formal germ of a formal family
of flexes suffices.

Theorem 1.79 (Ambarello-De Concini). For all g, there exists N = N(g) such
that an Nth order formal germ of a family of flexes characterizes Jacobians.

Theorem 1.80 (Conjectured by Novikov, Proved by Shiota). For all g, the
existence of a 4th order germ of a family of flexes chracterizes Jacobians (<
KP equation).

Morally, we want to begin with a fourth-order germ and keep increasing the
order of the germ. At each step, there will be some obstruction. However, since
the jet bundles are extensions of one another, we expect that if we can solve the
first order, we can solve the second order, and so on.

We present one final theorem:

Theorem 1.81 (Krichever). The existence of one flex line characterizes Jaco-
bians.

1.11.3 Convergence of the Two Stories
We have seen two views:
1. The geometry of flex lines, which gives the equation (stated with slightly

different notation compared to before)

(v — 8 — 2p0y + (E — p?)) - Kum (g) =0 (equation K)

2. The story of commuting differential operators, which gives the following
equation (arising from Ly = %):

(65 - u(x)) =0 (equation L)

for
(r+Ux+Vt+2)

O(Ux+Vit+ 2)
where u = —202In0(Uz + Vit + Z) for all Z € A.

4 E
'(/} = -epm"— y,

These two stories ultimately end up at the same point.
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Theorem 1.82 (Krichever). If (A,0) € Ay satisfies equation K (equivalently,
equation L), then A = Jac(C) for some curve C € M,.

Lemma 1.83. FEquation L or equation K implies
((@V)2 - (®UU)2)+2 (OurOuvr — OvOuy) Ou+(Ovy — Ouuur) (Or)? =0

along the theta divisor.

Remark 1.84. The converse is unknown. The natural attempt would be to
take a divisor of a function, take a partial derivative, and restrict it to the
locus, yielding a section of the same bundle. However, we are not provided with
a method to extend this section.

1.12 Proof

The proof strategy is as follows: we have a partial differential equation for the
theta divisor. If we had another differential equation that commutes with this
one, then we could construct a spectral curve. . Once we have a spectral curve,
we hope that the abelian variety will be the Jacobian of that spectral curve.
The goal is to construct commuting differential operators, as the rest of the
argument involves technical computations.

1.12.1 Finding Formal Solutions

Consider 9 as a solution of the equation L, where u = —202In7(x,t), of the
form

P(z,t, k) = ehoth?t (1 + i &s(x, t)k:5> i

s=1
Assume that the zeroes z; of 7(x,t) are simple as a function of ¢. Thus, we aim
to show that 7(x,t) = [[(z — x;t) for z; # x;. Expand near ¢ = 1, we get

) = 5 tvt+ww—q)+ ..

_c

(x—q)

w=%+ﬁ+7(aﬁ—q)+---
q

Substitute this into equation L, perform the necessary eliminations, and com-
pute. Finally, differentiate with respect to ¢, using § = zw, f = %L and f' = %'

Lemma 1.85. Assuming 7(x,t) has simple zeroes at x = q, there exists a
solution ¥ of equation L that has simple poles at x = x; and is holomorphic
everywhere else.

Proof. We have the form & = = + 75, + 75, - (v — ¢) + ... Equation L =
28 = &stu-&—E. For {51 to exist in this form, the residue of the previous

equation at x = ¢ must vanish.
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There is a miracle step: if this is true for & (no zero residue at previous step),
then the residue at the next step must also vanish. This is not difficult, but it
is tedious, so we omit the detailed computation.

O

1.12.2 Constructing U-Periodic Solutions ¥

We'’ve constructed ¥ as a formal function (which has no current meaning), but
we want to extend it to a less formal solution so that it is invariant under
translations by U. Let A be an abelian variety, and let Ay be the Zariski
closure {U,},ec C A. It turns out that 1 < dim Ay < g. We want "1 to be
a solution on Ay.” If this holds, we might be done: if dim Ay = g, we have
the whole abelian variety and have constructed a global function, allowing the
remaining machinery to quickly work. When dim Ay = 1, we get an elliptic
Calogero-Moser system. The real difficulty lies when 1 < dim Ay < g.

Let’s define the bad locus > := {z : 6(2) = 0y(z) = 0}.This represents a
problematic set because our solutions will fail somewhere in the previous step.
Since this involves two equations on abelian varieties, their codimension is either
1 or 2. If it is 1, they must share an irreducible component. However, on
an indecomposable abelian variety, the divisor is irreducible, so the only way
the codimension could be 1 is if the partial derivative vanishes identically on
the entire divisor. This is impossible, as the partial divisor is not a section
of a line bundle globally. Therefore, codimy >, = 2 for indedcomposable A
indecomposable (and fails for decomposable ones). We can choose a translate
of Ay so this translate is not contained in ).

Lemma 1.86. If equation D holds for the zeroes of T(x,t), then equation L has
a solution with

w(z,t) = u(Uz + Z,t),1 = " 13U, + 2, k),

where ¢(z,t,k) = e (14+ 3. &(2,)k™%), &(2,t) = L (z1) for T holomorphic

T(2,t)
are quasiperiodic with respect to to Ay .

This means that ¢(z + A, t,k) = exp(...)p(z,t, k), where A is a period in the
lattice of Ay. This solution A € the period lattice of Ay. This solution is
unique up to some normalization, which can be explicitly written, but we will
omit it for simplicity.

1.12.3 Constructing The Differential Operator

Lemma 1.87. There ezists a unique pseudo-differential operator

L=0,+) w(Ux+Vt+2)d,*

s=1
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where z € A such that
LUy +Vi+2z,0.)0=ky

for 1 as in the previous lemma.

Note that wg is a meromorphic function of z € A with poles only along the theta
divisor.

Remark 1.88.

1. The unique existence of L is by computation for any z € CI\Y_, so ws -0
will be holomorphic on CI\>". By Hartogs’ theorem, this extends to all
of C9Y.

2. L is independent of the normalization.

1.12.4 Constructing Many Differential Operators

Attempting to construct a differential operator from a pseudo-differential oper-
ator by discarding the pseudo-differential parts does not work. Instead, de-
fine L™ := (L™), = the (9",...,0:,const) terms of £™. We know that
[0y — 02 4+ u, L™] = 0. We can now compute

[& — a:% + u, Lm] =20, (I‘GS(’)m £m)

where resy, L™ denotes the 9, 'th term. Let F,, := ress, L™.
Lemma 1.89. For all m, F,, has at most a second order pole along ©.

The point of this is for all m, F,,, € H°(A,20). Since dim H°(A,20) = 29, for
all but finitely many m, F}, is a linear combination of some fixed finite collection
Fi, ..., Fi. . Consequently, Fy,, = am, Fj, + ... + Uy F,,. Therefore

[6t — 82 + uyLm - a7n1Fi1 e T a’mizg Fizg] =0.

This implies that Ly = %1/) gives the commutation relation [L,,, L], and thus
the operators satisfy a polynomial equation. This leads to the construction
that for all curves and values of a, there exists a Bethe Ansatz such that an
eigenfunction of L and L,, generates a curve C, which in turn leads to the
abelian variety A = Jac(C).

Finally, we may declare victory.

35



Pavel Etingof: The Hitchin System and
Quantization

Abstract

Let G be a simple complex Lie group. We will review the classical
Hitchin integrable system on the cotangent bundle to the moduli space
Bung(X) of principal G-bundles on a smooth complex projective curve
X (possibly with punctures), as well as its quantization by Beilinson and
Drinfeld using the loop group LG. We will explain how this system uni-
fies many important integrable systems, such as Toda, Calogero-Moser,
and Gaudin systems. Then I'll discuss opers (for the dual group GV),
which parametrize the (algebraic) spectrum of the quantum Hitchin sys-
tem. Finally, we will discuss the analytic problem of defining and com-
puting the spectrum of the quantum Hitchin system on the Hilbert space
L?(Bung (X)), and will show that (modulo some conjectures, known in
genus 0 and 1) this spectrum is discrete and parameterized by opers with
real monodromy. Moreover, we will see that the quantum Hitchin system
commutes with certain mutually commuting compact integral operators
H, v called Hecke operators (depending on a point z € X and a represen-
tation V of GV), whose eigenvalues on the quantum Hitchin eigenfunction
1 corresponding to a real oper L are real analytic solutions ((x,Z) of
certain differential equations 08 = 0, 93 = 0 associated to L and V. This
constitutes the analytic Langlands correspondence, developed in my pa-
pers with E. Frenkel and Kazhdan following previous work by Braverman-
Kazhdan, Kontsevich, Langlands, Nekrasov, Teschner, and others. We
will review the analytic Langlands correspondence and explain how it is
connected with arithmetic and geometric Langlands correspondence.
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2.1 Principal G-bundles
2.1.1 Motivation

This course is about Hitchin systems, both classical and quantum, as well as
the Langlands correspondence. These topics involve analysis, geometry, and
arithmetic, primarily in the context of function fields. All of this work centers
around a geometric object known as Bung(X), which is the moduli space (or
technically a stack) of principal G-bundles over a curve X.

{ Hitchin integrable systems: classical and quantum }
Langlands correspondence for function fields

!

{ analysis, geometry, and arithmetic }
on Bung(X)

Here, X is an irreducible smooth projective curve over some field, and G is a
reductive algebraic group. To this data, we assign a very complex geometric
object, the moduli stack of principal bundles. This stack is extremely rich in
structure. When we study its geometry, analysis, or arithmetic, we uncover
many profound results, including those related to integrable systems. One ma-
jor topic is the Hitchin integrable system, a large class of finite-dimensional
integrable systems associated with this data. This system includes many (per-
haps most) of the interesting finite-dimensional integrable systems known. It
has also played a significant role in the work of Edward Witten and others.

Rather than spending too much time on motivation, it’s more effective to start
with basic definitions and build up from there. Let’s review some basic algebraic
geometry related to this moduli stack, which is indeed complicated. Many
details will be simplified or moved to the exercises.

Consider X, an algebraic variety over a field k. Often, X will be a one-
dimensional smooth projective irreducible curve over k. We can keep C in mind
as the base field, but it’s also important to consider non-algebraically closed
fields, such as finite fields or p-adic fields. G will be a reductive algebraic group,
assumed to be connected and split. In this case, G is defined over any field you
choose, essentially over the integers, and is attached to a root datum. The basic
examples to consider include the general linear group GL,, the special linear
group SL,, the projective general linear group PGL,,, symplectic groups Sp,,,
and orthogonal groups O,,. One particularly important special case is GL1, the
multiplicative group. We can also consider tori, which are products of several
copies of the multiplicative group: GL; x ... x GL;.

2.1.2 Definition and Clutching Functions

To define a principal bundle, we do not need to assume that the algebraic
group is reductive, connected, or split. This will be the starting point for our
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exploration.
First, let G be any affine algebraic group over k.

Definition 2.1. A principal G-bundle (or G-torsor) on a variety X consists
of a variety P equipped with a morphism 7w : P — X and a right action of a
group G on P that preserves w. Locally, in the étale topology on X, the bundle
1s isomorphic to the right action of G on the product G x X — X, where G acts
on the first component by right multiplication.

This means there exists an étale open cover U; of X such that, on each U;, we
have the following isomorphism:

U, = GxU

N

i
where the structure is compatible with the G-action in a G-invariant manner.

The term ”étale” requires further explanation. In algebraic geometry, open
subsets of X typically refer to open subsets in the Zariski topology. However,
étale charts are somewhat more general:

Definition 2.2. An étale chart U — X consists of:
1. A Zariski open subset U C X.
2. A finite unramified cover U — U.

Thus, an étale chart is a map from a finite unramified cover of an open subset
of X, which generalizes the concept of a standard open set. For most purposes,
we can treat étale charts as if they were simply open subsets of X, as they are
sufficiently well-behaved for our constructions. For example, the intersection of
two étale charts U; and Uj is given by the fiber product P|U; = P - xU;. This
is not overly complicated; it simply means that the U;’s are finite unramified
covers of open sets in X. However, we can treat these U; as though they were
open in the Zariski topology for convenience.

Principal G-bundles are classified by clutching functions g¢;; : U; NU; — G,
where U; N U; #, satisfying the following conditions:

gij © 945 = id
gij © gjk © gki = id”*
on the triple intersection U; N U; N Uy, modulo the transformation

hiIUZ'—>G, ginhiOgijOhjl.
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Here, g;; defines a 1-cocycle in the sheaf ZYX,0X,Qq), where OX,G is the
sheaf of G-valued regular functions on X. The cocycle condition ensures that
we are gluing trivial G-bundles on each U; in a consistent way. Changing the
functions g;; on the left by an element h; and on the right by h; does not
affect the isomorphism class of the bundle. Therefore, two cocycles that are
cohomologous correspond to isomorphic bundles, implying that G-bundles are
classified by the group cohomology H (X,Ox ).

2.1.3 Bundles

Next, we consider the notion of an associated bundle. Given a group homo-
morphism ¢ : G — H, an associated H-bundle can be constructed from any
G-bundle by applying ¢ to the transition functions. Specifically, for G = GL,,,
a principal G-bundle is equivalent to a vector bundle of rank n, since the transi-
tion maps from G x U; to G x U; can be viewed as maps between vector spaces.
This leads to a categorical equivalence between the category of principal GL,,-
bundles and the category of vector bundles of rank n.

Additionally, given an algebraic representation p : G — GL(V'), every G-bundle
E on X gives rise to an associated vector bundle E, of rank n, where the action
of G on F is translated into an action on the vector bundle.

In topology and geometry, the definitions of principal bundles are similar but
involve smooth functions instead of regular functions. In the topological setting,
X is a topological space and G is a topological group, while in differential
geometry, X is a manifold and G is a Lie group. In complex geometry, X is
a complex manifold and G is a complex Lie group, with holomorphic functions
replacing regular ones. In all these contexts, principal bundles can be described
by gluing data that respects the relevant structure of functions (continuous,
smooth, or holomorphic). While the underlying geometric spaces may vary, the
fundamental concepts of principal bundles and their classifications remain the
same.

In complex geometry, a similar story applies to holomorphic functions. In topol-
ogy, let X be a topological space and G a topological group, or alternatively, let
X be a manifold and G a Lie group, in which case we consider smooth functions.
In analytic geometry, X is a complex manifold and G is a complex Lie group,
and we work with holomorphic functions. In all of these settings, we can use
ordinary open subsets and obtain a principal bundle by gluing. If we are given
a usual open cover, we can literally glue: if we have a point in chart U; and
a point in chart U; which correspond to the same point on X, then we glue
fibers at those points by using the corresponding map. If we have étale covers,
it is slightly more complicated, and we use faithfully flat descent which is a
similar procedure with coverings of open sets, but we will skip this because it is
not relevant for our purposes.

Finally, for any point z € X, the fiber of the principal bundle P at z is the fiber
7~ 1(x), denoted P,. This is a principal homogeneous space for G, meaning that
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G acts on P, transitively and simply. Note that this discussion assumes that X
is defined over an algebraically closed field. If we do not have an algebraically
closed field, then we should consider points not just over the original field (which
may be none), but over some field extensions.

2.1.4 Serre’s GAGA

One important result known as the GAGA theorem bridges the gap between
analytic and algebraic structures.

Theorem 2.3 (Serre’s GAGA). If X is a smooth complex projective variety,
then the category of analytic G-bundles on X is equivalent to the category of
algebraic G-bundles on X, where the equivalence in the direction from algebraic
to analytic is given by analytification.

This equivalence implies a one-to-one correspondence where every (smooth) al-
gebraic variety over C can be viewed as a complex manifold. Similarly, any
G-bundle in the algebraic context corresponds to an analytic G-bundle. This
generalization extends the classical result from complex analysis that meromor-
phic functions on the projective line are rational functions.

2.1.5 Etale Charts

Why is étale cohomology necessary? In classical topology, we generally do not
need to consider the étale topology because open neighborhoods of points are
contractible and have trivial cohomology. This allows us to use these neigh-
borhoods to compute global cohomology. However, the situation is different in
algebraic geometry, particularly in the Zariski topology. For example, in the
case of curves or lines, Zariski open sets are typically complements of finite sets
of points. On the complex line, for instance, one might remove finitely many
points, but there is no way to make these sets contractible in the same sense.
This introduces complications when trying to compute cohomology.

To illustrate this, consider the principal G-bundle P = C* — C* = X, where
the map is given by z + 22. This is a us-bundle, where o = Z/2 is the cyclic
group of order 2. This bundle is not Zariski locally trivial on any non-empty
Zariski open set in C*. The reason for this is that the monodromy of the
bundle, when traversing the circle in the punctured complex plane, results in
multiplication by —1. Removing finitely many points does not eliminate this
monodromy, and thus the bundle cannot be trivialized by Zariski localizations.
Thus, in order to describe such bundles, we require that every bundle has an
atlas of charts such that on each chart, the bundle becomes trivial. This is
precisely why we need to take finite coverings to trivialize this monodromy.

For connected groups, the situation is more manageable. However, even in the
case of connected groups, non-trivial subtleties can emerge, especially when
dealing with more complicated varieties such as surfaces.
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For connected, reductive groups, there is a well-known result, which we state
here without proof:

Theorem 2.4 (Borel, Springer). If X is a smooth curve and G a connected,
reductive group, any principal G-bundle on X is Zariski locally trivial.

Remark 2.5. For certain connected reductive groups, such as GL, and SL,,
the result always holds. For GL,, Hilbert’s Theorem 90 guarantees this for any
variety X. However, this is not true for all groups; for example, in the case of
PGL,, and orthogonal groups, the situation is more subtle.

In the case of curves, however, the story is different, and we can focus on ordinary
Zariski covers without needing to invoke the étale topology. Specifically, any G-
bundle on a smooth curve will trivialize after removing a finite number of points.
This fact is a consequence of the structure of the Picard group for curves, which
we explore further below.

For semisimple groups, we have a more refined result. The following theorem,
which was later generalized by Drinfeld and Simpson to families of curves, is
non-trivial:

Theorem 2.6 (Harder). If G is semisimple, then a G-bundle on a smooth
affine curve is trivial. In particular, such a bundle can always be trivialized by
removing a single point.

This result does not hold for non-semisimple groups, such as GL;. To under-
stand this, consider the set of isomorphism classes of G-bundles on X when
G = GL;. These isomorphism classes correspond to the set of line bundles on
X, which is the Picard group Pic(X). For curves, the Picard group has several
important properties:

e Pic is a group under the tensor product operation

e This group fits in an exact sequence
0 — Pico(X) — Pic(X) ¥ 7z -0

where Picy(X) is the connected component of the identity in Pic(X), and
Pico(X) = Jac(X) is the Jacobian of X, which is a complex torus of
dimension g, where g is the genus of X.

e The Picard group without a point, denoted Pic(X \ z), is related to the
original Picard group by:

Pic(X\z) = Pic(X)/(O(x)).

where O(x) is the line bundle corresponding to a divisor at x (a point
with a pole of order at most 1). Furthermore, this exact sequence splits,
so we have: Pic(X\{z}) = Jac(X). Therefore, if g(X) > 0, the bundle
generally cannot be trivialized by removing a point. More precisely, for
any finite set of points removed from X, there may exist a bundle that
does not become trivial when those points are removed.
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2.2 Moduli of G-Bundles on Smooth Projective Curves
2.2.1 Stacks

For any variety X and algebraic group G, we denote by Bung(X)(k) the set of
isomorphism classes of principal G-bundles on X. Although this is just a set,
there is much more to explore. We can extend this not only for a base field k,
but also for any field extension of k£ or more generally for ring extensions. In
algebraic geometry, we often extend scalars and consider bundles defined over
a field extension of k, meaning that the transition functions g;; will have coeffi-
cients in this extension. If A is a commutative k-algebra, we define Bung (X)(A)
as the set of equivalence classes of principal G-bundles over X with coefficients
in A. This defines a functor of points Bung (X), which sends A — Bung(X)(A4).
This functor is a central object in algebraic geometry, especially when defining
affine schemes. More generally, schemes are defined as functors that satisfy cer-
tain properties, one of which is called representability by a scheme. However,
Bung(X) is not representable by a scheme because bundles can have automor-
phisms. Instead, Bung(X) is an algebraic stack. The main distinction between
schemes and stacks is that schemes correspond to sets of points with no addi-
tional structure, while stacks include automorphism groups for each point.

To illustrate this, consider G to be a finite group. We can then examine prin-
cipal G-bundles over a point, denoted by *. The stack BG := %/G, called
the classifying stack, is a model for the moduli space of principal G-bundles.
The functor of points for this stack is given by the category of principal G-
bundles over an affine scheme, such as SpecA. This corresponds to a morphism
from SpecA into */G, which defines a principal G-bundle over SpecA. We have
framed the definition of bundles on varieties for simplicity, but the more general
and accurate setting is to define bundles on schemes. The essential concept
remains unchanged, with the term ”variety” replaced by the more general term
”scheme”.

This stack %/G consists of a one point with automorphism group G. If we con-
sider a specific point in Bung(X) corresponding to a specific bundle, this point
is not just an ordinary point, but an object like x/G. More generally, we can
consider stacks which are global quotients. Algebraic stacks are globalizations
of the notion of a quotient of a variety by group action. If Y is a variety and
H is an algebraic group acting on Y, we can associate the stack Y/H with this
action. The functor of points for this stack is Map(.S,Y/H), which corresponds
to a principal H-bundle P — S with a commutative diagram

P — Y
! !
S — Y/H

where P — Y commutes with the H-action.

The purpose of using stacks is to handle situations where the group H does
not act freely on Y. If the group action is free, the quotient is straightforward.
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However, if there are stabilizers, the quotient space may exhibit undesirable
topological properties. The theory of stacks allows us to work with the quotient
in a way that preserves the group action while avoiding the problematic aspects
of the quotient space itself. In this framework, we consider Y with the H-action
and express everything in terms of Y and H, rather than directly in terms of
the quotient.

Next, we will define Bung(X). This is not a global quotient, nor is it of finite
type when Y is a variety or scheme of finite type. However, it can be repre-
sented as a nested union of open subsets Bung(X); of the form Y/H, where
Y is a smooth variety and H is a group (e.g., GL,). Locally, one can work
with such quotients in neighborhoods of points. Although there is no natural
representation, various representations exist. For example, if H is a subgroup
of another group H’, the quotient Y/H can be "multiplied” by H’, yielding an
action of H’, and we have the isomorphism Y/H =Y xy H'/H'. This reveals
that there is no particularly nice or canonical representation, which makes the
study of these stacks subtle. Specifically, for every field K (such as the complex
numbers), Bung(X)(K) is a set, but it is not a well-behaved object beyond this.

Bung(X)(K) forms a topological space, as X/H yields a topological space.
However, the topology is very non-separated, where points need not be closed.
For example, in the case of the projective line X = P!, the closure of a point
may include all points. This contrasts with the situation for schemes, which are
also topological spaces but are more separated (although not Hausdorff, they
have closed points over fields).

2.2.2 Examples
e SL,-bundles are vector bundles of rank n with trivial determinant.

e PGL,-bundles are vector bundles of rank n, modulo tensoring with line
bundles.

e For GL;-bundles with £ = C, we have:
Bung(X) = Pic(X) 2 Picg(X) X Z

This is a stack because for any line bundle L, the automorphism group
Aut(L) = C*. While individual points typically have no automorphisms,
in this case, every point shares the same automorphism group. This sug-
gests that the stack is, in many ways, not much different from a scheme.
To ”rigidify” the situation, we can consider bundles along with a chosen
point in one of the fibers. By fixing this point, the automorphism group
C* is effectively trivialized, and the result is a scheme. More specifically, it
is an infinite-type scheme due to the presence of infinitely many connected
components, but it remains a well-behaved scheme where each component
is an abelian variety.
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e For SL, bundles, even on relatively simple curves like P!, the situation
becomes significantly more complicated due to the potential for automor-
phism groups of arbitrary dimension. As the bundle degenerates, the
size of its automorphism group increases correspondingly. To understand
this concretely, consider line bundles on P!. We have Pic(P!) = Z because
Jac(P!) = 0, implying that all line bundles are of the form O(n) = O(1)®"
for some degree n € Z.

The line bundle O(1) can be described using two charts on P! = A U{oo}:
Uso = P1—{0} and Uy = A'U{oo}. On Al every vector bundle is trivial, a
result that follows from a theorem in commutative algebra (due to Quillen,
in response to a question by Serre), which states that vector bundles over a
polynomial ring in one variable are equivalent to finite projective modules,
and all such modules are free.

Now, observe that the intersection Uy N Uy = Al — {0} = G,,, the mul-
tiplicative group of nonzero scalars. To glue the two charts, we need a
regular function g : Uy N Uy — Gy, called the clutching map, which de-
scribes the transition from the co-chart to the 0-chart. This function must
be non-vanishing, and it takes the form g(z) = ¢ - 2™ for some constant
¢ # 0. Since this constant can be absorbed by rescaling, we may choose
¢ = 1, giving the clutching function g(z) = z". The corresponding line
bundle is therefore O(n).

In particular, if P — X is a G-bundle, the sections are maps that split the
projection, meaning their composition gives the identity. We can discuss sections
for principal bundles, vector bundles, and line bundles. For the line bundle O(n),
the sections are pairs (fo, foo) such that fo = 2" fo, where fj is a polynomial in
z and fo is a polynomial in z~'. From this relation, we see that f; is determined
by foo, and since f4 is a polynomial of degree at most n, the space of sections
has dimension n + 1.

Now, suppose we have a GL(2) or SL(2) bundle of the form O(n) + O(—n), so
that the transition matrix is
B (z" 0 )
9=\o )

The automorphisms of E consists of matrices of the form

aii, a2 € C,
> | a1 =0,

Aut(€) = (““ 2
a2 € F((’)(Zn))

a21  a22

where the second line follows from fy = 2" fo, which implies that

dimI'(O(n)) = {n +1,n20

0,n <0
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The third condition follows from the fact that
Hom(O(n), O(—n)) = Hom (O, O(—2n)) = T(O(—2n)) =0,

for n > 0, and T'(O(2n)) is a space of dimension 2n + 1. Therefore, the auto-
morphism group Aut(F) consists of matrices of the form:
@

Aut(E)z{(S 6,1)}, dim Aut(E) = 2n + 2

where « has dimension 2n+1. We can now conclude that dim Aut(E) = 2n+2.
So this explains that the stack is complicated for SLy bundles.

When the genus of X is greater than 1, this stack becomes even more compli-
cated, which is why Langlands theory and Hitchin systems theory are so rich.

2.2.3 Classification of Rank 2 Vector Bundles on P!

For those more familiar with analytic techniques, we can also approach this
using complex numbers through the lens of geometry of holomorphic bundles.

Theorem 2.7. Every rank 2 vector bundle E on P! is isomorphic to O(m) @
O(n) for some unique m < n.

Proof. Uniqueness: We can recover the value of n from E by using the fact
that n = max(i | Hom(O(i), E) # 0), because for ¢ > M, N, there will be no

non-zero maps into the direct sum.

Existence: Let E be a fixed rank 2 vector bundle on P!. It has a meromorphic
section because it trivializes on some open set, either Uy, or Uy, where there
exists a meromorphic section with a pole at the missing point. This gives a map
p #0, ¢ : O(m) — E, where ¢ is non-vanishing.

A subsection is a map from O(m) — E, but for the subsection to be mero-
morphic, it must have poles. To "kill” these poles, we take a negative m to
account for them. This is a reasonable assumption because if we had a map
where the entire fiber vanishes at some point, we would avoid this by rescaling
m appropriately.

Thus, we have a short exact sequence:
0— O(mo) = E" — O(m;) — 0.
The classification of extensions is given by:
Ext'(O(n), O(m)) = H' (P!, O(m — n)) "= HOP', O(n — m) ® K),
where K = O(=2). If m > n — 1, then n — m — 2 < 0, implying that Ext' = 0,

and thus E = O(m) @ O(n). Therefore, we have nothing further to prove in
this case.
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Assume m < n — 1. Let r be the maximal integer such that Hom(O(r), E) #
0. This integer exists because it corresponds to a position in the long exact
sequence.

We can realize this bundle by:

o= (o 7).

where f(z) is a Laurent polynomial. We can change g by conjugating with

matrices: ) ( 1)
(1 ez > B (1 oz~ )
= (0 1) 2=\, 1)

It is left as an exercise to show that we can reduce f to a form where it consists
of monomials z* for m < s < n.

A map O(r) — E is a subsection of O(—r) ® E. The transition map is:

()

A subsection consists of a pair:

(Get) (=)

yo(2)) " \yoo(2)/ /7

with 20(2) = 2™ "2 (27 1) +27" f(2)Yso(271) and yo(2) = 2" Yoo (271). These
expressions have no monomials below degree r, so we can ignore xg and yo and

only focus on z and yoo. Thus, we can bound deg(yo) < n —r and show that
f(2)yso(2) has no terms of degree between m + 1 and r.

With n — 7 + 1 unknowns (the coefficients of the polynomial f(2)yo(z)) and
r —m linear homogeneous equations, nonzero solutions exist if r—m < n—r-+1,

or equivalently, if r < m;‘ . Hence, we have:

0= O(Tmax) = E — O(r') = 0,

where ' = m +n — rmax < m;‘”. This sequence splits, and we conclude:

0= O(rmax) = E— O(') = 0,

which implies that £ = O(rmax) ® O(r’). Thus, we are done.
O

Corollary 2.8 (Grothendieck). Rank n wvector bundles on P* are uniquely of
the form O(my) ®--- @ (’)(mn), where my < --- < my,.
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Proof. Proof is via induction: Suppose we have the sequence
0—=0(mg) > E—O(m) @ - ®O(my) — 0.
This implies there exists a sub-bundle E; C FE such that:
0 — O(mg) = E' = O(m;) — 0.

Assume myq is the maximal value in F, so mgy >
implies that the extension splits.

= mg > m;. This

mo+m;
2

O

Thus, when we consider the stack Bung,, (P!), we observe that bundles become
more and more degenerate as the index increases: Py = O(0)%, P, = O(1) @
O(-1),P, 2 O(2) & O(-2),.... The closure of each point in the stack is the
union of successive bundles, and this suggests that the closure of the point Py
contains all other bundles.

Next, we discuss the tangent bundle of Bung. When the genus of X is greater
than or equal to 2, Bung, although a stack, has a large open set of stable bundles,
which forms a smooth variety. This enables us to consider its cotangent bundle
and perform symplectic geometry on it. In particular, this bundle carries an
integrable system known as the Hitchin system, which we will construct, discuss
its integrability, and explore its quantizations.

2.2.4 Principal G-bundles on P!

Let’s generalize Grothendieck’s theorem to an arbitrary connected reductive
group, using a reformulation of the original theorem that makes it applicable to
any connected reductive group.

Recall that rank-n vector bundles are the same as GL,-bundles. Since GL,, is
the group of invertible n X n matrices, it contains a maximal torus 7', which is
the set of diagonal matrices, or equivalently, 7' = (C*)".

Theorem 2.9 (Grothendieck’s Theorem, reformulated). Fvery GLy,-bundle on
P! is associated to a T-bundle.

In other words, the structure group of the bundle reduces to the torus. More-
over, the same G-bundle can be realized as a collection of T-bundles, since the
ordering of my, ..., m, is significant for T-bundles but not for G-bundles. Fur-
thermore, if F; and Ey are T-bundles on P!, then By xp GL,, = Ey xp GL,, if
and only if there exists a permutation o € S,, such that F; & o(E3). Now, if
G is a connected reductive group, T' C G is a maximal torus, and N(T) C G is
the normalizer of T, the Weyl group W = N(T)/T acts on T

Theorem 2.10. Any G-bundle on P! is associated to a T-bundle E, and
FEi X G= FEoy X G

if and only if E1 =2 w(Es) for some element w € W.
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Although we won’t provide a proof, it can be shown by reducing to the case of
vector bundles and considering the representations of G.

Now, suppose T is a torus. How can we classify T-bundles on P'? We know
that T =2 (C*)", meaning T can be viewed as an n-tuple of integers in a non-
canonical way. More canonically, the cocharacter lattice is given by X, (T') def
Hom (C*,T). It is clear that this is canonical when we recall that a T-bundle

on P! is defined by a transition map g(z) : Uy, — Uy of the form
g:C* =T~ (C)"

given by
c1z™
Co Lma

Cp2™n

Thus, we have the identification
{T-bundles on P'} = X, (T).

The theorem states that G-bundles on P! are classified by X (T')/W, where W
is the Weyl group.

Remark 2.11. The cocharacter lattice X (T') is equivalent to the weight lattice
AV of the Langlands dual group GV . A connected reductive group, by definition,
has a root datum consisting of a root system, a dual root system, a weight lattice,
and a dual weight lattice. The root system defines an involution, allowing the
exchange of roots with coroots and weights with coweights. This involution also
swaps the group G with its Langlands dual group GV, for instance, exchanging
SLn with PGLn and Sp2n with SO2n + 1. Langlands duality establishes a deep
connection between objects associated with G and those related to G¥. A simple
example of this duality is given by the identification

X (T)/W =AY /W = AY

where AY denotes the dominant integral weights, which correspond to the ir-
reducible representations of GV. Thus, we have a bijection between principal
G-bundles on P! and irreducible representations of GV.

2.3 Double Quotient Realization of Bung(X) and Number
Theory

2.3.1 The Construction

Consider a smooth irreducible projective curve X, a split connected reductive
group G over k, and attach to this data the moduli stack Bung(X) of principal
G-bundles on X. This is a very complicated object, but fortunately, most of the
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complications are not relevant for our purposes. Earlier, we defined Bung(X)
through its functor of points - let’s now develop a more explicit way to define
it.

For simplicity, assume that G is semisimple and k is an algebraically closed
field, so that F € Bung(X) trivializes once you remove any point (by Harder’s
theorem). We fix a point € X, and cover X by two charts: X \ = and a
(formal) disk D, around z. With bundles and these two charts, there is no 1-
cocycle condition, and we can simply fix one transition map. The intersection is
the punctured disk D = (X \z)ND,. To be more precise, let R = O(X \ z) be
the ring of regular functions on the affine curve X \ z. If ¢ is a formal coordinate
at x, we can define

Note that O(X \ z) C K is similar to a ring of integers, so we have a non-
Archimedean valuation > 0. We can embed R — K by taking the Laurent
expansion. To perform this Laurent expansion, we need to choose a coordinate,
but it is easy to show that, canonically, the inclusion does not depend on the
choice of coordinates. Bundles F are defined by the transition map g(t) : D, —
X \ z, where g € G(K) is defined by g + highy ', with hy € G(R) and hy €
G(0).

Thus, we have proved the following:

Proposition 2.12.

Bung(X) 2 G(R)\G(K)/G(O).

Consider the affine Grassmannian Grg = G(K)/G(0O). The G-bundles corre-
spond to orbits of G(R) on Grg.

We can generalize this by removing finitely many points from X. Let S C X be
a finite subset with S # (. We have two charts: Uy = X\ S and Uz = J,cg De»
SO
Uynl = J D
€S

Thus, we can write

Bung(X) = G(x \ )\ [ ¢(0)/ [] 6D

zeS zeS

This description is valid for semisimple groups, which have the property that we
can trivialize any bundle by removing just one point. However, for G = C*, the
simplest example of a reductive group, this is not the case, and there is no set
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S that we can remove to trivialize all possible bundles. One might think that
removing all points results in an empty set, but in algebraic geometry, we allow
functions that have poles at all those points. Thus, we can consider arbitrary
meromorphic or rational functions, and we should replace the ring R with the
field of rational functions on the curve.

The further generalization is to take the colimit with respect to S, which gives

Bung(X) (k) = GCON [T G0/ T] G(D.).

zeX zeX

The prime on the product indicates the restricted product, meaning that only
finitely many coordinates are not in G(D) (i.e., have a pole).

If k is not algebraically closed, we proceed similarly but with S C X (k) that
are Galois-invariant. In this case, we obtain

Bung (X)(k) = G(k(X))\ II Ga(D;)/ [T G(D.).

z€X (k) /Gal(k/k) z€X

Example 2.13. If k is finite, then F := k(X) is a global field, and the first
product is a product over all valuations of k(x). We get

! !/

Bung(X)(k) =GENG | [[ =)/ ] o

vE Val(F) ve Val(F)

2.3.2 Number Theory

This is called the arithmetic quotient and the name comes from number
theory. Here, we have a global field of characteristic p because k is a finite field,
but there are also global fields of characteristic 0 which are the number fields:
the finite extensions of Q.

Definition 2.14. If F is a global field, the ring of adéles is

A=A= [] F
v€ Val(F)

Over global characteristic p, all valuations have this form. However, for number
fields, there are two kinds of valuations: Archimedean (embeddings of the field
into R and C, with the usual absolute value) and non-Archimedean (such as
p-adic valuations). The prime in the product in this case makes sense for non-
Archimedean valuations.

Let Op =] ) O,. Then

vE€Valnon-Archimedean (F

M = G(F)\G(A)/G(On)
as a generalization. Therefore, if F' = k(X), we get M = Bung(X)(k).
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Example 2.15. Take F' = Q with Val(F') = p,00, where p corresponds to
Q — Qp and oo corresponds to the usual absolute value valuation. We have

/
A=Rx][[Q, 0.=]]
p

p

and

M=CGQ\GR) x [[G(@,)/G(Z).

In number theory, it is important that this is equal to G(Z)\G(R).
o If G = Sp,,, we get

Sp(2n, Z)\Sp(2n, R)/U(n) = An

o If G = SLy, we get
SLy(Z)\SLa(R)/U (1),

but SLa(R)/U(1) is the upper half-plane (so we use modular forms), mean-
ing this equals Aq.
Langlands wanted to understand modular forms and their higher-rank general-

izations. To do this, we often need to use algebraic geometry tools.

It is important to note that the arithmetic quotient is well-defined for any re-
ductive group, and we no longer need the semisimple condition because we have
removed all of the points. If we move to the field of functions, any G-bundle
will be trivialized, since, as we saw earlier, they are all Zariski locally trivial.

If G = GL;, we get
Jac(X) = C(X)“\A*/O},

where A” /O is the group of divisors on X - C* and C(X)*.

2.4 Hitchin Systems
2.4.1 Stable Bundles

For the purposes of this course, the Hitchin system is an integrable system.
Integrable systems live on symplectic manifolds, so we need to introduce one.

The most common symplectic manifolds are cotangent bundles of ordinary man-
ifolds. We want to define T*Bung (X ). Note that Bung(X) is neither a manifold
nor a scheme - it is a smooth stack, so locally it is the quotient of a smooth
variety by an algebraic group. For such objects, we can define the cotangent
bundle and cotangent spaces as complexes, but we won’t go into this here.
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Assume that the genus g > 2 and G is simple and adjoint (i.e., it has no center).
Consider an open set. Bung(X) is a stack, and the main feature of a stack
compared to a scheme is that points have automorphisms. However, generic
bundles have trivial automorphism groups and form a smooth algebraic variety
Bun%(X ). The first part implies that they correspond to a locus, which means
in our presentation the group acts freely and stabilizers are trivial. The second
part implies that, as long as we restrict to an open set, this stack (which is a
functor of points) is representable by some variety. There are many ways to
choose this open set—one nice way is to consider stable bundles:

Consider G = PGL,,. Then G-bundles are rank n vector bundles modulo line
bundles. For stable bundles, the ”modulo line bundles” condition doesn’t matter
because stability is preserved when we tensor the bundle with a line bundle.

If F is a vector bundle on X, then we have two integers associated with it: the
degree d(E) (the first Chern class) and the rank r(E) (the dimension of the
fiber). We can now define the slope:

Definition 2.16. The slope of E is defined as

The purpose of defining the slope is to show what it means for E to be stable.
Definition 2.17. E is stable if for all sub-bundles, O # E' C E, u(E")u(E).
Why did we define these?

Theorem 2.18. Stable bundles form a smooth variety, which is an open subset
of Bung(X).

Exercise 2.19. If L is a line bundle and E is a vector bundle, show that E is
stable if and only if E ® L is stable.

So, generic bundles are stable and have no nontrivial automorphisms. We define
Bun%(X ) as the moduli space of stable bundles, which is a smooth variety.
We can now consider p@ = T*Bunl(X). This is where the Hitchin system
will initially live. However, there is a partial compactification, which is also a
smooth variety, that creates the Hitchin moduli space, and the Hitchin system
naturally lives on this compactification.

2.4.2 Higgs Field

What is the dimension of Bun%(X)? To answer this, we need to ask: what is
TEBund(X)? This is the deformation space of E.

Exercise 2.20. Deformations of E are classified by H'(X, ad(FE)), where ad(E)
s the adjoint bundle, the vector bundle associated with E corresponding to the
adjoint representation.
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Example 2.21. Consider G = GL, as a vector bundle. The deformations
of E are similar to the deformations of projective modules over the sheaf of
functions on X of rank n. Deformations of modules over any ring are classified
by Ext' (E,E) because deformation means defining a module over the ring of
dual numbers k[[h]]/h?, and our module is free in this view. So, in our case, the
deformations are classified by

Exzt'(E,E) = Ext' (O, E* @ E)
= H'(X, ad(E))

Consider TEBung(X) = H'(X,adE). By Serre duality, this is equivalent to
H°(X,(adE)*® Kx). But there is a trace form on the Lie algebra g given by the
Killing form, so ad has an invariant inner product which implies (adE)* = adE,
leaving us with

H°(X,(adE) ® Kx) = H*(X, Kx ® adE).

What is the dimension of H°(X, Kx ® adFE)? Recall the Euler characteristic
X(X,Kx ® adF) = dim H*(X, Kx ® adE) — dim H' (X, Kx ® adE).

In geometry, this doesn’t change under deformations. But dim H' = 0 for
generic bundles, which is intuitive because x is invariant. If we take a non-
generic bundle, dim H' will be positive and dim H® will be larger, which is
what happens when we have singularities—the tangent space at a singularity is
larger than the tangent space at a generic point. So, computing dim H(X, Kx®
ad(E)) is equivalent to computing the Euler characteristic.

If our group is adjoint we have to be slightly more careful because we have
several connected components of Bung but if it is simply connect when can
compute x for the trivial bundle (because x is deformation invariant), which is
given by

dim H(X, Kx)dimg — dim H'(X, Kx) dim g.

but H*(X,Kx)dimg = g and H*(X,Kx) = H°(X,0)* = C by Serre duality,
and we are left with

dim H°(X, Kx ® adE) = (g — 1) dimg

for semisimple groups.

If G = C*, then Bung(X) = Jac(X), which has dimension g. For G a general
reductive group,

dim Bung(z) = (¢ — 1) dim g + dim Z(g).
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Example 2.22. For G = GL,,

dim Bung(z) = (g — 1)n* + 1.

This has a clear and vivid geometric interpretation: it corresponds to the 1-
forms on X with coefficients in ad(F). These objects are significant in physics,
and they lead us to define the space of Higgs fields.

2.4.3 The Hitchin Integrable System
Let’s (finally) define the Hitchin integrable system on T*Bun% (X).

Definition 2.23. An integrable system is a collection of Poisson commut-
ing functions that are functionally independent, where the number of functions
equals half the dimension of it’s symplectic manifold.

We can think of it as follows: if we make these functions into a vector, we
have map to a vector space of dimension dim Bunoc(X ), which is a Lagrangian
fibration. Generically, a Lagrangian fibration corresponds to the functions being
functionally independent and forming an involution.

Example 2.24. For SL,,, dim Bun = (n? —1)(g — 1), and

Bung,(X) = {(E,¢)}.
where E is a stable bundle and ¢ is a Higgs field.
Definition 2.25. The Hitchin map is

p: T* Bund(X) — EBI HO(X, K
=1
(E,¢) = (TrA* ¢, Tr A® ¢, ..., Tr A" ¢)
where Hitch := @)~ HO(X, K$*) is called the Hitchin base
By Riemann-Roch, the dim HO(X, K¢'™') = (2i + 1)(g — 1) so

dim @ HO(X, K¢ = (02 = 1)(g — 1).

Since ¢ is a 1-form, Tr¢? is a quadratic differential, Tr¢? is a cubic differential,
and so on, making the map well-defined.

Theorem 2.26 (Hitchin). The Hitchin map is an integrable system.

Hitchin’s theorem implies that coordinate functions on B are pulled back by
p. Let d = dimB = (n? — 1)(g — 1). The basis Hy, ..., H; Poisson commute
on T*Bund(z): {H;, H;} = 0 and are functionally independent. Therefore,

p(E.¢) =0 Hi(E,)b;.
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Let’s generalize to an arbitrary semisimple G. Before we do this, recall Cheval-
ley’s Theorem: C[g]® = C[P,..., P.] where r = rank(G), and the P; are ho-
mogeneous with degree deg P; = d;.

Example 2.27.
C[sl,]* = R[TrA%, TrA3, ..., TrA").

Let P € C[g]® be a homogeneous element of degree m, and let (E, ¢) be a Higgs
pair, where E is a G-bundle and ¢ € Q(X,ad(FE)). To this data, we associate

P(9).

The fibers of adFE are copies of g and we have clutching maps which are con-
jugations by some element of this group, so the fiber of this bundle cannot be
canonically identified with g. Fortunately, we can identify it canonically with g
up to conjugation, so if we have a conjugation invariant function on g, we can
canonically compute it for ¢. Since ¢ is a 1-form, we obtain an m differential
and we can conclude that ¢ € H(X, K¢™).

We now define the Hitchin base B = @_, H*(X, K{%), where d; are the
degrees associated with the group G. Recall that 2d; — 1 corresponds to the
degrees of the generators of the cohomology ring of G. Therefore, the dimension
of B is given by

dimB =Y (2d; - 1)(g — 1) = (g — 1) dim G = dim Bung,(X).

We may now define

p: T*Bung(X) — B
(E7¢) = (P1(¢)7apr(¢))

Theorem 2.28 (Hitchin). This is an integrable system.

Hitchin proved it for classical groups, and later others completed the proof
for exceptional groups. We will explain the proof in the case SL, or GL,.
The proof consists of two parts: these functions define an involution, and they
are functionally independent. For the second part, functional independence is
equivalent to showing that the map is a dominant map.

2.4.4 Marsden-Weinstein Symplectic Reduction
For G = SL,,.
Part 1: Poisson Commuting

Let’s start by explaining Hamiltonian reduction in the simple case of cotangent
bundles. Let Y be a manifold (or variety), and H a Lie algebra (or group)
acting on Y on the right. Then H acts by Hamiltonian transformations on
T*Y because the symplectic form on the cotangent bundle is canonical and
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therefore preserved by the action of any group that acts on Y. Moreover, this
action is Hamiltonian, meaning the action is defined by some Hamiltonian or
equivalently, there exists a moment map

w:TY = p*
dual to the action map
a:h—Vect(Y)=T(Y,TY),

such that
w(x,p)(b) = (p,a(b)x), VY(x,p) € T*Y,be.

Theorem 2.29 (Marsden, Weinstein). Suppose H acts freely on Y. Then
p~Y(0)/H = T*(Y/H) has a natural symplectic structure.

We can use this to construct integrable systems: Suppose dimY/H = n, and
F1,...,F, are Poisson commuting functions on T*Y. {F;, F;} = 0 and F; are
H-invariant, so they descend to functions F; on T* (Y/H). Then {F;, F;} =
0, where F : T*Y — C are H-invariant and F is the descent of F|,~1(0) to
p~1(0)/H =2 T* (Y/H). It is easy to check that these functions are an involution
downstairs on T* (Y/H), and there are exactly the right number of them to
form an integrable system. If they happen to be functionally independent, then
Fy,...,F, form an integrable system on 7*(Y/H). Note that there are too
few functions to form an integrable system on T*Y, so we must descend to
T (Y/H).

This is a powerful method to construct integrable systems, and we will use
them in our case, except we will start with something of infinite dimension.
This method is good because it can be hard to check that certain functions
are an involution, especially if we don’t have an effective way of writing them
down explicitly. However, often it is the case that upstairs on Y, F},...,F,
Poisson commute for some trivial reason. For example, if Y is a vector space,
on T*Y we have coordinate and momentum variables, and often Fy, ..., F}, only
depend on momentum so they Poisson commute. When we go downstairs to
the quotient, things become less trivial. Luckily, we don’t have to check they
Poisson commute because it follows from the construction.

Let’s now apply this to the Hitchin system. Recall that Bungo(X) = G(X \
D\G(K)/G(0), K = C(D}) = C((£)), © = C[D,] = C[i]], and set G*(K)
G(K) as the preimage of Bun(X). On G°(K), this acts on G(X\z) x G(0) al-
most freely, with stabilizer Z(G). So T*Bungo (X) is the Hamiltonian reduction
of the loop group Y = T*G%(K) by H = G(X\z) x G(0).

To construct an integrable system downstairs, we need to find some commuting
elements upstairs. Y is a Lie group, so we have

T"GY(K) = G°(K) x g((1))".
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But for a € g((t)),b € g((t)) dt, we can define the pairing
(a,b) = Resi—o{a(t), b(t)),
so we have g((¢))* = g((¢)) dt and
T*G°(K) = G°(K) x g((t)) dt.
We have considered (g, ¢) where ¢ is the Higgs field  on D>, so we can take
P;(¢) € C((t))(dt)¥. Define
H;, :=Res(t"P;(¢)), V1<i<randneZ.
Observe that H;, depends only on momenta on T*G°(K), which implies
{Hin,Hjn}=0.

Momenta on T*(G) commute like Lie algebra elements but over P;, they are
G-invariant so they Poisson commute. In other words, the dual space of a
Lie algebra is a Poisson manifold (with Poisson structure coming from the Lie
bracket), but invariant functions lie in the center of the Poisson algebra, so
they still Poisson commute. The group is nonabelian and the momenta don’t
commute, but the invariant functions of momenta commute with momenta and
thus with each other:

T*qO(K) — )

J

1= (0)

!

T*Bung,(X) ———— @, H(X, K$*)

@, C((1))(dt) ™

commutes where the right map is the Taylor series expansion of differentials.
Additionally, this map is injective by analytic continuation.

Part 2: Independence
Suppose b = (by, ..., b,) € B = @7~ H(X, K&*') where b; € HO(X, K%).

For convenience, we will redefine

p(E,¢) = (Tr A* ¢, —Tr A ¢, ..., (—1)"Tr A" ¢).
Consider the polynomial A" + b A" "2 + ...+ b, = (A= A1)...(A = \,). Note that
A; are all 1-forms on X, but we have an Galois group action so they are not

single valued. When we go around the Hitchin base, the A; will be be permuted.
Let z € X. This factorization allows us to write {A1(z),..., \p(2)} C TrX.
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This gives a subset C;, C T* X consisting of \;(z) for various z. In fact, Cj, is an
algebraic curve inside the surface T* X defined by the equation A" +bg(z)A\" =2+
<. + by (x) = 0. Furthermore, we have a projection 7 : C, — X of degree n.

Definition 2.30. The curve Cy is called the spectral curve of b.

Suppose we have (E, ¢) € T*Bun%(X) and attach p(E, ) = (b, ..., by), where
b; are coefficients of the characteristic polynomial of ¢. Thus,

A4 b A2 £ L+ by, = det(\ — @),

where \;(x) are the eigenvalues of ¢(z) for x € X. The name ”spectral” comes
from the fact that Cp(g,4) is traced out by the spectrum of ¢(x) when x varies
along X. Because ¢ € Q!(X,EndE) is a 1-form, the eigenvalues are also 1-forms
(not functions) and live in T*X.

Why is this curve useful when studying the Hitchin integrable system? Because
C(E, ¢) depends only on the b of p(E, ¢). Now, it is natural to ask: can we
recover (E, ¢) from C and something else?

Theorem 2.31 (Hitchin). C is smooth and irreducible for generic b.
The proof is not hard but we will not present it.

If we have ¢ whose spectral curve is C, then we have an eigenline bundle
Ly on C: the fiber of Ly at A € C' (which projects to € X) is the eigenline
of ¢(x) with eigenvalue A. In the generic case where all of the eigenvalues are
distinct, we can attach to a point A € C' a certain line which is the line of ¢
with eigenvalue A, giving us a line bundle on the spectral curve. We have to be
slightly more careful when the eigenvalues collide, but it is similar.

Proposition 2.32.
E = 7T*L¢.

Algebraically, if we have a module over functions on C, it is a module over
functions on X by 7. Geometrically, when the eigenvalues are distinct, £, =
@/\EW,l(x) (Lgy)a. Suppose Ly has degree d, which follows from the fact that
the moduli space is connected and reducible, and the degree is a topological

invariant. Thus,
Lg € Pic*(Cy) = Jac(Cy).

Moreover, if we know Ly, we can recover (E,¢) from Ly. This implies that
p~1(b) C T*Bund(X) gets identified with a subset of Jac(Cp). This is exactly
what we want because this shows that there is a linear flow some torus on the
integrable system.

It remains to show for generic b,

dimp™'(b) = (n? ~ 1)(g — 1)
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and not larger because then there would be undesired functional dependence.
To estimate the dimension of the fiber, we know that the fiber is contained in
the Jacobian of a curve, so we can just compute the genus.

Consider the group G = GL,, and a curve C defined by \* + by A"~ ! + ... 4+ b,,.
Theorem 2.33. The genus of C' is

n2(g -H+1= Bun%Ln (z).

Proof. Compute the genus when by,...,b,_1 = 0 and C is given by the equation
2" 4+ by(x) = 0. We map C — X,n — 1 if b,(x) # 0. Note that b, €
HO(X, K{™) has degree (2n — 2)n, so generically, b, has this many zeros. Thus,
we compute the Euler characteristic of C as follows:

X(C) = ((2-29) — (29 — 2)n)n + (29 — 2)n
=n?%(29 - 2).

This gives the genus of C":

2+ n%(29—-2)
=

9(C) =1+n%*(g—1).

Therefore, we conclude that p~1(b) is dense in Jac(C), and the dimension of
p~1(b) is bounded by

dimp~'b <1+ n?(g—1) = dim Bun%(x)7

completing the proof.

2.5 Bundles with Parabolic Structure
2.5.1 Principal Bundles

We continue our discussion of Hitchin integrable systems from earlier, prior to
the proof. In this section, we will compute a few examples. Unfortunately,
computing for curves of genus > 2 is quite complex, as the moduli space Bung
is icomplicated and difficult to express in explicit coordinates. While Hitchin
managed this for GL,,, the computations are still quite challenging. Therefore,
we will instead consider a generalization of Hitchin systems, which includes
punctured curves. This generalization allows for a non-trivial structure when
the genus is 0 or 1, providing a more desireable setting for explicit calculations.

Suppose G is a connected reductive group, H C G, and £ is a G-bundle on X.

Definition 2.34. An H-structure at x is an H-orbit in &,.
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There are exactly G/H choices for the H-structure and H only matters up
to conjugation because right-multiplication by g € G transforms an H-orbit
into a gHg '-orbit. Fix distinct ¢,,...,ty € X, and let P;,...,P, C G be
parabolic subgroups (containing Borel subgroups, ie. the quotient G/P is a
projective variety). For GL,,, a simple example arises when n =nq +---+n, is
a composition, corresponding to the upper triangular block matrices with block
sizes nq,...,Nn,. The smallest parabolic occurs when n; = 1 for all i.

Definition 2.35. Bung(X,t1,...,tn,P1,..., Px) is the moduli stack of G-
bundles on X with a P;-structure at t; fori=1,...,N.

For G = GL,, G-bundles correspond to vector bundles of rank n. Let E be
the rank n vector bundle and £ be the corresponding GL,,-bundle. Canonically,
the fiber is £, = {bases in E,}, which is a classic example of a torsor over GL,
because we can perform change of basis via a matrix. In particular, if P is a
parabolic subgroup, i.e., the stabilizer of a partial lag 0 C V; C --- C V. =
V', where the dimensions of the quotients V;/V;_; are given by n;, then a P-
structure is a set of bases compatible with this flag. Specifically, there is a subset
of the bases that forms a basis for each of the spaces V;. Thus, a P-structure is
equivalent to fixing a flag.

Example 2.36. For G = GLs,

nes={(; )

Thus, a B-structure on E at x € X is simply a line £ € E,. We then have a
fibration Bung(z,t1,...,tn,P1,..., Pn) — Bung(X) with fiber G/Py x G/ Py X
. X G/P,.

We care about these structures because they allow us to consider the cases
g = 0 and g = 1. Adding this data means that the automorphism groups of
the bundles must preserve it, which makes the automorphism group smaller,
thus creating more objects with a trivial automorphism group. If N > 3, then
a generic G-bundle on P! with parabolic structures has a trivial automorphism
group. Let E be the trivial bundle. Then, Aut(EF) = PGL2, since a holo-
morphic function on a compact Riemann surface must be constant. However,
we have parabolic structures £1,..., 0y, where {; € PE;, = P'. Thus, the set
Bun@" (z,ty,...,ty), the bundles with parabolic structures and trivial auto-
morphism group, is given by (P')"¥ /PGL,. This contains an even smaller open
set (y1,...,Yn). It is well known that PGLy acts trivially on triples of distinct
points on P!, and there is a theorem stating that there is a unique element in
PGL, that maps these points to 0, 1, and co. Therefore, we want

(PHN=3 c (PHYN /PGL,
which is a variety.

From now on, we will live on (P1)" /PGLy, which is still a stack but simpler
than the general version. Now, we can do simpler calculations using coordinates
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(Yi...,Yn) € (PY)N with y; € P! = CUocc. In general,

Bung™(X,t1,...,tn, Pi,..., Py) = (HG/P1> /G diagonal-
i

2.5.2 Classical Hitchin Systems

Recall that we constructed the Hitchin system by realizing Bung as a double
quotient and descending a certain collection of Hamiltonians upstairs on the
quotient bundle of the loop group down to the double quotient. We can do the
same with parabolic structure. Recall that

Bung(X) = G(X \ {t1,... ,tN})\HG(DtX,L-)/HG(Dn)-

Now, we take the same Hamiltonians H; j, := ResP;, (¢)z] on T*G((H};)) x

. x T*(D;), and do the reduction to G(X\{t;}) x [ P;

If we want to fix parabolic structures, we should modify [[, G(D;,). We have
ev : G(D) = G, where ev(g(z)) = ¢(0). Then we can define P; = ev—(P;),
which gives an integrable system on T*Bung(ty,...,tn, P1,..., Py). Points of
this space are (F, ¢) where E is a parabolic bundle and ¢ is a Higgs field with
singularity. More precisely, we have the condition that

¢ € QY (X\{t;},adE)

has at most first order poles at t; and the residue strictly preserves (lies in the
unipotent of StabF;) the flag F; at T;. In the general case GL,, this means
flags are a filtration on our space, and strictly preserves means that it maps i-th
piece of the filtration to ¢ — 1, so it acts by 0 in the associated gradient.

Exercise 2.37. Check that we have the right condition.

2.5.3 The Garnier System

For PGL3, ¢ has simple poles at ¢;, and Res, ¢ is nilpotent and act by 0 on
l; C E;. Now let’s compute the Hitchin system for PGLy in genus 0. Assume
t1,...,txy € A' C P! and the parabolic structure at ¢; is y; € A. The Higgs field
¢ is a 1-form with simple poles at ¢; valued in sls:

N
¢=z;zilizz_ dz

with A; € sly with

e Regular at co because there must not be a puncture there. Our form is
reg]}[ﬂar at oo if it has 2nd order decay. Our condition is equivalent to
> Ai=0.
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) . AR . ab_ ab)(yi)_
e A; arenilpotent: A; <1) =0. Given A (c d) = 0, we have <c JJ\1)=
0 which implies ay + b = 0,cy + d = 0 giving us
2 2
_(ey —cy (v -y
A_(c —cy) :>A’_p’<1 —yz-)
where p; momenta coordinates with symplectic form > dy; A d p;.

We still have a PGLy symmetry, so we will some system in terms of y and then
take the reduction with respect to PGL>. Let’s compute the Hitchin Hamilto-
nians:

1
Hn,Q = §Tr¢2( dZ)Z

2 i Z—ti'Z—tj
TI'AZ'AJ' 2

=N ——— (4
2o

1<j
ti — tj)(Z — tz)

g2 L2
pip; Tr (yl yz) Tr (y] yJ)
. L =y L -y dz)2
=2 (ti —tj)(z —t; (dz)
i#j itz t)

:ZW(dZ)Q

i ti — t])(z — tl)

TrA;A;
:Z—( ' (dz)?
i#]

where the third line follows from i = j dropping out as A? = 0, the fourth line
follows from the identity

1 1 ( 1 1 )
(z—a)(z—b) a—-b\z—a z-0b/"
We can take residues (since scaling doesn’t matter to us):

(1 — 1.)2
G; — Res, Hy = Z Pingt(?l/z_ t»y])
i#j 7o

which gives us the Garnier system.

2.6 The Twisted Hitchin/Garnier System

We can create even more generalized integrable systems by ”twisting” Hitchin
systems for bundles with parabolic structure. To do this, let’s explain Hamilto-
nian reduction along an orbit. Let M be a symplectic manifold with H acting on
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M. We can generalize a moment map p : M — h* to u=1(O)/H with O C b*,
an H-orbit which we call a coadjoint orbit. We can check that u='(0)/H
has a canonical symplectic structure and use the same construction: if F; are
involutions on M, then F; H-invariant — descent to F; on u~1(0Q)/H also are
involutions. The proof is the same.

Consider

HG(D;) D G(X\{t1,...,tn}) X HG(Dti).

with ker denoting the evaluation map [[, G(Dy,) — GV, evaluated at t1,...,tx.
We can first reduce by ker and then take the residual action of GV, after which
we descend the Hitchin Hamiltonians to p=1(0)/G¥ for O C (g*)V.

The points of p=1(0)/GY = (E, ¢). For G = PGLy, fix the orbits in sl; = sly at
t;: the twisted Hitchin system corresponds to the coadjoint orbit of a nilpotent

0 _)\i ’

while the original Hitchin system with parabolic structure corresponds to

(© o)
0 0/
Note that these two are in the same conjugacy class with \; — 0.

Thus, the condition on ¢ is that ¢ has simple poles at t;:

Rest, dle, = Ni - 1d.

Letting ¢ = >, Ai ]z gives

Z—ti

which gives
s (_)\i +piyi 2N —my?)
’ i Ai —DpiYi )
Thus, we have
Tr(AiAj) = —(yi — y;)*pip; + 2(0\ip; — A\jpi) (Yi — y5) + 2N\

and

—(yi — y3)pips + 2(Nipy — Ajpi) (Yi — y3) + 20
Gil, - Aw) =3 (yi — ;) pip; (t]-)it-]p)(y Y;) i
g J

J#i

These equations define the twisted Garnier system.
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2.6.1 Elliptic Calogero-Moser System

For genus 1, let X be an elliptic curve with 0 € X. Consider generic bundles
of degree 0 and rank n: these are direct sums of line bundles. However, in this
case, the line bundles have parameters and are elements of the Jacobian. Since
the Jacobian is isomorphic to the curve itself, we have

L, =0(a) ® 0(0)~!
with meromorphic sections of the form 9(;(;)‘1 ), Atiyah showed that generic rank
n bundles are of the form

E=Lg &..0 La,.

Now, consider G = PGL,, place a puncture at 0, and perform a twisted reduc-
tion for O C g* with

—n+1

This is the smallest semisimple orbit, consisting of matrices with n eigenvalues
equal to 1 and one eigenvalue equal to —n + 1, which forces Tr = 0.

When ¢ — 0, the orbit degenerates to

*

0 1 ’

0 0
which is a nilpotent matrix of rank 1. This corresponds to the maximal parabolic
subgroup

[ (n=1)x(n-1)| = >
P= ( 0 [ 1x1

so G/P =Pl

What is the automorphism group of this bundle? The automorphism group
is given by Aut(E) = (C*)"~!, which acts on P"~!. Therefore, we need to
consider the free orbits of the vector
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Next, let ¢ = (¢5;), where ¢;; is a section of Lg, ® L_ =1L which has a

qi—ajs
first-order pole at z = 0, with the residue preserving the vector (1 1 1) acting

with eigenvalue c¢. This bundle has only one such section, up to scaling, so

52— a4+ )
70(2)0(q: — ;)

for i # j, and ¢;; = p; represents the momenta.

bij =

The condition for the A;; must satisfy

1 1

1 1
A . =c

1 1

with a;; = 0, and A has only two eigenvalues. Therefore, all a;; = C for some
constant C. Substituting this into the expression for the trace, we get

Trq{)Q:Z _|_CZ qz_FqJ)(z_qj_'_qi).

)2 _
o 9 q CIJ)
An interesting identity is
0(z —qi+q;)(z — ¢ + q)

J#i

where p is the Weierstrass elliptic function. This leads us to the elliptic
Calogero-Moser system. Moreover, taking Tr A? ¢ yields higher Calogero-
Moser Hamiltonians.

2.7 Quantizations
2.7.1 Quantum Integrable System

What is a quantum integrable system, and what does it mean to quantize a clas-
sical integrable system? Classical integrable systems are defined on symplectic
manifolds. Before addressing this, we should first understand what it means to
quantize a symplectic manifold.

This discussion can be framed in the context of smooth real manifolds, complex
analytic manifolds, or algebraic varieties, even over arbitrary fields of positive
characteristic. For simplicity, we will gloss over some technical details as our
aim is to provide motivation. Suppose M is a symplectic manifold. Then,
O(M) is a Poisson algebra. In the case of non-affine algebraic varieties or
non-Stein complex manifolds, we may need to consider sheaves. Given two
functions f and g, we can assign the Poisson bracket f,g — {f, g} which is
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a Lie algebra structure and a derivation with respect to each argument. In
classical mechanics, M is a phase space of some Hamiltonian system and O(M)
consists of the classical observables. The quantization of M involves replacing
these observables with operators, which still form an algebra but no longer
commute.

Definition 2.38. The quantization of M is an algebra over k[[h]] or k[h],
noncommutative, such that A/hA = O(M), and

lim 7f*g—g*f ={f, g}

h—0 h

We have intentionally glossed over some details here, and a full course could be
dedicated to this topic. However, for the sake of motivation, we will not delve
deeper into the technicalities.

Example 2.39. Let M =T*Y. Then the natural quantization is the algebra of
differential operators on'Y, denoted D(Y). More precisely, Dy(Y) is generated
locally by the coordinates x; and the derivatives hd;. Recall that O(T*Y) is
generated locally by the coordinates x;,p;, satisfying Heisenberg’s uncertainty
relations

[P, 5] = h.
Classically, an integrable system is defined as follows:

Definition 2.40. An integrable system is a collection of functions Hy,...H,
that Poisson commute ({H;, H;} = 0) and are functionally independent (or
algebraically independent).

This defines amap p : T*Y — A™ with the pullback p* : O(A") = C[X4, ..., X,] —
O(T*Y'), where X; — H;, defining a Poisson-commutative subalgebra.

Theorem 2.41. Any function that Poisson commutes with Hy, ..., H, is alge-
braically dependent on them.

This suggests that, locally, the system is maximal (up to finite algebraic exten-
sion).

If Y is a smooth algebraic variety, then classical integrable systems on T*Y cor-
respond to Poisson-commutative subalgebras of O(T*Y), with the trace degree
equal to the dimension of Y.

Suppose A is a noncommutative algebra quantizing O(T*Y"). We then have an
inclusion C[X1,...,X,] = A = D(Y), where the commutative subalgebra is
given by X; — H;. There is a similar result in the quantum setting:

Theorem 2.42 (Makar-Limanov). If [H, H;] = 0, then H is algebraically de-
pendent on Hy,...,H,.

To construct a quantum integrable system, we seek a maximal (up to algebraic
extension) commutative subalgebra within D(Y). This quantizes a classical
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system if, as i — 0, the quantum system converges to its classical counterpart,
with the swapping p; <> p;.

The naive quantization approach is to replace p; with ;. However, this is
problematic due to the ordering issue: partial derivatives do not commute with
coordinates. For instance, should we map x;p; to t;x;0; or hd;x; = hx;0; + h?
In many cases, this procedure fails, though it can work in certain situations,
such as for the Garnier system:

2.7.2 Quantizing the Garnier System
Let
G, = Z —y;)°pip; + 2(\ip; — \jpi) (yi — ;) + 2)\1')\]"
ti—t;

J#

The quantized system is

1 — (@ — ;)200; + 2(a; — x;) (3p5 — Fpi) + 2545
2li=2 —
J#i v J
Z — 33] 8i8]' + 2(331' - J)j) (Ala] — A]&) + %AiAj
J#i ti=1;

by setting A; =

The representation theoretic way of writing this: the action of U(sly) by differ-
ential operators on the line via

fH_aw
hw— 2x0, + A
e 228, + Ax.

This action on the line extends naturally to an action on the projective line,
which then maps to twisted differential operators acting on sections of some
A-power of the bundle O(1), where A is an integer.

The Casimir tensor (2 € (sly x sl)%"2 is given by

1
Q=eaf+foet heh

where e, f, and h are the standard generators of sl;. The numerators in the
formula for G; are simply €;; for A;. Therefore, we can express the operators

as
_tht Ulg)™"

J#i
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Now, we can verify that [Q12, Q13+23] holds, which is true for any (semi)simple
Lie algebra g because ) € (S%g)? is invariant. This invariance implies that
[Gs,G;] = 0, so the elements (; commute. These commuting elements in
U(s12)®™ can be promoted to operators by having them act on representations.
For formal Q,; satisfying the condition [Q19, Q13+ 3], arbitrary complex num-
bers t;,¢; will commute, which gives the Gaudin Hamiltonians for sly.

If Vi,...,V, are representations of g, then C;’Z € End(V1 ® --- ® V,,) commute
with g, meaning they act on the invariant subspace (V1 ® --- ®V,,)8. This gives
rise to an interesting family of commuting operators.

For Lie algebras of higher rank, however, we no longer obtain a quantum inte-
grable system, as higher-order operators must be considered. Thus, while this
procedure works in some cases, it is not universally applicable. As an illustra-
tion, consider the following example:

2.7.3 Quantizing the Elliptic Calogero-Moser System

Consider the elliptic Calogero-Moser system with Hamiltonian

Hy = Zpi - Z o2 — ¢5)-

A Ve

Quantizing gives

%ﬁz =2 0 - %Z@(Qi —qj)-

J#i
Theorem 2.43. This defines a quantum integrable system, which is the cen-
tralizer of Hy in D.

However, this does not follow directly from the classical case. Consider the
Hamiltonian
Hy=> p}+> pifi(a) +9(q).

There is still the ordering problem with the term ", p; fi(¢): does p;fi(q) cor-
respond to 9; fi(q), fi(q)0;, or something else?

In general, there is no universal method for quantizing an integrable system.

We must return to the definition of the classical system and explore whether

the way we obtain quantizations can be adjusted.

2.7.4 The Quantum Hitchin Integrable System

Recall how we constructed classical Hitchin on Bun% (X):

Step 1: Represent Bung (X) as a double quotient, for example, G(X\z)\G(K)/G(O).

Step 2: Construct some commuting Hamiltonians on T*G(K), invariant under
the left and right actions of G(K).
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Step 3: Perform Hamiltonian reduction by G(X\z)xG(O) to obtain T*Bung(X),
which gives the Hitchin integrable system.

To retrace our steps, we now need to discuss quantum Hamiltonian reduction
along an orbit. Classically, suppose H acts on a symplectic manifold M with
a moment map p : M — bh* DO 0. The Hamiltonian reduction is given by
p~1(0)/H, which results in a symplectic manifold if the action is "nice.”

Quantum mechanically, we need to understand the quantum analogs of these
constructions. We have H acting on A, a noncommutative algebra.

Returning to the classical case, we have the following data: a moment map
w:S(h) =0(h*) — O(M), which is a Poisson homomorphism between Poisson
algebras. Furthermore, u=1(0)/H C M/H is defined by the equation u(m) = 0,
so O(M/H) = O(M)® c O(M) is a Poisson subalgebra, and O(u~1(0)/H)
is the quotient of O(M/H) = O(M)H" by the ideal defined by the equation
pu(m) = 0.

Now, we can extend this to the quantum case:

Definition 2.44. The quantum Hamiltonian reduction of A by H is the
algebra AH J(Au(h))H.

Ap(H) is only a left ideal in A, but (Au(h))? is a two-sided ideal in AH.
Furthermore, if H is reductive (which is not the case for the Hitchin system),
this is the same as (A/Aut(h))*. Notice that A/Aut(h) is an A-module (not
an algebra), but taking H-invariants gives it an algebra structure.

If we replace 0 with an orbit O C b*, the equation =1 (0)/H becomes u(m) €
O. In the quantum mechanical setting, we need to find an ideal in U(h) that
quantizes O, so that U(h)/I is a quantization of O.

The quantum Hamiltonian reduction is then given by Af/(Au(I))#. In the
case where O = 0, I is the augmentation ideal, ker(U(g) — C), which is the
same as Au(I) = Au(h).

In the classical case, the condition for the moment map is

vieh,  zoa={u(:)a}

The quantized moment map satisfies

zoa=[u(z),d
where p is H-invariant.

We can now attempt to implement this for the Hitchin system. For simplic-
ity, let’s use the version without punctures. We take the loop group A :
D(G(C((tt)))). The quantum Hitchin system should be obtained from certain
two-sided differential operators on G(K'). This is an infinite-dimensional group,
and considering differential operators on it involves complex differential geom-
etry. However, Beilinson and Drinfeld have figured out how to handle this. For
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now, we will ignore these details and treat L = G(K) as if it were a finite-
dimensional Lie group. This leads to the following question: What are the
two-sided invariant differential operators on L7

The left invariants are given by U(¢) with £ € L. The two-sided invariants
are given by U({)L' = Z(U(¥)), the center of the enveloping algebra. We have
Lie(G((t))) = 9((t)), with G simple. It turns out that Z(U(g((t)))) = C, which is
disappointing. This Lie algebra is infinite-dimensional, so we should ask whether
we need some completions. The bad news is that this does not help us, and
the center remains trivial. The problem arises because the Hitchin Hamiltonian
system upstairs was defined by very simple formulas, and we cannot lift them
into the quantum world.

Classically, Hy = $Tr¢?, with ¢ = ¢(z),dz € g((z)). Writing ¢ = 3 ¢pz™"

gives
Hy, = %Zz" <Trz¢m¢n_m> (dz).

The trace here means summing over some orthonormal basis a; of g, with ¢ =
> @'a;, which givess a; of g with ¢ =Y ¢"a,, which gives

P (z ¢:'n¢;_m) |

Here, z is just a parameter on the Higgs field defined on the punctured formal
disc. We want z to be invariant under the action of the Lie algebra, so we
require that [¢), Hy] = 0. Expanding the commutator gives an infinite sum,
and we need ordering to make this expression meaningful on the highest-weight
representations. However, this commutation relation ultimately fails.

In fact, the issue arises because Beilinson and Drinfeld showed that every glob-
ally defined differential operator on Bung(X) is a scalar. To address this, we
need to recall some physics: for M = T*Y, we want classical observables to
quantize operators on L?(Y). However, to define this, we need a measure on Y.

We do this by taking L? (Y, Q%), where 2 denotes bundles of densities, with

||f(y)|dy|%||2z/lf(y)IQIdyl-

Thus, the most natural quantization is D(Y, K2 ).

Let Y be a smooth variety and L a line bundle on Y. We can define differen-
tial operators acting on subsets of L, denoted D(Y, L). Note that this is not
equivalent, but Morita equivalent, to the usual differential operators on Y.

Next, we can define D(Y, L®"), generated by functions and vector fields, with
relations involving n as a parameter. Locally, we pick a connection with curva-
ture w, and the relations on L between functions and vector fields are the same
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as usual, but we now have
[Vv,Vu] = V[V,U] + nw(v,u)

so we can take any n € C.

Now, we want to replace D(Bung(x)) by P(Bung(X), K2). To do this, we need
to understand how to obtain Kz as a line bundle on G((t)). In ordinary Lie
groups, we don’t have interesting line bundles because H?> = 0. However, H?
of a loop group, by transgression, is the same as H? of the underlying group G,
which is 1-dimensional if G is simple. Therefore, we do have an interesting line
bundle on the loop group. This line bundle is related to the central extension,
and Kac-Moody groups naturally arise. There exists a Kac-Moody group with
the sequence

GC* =G —=G((1t) =1,

which is just the central extension and defines a principal C* bundle on G((t)),
denoted £.

Thus, LieG is the affine Kac-Moody algebra g((t)) @ CK, with the commutator
relation
la(t),b(t)] = [a,b](t) + Res¢—o(a(t) db(t))K.

Theorem 2.45. Kpy,, s obtained by reduction of E_th, where hY is the dual
Coxeter number of G.

For example, Eg has dual Coxeter number 30, so the reduction is given by £,

If we want to consider differential operators on K %, we should look at the two-
Vv
sided invariant elements in D(G((t)),£~""), which is

ZU()/K = —h").

Theorem 2.46 (Feigin and Frenkel, 1991). P;(6) lift to this center and can be
quantized.

In conformal field theory, this implies the existence of a quantum anomaly:
if K =0, we do not have a center due to the ordering problem. However, if we
apply normal ordering, we obtain an anomaly that vanishes. The value of K is
referred to as the level, and h" is the critical level. The representation theory
of Kac-Moody algebras is fully differential at this level due to the existence of
this center. It turns out that this is the only value of K for which the center is
non-trivial.

Theorem 2.47 (Beilinson-Drinfeld). The two-sided invariant differential op-
erators on G((t)) acting on E~" descend to differential operators on Bung(z).
This map is surjective onto D(Bung(X), K%), and the algebra is a polynomial
algebra of (9 — 1) dim G generators that quantizes the Hitchin system.
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Both the Gaudin and elliptic Calogero-Moser systems are examples of this the-
orem. This resolves the ordering problem - if we compute the action of the
Feigin-Frenkel central elements (which are difficult to compute but can be done
for GL,,, for example) and evaluate their image, we obtain the correct ordering
that gives an integrable system.

2.7.5 The Sugawara Construction

The behavior of the quadratic operators gives the Sugawara construction, which
plays a crucial role in representation theory and conformal field theory.

Classically, we have %Trd)z. In the quantum mechanical case, T,, = %Zmz :
oL dr._, 1, where :: denotes normal ordering with the larger index placed first.

This works as an operator in the highest weight representations.

Definition 2.48. The Sugawara construction is given by the following com-
mutation relations:

[¢P7 Tn] = p(K + hv)¢n+Pv

[T, T] = (K + hv)(n —m)Topgn +

7’L3—7’L

13 K(K +hY)dimg - 6, m.
Theorem 2.49 (Sugawara). When L, = %, with K # hY, this gives a
Virasoro algebra with central charge

.o Kdimg
K+ hY
When L = —hY, we obtain the central case.

There are higher-order operators involving cubics, etc., which arise from higher
central elements, but we won’t cover those here. Ultimately, Beilinson and
Drinfeld used the Feigin-Frenkel theorem as input to construct this quantum
Hitchin system.

This is a good place to stop.
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Nikita Nekrasov: Integrable Many-Body Sys-

tems and Gauge Theories

Abstract

Elliptic Calogero-Moser and Toda systems, Gaudin and other spin
chains are algebraic integrable systems which have intimate connections to
gauge theories in two, three, and four dimensions. I will explain two such
connections: first, classical, through Hamiltonian reduction and second,
quantum, through dualities of supersymmetric gauge theories.
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3.1 Introduction
3.1.1 Overview

This course explores the relationship between integrable systems (which we refer
to as many-body systems, since quantum and classical many-body systems are
prime examples) and their connections to classical and quantum gauge theories.

From a physics perspective, gauge theories are fundamental because they de-
scribe most of the known interactions of elementary particles. They also have
significant mathematical importance, as many concepts in differential topology
have emerged over the past 40 years from studying solutions to partial differ-
ential equations motivated by gauge theory. By examining the moduli spaces
of these solutions, alongside cohomology theory, intersection numbers, and enu-
merative geometry, we have made considerable progress in understanding the
invariants of four-manifolds, knot invariants, and categorification. These math-
ematical theories have developed alongside advances in physics.

The connection between integrable systems and gauge theory will be presented
in two main forms, with an emphasis on duality - a concept that has seen
significant development in recent months. In the context of physics, duality is
a central theme, while in mathematics, it is a well-established notion that has
taken many forms, from the Fourier transform and the Legendre transform to
Langlands duality. A simplified version of Langlands duality will be discussed
here.

We can identify two types of relationships between these fields:

e ”Gauge theory is equivalent to an integrable system.” This occurs in rare
cases where we can directly analyze the Lagrangian of the gauge theory,
solve the constraints in the appropriate variables, and observe that the
resulting dynamics correspond to those of a many-body system. This is
sometimes useful, and we will explore more examples later.

e Indirect relation: ”Correlation functions of quantum gauge theory obey
classical (or quantum) equations of some integrable system.”

The key difference between these two relationships lies in the connection be-
tween the quantization parameters. In the first case, the Planck constant of the
gauge theory is equal to that of the integrable system: hAg = fi;. This estab-
lishes an equivalence between the two systems, both classically and quantum
mechanically. In the second case, the quantization in one theory is not directly
related to the quantization in the other, meaning the Planck constants differ:
hag # hy. This difference is intriguing because it suggests that we can study a
quantum system in one theory by solving the classical equations of motion of a
simpler integrable system, and potentially vice versa.

In some instances, the integrable systems for both direct and indirect relations
may be the same, while the gauge theories differ. This points to a duality
between the gauge theories: simple questions in one gauge theory correspond to
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more complex questions in another, and vice versa. This duality is a key reason
why studying these connections is so valuable.

3.2 Examples of Integrable Systems
3.2.1 The Calogero-Moser-Sutherland System

The Calogero-Moser-Sutherland many-body system describes particles moving
in one dimension.

———0—0—0—
1 cee TN

Consider 1D indistinguishable particles. These are non-relativistic, and their
Hamiltonian is given by

1, 1, 1
Hy=Y 5pi+3v Zm

i=1 i<j
where the phase space is endowed with the symplectic form

N

w= Z dp; N dx;
i=1

and the phase space is

P =T*(R"\A)/S(n).

with A representing the diagonal in RY. Since the particles are indistinguish-
able, the configuration space is the set of positions modulo permutations. To
correctly account for this symmetry, we consider the quotient by the symmetric
group acting on both the coordinates and momenta.

If v2 > 0, there is repulsion between the particles. This repulsion ensures that
in finite-energy configurations, the particles cannot collide, which is why we
exclude the diagonal from the phase space.

The system is Hamiltonian, and the equations of motion follow from the Hamil-

tonian:
. 9H
b
5 _0H
p= ox

Remarkably, these equations can be packaged in one equation, of Lax form:
L=[L,A]

where L is an N x N Hermitian matrix defined by

1

Ti— Ty

L =|pidij + V—1v (1= 04)]-
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The term ——(1— d;7) is antisymmetric, but we multiplied it by v/—1 to ensure

Ti—Tj

that L is Hermitian.

The crucial claim here is that there exists a matrix, depending on p(z), such that
the time derivative of this matrix operator satisfies the commutation relation.
This implies that the eigenvalues of L are constants of motion. As the particles
repel each other, in the limit as ¢ — 400, their positions become well-separated:
To(1) K To2) K+ L To(n). In this limit, the off-diagonal terms in L become
negligible, and the eigenvalues of L correspond to the asymptotic momenta
pli,pgt, e ,p%. While the individual eigenvalues at ¢ — £o0o need not be the
same, they are permuted versions of the same set. These eigenvalues are not
typically useful functions of p and z directly, as they are the solutions to an
algebraic equation. Instead, we form polynomial functions of the momenta and
rational functions of the coordinates by taking powers of the operator L and

computing the trace:
1

Hy = ETrLk
which are the integrals of motion. This is the simplest example of a direct
relationship between gauge theory and an integrable system.

3.2.2 Symplectic Quotients

A more complex evolution of this system arises from a projection of a simpler
dynamics within a larger phase space. The larger phase space hidden in this
problem is

T*(U(N) x RY),

which is a symplectic vector space of dimension 2(N2+N). We can parameterize
elements of this phase space as

{(\/—71P, \/le;w,v)}

where X = XT and P = PT are N x N matrices, v € RY, and w € (RV)*. On
this larger space, we study two aspects:

1. First, we introduce very simple dynamics. In this context, P is conjugate
to X and w is conjugate to v, where we use ”conjugate” in the sense of a
symplectic form w = Tr,dP A dX + dw A dv. We define the Hamiltonian
Hy = %TrPk, which generates the following evolutions:

N
X(t) = X(0)+ ) txPF7(0),
k=1
P(t) = P(0),
v(t) = v(0),
w(t) = w(0)



2. In principle, k can be arbitrary, but the evolution will be generated by the
Hy when k£ > N. For k > N, the evolution can be reduced to one already
covered. This describes a free motion in the large space.

3. Next, we assume that our problem has a symmetry and perform the sym-
plectic quotient with respect to this symmetry. The symmetry is gen-
erated by G = U(N), and it acts as follows: for g € G, (P, X,2) —
(97tPg,9g 1 Xg,9712), where z = v + v/—1w. The only effect of the sym-
metry is to transform z under the action of U(N). This is a symmetry
that preserves the symplectic form, and it also preserves the Hamiltonians.
Therefore, if we take a simple motion in the large phase space P; with
G-orbits, we can project it onto the smaller phase space Ps = Pr,/G. On
the small phase space, a trivial motion from the larger phase space may
now appear more complicated, as we are identifying points according to
the group action.

The simplest example of this construction, when N = 2, is not difficult
to discuss: consider a free motion of a particle in R3. R? is the Lie
algebra of SU(2). Take the free motion ¥ = ) + ¢t and project it onto
the quotient space R3/SO(3). The invariant here is the distance from the
origin. Therefore, if we look at the time dependence of r(t) = |rg + vt],
we observe that the particle (represented by the radial coordinate of the
free particle in R?) experiences a force that repels it from the origin. This
force is the centripetal force.

3.2.3 The Momentum Map

In the standard setting of spaces with symmetry, it is common to take a quotient
by identifying points within an equivalence class, effectively contracting the
entire orbit of the symmetry group to a single point. However, in classical
mechanics, where we work with symplectic manifolds, taking the quotient of a
symplectic manifold by the action of a group does not, in general, yield another
symplectic manifold. This issue is addressed through a construction known as
the momentum map, which we will now describe.

The momentum map, denoted by p : P, — Lie(G)*, can be thought of as the
collection of Hamiltonians that generate the symmetry. Rather than discussing
the general procedure, we will compute it explicitly for our example.

For a free particle moving in 3D space, the phase space is T*R? = (p,7), a 6-
dimensional space. The symmetry group in this case is SO(3), and the associated
generators of the symmetry are the components of the angular momentum,
L= p X 7. The angular momentum is a classic example of a momentum map: a
map from the 6D phase space to the 3D space, which is dual to the Lie algebra
of SO(3).

To compute the infinitesimal version of this symmetry, consider a perturbation
of the symmetry group given by g = 1 + & + ..., where £ € Lie, U(N). This
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leads to a vector field of the form:
va(P3 X?Z) = ([Paé-L [Xag]a 75 : Z)a

Since the vector field preserves the symplectic form, there has to be a Hamilto-
nian that generates this vector field. Since each component of the vector field
is linear, each component of the Hamiltonian must be linear. We have

Hy, = Tet([P, X] +vV1(= © 27)),

which preserves the symplectic form. By the properties of symplectic geometry,
we know that there must be a Hamiltonian that generates this vector field. Since
each component of the vector field is linear in €, the Hamiltonian that generates
this vector field must also be linear. Therefore, we obtain:

WP, X,2) =[P, X]+2®2T.

It is important to note that the momentum map is not unique because the
relationship between the vector field and the Hamiltonian is not one-to-one.
Specifically, if H differs by a constant, the resulting vector field will be the
same. However, if we are given the vector field and wish to reconstruct the
Hamiltonian, we can do so up to a constant. Consequently, we construct u(£) up
to an additive constant, which is linear in £&. There is also a cohomological issue
that arises when adjusting these constants in such a way that the G-equivariance
of the momentum map holds. In particular, we require the following condition:

{n(&r), 1(§2)} = p([&r, &2)-

This condition imposes some restrictions on the choice of constants, but there
remains some flexibility, especially if the group G is not simple. If G contains
a center, for instance, we may find that the momentum map takes the form
WP, X,2) =[P, X]++v-1(2 ® 27 — v - 1y), where v is a constant associated
with the center of G.

We are almost ready to project. Since p~1(0) is G-invariant, we can take the
quotient x~1(0)/G.

Proposition 3.1. p=1(0)/G is a symplectic manifold.

Now, let’s attempt to solve p = 0, which gives us the condition [P, X] = /—1(v-
1xy —2®27), modulo G-symmetry. Since P and X are Hermitian matrices and G
acts by conjugation, we can choose a representative from the G-orbit of (P, X, z),
where we can set X = diag(z1,...,zy). Fixing this representative, there is still

residual symmetry remaining. Specifically, we are left with transformations that
preserve the diagonal form of X, reducing G to U(1)" x S(N).

In the basis when X is diagonal, we have

[P, X]ij = Pij (i — x;) = V-1(vd; — zZj).
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If i = j, then everything becomes 0, so v = |z;|? for all i = 1,..., N. Now, we
use g = diag(e®r, ..., e") to make z; = /v for all i = 1,...N, reducing G to
S(N).

At this point, we can solve for P. The solution is given by:

ij — 1
P =p;Sij +vV-1lv—L—

Ti — Ty

The conclusion is that if we parametrize the orbits of the group action by the
diagonal of X, P takes the form above, and the motion becomes nontrivial. The
eigenvalues of X evolve according to the equation:

5 — 1
1’1(0)5w + tz(pléw + vV —].Vji).

T; — T
In particular, the transformations of X and P under the group action are:
X g Y X +tP)g
P g 'Pg
where g = g(t).

This is a gauge symmetry - a symmetry transformation that depends on time.
To represent this using a Lagrangian, we start with the standard Lagrangian
that corresponds to the symplectic structure and the Hamiltonian:

: 1
L=Tr(PX +2"2)— §TrP2 + v(Ay)

where A; is a Lagrange multiplier, a 1-form valued in the Lie algebra Lie(G),
introduced to reduce the number of degrees of freedom. We can quantize this
action and write it as:

S=Tr(PdX + 2" dz) — % dt Tr(P?) + u(P, X, 2) (A; dt)

where S is a functional defined on Maps(R, Pr) x Q! (R ® g)/Maps(R, G). If we
perform the transformation

(P(1), X (2), 2(t)) = (g~ ()P (t)g(t), g~ ()X ()g(t), 9" (1) (1)),
the action is not invariant under this transformation. However, by adjusting
A, — g 1A g+97 10,9, we achieve invariance, providing us with our first glimpse
of gauge invariance.

3.2.4 Generalizations

This many-body system is a realization of the simplest 1D gauge theory: it is
a gauge theory where the spacetime is just time (with no spatial dimensions).
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However, the variables have matrix structure, suggesting that both P and X
represent components of a higher-dimensional gauge field. Specifically, we in-
terpret A, = X and A, = P, which implies that this rational Calogero-Moser
system may have a generalization or deformation in which these extra dimen-
sions will become apparent. In fact, there are many such generalizations:

rational CM

T

trigonometric CM relativistic CM
(Sutherland) (Ruijsenaars-Schneider)
elliptic CM trigonometric RS

elliptic RS

Each model corresponds to a different gauge theory living in different space time
dimensions:

e The trigonometric CM corresponds to the 2D Yang-Mills theory.

e The elliptic CM corresponds to the hybrid hopological holomorphic 2D
Yang-Mills theory.

e The trigonometric RS corresponds to the 3D Chern-Simons theory.

e The elliptic RS corresponds to the 4D hybrid topological holomorphic
Chern-Simons theory.

Example 3.2 (The trigonometric CM system). For the trigonometric CM sys-
tem, the systems now live on the circle so we map R — R/Z and the Hamiltonian
18

We can think of the system where the symmetric group (which was permuting
particles) gets promoted to an affine Weyl group, so in addition to permutations,
we also have shifts (with period 27 ).

A well-known construction by Kazhdan, Kostant, and Sternberg explains how
this system arises through a projection method. Specifically, the method involves
replacing the Lie algebra of U(N) in the large phase space with the corresponding
group, and repeating the entire construction. However, this approach does mot
account for the emergence of additional dimensions. To do this, we need to

promote U(N) to the affine group w = {(E(z),c)|r € S',E(x) € UN),c €
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R} with the Lie bracket operation

(Br(x), c1), (Ba(x), 02)] = ([El(x),Eg(x)L / B, dE2>.

S1

One should verify that this bracket satisfies the Jacobi identity.

Next, consider the dual space

T*U(N) = {(E(x), ¢; kOy + Ap)|k,c € R, E, A, are g-valued on S'}.

Here, we combine kO, and A, into the first differential operator because we have
a natural pairing

kch/ TrEA, dx.
S1

When acting on the adjoint representation, the coadjoint action is computed so
that this pairing is preserved, and the coadjoint action acts on the differential
operator. At the level of the group, the LG-action on (E, Ay, k,c) is given by

(97 (@) B(x)g(x), g~ (x) Ang(x) + kg™ (2)Dug (). kyc + ...).
Here, we can think of E as analogous to P, and A, as analogous to X .

Now, let’s fix k = 1. In this case, the commutator p = [P, X] becomes u =
D,E = 0,FE+ Az, E]. In physics, E is called the electric field, A, is called the
vector potential, and the new commutator is a form of Gauss’s law (though it
may appear slightly different from the usual statement). The term v-1y —z- 2T
arises from the n-dimensional representation of U(N) which we used exactly
once: when fixing the gauge, we did not fully utilize all of the symmetry, leaving
behind some residual symmetry associated with diagonal transformations. We
introduce this vector in CN to absorb this remaining symmetry. The analog of
X = diag(xy,...,xN) is now Ay = diag(xy,...,xN), where each x; are constant.

This is a result of Floquet-Lyapunov theory: consider an anti-Hermitian N x N
matrix-valued function A, (z) defined on S2. If we define the gauge transforma-
tion A (7) — g7 1(2)As(2)g(x) + g~ (2)drg(z), where g : S* — U(N), what is
the canonical normal form of A,7

It turns out that we can always diagonalize A, and make it constant. The
strategy is to 7kill” A, by finding a gauge function g such that A, = 0,99~ .
This leads to the first-order ordinary differential equation 9,9 = A.g, which
can be easily solved with an appropriate initial condition.

The issue arises when we wrap around the circle and solve for g(z). Specifically,
when solving g(x) = Pexp ( foz Am,dx), the solution is not the same as the

original g, and the holonomy becomes Pexp 5§02 " A,,dx = G. Thus, there is
no g such that 0,9 = A,g globally, but we can always find a g such that
0,9 = Arg—gX, where X is a matrix with constant diagonal entries, effectively
undoing the holonomy.
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Once we find the gauge, there are still transformations that preserve the fact
that A, is diagonal, but which change the eigenvalues. For example, consider

g(z) = diag(e™®, ... e""~) where n; € Z. Under such a transformation,
the eigenvalues z; transform as x; — x; + n;. Additionally, we can introduce
transformations of the form g(z) = diag(e’:,...,e"~), which do not affect

the eigenvalues. To absorb the remaining symmetry, we need an analog of the
vector z. This explains why, at the end, the expression v - 1y — z - 27 becomes
§(z)(v-1y —z®2"), and the Hamiltonian takes the form Hy = £ [ dx, Tr(E?).

In the examples discussed, we observed how gauge theory is directly equivalent
to a quantum or classical mechanical system of interacting particles. In the
next section, we will explore how this framework extends from 2-dimensional
Yang-Mills theory on smooth manifolds to Yang-Mills theory on forms, where
many integrable systems arise.

3.3 Complexification
3.3.1 Classical Mechanics

Complexification is a process that sends R — C,Z/2 — U(1),C*. What hap-
pens in classical mechanics? Earlier, we discussed paths in the phase space. We
would like to complexify the space of paths in a phase space P. One way to do
this is to complexify the phase space P, but keep the paths real.

Definition 3.3. A complex phase space is a compler manifold with a holo-
morphic symplectic structure we € Q*°(P¢) such that dime Pc = 2n and wg #
0.

Even if a problem involves dynamics in a real phase space, one might want to do
statistical mechanics where we integrate over the phase space with some proba-
bility measure (induced by the Liouville form and the Hamiltonian). However,
we are interested in integral quantities like averages. To compute an integral,
we can use Stokes’ theorem and deform the integration contour, which often
results in integrating over contours in the complexification of the original space.

If we take complex paths in P (compared to real paths in Pg), this leads to
string theory (where we replace worldlines with worldsheets), which gives a
different kind of complexification. These two approaches are related: when one
approaches quantization as a study of periods, we end up studying not just
paths but maps of high-dimensional objects. But this is a story for later.

This simple process allows us to freely talk about things that are otherwise
difficult to discuss in full generality. Let’s see an example:

3.3.2 Example: Many-body Elliptic Calogero-Moser System
Consider the Hamiltonian

Hy = Z%p? +17 ) (s —xy57)

1<j
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where p is the Weierstrass p-function on C/Z + 7Z and 75 := Im 7 > 0. In
general, the function inside the summation is not real, so it would make the
dynamics look awkward unless we allow (p;, 7;)Y ; to be complex.

Now, an interesting phenomenon occurs: when both position and momentum
are real, and we study configurations of finite energy, it becomes clear that we
cannot allow the points to collide because doing so would require infinite energy.
However, once position and momentum become complex, it’s possible to keep
the energy finite by allowing particles to approach each other. This can be
achieved by making the momenta very large and complex in such a way that
the potential energy compensates for the kinetic energy.

—

This change makes the phase space much more interesting, as it is now (I* E)N /S(N),
where FE is an elliptic curve. This is a smooth hyperké&hler manifold. Inside the
elliptic curve, there is a circle S*. If we start with a configuration of points, all

of which are real and lie on this circle, and then set some initial conditions for

the momenta (also real), the complex Hamiltonian will force these particles to
move. They will not remain confined to the circle. However, we can still restrict
their motion by adjusting the momenta in such a way that the coordinates stay
real.

When we quantize this system, we can look for solutions where the momenta and
coordinates remain real, even as the particles move. In quantum mechanics, we
would construct a differential operator from this function p; = \/TIFL% acting
on wave functions, which are analytic and defined in a neighborhoodlaround
the circle. We can require that the wave functions be normalizable only when
x is on the circle. Nevertheless, we don’t have to restrict the parameters to
be purely imaginary. The Hamiltonian will generally have complex eigenvalues,
so the operator H, will, in general, take complex values as a function of the
parameters v and 7.

The interesting and nontrivial part is that on this phase space, the symplectic
form w, despite looking like an exact form, is actually not exact. In particular,
the coordinates p and z are not global coordinates, meaning they do not cover
the entire phase space. As a result, [wc]| is nontrivial in cohomology, and there
exists a 2-dimensional sphere inside the space such that the period of [ g2 WC ~ V.
The coupling constant (the coefficient in front of the potential term) measures
the topological non-triviality of the symplectic form. This non-triviality arises
due to the resolution of singularities.

Let’s discuss the case where n = 2 to see how this works in more detail. For
simplicity, consider the center of mass frame, where p; + po = 0. This means
we perform the symplectic quotient Pc//E acting by (z1,...,2n) — (21 +
Z,...,xN + z) for z € E, and the moment map is 4 = p; + -+ + pny. The
phase space is acted upon by the group, which in this case is the elliptic curve
itself. The group acts by shifting all coordinates by the same amount. As an
exercise, we can perform the reduction by fixing the total momentum to zero
and identifying configurations of points that are related by an overall shift. In
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this case, the reduced phase space is (T*FE)/(Z/2). The elliptic curve here is
given by the coordinate x1 — x3, which is invariant under the transformations of
Zo that exchange x1 and x3. These transformations act on both the coordinates
and the momenta, exchanging the momenta p; and ps.

Now, there is a naive phase space, which is just the quotient of the cotangent
bundle over the elliptic curve by the involution that changes the sign of the
coordinates. This involution has fixed points, and we need to understand how
many fixed points there are.

We have four fixed points. To visualize this, the elliptic curve has four points
where the involution (p, x) — (—p, —x) fixes them. These points lie in the fiber
of the cotangent bundle. The involution also acts by changing the sign in the
fiber, so at these fixed points, the zero in the fiber times the fixed points gives
the final set of fixed points. The set of points is

- 001(02).03).(157)

The number of fixed points for the involution is important in understanding the
structure of the phase space. In fact, there are 16 fixed points for the involution
on the 4-dimensional torus, which is crucial when studying the K3 manifold
— we’re focusing on a simpler version. The key feature here is that the local
geometry near each of these fixed points is identical. This space generally has
more complex structures than we can easily visualize, but it’s crucial to note that
each of these fixed points can be resolved by gluing in a 2-dimensional sphere
at each of these points. Normally, we could make these spheres completely
independent, and that would give us a four-dimensional parameter space, but
in our case, due to the symmetries, we only have one deformation accessible to
us.

Now, let’s focus on the local geometry. We can model the local structure near
these points as C2/(Z/2), where C? is a complex symplectic manifold with
symplectic form dz; A dzo. We want to consider the orbifold of C? by the
cyclic group of order 2, which acts by (z1,22) — (—21, —22). Algebraically, the
quotient is Spec[X,Y, Z].(YZ — X?), where X = 2120, Y = 23, Z = 22. Any
polynomial in z; and zo that remains invariant under the sign change can be
expressed as a polynomial in these three variables. However, there’s a relation
between these functions: X? = Y Z, which describes a cone in C3.

This cone structure is central to understanding the geometry. We can blow up
this singularity to make it into the total space of an O(—2) bundle over P!, where
the singularity is replaced by a non-contractible 2-dimensional sphere. We can
also do a complex deformation by adding a constant term: Spec[X,Y, Z].(Y Z —
X2 (%),

This procedure replaces the space with a new one, making it a non-singular
quadric X2 —YZ = ¢%2 # 0. Now, we can examine the two-form we = dz; A
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dzg = %. At this point, we keep the form but deform the relation between

X,Y, Z. It turns out this form has a non-trivial period, which we can see by
parameterizing:

X =(x,
Y =((y+vV—-12),
Z=—((y—V-12).

This turns the quadric into a complexification of the sphere z2 + y2 + 22 = 1.
In addition, we have

vV—1¢ dy A dz
we = ———"—
2 T
Proposition 3.4.
dy N\ dz
7|S2 = 1)0[52

T

This is the standard volume form on the two-sphere, and it has a nontrivial

period, which is w. Therefore, —Vglc% has a nontrivial period proportional
to (.

3.3.3 Complexification In The Elliptic Case

Now, let’s go back to the original example. We will do a similar analysis in
the elliptic case. Suppose we have two variables p and x, where z is an elliptic
variable, defined up to periods. We want to find the invariant functions on this
space, allowing functions with poles in x, because the elliptic curve is compact.
One such function, which is famously invariant under + — —zx, is the Weierstrass
p-function:

1 1 1
go(x,T)— ?—i_( )Z(OO)((z+m+nT)2 - (m—|—n7)2) te

where we choose a constant so that the expansion of this function near 0 starts
at the x? term.

In this notation, the Hamiltonian is H = p? + v?p(x; 7). This Hamiltonian has
a symmetry that changes the sign of the variables, but this is not a symmetry
of the symplectic form we = dp A dz. Let

X1 = p(#;7) = p(—a7).

Since g is an even function, its derivative is an odd function. If we multiply by
p, we get another invariant function

Y = pg'(2;7)
and a third invariant function

X2 = p2.
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Any invariant function of p and x, meromorphic with respect to x, can be
expressed as a polynomial in these three functions. However, these functions
are not independent. So, what is the relation between them?

Let’s compute Y2. We have:
Y%= X5(4X7 — g2(m) X1 — g3(7)).

where go and g3 are constants.

Proposition 3.5. This function satisfies the kDV equation.

Proof. To verify this, we expand both sides of the equation in terms of X near
zero. After subtracting the right-hand side from the left-hand side, the result
should no longer have any singularities in X, implying that the difference is
constant. By adjusting this constant, we can make the difference zero. O

Remark 3.6. The constants go and g3 are expressed in terms of the fourth and
sizth Fisenstein series.

Thus, this equation replaces the quadric equation we had in the local picture
earlier. Expanding this cubic polynomial in terms of its roots will lead to similar
structures near each of the roots. There is also another important singularity
to consider when X; — oo.

Moving on, the phase space now resembles a complex surface, with an affine part.
There is a region of this space described by the equation we just discussed, but
this equation does not cover the entire elliptic curve. The elliptic curve itself
is compact, and our equation describes the complement of a point. This is an
algebraic curve, so to make this a complete description, we need to either make
the equation homogeneous or add a point to it. By adding some points, we can
partially compactify the surface.

The final result of this analysis is that Pg is a two-dimensional complex manifold,
and we want to represent it as a fibration over a one-dimensional complex base.
The base is a complex manifold of dimension one, and the fibers above each
point in the base are one-dimensional complex spaces. These fibers are elliptic
curves &,, with their complex structures varying depending on the base point
u.

Recall that the Hamiltonian is
H=Xy+1%°X;.
We can rewrite this as
Y2 =4(H - 2 X1)(X1 — e1)(X1 — e2)(X1 = ¢)

where ey, €2, e3 are the roots of the polynomial (p)2. Similar to how g» and g3
are Eisenstein series, e, €2, €3 are theta constants that sum to zero.
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Now, rescale H = v%u to get:
Y2 =402 (u— X)(X; —e1)(X; —e2) (X1 — Q).

If we fix the value of the Hamiltonian, the fiber (the set of points in the phase
space with the same energy) is a solution to this equation. The deformation
consists of adding a point X; at infinity, and Y tends to infinity as X?.

By considering the affine curve described by this equation, we get an elliptic
curve missing two points. Adding those points back complexifies the fiber, and
the complex structure of the elliptic curve depends on [u : e; : ez : e3]. By
compactifying the curve with a point at infinity, the base becomes CP?, and the
fibers degenerate at points ey, es, e3.

We see that once we complexify the problem, the fibers degenerate in different
ways depending on the base point. This regularity becomes apparent only after
complexification, as real slices do not capture the irregular behavior of elliptic
curves. Once complexified, everything becomes regular and beautiful.

3.4 Lax Representation

The goal of this section is to show that the structure we’ve discussed extends
to all values of n, not just n = 2.

3.4.1 The Basics

To establish this, we need to explore the Lax representation for eCM-systems,
as developed by Krichever in the 1980s. By formulating this representation,
Krichever identified what later became known as the Hitchin systems. In the
context of these lectures, where we are working within the framework of gauge
theory, we will present this construction as an analog of the two-dimensional the-
ory we examined earlier. However, we have since complexified the problem, so
I will proceed with this complexified approach. In particular, this construction
can be seen as a complexification of the 2D Yang-Mills framework.

Previously, we considered the infinite-dimensional symplectic manifold
Poo = {(E, A)|E € Maps(S+,9),{A € '(S") ® g} ® O//LG}

where O is a finite-dimensional orbit. For our purposes, we take g = su(N),
O =CP""! and G = SU(N).

Let us now review the action of the loop group on this data. For z € S2, the
action is given by

g(z)- (E,A) = (9" 'Eg,g"'Ag+ g~ 'dg)

and
g@) (210 2n) = ((0750)2)1 oot (g7H(0)2) W)
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where 0 is the base point of S'. The moment map for this system is
w=DxE+ Jé(x)
where
J:0—g"
J(z1 1ot zg) = ||\/jlu(zi§j — (5@)”%:1
assuming that Zfil |z;|> = 1. Note that J is traceless and anti-Hermitian, and
it forms an N x N matrix.

Earlier, we showed that if we solve

1
H, = 7/ dzTrE?,
2 Ja1

we obtain the trigonometric CM system. We now move to a complexified version
of this by replacing S! with an elliptic curve.

3.4.2 Transition to the Complexified Version: Elliptic Curves and
Gauge Fixing

Let
PL ={(E,A)} x O¢

where F is a function on T2 valued in sl (Z), depending on z and z, and A is
a (0, 1)-connection.

The gauge group action now depends on the choice of complex structure. Upon
complexification, the degrees of freedom increase. Oc¢ is the complexification of
cpy ~1. and since z and Z are now independent, we have

Oc = {(z € CY,w e (CV))*|w(z) = 1}/C*.

with the group action
(z,w) = (tz,t ™ w)

for t € C*. Furthermore, the moment map is given by
J(z,w) = |V-1v(zjw; — 5ij)|f\fj:1

which is a traceless N x N matrix.

3.4.3 The Lax Matrix and Its Spectral Invariance

Next, we want to make a group of maps from T2 (the 2-torus) to the com-
plexification of my group, SL(n). The group SL(n) acts on this phase space as
follows: mark a point and call it z, and the group G will act on the quadruple
(E,E,Z,W) by pointwise conjugation:

9(2.2)(E, A; (z,w)) = (97 "'Eg,g ' Ag + g0y, (91 (0)z,w9(0)))
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The action is by evaluation at the marked point, and it allows us to compute
the momentum map, which will be used for the reduction process. The moment
map is

p=0E+[A E] + J6%*(2,%).

We want to solve this equation and then divide by the group’s action to perform
the reduction. To solve this equation, the trick is to find the representative
normal form for A, meaning we need to to find the canonical form where we
can make the connection on the trivial bundle look like a 0-1 connection by
performing complex gauge transformations.

There exists a ”complexified version” of gauge theory, where A can be written
as diag(ay,...,ay), with «; € C being constant with respect to z and z. This
gauge choice works for a generic A, meaning that with probability 1, we can di-
agonalize the matrix. However, in some exceptional cases, something interesting
happens: the diagonal elements may not correspond to connections on trivial
U(1) bundles, but instead could have non-trivial first Chern classes. While this
phenomenon is significant in condensed matter physics, we will not delve into
it here.

Instead, we focus on the concept of diagonalization: a rank r vector bundle
with trivial degree generically splits into a direct sum of line bundles, each with
degree zero:

In practical terms, this means that, via a complex gauge transformation, we
can diagonalize most of the matrix A, turning it into a diagonal matrix with
constant coefficients. However, as we saw earlier, there remain some gauge
transformations of the form of diagonal matrices where the diagonal elements
are periodic functions of z and Z:
g(z,%z) = diag (eQ”i”" S 2mim,; Sl iT)
T—T T—T

These transformations affect the o values:

211

o; =

(n; +myT).

It’s convenient to introduce new variables z; = Z2«;, where x; ~ z; +m; +n;T.

Next, we need to solve the equation involving A. We do this in analogy to the
way we approached it for the circle. In the basis where A is diagonal, we have

gEij + (CVZ' — ij)Eij + Jij52(2’7§) =0.
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3.4.4 Wheni=j

When i = j, the equation simplifies to a condition on the diagonal matrix
element of E: it must be holomorphic outside zero and possess only a first-order
pole at the origin. Specifically, the equation D = § is solved by a meromorphic
function with a first-order pole. This is a complex analog of the equation

where a function on the circle with a jump discontinuity corresponds to a first-
order pole in the complex case.

Drawing an analogy with the real case, this is similar to a function on a circle
with a jump discontinuity, where the ”jump” corresponds to the residue of the
pole. To ensure smooth behavior, the residue must vanish, which forces F;; to
be constant ouside = 0. Additionally, we have the condition:

E;i(+0) — E4i(=0) = Jy.

This is analogous to the fact that a function on an elliptic curve can have
at most a first-order pole at a single point. The residue of this pole must
vanish, which implies that the function is constant everywhere. This serves as
a complexification of the theorem, leading to the conclusion that J; = 0 and
FE;; = P; is constant.

Then, we have

Jii =V —11/(21'11}1‘ — 1) =0
which implies z;w; = 1 for all ¢. This is analogous to the situation on the circle,
where we have additional transformations. Specifically, when g = diag(t1,...,tn),
with ¢; € C* and [], ¢; = 1, these transformations allow us to map z; — 1 and
w; — 1.

3.4.5 When i+#j

When i # j, the situation becomes more interesting. Away from the origin, the
solution is -
E;;(22) = e(zfz)(ai*aj)Lij (2),
for some function L that depends only on z and satisfies the following properties:
e L;; has a first-order pole at zero, since L;; ~ J;j = @(1 — 0i5)-
o Lij(z+1) = Li(2).

° LZJ(Z -+ T) = 6(?77—)(0”.70‘7.).

Proposition 3.7. These three properties uniquely determine L as

_ 0(z + xi — x;)6'(0)
L) =V e —ay)

which we call the Lax matriz.
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Unlike the trigonometric case, where the electric field £ had an exponential
dependence but the prefactor did not depend on the position of the circle, here
the function exhibits a nontrivial z-dependence. This leads to a remarkable fact:

The electric field depends on both z and Z, but the Casimir has no z-dependence:
TrE? is a meromorphic function of z with a second-order pole at z = 0. The
space of meromorphic functions with a second-order pole at a single point is
two-dimensional. These functions can take the form

V2o(z;7) + Hy.

If we return to the phase space, which includes variables like E, A, and others,
and begin to study the classical evolution generated by the Hamiltonian—essentially
an averaged version of the trace squared—we find that the second-order pole
has important implications. The meromorphic nature of the Casimir allows us

to define the principal value integral of the trace squared in a well-defined way,
yielding a well-defined Hamiltonian:

HQ:/ d?z TrE>.
T2

This Hamiltonian results in a simple evolution in the high-dimensional phase
space of variables. We can then project the evolution by the action of the gauge
group, leading to a highly non-trivial evolution of the eCM particles.

At this point, we can identify the algebraic integrable structure of this phase
space, which is now known to have the structure of a fibration over an N-
dimensional base. The fibers of this fibration are abelian varieties, one of the
possible complexifications of Liouville tori in real integrable systems.

The abelian varieties are defined as follows: we aim to extract as much as pos-
sible from the Lax operator. The spectral invariance of this operator provides
conserved quantities, because in this infinite-dimensional space, any flow gener-
ated by a suitably regularized Casimir of the electric field will commute with the
flow generated by E2. This is because anything built from the electric field will
Poisson commute with each other: these are commuting flows. Furthermore,
by reducing by the gauge transformations—which do not affect the spectral
invariance—we obtain conserved quantities and integrals of motion.

Since we have something that depends on a point on an elliptic curve, the
spectral invariance varies from point to point. The object that is convenient to
study in this context is the spectral curve, which resides on the elliptic curve:

det(A — L(z)) = 0.
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Over a generic point on the elliptic curve, this equation has n solutions. How-
ever, when z = 0, L has a pole, and the residue at this pole is a matrix of a
special form:

Lo~ Y20,

If we shift it, there’s a way to resolve the structure near z = 0, but we will not
go into the details.

This curve can be partially compactified, sitting in the partial complexification
of F minus the point where z = 0. To resolve the structure near this point,
we need to perform a blow-up. The key claim is that this results in a genus
(N — 1) curve that covers the elliptic curve E, and the Jacobian of this curve
depends on a meromorphic polynomial R()\,z). As a polynomial, it has n — 1
non-trivial coefficients, each of which is a meromorphic function of z. There are
only a limited number of functions that have a singularity at z = 0, so we can
count the number of parameters, yielding exactly n parameters. Let’s call the
coefficients in this polynomial u. For any given value of u, we have a specific
curve, and its Jacobian is the fiber of this fibration.

This is just one example of integrable systems that have a Lax representation
with the spectral parameter. Here, we have seen a gauge theory description of
such systems. There are other systems where, instead of the base curve being
an elliptic curve with one point, it can be a genus-0 curve with many points.
These systems are the complexification of systems you would get by marking
several points on a circle.

Later on, we will begin describing a completely different story. At first, it may
seem like a different topic, with origins in gauge theory. However, the end
point will bring us right back to the same structure we’ve been discussing. We
will recover these integrable systems, both classical and quantum, by applying
probability theory to some finite (or infinite but filtered) sets. The statistics
of the expectation values in this probability problem will be described by the
system we’ve been working with.

3.5 Partitions

We now turn the page to introduce a new cast of characters, which will ulti-
mately turn out to be the full cast of characters. As we proceed, we’ll eventually
reconnect the second half of the course with the first. To speed things up, we
will make a jump and discuss supersymmetric gauge theory in 4, 5, and 6 di-
mensions. Without delving into the details, we can translate these theories into
a class of statistical models. In essence, we will be studying complexified prob-
ability measures p: measures on the set of multi-partitions. These measures
will depend on several parameters, so it will take some time to introduce all the
details.
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3.5.1 Partitions via Young Diagrams
Let’s begin by discussing partitions:
Definition 3.8. A partition
A=A > X2 > .. > Agny >0)
has size |A| = A1 4 A2 + ... + Ag(n) and length £(N).

Geometrically, partitions can be visualized through a Young diagrams:

where the total number of boxes is |A|, and the ith row contains A\; boxes. We
assign coordinates (7,j) to each box, where i counts vertically and j counts
horizontally. Specifically, note that

(i,j)EX=1<j< N <= 1<i<\].
Definition 3.9. The Young graph is an infinite graph whose vertices and

partitions and two partitions are connected by an edge if there is a way to obtain
one from another by adding or removing a box:

0

N

I e I B —

For any tableau in the Young graph, let ;A be the number of corners where
we can add a box, and let 0_\ be the number of corners where we can remove
a box.
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Proposition 3.10.
HOLN—H#HO_N=1.
3.5.2 Partitions via Characters
Another way to describe the shape of a partition is through its character:
Definition 3.11. The character

ChA=Xx(q,q2) = > o ‘g
(i,7)€EX

This character becomes more meaningful if we identify A with a monomial ideal
in C[z1, 22] of codimension |\|.

In algebraic geometry, when you want to specify a position in space and time,
you can’t just say, "I’'m here.” You must also specify that if you move in one
direction, you will be multiplied by a function that vanishes in that direction.
If you make another move, you’ll be multiplied by a function that vanishes in
the next direction, and so on. This idea is central to the concept of a resolution,
which we will now use to understand the boundaries of partitions.

Definition 3.12. A monomial ideal is an ideal of the form

Y = (225" ) i1, N-

For example, in the infinite diagram

z9 Z1%22 Z%ZQ

2
1 21 25

everything above and to the right of 2§25 forms a monomial ideal.

Proposition 3.13. The elements of 01\ are the generators of the monomial
ideal Jy:

Iy = (2171292,
Note that given (i, j) € A,
(717N € Cla, 22)/ Iy = K,

where dim K = |}|.
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he number of elements in J4 could be smaller than what’s shown here because
this is an exhaustive list, but it’s not necessarily minimal. #0, corresponds to
the minimal set of generators.

What about d_7 The key point is that d; A corresponds to the generators of
Jx, whereas 0_\ corresponds to the relations in .J).

Proposition 3.14. J, is invariant under C* x C* action via

(Zl, 22) — (tlzl, tQZQ).

Thus, K is a representation of the 2-dimensional torus. Moreover,
Proposition 3.15. Ch\ is a character of the C* x C* action on K.
Definition 3.16. Let

Sx=1-(1-q)(1—q2)Xx(q1,q2)

_ Y O gy Y e

Oeor A Wco_\

i—1 _j—1
1 .

where e“(v7) — ¢ a5

Proposition 3.17. Given the character of the partition, performing this alge-
braic manipulation extracts two characters, precisely those of Oy \ and J_ .

This essentially repeats what we discussed regarding the generators and rela-
tions: it’s the calculation of the Koszul resolution, but at the level of characters.
Note that

Sy _ i—1 j—1
Ty R L
1
= —X 5
(1 — ql)(l — q2) A((h Q2)
_ 2 0eo,A e g Y mey ™

(1-q)(1—q) (I-a)1—q)
where in the first line we are summing over all (i, ) such that 2~ 'z~ € Jj.
Let’s proceed with a bit of homological algebra.

Proposition 3.18. There is a tautological (C* x C*-equivariant) complex as-
sociated with the partition \:

KB EK\©QaC%B K, ®AQ

where Q = (Cz, with dl(k) = ((Zlk), (22]{3), 0) and dg(kl, kg, u) = U+22k1 - Zlkg.
This complex satisfies the condition:

dgodlzo.
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What is the cohomology here?
Proposition 3.19. The cohomology of this complex is given by:

xm1 (g1, q2) Z e,
Dea A

and

xmo(q1,42) = 192 Z ™,
Wco 2

Here, H® = Ker d;, which corresponds to the elements of the quotient space
that vanish under multiplication by z; and z3. Specifically, multiplication by
z1 shifts us down, while multiplication by zo shifts us to the right. Therefore,
Ker d; is spanned by the vectors corresponding to the B elements.

3.5.3 Multi-Partitions

Now that we are familiar with partitions, let us introduce multi-partitions. Since
we want to study systems in multiple planes of reality, investigating multi-
partitions is a natural next step.

Definition 3.20. A mutli-partition is a collection ()\(0‘)) of partitions where
A is a finite set.

Next, we discuss the partition function, which will involve a sum over a multi-set
of partitions. The corresponding measure depends on the shape of the partitions
and certain parameters, and is given by:

(@
Z = Z I_Iq‘A 1 Bae) (@a, €15 €2, ).

(A(@) acA

There are 3 theories to consider here for u:

e Topological theory H: Uses rational functions and corresponds to 4-
dimensional space.

e K-theory K: Uses trigonometric functions and corresponds to 5-dimensional
space compactified over S*'.

e Elliptic theory Ell: Uses elliptic functions and corresponds to 6-dimensional
space compactified over an elliptic curve E.

The origin of these measures comes from localization in elliptic cohomology of
moduli spaces of solutions to partial differential equations on R*. By adding two
dimensions corresponding to the elliptic curve, we form a 6-dimensional theory.
In the K-theory case, there’s a hidden S* that leads to a 5-dimensional theory.

Several tools are available for this purpose, but we will focus on a few. For
example, there are measures associated with Hodge surfaces, which admit a
cohomological treatment but cannot be expressed in K-theory.
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3.5.4 Example: Ay

Consider A = {1,..., N}, where the elements are called colors. The param-
eters are (ay,...,any) € CV, (e1,€2,€3,64) € C* with Eizl €, = 0, and ¢ =
exp(2my/—17), where Im 7 > 0. Given the random variables (A(V), ... AX(V)),
the measure is expressed as:

= A A ﬁ H O(es +e1(i — )\;’8)) +ea(1+ MY —j) +aq —ap)
=1 peae  Oleli— AE’”) +ea(l+ MY — )+ aq — ap)

y H O(es + €1 /\ga)t +1—14)+e(j— )\56)) +aq —ag)
(6,4) EX(® Bler A +1 ) + e2(j — A7) + aq — agp)

J

Here, the 6 function is defined as:

x (for linear functions)
Olx)=q1—¢e® (for exponential functions)
[, (1—p " tem®)(1 —p"e”) (for elliptic functions)

depending on the theory in use, where p = exp(2mv/—10) and Im o > 0.

In the above product, if a = 3, arm(i, j) = )\Ea) and leg(i,7) = )\ga)t — 1.

3.5.5 Visualizing with Young Diagrams

We can visualize this in terms of Young diagrams. When we rotate a Young
diagram by 135°, it resembles a pile of bricks,correspond to complex points

Al?"'aANa
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thrown in a gardening cart:

A AY)

NVAVARVANS

°
°
@}

ai an

3.5.6 Growth Process on the Complex Plane
We have a growth process on the complex plane.

The growth starts with seeds at the points Ay, As, ..., A,, and the growth steps
are governed by €; and e5. The Young diagram is simply the boundary of this
growth process. The boundary of this process interacts with itself, and there is
a "potential” between the corners of the diagram: the (1 and B we discussed
earlier, akin to dipole-dipole interactions. This is a discrete process, meaning
that the ”charges” (the boxes) can only occupy specific positions. However, if
we decipher this setup, we can think of it as a Coulomb gas (a system of dipoles
interacting in a discrete way).

The simplest case is N = 1. The formula simplifies to

qu O(es + e1(—legn) + ea(armp + 1))0(e3 + €1 (legg + 1) — esarmp)
0(e1(—legn) + ea(armp + 1))0(e1 (legg + 1) — esarmpy)

A

where €; + €3 + €3 + €4 = 0. Many physicists call e3 the ”joint mass” and
€4 = —e3. Although not immediately obvious, there is a symmetry that allows
us to exchange €1 <> €5 and €3 <> €4.

Remarkably, this formula can be summed up. We won’t bother with the elliptic
case, but in the rational case when 6(x) = x, this sums to

_ (eater)(eztea)

(H(l qn)) o

n=1

There is a special case related to the representation theory of the symmetric
group: €; = —e€z, ¢ — 0, €3 — 00, and €3¢ = A? is fixed. Then the mea-
sure simplifies and becomes the Plancher] measure, giving us the famous hook
formula:
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Proposition 3.21.
(dim \)? H
P 2

For the experts: we don’t think we live in R*, rather C2. But, it’s not just
any C2; it’s a C? embedded inside C*. Since there is are four parameters
€1, €9, €3, €4, there’s a four-dimensional space hiding within this structure. Our
C? is just a two-dimensional slice inside this four-dimensional space, and a three-
dimensional torus (C*)3 C SL(4) acts on it. So our space we're dealing with is
abstracted in a certain way: it’s C? with a two-dimensional bundle on it, and
the €3 and €4 parameters are the weights of this bundle.

Back to the NV =1 case, the formula becomes

Ell

iq” / Z(—l)iAT*Hﬂb[nl (C?).

el Hilb["](C2)

Recalling information from Okounkov’s lecture, we can recognize that this corre-
sponds to considering the cotangent bundle and then looking at the zero section
to find the zeros of a generic section. This relates to characteristic classes, but
we want to make things a bit more interesting by introducing weight factors.
Instead of just multiplying by (—1)", we use the following weight instead

Ell _
Z / (—gs) AT*Hilb" (C?)

Hilbl"](C2)

where g3 = €. We're allowed to break the symmetry between €3 and €4 because
of the symplectic nature of the manifold we’re dealing with.

For general n, it is not simple. For n = 2, Z describes conformal blocks of a
2-dimensional conformal field theory on an elliptic curve with a parameter g
and one puncture.

Let’s summarize the big idea. As explained previously, everything presented will
be connected with everything else. Pairs of Young diagrams are related to the
representation theory of GLg, and inside GLQ7 there’s S’Lg, which is connected
to the symmetry of the Liouville theory. So, this is the rough explanation.
Next, we will introduce a new tool for studying these partition functions and
expectation values, In the next section, we will introduce a new tool for studying
these partition functions and expectation values. This new tool is called a QQ
character.

As an even broader big idea, we're studying expectation values of some ob-
servables, where we defined a measure that can be noramlized on the set of
multi-partitions

1 A

Z
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We want to study expectation values of these observables evaluated on A:

(0) == > npenON].
(@)

There exists observables O such that (O) solve interesting equations:
e Knizhik-Samolodchikov sl
e Belvain-Polyakov-Zamoldodchikov (Vir, W3, etc)
e Wave functions of A4, D, E, A, D, E spin chains

When we take €1,¢e5 — 0,

7 ~ e%}-(a’f&tﬁ

where F is the prepotential of some special Kahler geometry.

Often there is a family of curves with Krichever data that captures these asymp-
totics. The asymptotics at the level of these Young diagrams corresponds to the
limit shape problem.

There are also other interesting limits. For example, when e; — 0 with ¢; fixed,

7 ~ eéw(aﬁhés-!ﬁ

where W describes the deformation of special geometry: sometimes it is quan-
tization and sometimes it’s a classical geometry but in a rotated complex struc-
ture.

3.6 From Generating Functions to qq-Characters
3.6.1 The Generating Function of Krichever Genera

Okounkov just talked about the generating function of Krichever genera

Zinst — Z qur(Mzramed(N))
k=0

or of the moduli spaces of rank n, charge k = chy instantons, which are mathe-
matically torsion-free sheaves on P2, trivial over PL_.

Consider (¢1,¢2) C GL(2) and z = g3 = e®. Yesterday, both ¢; and g2 were cru-
cial because they rotated the space on which the sheaves live, while ¢3 is a more
peculiar parameter used to weight the exterior powers of the tangent bundle.
Today, we will remedy this and restore the "democracy” between g1, g2, qs, q4
by crossed isntantons.

But let’s digress and continue the logic of the presentation. The logic so far
was that localization provides a way to express the genera as a sum over fixed
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points. Without much explanation, we saw fixed points presented as collections
of partitions. So, this whole problem reduced to the partition function of some
statistical model. However, we are not primarily interested in the partition
function itself; we want to study correlation functions. So what are the good
observables? As learned from the lecture by Smirnov, there are two types of
interesting observables: order operators and disorder operators. We will study
both for this model. These operators can also be called observables, as under-
stood in complexified probability theory.

3.6.2 The Y-Observable

What’s the difference between order and disorder operators? An order operator
is something that can be easily defined. An original problem might involve
a (complexified) measure on some measurable set and an operator is simply
a function on that measurable set. It’s easy to define, and its expectation
value can be computed as an integral against the measure. It turns out that
there are smarter ways of organizing these functions, and we want to have a
way of assigning an interesting quantity to the collection of Young diagrams,
using essentially the characters we introduced last time. So, let me begin by
introducing the Y-observable:

Definition 3.22. A Y-observable is

il HD68+A(Q) (x — aq — c12(00))

Y(z) A, .. M) =
! | a=1 HIGG,Ma) (x — an — c12(l) — €1 — €2)

where ¢((4,7)) = e1(i — 1) + e2(j — 1), valued in
e rational functions of X for H
e degree N line bundles on E for FEll

Proposition 3.23. In the rational case,

T—00 1

lim Y(z) = 2 expz (71)x7ich¢(e),
i=1

where € is the universal sheaf lcoalized to the point O € C* = P*\PL,.

Unfortunately, it is unpleasant that Y is a meromorphic function, so it has
poles. Y should be ”thought of” as characteristic function det(xz — ®). If E were
a vector bundle, not a sheaf, the expression would sum up to a polynomial in z.
Even in cohomology, we would get a holomorphic section of some line bundle
over F, not a meromorphic one. This means that the presence of poles reflects
the fact that it’s not a good idea to restrict to sheaves at a point. However,
there is a way to fix this problem.

Let et = ¢1, €2 = go. Consider

1 N
Y(x+ €1 +e2)) = A Z i an (@€ q) X Y (x + e + e)[AD A
A AN
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Proposition 3.24. There are poles at © = a,, + €1(i — 1) + €3(j — 1) for some
(i,j) € N x N.

These poles come from the sum of all configurations of Young diagrams where
(i,7) € 0_\®). If we remove (i, ) from M@ we get A(®). That is, we have
replaced (A .. A@) AN with (AM .\ A),

3.6.3 The qq-Character

Proposition 3.25.

Y(ag +e1(i— 1)+ ea(j — 1))AD XD AN = 0.

This means that if we add something proportional to % to this expression for

some value ¢, the poles might be removed. Indeed:
Proposition 3.26. There are no poles for

(e1+€3)(e1 +€4) Y(x —€3)Y (2 — €4)
€3€4 Y(.’)S)

X(x) = <Y(z+el +e)+gq + o () +

which we call the qq-character.

Note that by adding each ¢* term for some 4, we have removed the poles of
the previous expression. Unfortunately, the price we have paid is that new
poles have appeared. This begins a process where we keep adding terms, each
multiplied by smaller and smaller coefficients, and then we cross our fingers,
hoping that we end up with the full formula for the entire series. It is fortunate
that our series happens to be convergent, which is not guaranteed.

Proposition 3.27.

O(es(armg + 1) — eslegr + €1)0(—esarmp + ea(leg — 1) + €
%(m):ZqW(S( 0+ 1) — ealegy + €1)0(—esarmp + ea(legg — 1) + €1)

55 O(es(armp + 1) — eqlegn)0(—esarmg + e4(legq + 1))
oo, Yz + e+ e+ csa(D))

[meo 2 V(2 + c34(W))

where c34(0 = (4,7)) = e3(i — 1) + ea(j — 1).

This is some expression built out of the Y-functions, constructed according to
the shape of the Young diagram we are summing over. We use the contents of the
boxes of that Young diagram to shift the arguments of the Y-observable, which
was the observable on the ensemble of n Young diagrams. Importantly, there
is a prefactor - this is precisely the prefactor of Kr(Hilb[k] (C%),z = e = q),
which is C* x C* equivariant with weights (g3, g4).
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3.6.4 Localization Formulas

Notice that the roles of the variables have shifted: €3, which was just sitting
in the numerator, not doing much, has now become quite important as it is all
over the denominator of this localization formula. But why bother with all of
this trouble?

Theorem 3.28. N
(X)) = [ 0z — Aq)

where Ao (q) = aq + q(...) is holomorphic in x.

Now, we’re going to generalize this problem and make it look like a problem
that describes sheaves living on a cross

2
C34

2
Cia

Horizontally, we can study rank N sheaves, whereas vertically, we study rank 1
sheaves. In between, there are some cross factors. This is a picture from string
theory, where open strings are connected to stacks of branes.

Let’s introduce the disorder operator, which are also known as surface defects,
and are obtained by a procedure called orbifolding. Previously, we were studying
sheaves on P? which were trivial on the line P._. This was related to doing U(N)
gauge theory on R*.

a1
In gauge theory with some path integral [ DAe™ fTrFA/\*FAJr”', we can study

observables as well. Typical observables people study in gauge theory are the
holonomy of Wilson lines (TrP exp 3§C A). Physicists studying quantum chro-
modynamics use supercomputers to study them. Unfortunately, in our world,
when everything is formulated in terms of holomorphic bundles or sheaves, we
don’t have access to those observables. However, invariants using Chern-Simons
theory tell us that in three dimensions, such observables can also be understood
as a disorder operator. This is because in Chern-Simons theory, given a link,
an observable is associated with some contour in the gauge field and has a sin-
gularity such that the curvature of the gauge field has a delta function source:
Fy ~ Jric.

We can generalize this aspect of knots/links to four dimensions and define ob-
servables that will be codimension two defects. There are two main ways to do
this:
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e Algebraic geometry: Given a complex surface S and a complex curve C,
we are interested in studying sheaves & over S such that

ElcDE DE;D...DE,.

e Homological algebra: If C' is defined by the equation z5 = 0, wen can
study the flag
EDE D...DE, Dz

This is the moral of the story we’re going to follow. This is analogous to the
well-studied problem in the world of holomorphic bundles on curves, where we
fix a parabolic structure at points. We can think of curves as divisors, and we’re
fixing a parabolic structure on the divisors.

3.6.5 Orbifold Structures and Parabolic Sheaves

It turns out that there is a very convenient construction that realizes this

parabolic structure via an orbifold story. Imagine that we're doing gauge the-

ory not on the (21, z3)-plane, but on a (21, Z2) plane, where 2 = 2z,. We will

assume that n is the rank of the gauge group, which is not always the case.

Imagine that we are doing something simple on the covering space (z1, Z2), and
then project it to (21, 22), which is a complex manifold C x C/(Z/N). But
there’s a defect at the origin...

Let’s define a more refined measure. In addition to the characters with respect

to the torus C;, x C5, x C, we will also keep track of the representations of the

cyclic group I' = Z/n, which acts on C* by rotating the Zy and Z4 coordinates
in opposite directions, and is part of the Calabi-Yau 4-structure.

Definition 3.29. The I'-action on C* is given by
(Zla 527 Z3, 24) = (Zla Fg?a 23, 77154)
where QN — 1.

Additionally, this group I' acts in a framing space: CV, which is the fiber of the
torsion free sheaf at oo, becomes a regular representation of I'. This is because
we are taking the maximal flag of subsheaves.

Now we assign brackets

[as] = c(a) € Z/N = Rep(T')[eq] = 0[ea] = 1]es) = 0[eq) = -1

The map ¢ : {1,...,N} — {0,..., N — 1} should be a 1-to-1 correspondence.
Let R, € Rep(I") be given by Q — P
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Definition 3.30. The new measure is

N-1
H;\Lfﬁ)_u)\(w) = H qﬁ“’ H@ <Z Ao + k161 + kaea + kgég)
w=0 «

where Y ngc(a)+ke =0 (mod N) and k,, = Zgzl #{(1,79)](,5) € A c(a)+
j—1=w (mod N)}.

For combinatorics, we have the following map:

Definition 3.31. There’s a projection map m : (N)N_, — (ACHN_ such

that » .
a(t )t
A=A G-

This map corresponds to the projection from the moduli space of parabolic
sheaves to the moduli space of sheaves, forgetting about the parabolic structure.

Proposition 3.32.

E NG o = qlA‘u%ld x observables
Xer—1(AM) .. ,A(N)

where the observables are Y[, ¢~ [1 and the integral is over all parabolic

. N-1
structures on a given eg, and q =[], _y Guw-

If we let q, = ijl , we have z,1 N = ¢z, which is the start of an elliptic curve.
The elliptic curve begins with the collection of particles, which forms an infinite
set. When we shift the label of a particle by n, we obtain another copy of the
same particle on the elliptic curve (quotiented by ¢). The resulting structure
can {2 times the first Chern class of the associated quotient. 2x the first Chern
class of the corresponding quivers. Despite its initial complexity, this formula

is explicit and combinatorial in nature.

How big are the fibers in the map? The fibers are co-to-1, meaning the pre-
image of any collection of partitions is an infinite set. However, this set has an
interesting structure. This structure is related to maps, specifically quasimaps
to flag varieties. Let me explain a few basic points to help clarify things.

If a = 1, then A" = AV If o = 2, then AP = AP < A2 50 there
is 1 integer freedom. If a@ = 3, then Ag?’)t = )\gg)t < )\g(t) < )\gg)t7 so there
are 2 integers of freedom. More generally, for « = N, there are N — 1 degrees
of freedom. This gives rise to a Gelfand-Zetlin table of numbers, which are
degrees of quasi maps QMaps(C., P!, T*Flag). To understand why we have this
triangular table of numbers, one way is to use the quiver variety representation

of the flag variety.

This takes care of most of the fiber, but not all. There are also finite pieces,
having to do with the possibility of inserting columns between N successive
steps.
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3.7 Connecting The Two Stories

Our goal is to connect two stories: the story of the integration of instan-
tons/moduli spaces of sheaves and the story of integral systems (classical and
quantum). These are rich and vast topics, so we’ll only touch on a few aspects.
We will focus on understanding the origin of the Lax operators of integrable
systems and how they come from the geometry of moduli spaces of instantons
and their generalizations.

Before diving into the main discussion, we mention one remark about the ter-
minology we used for the observables introduced in our previous sessions: why
are they called qg-characters and how are they connected to characters? To
clarify this, we will generalize both the problem and the observables in such a
way that the classical Lie algebras and root systems associated with simple Lie
algebras naturally emerge. In this context, we will see that these qg-characters
are indeed related to the characters of representations of these Lie algebras. We
will sketch the construction of this relationship, with the goal of providing a
clearer understanding of the connection.

3.7.1 Linking Instantons and Integrable Systems

Previously, we discussed a problem that became a statistical mechanics problem
through the process of localization. Initially, this problem involved calculating
integrals over the moduli space of instantons, which were defined on a two-
dimensional complex plane C%, < Cf,,,, which is a Calabi-Yau 4-fold. The
4-fold intersects our plane at a single point, which corresponds to the C3, plane.
Then, we introduced a defect by performing an orbifold action inside the two-
dimensional plane such that the orbifold action, when observed from a certain
point of view, looks like a complex line.

Let’s change the orbifold action:
C3,/T

g rank N sheaves

\\// 7 U(N) instantons
Ct,
°
/

We want to modify the geometry so that the observer (denoted by the dot)
observes nothing: the world is flat and in 3-dimensions, but the transverse
space is now modified by quotienting out a finite subgroup I' C SU(2). There
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is an ADE choice for this subgroup, but we won’t dwell on the details.

3.7.2 The Geometry of Instantons and Moduli Spaces
Example 3.33. I' =Z, 12 acts by

-1
)
(23,24) = (w23, W™ " 24)

where w’t2 = 1. The framing space is important because the rank-N sheaves
describe surfaces with multiplicities, and these multiplicities are spread out in
the transverse direction. So we can think of N-points moving on the transverse
plane, and the group acts on the collection of these points. One simple way to
let the group act is to say that the N points form orbits of the group: the framing
N = functions on N copies of T orbits.

Algebraically, let the manifold C3, be described by the equation AB = C™2,
where A = z§+2,B = z2+2, and C' = z3z4. On the quotient space, we have N
points which leads to an orbit. Then on the covering space, we have N(r + 2)
sheaves with T'-actions.

Then
N r+1

ChN =) " e Mg

a=1s=0

with Rep(T') = {Ro,Rr41}, where R, is the irreducible representation corre-
sponding to w — w®. For each representation, we have an N -dimensional vector
space, which is the fiber of the trivialization of my shift at infinity in that space.

The framing group is (GL(N))*("+2) = GL(N(r+2))%r+2. Now, each irreducible
representation of I' has its own frame. Therefore, if we formulate the problem
of instanton counting as an integral over R-products, we can proceed with this
framework.

The moduli space of quiver instantons is M, which satisfies Uz M (derived
moduli space of framed rank = N(r + 2) sheaves on P2, with trivializations
over PL @;:é N, @ R, lrt2 = {(&, ..., Enq1)} such that & is torsion free on
PZ,SS\P; > N, QG, rank Es = N, and chy(€,) = ks.

Now, we replace ¢ — (qo,---,qr+1). Then

r+1

Z" M a5 @ €1, €2, €3) = Z qu Z H

L s=0 Aas)

where A@%) is a N(r+2)-tuple of Young diagrams, ks = S0 (A@9), [32 Ne,s0a,s+

Ma€a] = (O Na,s8 +mg —my) (mod r + 2), [an.s] = s,[e1] = [e2] = 0,[e3] =
1, [64] =—1.
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We organize the representations of Z, ;o into a McKay graph, where the vertices
are the representations and the edges represent the decomposition

9‘%5 ® (C§4 = @ ms’ ® Cmss/
g1

—

R1

Ro

Rr+1

Then, we promote the vertices into sheaves of rank N, and study the moduli
spaces of these sheaves:

&

&o

gr-i—l

But on top of these sheaves, we should think of these moduli spaces as abstract
spaces with obstructions coming from

Ceq (@ RHom(€&;, (’35+1)> .
s

/ framed framed framed
M XM7Y X XM

Although it looks like we are complicating things, things will become simpler
SOOI
3.7.3 Example: A, Type Theory

Let g9 = 0 = ¢,41, so the chain of sheaves become fixed vector spaces. Then
the measure becomes

@) ] Hoexe 0e —ms + (@) Tl Olca = m +ci20)
HDGA(Q) 9() HDE)\(Q') 9()

Hay ()‘

a,o’

where aq y11 =My, 00 r+1 + €1 + €2 =mf.
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The observables are

al [oco, aeo (T = aa,s — c12(0))

22 [meo s (@ = aas — €1 — €2 — cr2(M))

Ys(z) =

and the fundamental qg-characters are

Y(z+ e+ €)Ysi1(x)

%s(x) = Ys(x + €+ 62) + qs % (l‘)

+ ..

This is the same as the summation over the Young diagram

zZ4 z3

The weight of this daigram is quEH q§+2, and in the A, situation (¢go = 0, ¢y+1 =
0), the weight is ¢l — H(ij)e)\ @s+i—j, where we are considering only the \’s
for which (4,7) € A with 0 < s +i —j < r+ 1, so there are (T‘:l) choices for \.

Then
N
Yo(z) = [[ (@ —mg)
a=0
N
Yen(z—ea —e) = [[@-md)
a=1
and ,
A (x+eB—1
Xs(x) =Yo(z +€e(1—9)) Z H o ~ ( )
0<ir1<..<ig<r+1B=1 £-1
where Yo ( )
j +e
A _ inilrre)
ST

fori=0,...,r+1
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3.8 The Limit Shape Phenomenon
3.8.1 The Limit Shape Phenomenon

Let’s take the limit as €1,e5 — 0. In this case, the expectation values we were
computing factorize.

- (Y(2)
This is called the limit shape phenomenon. This is because (X,(x)) = Ts(x)
has no poles in = and it’s a holomorphic section of a degree N line bundle £|g,

where Yo(z)
T
To(z) = —2" e,(Agy. .., Apyr)
Z0.--Rs5—1

Yigi(x) ).

where A; = lim,, ;-0 2 ( V)

Now, we have a system of algebraic equations. To solve it, we need to fix some
poles or theta functions, and recover the A’s by inverting the system. To do
this, compute the generating function

— r+1 —1\s _ T _ 1 'Y;—H(x)
0= Z 20--2zr—10s(@)(=277)° = Yo(x) H(l ° o Yi(x) :
s=0 =0 l

where the sum, denoted %(w,z), is an algebraic curve in E x P! and PAQNES
Yi
Aok

3.8.2 Spectral Curve Construction

Furthermore, we will describe this algebraic curve as a spectral curve, but in
order to do this we first need to define an operator satisfying det(R(z, z)) =
R(z,z). To build this operator, we need to combine the orbifold structure we
had before and introduce an additional orbifold in the C2, plane. This adds
a surface defect by introducing a Zy orbifold with respect to a bigger group

ZN X Zr+2.

The representations of this larger group are now labeled by two integers. This
results in a more complex quiver structure with an additional dimension:

&

Nr—i—l

Zn
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Now, each representation will create a Z,-cyclic structure, and the resulting
diagram resembles a lattice model on the 2-dimensional torus.

Concretely, Y;(z) becomes
N
— as,w — c12(0) — €2)
( ) - H 33 —Os,w (
ﬂl_[lljel):[ﬂ s) mf@SW*Cl?(D)*fl — €2)

if 64+ j=s (mod N) and

N

N | O | e ey =)

B=10eA(B:9) l‘ s 612(D))

if B+j—1=s (mod N)

3.8.3 Lax Operators, Residues, and Integrability

Now, we can organize this collection of observables into an N x N matrix:

Yi(z) = diag(Ys,0,-.-,Ys,N—1)-

As e1,e5 — 0,

where

Z; = = diag(Z;.,), and L“ = ¢i.- By expanding the brackets and reordering
on the right hand 51de We can see that coefficients are the collection of the
qq-characters.

Theorem 3.34. (X, .,(x)) is a holomorphic section of degree 1 £|g.

The excitement lies in the fact that the degree is 1, meaning that it has a simple
structure.

Now, I organize them in a diagonal matrix operator

As a function of x, this is a linear function; it’s a section of a degree-one line
bundle. As a function of z, it is a polynomial.
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If we want to reconstruct the entries of the matrix, we just need to solve the
equation D (x, z)y = 0.

Let’s bring the Lax operator back into the story. In the rational case, ©(z, z)
is a degree 1 polynomial in = such that
D(z,2) = 2D0(2) + D1(2)
= Do (2)(x — L(2))

where D¢(z) = [[/Z5 (1 — C.Z;) and the Lax operator L(z) = Do(2)"'D1(2).
Since det(1 — C,A) =1 — 2~ det A, detAC‘ADo(z) =1 — 2!z, The poles of L(z)
are at z = zg,..., 241, SO we can write L(z) in the form

r+1 ~

B)=3 - fz

1=

which is the Lax operator on the Gaudin-Garnier system on genus 0 curve with
r + 3 punctures (the additional ones being at 0 and o).

Theorem 3.35. The residues are rank-1 matrices.

This is because when we invert an operator that’s a polynomial in z, the residues
correspond to projections onto the kernel and the dual kernel of the operator.

These L(Z) matrices contain information about the theory both with and with-
out the surface defect. From the perspective of an integrable system, they can
be seen as integrals of motion. The surface defect adds extra data, such as the
Z; parameters, which are not visible in the bulk theory. These Z; values are
degrees of freedom that change the dynamics in the Lax flow. In total, there
are 2(N — 1) x r dynamical parameters.

The Higgs operator is ¢(z) = dz—zﬁ(z)

Theorem 3.36. The eigenvalues of the residues of ¢ at 0 and co are m,, and
+
m.

Where does the Poisson structure come from? Let ¥ be the surface defect
expectation value. We have

ov
QS,wr = <as7w + €lks,w>-
S,w
As €1,69 — 0,
w _ eiS(zs,w,as,w,...)
as
6Z3,w
tential where the momenta are related to the coordinates, allowing us to derive
a symplectic structure for the residues of the Lax operator. Ths enumerative
geometry creates a Lagrangian subvariety in the phase space of the integral
system.

and are the entries of u;, v;. This relation is a Hamiltonian-Jacobi po-
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We’ve build part of the finite A-type theory. Let’s finish with one last point:
there’s a similar but more complicated formulas for the Ag involving infinite
product in both directions, where we replace Y;(z) with Y (z + ie3) and X,(x)
with X (z + ses).
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Andrei Okounkov: From Elliptic Genera
Elliptic Quantum Groups

Abstract

This course will be an example-based introduction to elliptic cohomol-
ogy, Krichever elliptic genera, rigidity, and related topics. We will work
our way towards the geometric construction of elliptic quantum groups.
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4.1 Introduction

The speakers at this conference have already covered various aspects of Krichever’s
work. In this session, we will focus on his early contributions to topology. This
follows the work of Sergei Novikov, who also passed away recently. Krichever
made significant strides in topology, and these contributions will be the central
theme of my lectures. Later, we’ll explore how his work evolved toward inte-
grable systems. Even in his early topological papers, however, we can observe
connections to Baker-Akhiezer functions and other areas. For Krichever, these
subjects were always closely intertwined. In fact, today’s leading research in
integrable systems often engages with topological questions.

We will begin by explaining the concept of the elliptic genus, discussing its
rigidity and other key properties. We'll also touch on how these ideas have
evolved and highlight some of the current directions in the field. Those working
in integrable systems should be particularly interested in this work, as we can
apply representation theory and geometry to gain deeper insights into these
systems. Geometry, in particular, offers a powerful way to simplify and prove
complex identities, especially those involving elliptic functions. For instance,
when dealing with a complicated multivariable expression of elliptic functions,
it can be difficult to discern how it simplifies. The traditional approach to
proving elliptic function identities involves verifying that the function transforms
correctly when shifted by periods. Then, for a rational expression, one would
aim to show that it has no poles. Typically, this involves proving that all
poles cancel out. However, geometry provides a much more robust method to
demonstrate that a rational expression is regular. Even for those not directly
interested in geometry, this type of argument can still be of significant interest.

We will begin our discussion with genera, starting with the classical example of
the Gauss map.

4.2 The Gauss Map
4.2.1 Definition and The Degree

Let C be an orientable surface of genus g embedded in R3. At each point on
the surface, there is a unique normal vector and a corresponding tangent plane.
Using this information, we can define a map that sends each point on the surface
to a point on the unit sphere S?, where the position on the sphere corresponds
to the direction of the normal vector at that point on the surface, preserving
the orientation. This defines the Gauss map:

7v:C — 8% =Gry(1,3,R) = Gr,(2,3,R),

where Gr refers to the Grassmannian. What is the degree of this map?

Proposition 4.1. The degree of the Gauss map is given by degy = 1 — g(C),
where g(C) is the genus of the surface C.
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Proof. There are several ways to prove this result. One approach involves ex-
amining the preimages of the north and south poles of S2. These correspond to
points on C' where the tangent plane is horizontal, which are the critical points
of the height function on C. By analyzing these critical points, we can derive the
degree. Even if the surface is embedded differently, Morse theory tells us that
there may be additional critical points, but since the cohomology of the surface
can be computed using the critical points, the degree remains unchanged.

Another proof uses vector fields on 52 and the Hopf index theorem, which relates
the sum of the indices of a vector field to the Euler characteristic of the surface.
Let v be a vector field on S2, which is a section of the tangent bundle 7.52.
Then the pullback 7*T'S? is the tangent bundle of C, and v*v defines a vector
field on C. This gives an index:

ind(v) = Y ind,(v) = CNC inside TC = Euler(TC) = x(C),
v(p)=0
where Euler denotes the Euler class, and

ind(v*v) = Z (deg~) - indy(v) = deg+y - ind,.
v(p)=0

Combining these, we obtain:

X(C) = degy - x(5?),

where x(C) = 2 — 2g is the Euler characteristic of C' and x(S?) = 2 is the Euler
characteristic of the sphere. Thus, we find that

degy=1-g,

as desired.

4.2.2 Characteristic Classes and Pullbacks

For a vector bundle, there are characteristic classes that capture important topo-
logical information. When the bundle is pulled back by a map, the characteristic
classes also pull back accordingly. The Euler class is one such characteristic class
- it encodes how many times a subsection of the bundle vanishes, counting with
multiplicity.

The topological computations we are performing here have an analytic coun-
terpart, which is often encountered in applications. Although we won’t focus
on this analytic side, its important to note that many problems can be viewed
through this lens. When a bundle is pulled back by a map, not only can we pull
back the characteristic classes, but we can also pull back other structures like
connections and curvature.
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For example, the sphere S% = SO(3)/SO(2) has an invariant metric. Since the
metric is invariant under the action of the group, parallel transport with respect
to this metric is simply given by the group action. If we want to translate along
a geodesic, we can achieve this by acting with an element of the group that
moves us along that geodesic. A concrete example involves a geodesic triangle:
if we rotate it by an angle 6, the computation of the rotation’s effect reduces to
the commutator in the group, which, in this case, equals the area of the triangle.

In particular, when we pull back a metric or connection, we can also pull back the
associated data, including the curvature. While some might think of curvature
as merely a number, it is, in fact, a 2-form that tells us how much the geometry
deviates as we traverse a small parallelogram. This leads to the following integral
expression:
/ curvature(T'C) = (1 — g) Area
C 52
In our case, the area of a sphere is 47 and we get the Gauss-Bonnet theorem.

In modern high-energy physics, many integrals are written in the form of Rie-
mann or Lebesgue integrals. However, these integrals often have a deeper mean-
ing related to the characteristic classes of vector bundles. While we can compute
these integrals using standard calculus techniques, they can also be understood
from a topological perspective.

We won’t dive deeply into connections and curvature here, as these topics are
well-covered in many texts. Instead, we will focus on two analytic aspects of
this story. The first relates to integrals, as illustrated in this example, and the
second concerns the indices of (pseudo)-differential operators. These are defined
analytically, but in the end, they reduce to integer values.

The topological computations we’re working with today have corresponding
analytic counterparts. While we won’t emphasize this aspect, it’s worth noting
that these connections are often encountered in practical applications. When a
bundle is pulled back by a map, we can pull back all its structures - connections,
curvature, and so on.

Take the sphere, for example. While it may seem too large or imprecisely drawn,
the sphere is a homogeneous space, and this property makes it particularly well-
behaved in the context of pullbacks. Specifically, the sphere is the quotient of
the rotation group by SO(2), and it carries an invariant metric under this group
action. Since the metric is invariant, parallel transport with respect to it is
simply given by the action of the group.

To illustrate this, consider translating along a geodesic on the sphere: we can
achieve this by acting with an element of the rotation group that moves us along
the desired geodesic. For example, imagine we have a geodesic triangle. If we
take a tangent vector at one point, translate it along the geodesic to another
point, and then repeat the process, eventually returning to the original point,
the vector will have rotated by some angle, say #. The amount of rotation can
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be computed as the commutator in the group, which, in this case, is equal to
the area of the triangle.

When we pull back a metric or connection, we also pull back the associated data,
including curvature. This allows us to derive the property that integrating the
curvature of the tangent bundle over a curve C' gives an expression of the form

/ curvature(T'C) = (1 — g) - deg(y)
c

where g is the genus of the surface C and deg(y) is the degree of the map. For
sphere, the curvature is directly related to the area, which in this case is 7

In modern high-energy physics, many integrals are written in the form of Rie-
mann integrals, but they often have a deeper meaning tied to the characteristic
classes of vector bundles. While we can compute these integrals using standard
calculus, they also have a topological interpretation.

We won’t focus on connections and curvature here, as these are well-covered
in many books. Instead, we’ll explore two key analytic aspects of this story:
one involving integrals, as we’ve just illustrated, and the other concerning the
indices of differential operators. These are defined analytically, but ultimately,
they are integers.

4.2.3 Interpreting The Degree

Now, let’s interpret the degree of the map more concretely. Consider the graph
of the map. On the sphere, we can choose a point and ”stretch” the space
from this point toward another. For instance, we might use a Morse flow to
move everything from the north pole to the south pole. What happens if we
continue this process? We obtain a result where we can split the space into
subsets consisting of a curve and a bunch of spheres. The curve is collapsed to a
point, and the spheres are mapped with degree +1 (counting with orientation)
to 1 — g. Thus, we end up with a Gauss map:

C > vSs? 52

graph ¥
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If we're computing a Riemann integral or something pulled back from here,
that’s good enough because whatever lives over that point doesn’t matter. How-
ever, if we're computing indices of differential operators, this is not sufficient
because it’s not smooth. But there’s a way to write a smooth cobordism be-
tween the Gauss map and the union of 1 — g spheres. Consider the graph of a
function f(z) = 2% 4+ 23 —x3. The graph of this function is a cone roughly looks

like the follows:

with the following inverse maps

So we can smoothly pinch any handle on this surface, make a surface a bunch
of spheres, and turn it into nothing because the surface in the 3-space bounded
by 3-manifolds is cobordant to O.

The problem is at the origin since the Gauss map is v(x) = ﬁ(zl, To, —T3),
but we can fix this by turning the function into f(z) = 2?2 + 23 — 23 — et Which
would make a hole in the graph:
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which will change add a sphere for one of the inverse functions:

So we have L;_gspheres. In particular, we have
ind(0 : O — C*dz)

and B B

inde (9) (1 — g)indge2 (9) .
Now, we can see that the kernel is holomorphic functions, and the cokernel ~
holomorphic differentials. So, not only can we compute some Riemann state-

ments topologically, but we can also compute statements about indices of elliptic
operators in this topological fashion.

In this course, we will not deal with Riemann integrals or elliptic differential
operators. Instead, we will focus on situations where the manifold is complex,
and we are dealing with the sheaf of holomorphic functions x(O¢) where we have

O¢c — C* 2 0*dz — 0 and we can tensor every term by any holomorphic
bundle F, allowing us to compute x(F).

We will always work in the case where we have this sheaf and we can compute
this, but in principle we can also phrase it as an index of a differential operator,
namely the Dolbeault operator.

To summarize this discussion, there are is an important notion of a vector
bundle. With vector bundles, particularly in the context of a manifold, which
by definition has a tangent bundle (a very important bundle), we can associate to
it characteristic classes. These classes can be related to connections, curvature,
and other differential-geometric concepts, but ultimately, they can be computed
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purely topologically. Some involve more sophisticated topology, but in the end,
the computations remain completely topological.

4.3 Elliptic Genus and K-theory

This leads us to the discussion of elliptic genus and K-theory. Elliptic genus is
a kind of elliptic function associated with a bundle on a manifold, and K-theory
involves associating a certain group to a topological space, which we’ll discuss
in more detail.

4.3.1 K-Theory of Vector Bundles

Let X be a compact Hausdorff topological space, such as a smooth manifold or
a simplicial complex. For such a space, we will define the K-group of vector
bundles, denoted K°(X), which is an algebraic structure that encodes the
classification of vector bundles over X. Elements of this group correspond to
isomorphism classes of vector bundles, and the group is equipped with a ring
structure.

Definition 4.2. A wvector bundle is a topological space V together with a
projection map p : V — X, where for each point v € X, the fiber V, = p~1(z)
18 a vector space.

In this context, we primarily focus on complex vector bundles since complex
vector spaces offer richer structural properties. Given a vector bundle V' with
projection p : V. — X, for any open set U C X, we have an isomorphism
p~Y(U) =2 U x C" for some n, where n is the rank of the bundle over U.
Moreover, the transition maps between different neighborhoods must be linear
in the fiber C™.

Given two vector bundles Vi and V5 over X, we can construct their direct sum
Vi @ Vi, which is also a vector bundle over X. The transition functions for
V1 @ V5 arise from those of Vi and V5, and can be expressed through the general
linear group GL(n). Specifically, if the transition functions for V; and V, lie in
GL(n1) and GL(n2), respectively, then the transition functions for Vi & V4 lie
in GL(n1 +mn2). Similarly, the tensor product V; ® V5 of two vector bundles is
another vector bundle, and the direct sum and tensor product together generate
a semiring of vector bundles.

In a semiring, subtraction is not typically defined. However, we can introduce
a formal notion of subtraction by defining an operation © as follows: for two
vector bundles V; and Vs,

VieVo=Wi oWy < Vi oWy =W, Vs

Thus, © serves as a formal subtraction that respects the structure of the semir-
ing.

Proposition 4.3. For any vector bundle V', there exists an integer N such that
vV cCN.
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Alternatively, we can say that V is a quotient of a trivial bundle or there is a
surjection C™ — V:

Proposition 4.4. For any vector bundle V, there exists an integer N > 0 such
that Ve vVt =CN.

Using the formal subtraction operation, we can express the result as:
eV=eCVaVv"

This formalism allows for more algebraic manipulation of vector bundles within
the framework of K-theory.

4.3.2 Stably Isomorphic

In K-theory, vector bundles are considered equal if they are stably isomor-
phic. Although we primarily work with complex vector bundles, we simplify the
concept by considering the tangent bundle of a sphere. Specifically, if we take
the tangent bundle of a sphere and add a trivial bundle, the resulting bundle
is trivial. This is because the normal bundle to the sphere is trivial, and since
the sphere is orientable, the tangent bundle, when combined with the trivial
bundle, gives us the ambient space R? restricted to the sphere. Thus, while
the two bundles may not be isomorphic initially, they become isomorphic once
we add a trivial bundle. This construction shows that even non-trivial bundles
can become equivalent when supplemented with additional structure, a concept
that is widely applied in complex algebraic geometry.

This idea of stable isomorphism allows us to extend the framework of vector bun-
dles, and more importantly, it facilitates the definition of an analog of the Gauss
map. Let X be a topological space, CV a trivial bundle, and V' a sub-bundle of
CN. In this context, we can form a map to the Grassmannian Gr(rank V, N, C),
which parametrizes all the subspaces of rank rank V in CV. This map allows
us to identify the sub-bundle V' with a point in the Grassmannian. The Grass-
mannian is a well-behaved manifold, a homogeneous space with a rich geometry,
and this allows us to apply this analogy in complex settings.

Moreover, there exists a tautological bundle Taut over the Grassmannian, whose
fibers correspond to the subspaces themselves. By pulling back this tautological
bundle via the map 7, we obtain a bundle V' = 4*(Taut), which is the pullback
of the tautological bundle over X. This construction shows how the Gauss map
extends naturally to more general spaces.

Working with complex vector bundles is particularly advantageous because the
cohomology of the complex Grassmannian is significantly more intricate than
that of the real Grassmannian. While the cohomology of real Grassmannians
can be studied, it is often characterized by mod 2 torsion, which renders it
less interesting from a topological perspective. In contrast, the cohomology of
complex Grassmannians is more flexible, allowing for operations such as adding
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trivial bundles. Furthermore, we can take limits over increasing dimensions:

Gr(rank V,N,C) — UGI"(T, N,C),
N

and the cohomology of these Grassmannians behaves well under such limits.
This provides a means to extend the cohomology in a natural way.

4.3.3 Characteristic Classes

Next, we examine characteristic classes in the context of cohomology. These
are represented by pullbacks of cohomology classes from the Grassmannian.
For instance, when r = 1, the Grassmannian Gr(1l,n) is isomorphic to the
projective space P?~!, which has a nice cell decomposition. Each cell in this
decomposition is complex and of even dimension, meaning there are no boundary
maps between them. In particular, we can identify the cohomology ring of P"~1
as H*(P"') = Z[z]/(z™ = 0), where x is the generator, corresponding to
the Poincaré dual to the hyperplane. As n — oo, this cohomology extends to
H*(P>) = Z[z].

he infinite projective space P>° can be expressed as:

L C®\0 5%
~GL(1) U@y’

(o]

where C* =y C¥, and S is contractible. This construction is the classify-
ing space BU(1), which serves as the base for understanding line bundles over
complex spaces.

For higher ranks, we consider the Grassmannian Gr(r, N), which can be de-
scribed as the space of  x N matrices of full rank, modulo the action of GL(r).
As N — oo, this Grassmannian converges to the classifying space BU(r) of
r-dimensional complex vector bundles. The cohomology of these spaces is gov-
erned by the characteristic classes, which are typically expressed as symmetric
polynomials in the Chern roots of the corresponding vector bundles. For exam-
ple, the Chern classes can be written as elementary symmetric polynomials in
the roots =1, o, ..., z,, leading to expressions like:

€pr =T1T2...Tp,

which lies in H?", the cohomology class corresponding to the real dimension of
Cr.

When a section of a vector bundle vanishes, it imposes constraints on the man-
ifold. In the context of K-theory, the principle is that every vector bundle can
be pulled back from the universal bundle. To compute sections of the universal
bundle, we consider homomorphisms Hom(C” — C¥). In this case, C" becomes
the tautological bundle, and the vanishing of any row in the matrix representing
the homomorphism corresponds to a hyperplane condition. These sections, and
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the invariance under certain operations, provide the foundation for computing
characteristic classes, such as the Chern classes.

More generally, we can consider the case where ¢,_; represents the locus where
1 + 1 sections of the bundle are linearly dependent. In this case, we can write
the bundle V as V = C’ @ V’, where V' is a sub-bundle associated with the
vanishing sections.

In cohomology, the characteristic classes are expressed as:
ck (v) = 7"ex,

where e, € H*(Gr(-,-)) are the cohomology classes of the Grassmannian. These
classes can be multiplied and integrated over the manifold, as demonstrated in
previous examples involving the Euler class.

In K-theory, we focus on operations such as tensor products and wedge products
of bundles, which serve as analogs of cup products in cohomology. For example,
in cohomology, we compute integrals like:

/X [TV,

whereas in K-theory, we compute the Euler characteristic of the tensor product:
xX(@ A" V),

which serves as the topological invariant of the vector bundle in the K-theoretic
context.

4.4 Towards Equivariant Cohomology Theories

Equivariant cohomology theory extends the classical cohomology theory by in-
corporating group actions on spaces. This theory is a powerful tool in both
topology and geometry, enabling the study of spaces with symmetries. To un-
derstand equivariant cohomology, we begin by discussing the foundational ele-
ments of cohomology and then consider how group actions influence the theory.

4.4.1 Foundations of Cohomology

Cohomology is a topological invariant that can be defined for a wide range of
spaces. Let X be a topological space, and we are interested in understanding
its cohomological properties. Typically, one studies spaces like cell complexes
or manifolds, and for our purposes, we often focus on complex manifolds or
algebraic varieties defined over fields.

To define cohomology, we consider maps f : X — Y between topological spaces,
where these maps are identified up to homotopy equivalence. For the purposes
of equivariant cohomology, we equip these spaces with group actions. Let G be
a compact group acting on X, and suppose there is a map f : X — Y that also
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respects a group action by G on Y, with a compatible map ¢ : G — H between
the group actions on X and Y.

Given this data, cohomology theory is typically formalized through a functor.
The cohomology groups h®(X) form a complex of abelian groups or modules
over a ring, with the map f* : h*(Y) — h*(X) induced by the map f. These
constructions are functorial, and cohomology satisfies important properties, such
as the preservation of long exact sequences.

Example 4.5. Consider a simplicial complez, or the de Rham complex:
AN o LY E RN

where each Q" represents the space of functions on oriented n-cells. The differ-
ential § acts like a discrete version of the de Rham differential, capturing the
change in function values between adjacent vertices of a cell. This differential
satisfies 62 = 0, forming a well-defined complez.

A deeper understanding of cohomology is achieved by introducing derived cat-
egories and long exact sequences. When studying topological spaces, we often
encounter different ways of constructing cohomology complexes for the same
space. For example, one might subdivide a simplicial complex by adding more
vertices, resulting in a new complex. Although the individual complexes may
differ, the maps between them can be shown to induce isomorphisms in coho-
mology.

This leads to the concept of derived categories, where maps that induce
isomorphisms in cohomology are considered equivalent. This is a finer notion
than simply declaring two spaces to be isomorphic based on their cohomology
groups. The notion of exact sequences also plays a crucial role in the study of
cohomology. The main property that we wish for the functor to satisfy is that
in the category of topological spaces, every map is the start of a long exact
sequence:

xLhy o Cone(f) — ...

The condition for a functor to be a cohomology theory is that it should take
cones of topological maps to cones of complexes.

Remark 4.6. Fvery map between topological spaces can be replaced, up to ho-
motopy, by a nice embedding. This is achieved by using the cylinder construc-
tion: we attach a cylinder to Y by gluing it along the map f, which satisfies
Cyl(f) ~ Y. After this attachment, we can contract the non-glued side of the
cylinder to a point, yielding the cone of f. If Y is contracted to a point, we
obtain the suspension X of X.

Here is a crucial (and non-obvious) exercise:

Exercise 4.7. The next map in the long exact sequence is Y X xf Y.

Now, we present a slightly technical point.

127



Remark 4.8. [t is often more convenient to work with a base point in each
space. By choosing a base point in X and ensuring that all maps respect this
base point (i.e., they map the base point of X to the base point of Y ), we can
apply the cylinder or cone construction. This ensures that when we contract the
cylinder, we obtain what is called the reduced suspension of X.

There are several consequences:

1. For the identity map id : pt — pt, we have Cone(id) = pt, and hence
h*(pt) = Cone(id) = 0.

2. For any space X, define Xy = X LI pt, where pt is a marked point. Then
h®(X) is an "old unreduced cohomology,” while h*(S°) is the old coho-
mology of a point, which is nice.

By considering the sequence:

X—=-CX—=>XX —---

where CX is the cone of X, we observe that h®(XX) is simply the shifted
cohomology of X, specifically h?(XX) = h%(X) and h*(XX) = h*~1(X) for i >
1. This shifting property is important because it suggests that the suspension
operation only shifts the cohomology groups. Consequently, for large enough n,

the cohomology of "X behaves as h"~!(X).

We can consider the following sequence of spaces:

X—=>CX—->XX —---

where C X denotes the cone of X, and XX represents the suspension of X. The
cone of the suspension XX is contractible to a point. This gives rise to a shift
in cohomology: h®(XX) with the cone shift becomes h°(X), and for i > 1, we
have h*(XX) = h*~!(X). This shift property is important because it shows that
the suspension operation only shifts the degree of the cohomology groups, and
this shift is independent of the specific details of the space as n — oco.

For long exact sequences of spaces, such as
e XX =5 XY e

it suffices to focus on n > 0. While these spaces have additional structure,
we observe that the space of maps Map(X" X, Z) becomes a group for n > 1,
and this group is abelian for n > 1. The reasoning behind this is analogous
to the argument for m2(Z). The addition of maps in this context corresponds
to the addition of maps in a category of complexes, which can be verified by
showing that any homomorphism between two abelian groups, when restricted
to the identity on one side and zero on the other, must be an addition map.

128



This insight reveals that the functorial behavior we observe is not limited to
topological spaces but also preserves the structure of map addition.

Next, let’s turn to an example from equivariant K-theory.

4.4.2 Equivariant K-Theory and Bott Periodicity

Consider a compact Hausdorff space X and a vector bundle V over X. A vector
bundle over X consists of a collection of vector spaces V, parameterized by the
points x € X. If we have a map ¢ : x — g(x) from X to itself, this map
induces a group action on the fibers of the vector bundle. Specifically, for each
z, the group action lifts to the fibers V, — V), which is a linear map. This
situation is analogous to studying a group representation, where the group acts
on a vector space. However, in this case, the group is acting on a family of
vector spaces (the fibers), and the group action permutes the indices associated
with each vector space.

Consider K¢(pt), which represents a semiring of group representations (with
operations @ and ®). When we add the operation ©, we obtain the represen-
tation ring of G. If T C K¢(pt) is a maximal torus, the ring takes the form
Z[zlil,...,zril]w, where W is the Weyl group. In the case of GL,, this is
closely related to the Laurent polynomial ring, because the representation is de-
termined by a character, and a character can be expressed as a sum of Laurent
polynomials. By allowing subtraction of these polynomials, we recover the full
set of Laurent polynomials. Thus, we are left with a ring Kg (X) along with a
homomorphism K2 (pt) — K2(X).

Next, define K5'(X) := K2(SX), where SX is the suspension of X and the
group action does not extend to SX. Intuitively, this construction allows us to
perform an operation known as the suspension of a vector bundle by a nontrivial
representation. While we won’t dive further into this here, we can think of this
operation as adding a ”point at infinity” to the space, which induces a suspension
by a nontrivial representation of the group. This in turn enables the definition
of functors that operate at infinity and at negative indices.

Theorem 4.9 (Bott Periodicity).

K2(S%X) = K&(X).

Remark 4.10. If we introduce a new fized point to the space, we have R%(XU
pt) = K&(X), where the symbol ~ indicates that when we restrict the vector
bundle to the point, we obtain a trivial bundle.

This implies that K? exhibits 2-periodicity, meaning that for all 4, we have
Ki+2 = K,
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4.4.3 The Thom Isomorphism

Now, we move towards a more general result. But before we get there, we need
to present another definition.

Definition 4.11. Given a space X and a complex vector bundle V, the Thom
space Thom(V') is constructed by introducing a metric on V, taking a ball of
fized radius within each fiber, and then collapsing the spheres to a point.

With this definition in place, we can state the following result:

Theorem 4.12 (Thom Isomorphism).

Ka(Thom(V)) = Kg(X).

Remark 4.13. If V = C, this results in Bott periodicity.

Now consider a pair Y C X, and let K(X/Y) denote the space of complexes
of vector bundles over X that become exact when restricted to Y. Specifically,
for vector bundles V; and V5 over X, suppose there is a map ¢ : Vi — V5
such that when restricted to Y, ¢ becomes an isomorphism. In this context,
Kg(Thom(V)) can be interpreted as complexes of vector bundles over the total
space of V| which remain exact away from the zero section of V. Another
way to think of this is that the infinity, S°°, is homotopically equivalent to the
complement of the zero section of the vector bundle.

In general, elements of a K-theory group are of the form V; © V5. In the case of
K(X/Y), this means that the map ¢ : V3 — V5 gives rise to an exact complex:

0=V = Vo —0.

Thus, Kg(Thom(V)) forms a module over K¢ (X). This is because if we have
an exact complex, we can tensor it with any object pulled back from X, and
exactness is preserved. Thom periodicity implies the following corollary:

Corollary 4.14. The module is free, with rank 1, and is generated by the Koszul
complezes.

Next, we observe that in the context of elliptic cohomology, the Thom isomor-
phism does not hold. Specifically, in elliptic cohomology, K (X) corresponds to
a scheme, while K¢ (Thom(V)) corresponds to a line bundle over that scheme.
Although the line bundle is rank 1 and locally free, it is not trivial. This dis-
tinction is crucial because it is the failure of the Thom isomorphism in elliptic
cohomology that contributes to its richness and uniqueness.

All cohomology theories share a common feature when we apply functorial maps
(such as pullbacks under maps). However, the real richness of a cohomology the-
ory emerges when we consider pushforward operations. The Thom isomorphism
plays a key role in defining the pushforward in K®, since it provides a basic ex-
ample of the pushforward, namely the pushforward from the zero section to the
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ambient space. We have the following sequence:

Thom
—_—

K(X) K (Thom) — K (Total Space of V),

where the second map is functorial. Note that the Thom isomorphism is not
functorial in all cases; for example, it does not hold in the case of elliptic coho-
mology.

Example 4.15. Consider G = S* = U(1). In this case, Ellg(pt) corresponds
to an elliptic curve E. Suppose we have a bundle C over the point, with a
representation acting on it. Then Thom(0 — C) corresponds to the line bundle
on the elliptic curve E with the origin 0, which is represented by Og(—[0]), the
sheaf of functions vanishing at the origin 0.

Now, let’s discuss a specific case of the Thom isomorphism, which will be very
instructive.

Problem 4.16. Let V = C™ be a vector space, and consider the defining action
of G = GL(n) on V. Determine K (P(V)), where

P(V) = (V\{0})/GL(1),
with GL(1) denoting the center of GL(n).
Proposition 4.17. If a group G acts freely on a space X, then

Ko(X) = K(X/G).

Thus,
Kg(P(V)) = KGXGL(l)(V \ {O})’

where GL(1) represents the center of GL(n). From this, we derive the sequence:

KaxarLa)(Thom(0 = V) = Kaxar)(V) = Kexana)(V \ {0}),

where V' can be treated as a single point. Consequently, the middle term sim-
plifies to
KG(pt)[uil]a

where v is a formal parameter corresponding to the grading induced by the
GL(1)-action.

The term Kgyari)(Thom(0 < V)) consists of complexes of vector bundles
that are exact away from the origin. Since the group GL(n) x GL(1) acts
equivariantly, the resulting maps are homogeneous and can be interpreted as
polynomials.

Rather than viewing these as complexes of vector bundles, we can reinterpret
them as graded equivariant complexes of modules over the polynomial ring
Clz1, ..., 2], where the z; are the coordinates in V. This reformulation em-
phasizes the algebraic structure of the problem while retaining the essential
geometric information.
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4.4.4 Coherent Sheaves

In algebraic geometry, vector bundles are modules over the ring of functions on
an algebraic variety that are locally free. However, we can generalize this notion
by considering coherent sheaves:

Definition 4.18. A coherent sheaf is a finitely generated module that does
not need to be locally free.

This broader perspective allows for greater flexibility in describing K-theory.

In algebraic geometry, vector bundles are modules over the ring of functions
on an algebraic variety that are locally free. But in this case, there is no need
to restrict ourselves to modules that are locally free, and we can consider any
finitely generated modules, ie. coherent sheaves. Coherent sheaf generalizes the
concept of a vector bundle by allowing modules that are not necessarily free but
are still finitely generated.

Example 4.19. Consider Oy = Clxy,...,2T]/mo, where mg = (x1,...,2y).
This module represents the structure sheaf of the origin in V. The following
exact sequence illustrates its behavior:

KM0) = K& (91)[O0] = KEM(V) = KGM(V\{0}) = 0.
In algebraic geometry, it is evident that coherent sheaves supported only at the
origin are all multiples of Og. This is because being zero outside the origin
implies that the coordinates act nilpotently. In other words, at least some of the

coordinates must vanish to ensure they are not invertible. This nilpotent action
creates a flag or filtration structure where the coordinates effectively act as zero.

Next, let’s introduce an essential tool for describing coherent sheaves:
Definition 4.20. A Koszul complex is a resolution of Oy by free modules.
Let’s dive into an example:
Example 4.21. If R = Clxy, x5, the Koszul complex takes the form:

0— z129R - 21 R® 2R — R — Og — 0.
This exact sequence describes the resolution of Oy by free R-modules, illustrating
how coherent sheaves are constructed algebraically.
4.4.5 Long Exact Sequences

Consider the group cohomology h&(X) in the context of K-theory. In practice,
these quantities are not always expressed as the cohomology of some complex.
For instance, when we study K-groups, we often consider them individually,
rather than as part of a larger complex. However, they still adhere to a general
pattern, which can be described via a long exact sequence:

xLyo Cone(f),
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where we have the following diagram:

h(Cone)

+1

This structure arises naturally when we examine K-groups, where maps between
spaces induce relations between their cohomology groups.

We are still discussing the question:

Problem 4.22. Let U(V) — P(V), where V is a complex vector space of di-
mension n. What is Ky (P(V))?

Consider the projective space S?"~1/U(1) and its associated disc. When we take
the disc and collapse the sphere, we obtain a topological space. The question
arises: what is the relationship between the cohomology of the projective space
and that of the sphere?

In general, we have the following result:

Proposition 4.23. If G acts freely on X, then

Ka(X) = K(X/G).

From this, we can deduce the following corollary for the specific case of projective
spaces:

Corollary 4.24.

Kyowy(P(V)) = Kyonyx o (S2H).

Thus, for G-equivariant K-theory of a homogeneous space, understanding the
behavior of vector bundles under group actions is crucial. For example, when
considering a 3-dimensional sphere and a vector bundle that is equivariant under
all rotations, it suffices to understand how the stabilizer of a point acts on the
fiber. The stabilizer’s action uniquely determines the group action on the entire
bundle:

Proposition 4.25.
Kg(G/H) = KH(pt).

In this context, the G-equivariant cohomology of a point corresponds to the
representation ring of G, denoted Z[h/ ~|, which is the Z-linear span of the
irreducible representations of G. For a circle, this becomes the Laurent polyno-
mial ring with integer coefficients.
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To further explore the relation between the cohomology of projective spaces, we
consider the long exact sequence associated with the inclusion of the sphere into
the disc:

< K2(Thom(0 — V)) — K&(D*") — K2(S**~1)...

where the terms correspond to:

K2(5%"71) is the K-group of a sphere where the group G acts transitively.
Thus, K&(5?"~!) = Rep(Gv ), where Gy is the stabilizer subgroup of a
nontrivial vector.

The action on K2 (D?") corresponds to the action on a point in the center
of the space, so K&(D?") = Rep(G), which is the ring of functions on the
group G: R =Z[G/ ~].

K2 (Thom(0 — V)) consists of representations of G that are trivial when
restricted to Gy, the stabilizer subgroup. These are functions that vanish
when restricted to the subgroup, and can be described as R - det(1 — tg).

K?; (52”*1) is a sphere where the group acts transitively, so K?; (Sznfl) =
Rep(Gy ), where G, is the stabilizer subgroup of a nontrivial vector.

The action on K& (DQ") is the same as the action on the point on the
center of the space, so K& (D?*") = Rep(G). This is functions on the
group G: R = Z[G/cong]

The group K2 (Thom(0 — V)) consists of representations of G that be-
come trivial when restricted to Gy . More specifically, consider the pair
(g,t), where g € U(V) is represented by a block matrix of the form

(5 e

and ¢t € U(1). The condition a;t = 1 ensures that the pair (g,t) fixes a
vector in the vector bundle. In other words, the corresponding functions
vanish when restricted to the subgroup Gy . These functions can be de-
scribed as elements of the ring R-det(1 —tg), where R represents the ring
of functions on the group.

Thus, we obtain the following exact sequence:
0 — K&(Thom(0 — V)) — K&(D*") — K2(S** 1) — 0,

with the odd cohomology of a point being zero.

Finally, we observe the following important result:

Proposition 4.26.

Ky = Ky (pt) [t1] / det(1 — tg) =0,

where t € Op(1) and Ky (pt) = Z[g]/ conj.
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If we decompose V = V1 @ Vo ®. .. and compute [[U(V;) D U(V) by performing
the same computation in smaller steps, we will obtain the same answer but with
conjugation taken with respect to the smaller group.

Example 4.27.

Kp(P(V)) =Z[ai", a3, ... ] [t /[ (1 = ta;) = 0.
i=1

4.4.6 Kozsul Complexes

From the perspective of Koszul complexes, det(1 —t~tg~!) is related to the
Koszul complex. As before, we have the following exact sequence:

0— :L'lxg(C[$1,£L'2] — xl(C[xl,mg] D .%Q(C[.’tl,xg] — (C[xl,l’g] — Oy — 0,

where Oy = C[z1,x2]/m and m = (x1,22). The terms in this complex are
elements of Ky(2)xu(1)(C?).

Term by term, we obtain the representation:

11—Vt A2V 2,

The character is given by:

1—tr(g™h) -t +det(g7!) - 72 =det(1 —t1g71).

Remark 4.28. There’s a funny relationship between topological and algebraic
K-theory — sometimes they are very closely related, and other times they di-
verge. However, for a point, they are very closely related. Any representation of
a compact group is holomorphic, so any spaces built from points in simple ways
inherit the relationship between topological and algebraic K-theory.

4.5 Elliptic Cohomology

4.5.1 An Introduction

Let G be a compact group, for example, G = U(1). Then,
Ky)(pt) = Rep(U(1)) = Z[t*"],

which can be interpreted as the ring of trigonometric polynomials on U(1) =
St = R/Z, or equivalently, as the ring of Laurent polynomials on C* = G¢. We
aim to understand

Elly 1y (pt) ~ elliptic functions on U(1),

which corresponds to the set of holomorphic functions on E = C*/¢%, an elliptic
curve.
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However, it turns out that there are no non-constant holomorphic functions
on this elliptic curve, which is a crucial observation when considering certain
properties. One significant property, proven by key results in the theory, is
rigidity, which eventually reduces to the fact that there are no such non-constant
holomorphic functions on this curve.

Recall that the cohomology groups of a space X can take values in vector spaces,
but more generally, they should take values in some category where exact se-
quences are well-defined. Thus, instead of merely saying that the cohomology
groups are modules over a ring, we need to ask: what does it mean for the
cohomology to be ”equivariant K-theory”?

Every equivariant K-theory group is indeed a module over the K-theory of a
point. However, we might extend this by allowing h¢, to take values in coherent
sheaves over some space. For example, in the case of elliptic cohomology, we
have

h¢; en = sheaf of Ellg(pt),

which for G = U(1) corresponds to a sheaf on the elliptic curve E.

To clarify, K-theory is a module over a ring. But in the context of elliptic
cohomology, this is just a special case of a sheaf on an algebraic variety. When
dealing with non-affine algebraic varieties, such as an elliptic curve, it becomes
natural for cohomology to be represented as a sheaf rather than simply as a
vector space.

Thus, cohomology doesn’t necessarily take values in vector spaces. It can instead
take values in more general structures, such as bundles over other spaces or
sheaves on spaces. This is an important distinction, especially when studying
non-affine varieties like elliptic curves, where cohomology is often more naturally
represented by sheaves.

4.5.2 Elliptic Analogs

Let’s look at some elliptic analogs of our previous work: Let G be a compact
group, e.g., G = U(1). We define the elliptic cohomology of a point as:

EHT(pt) = Er,

where E” denotes a certain space (often associated with the cohomology of an
elliptic curve or a related structure). Here, we are not merely referring to rings,
but to the objects that these rings define. Specifically, a ring can be thought of
as the ring of functions on an algebraic variety, and this variety is an algebraic
object that we consider.

Additionally, we have:

Ellp(P(V)) = {one of the a;’s is equal} C E" X E,
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where a; € E” and t € E. This structure is invariant under the action of a
group, specifically the Weyl group S(1) in this context. These correspond to
ordered r-tuples; when we consider unordered r-tuples, we obtain:

Ellyvy(P(V)) = {one of the a;’s is equal} C S"E x E.

We can think of

as a definition, but we still want to think of an element g € S"F as somewhat
analogous to an element in a group. Hence, there should be some kind of map
from the group element to this structure.

To motivate this, consider identifying the unit circle with another circle, where
|z| = 1 is mapped to a circle of radius |g|, where ¢ is typically less than one.
The identification is achieved by multiplication by g. This process defines our
elliptic curve.

If g is an element of a group G, we can construct a vector bundle over the elliptic
curve by considering sections of a vector bundle that satisfy the equation:

flaz) = g- f(2),

where f is a section of the bundle. Thus, each group element defines a vector
bundle over the elliptic curve. The classification of these bundles is up to con-
jugation, and the degree of the bundle is zero because the transition function is
constant. Therefore, S”E can be viewed as the space of semistable GL(r)-degree
0 bundles on E.

In the lectures by Nikita Nekrasov, we have encountered pictures where one
traverses a circle and experiences a monodromy represented by g. This idea is
analogous, though in a lower-dimensional context. For K-theory, we can express
it as:

KG(X) ~ ng<MapS(52 - X/G))a

which is equivariant with respect to the parameter g. If we move to one higher
dimension, we have elliptic cohomology:

Elliptic Cohomology ~ H"(Maps(E — X/G)).

Although a precise treatment of these objects is outside the scope here, we can
interpret computations in elliptic cohomology as calculations in this framework.
However, it is often more convenient to work with the direct definitions.

To proceed, we need to address some general constructions, including the general
statement of the Thom isomorphism.
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4.5.3 The Thom Isomorphism

Let X be a space and V a complex vector bundle. The Thom isomorphism
states:
Kg(Thom(X — V)) ~ Kg(X),

where the left-hand side represents the K-theory of vector bundles over a neigh-
borhood of the zero section of V', which are exact away from the zero section.
Within this framework, we can introduce an element, namely the Koszul com-
plex © = >7(=1)* A® V*. The Thom isomorphism asserts that this Koszul
complex is a generator.

To express this geometrically, consider the inclusion map:

K(X)
K (Thom) U

OK(X)

We have a map from complex vector bundles of rank r to BU(r) = Gr(r, c0),
where 7 is the rank of the tautological bundle = C". Therefore, O(V) =
Y*Ouniversal, Where the universal Theta class is given by:

T

C_')universal = H (1 - a;l) s

i=1
and a; are the Chern roots of the universal bundle.

This expression suggests that a matrix fixes a vector if the vector is an eigen-
vector of the matrix. In other words, if a matrix has an eigenvalue, the equation
implies that the matrix fixes the corresponding eigenvector.

4.5.4 The Theta Divisor

In the context of elliptic cohomology, we encounter the concept of the Theta
divisor inside the symmetric powers of an elliptic curve © C S"E. This divisor
is distinguished by the property that one of the variables (or points) is zero, or
lies at the origin. In terms of the corresponding bundle over the elliptic curve,
this condition implies that the bundle has a subsection.

This concept plays a crucial role in integrable systems. Many spaces in inte-
grable systems are moduli spaces of bundles or similar objects, and these moduli
spaces often contain canonical divisors. While these divisors are not canonical in
the traditional sense, they are distinguished because they correspond to objects
with an extra subsection — this often occurs when a determinant vanishes or
a similar condition holds. Such divisors are referred to as Theta divisors. For
example, on an elliptic curve, the Theta divisor is the only degree zero bundle
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that has a subsection. Theta divisors are also encountered in the context of de-
gree g — 1 bundles that have a subsection, as discussed in earlier lectures. These
subsections are typically characterized by determinants or Theta functions.

The key takeaway here is that the elliptic analog is both similar and distinct
from other cases. For instance, there is a Thom isomorphism in elliptic coho-
mology. However, unlike the standard Thom isomorphism, which is an actual
isomorphism, the elliptic version indicates that the object in question is a rank-
one module that is locally free but not globally trivial.

Practically speaking, when we consider the pullback in elliptic cohomology, it
behaves differently from the standard case. Instead of being globally trivial, it
becomes a line bundle, and the global structure introduces non-trivial factors.
For example, if we take a product of Theta functions:

H 9(0/1')7
i=1

this product vanishes precisely when one of the variables is equal to 1 or 0,
depending on how we choose to represent the origin on the elliptic curve. Im-
portantly, this product is not just a function — it is actually a subsection of a
line bundle, and this subsection changes when we shift the periods or adjust the
variables by a parameter q.

To clarify further, if we alter the periods or shift a variable by ¢, this introduces
a non-trivial factor. This is a significant point: formulas in elliptic cohomology
often involve Theta functions, but these functions are not ordinary functions.
Rather, they represent subsections of a line bundle. The meaning of these
subsections and line bundles arises from the fact that they define a locus where
one of the variables is zero, which corresponds to a non-trivial divisor in the
product of the elliptic curve that defines a non-trivial line bundle.

4.5.5 Koszul Complex and Pushforward Map

Next, we define the Koszul complex in the context of Theta functions. For
example, we may encounter an expression like:

[[Ta-q"2)a—q"="),

which can be interpreted as analogous to the Koszul complex, albeit with some
correction factor arising from the context of loops. Essentially, when ¢ acts like
a rotation of a loop by some parameter, this structure naturally emerges.

With the Koszul complex defined, we can proceed to define the pushforward
map. This leads us to the concept of a ”wrong-way” map in algebraic geometry.
Suppose we have a variety X embedded in some ambient space Y. If we con-
sider the normal bundle of X inside Y, and this normal bundle has a complex

139



structure (not necessarily holomorphic), we can collapse certain points in Y to
map it to the Thom space of X:

Y — Thom(X — Y).

This construction allows us to define a push-forward map in K-theory:
—
K(Y) i, K(X).

In algebraic geometry, if X is a holomorphic submanifold within a holomorphic
manifold, we can take the structure sheaf of X and push it forward. However,
in the topological setting, this is handled as described above.

he key property of this pushforward map is:
i*i. = multiplication by ©(V).
This means that when we pushforward using the Koszul complex and then pull
it back, we obtain the class of the Koszul complex.
4.5.6 Complex Oriented Maps

When considering a general map, the concept of ”complex oriented” comes into
play.

Definition 4.29. A map is said to be complex oriented if we can embed X
into a trivial bundle CNV x Y, and subsequently collapse it into the Thom space
of X within its normal bundle:

Thom(Y —Y x CN) — Thom(X — N).

This map’s pullback is functorial, and by applying the Thom isomorphism, we
obtain the identities:

Thom(Y - Y x CY) = K(Y) and Thom(X — N) = X,
resulting in a map K(X) — K(Y).

In the context of algebraic geometry, this notion enables us to pushforward
objects. For instance, given a subvariety, it defines a coherent sheaf on the
ambient space, which can then be pushed forward. Similarly, if a sheaf is defined
on a variety that maps to another variety or point, we can also push the sheaf
forward.

Let’s unravel this a bit more.

Proposition 4.30. Let Ny = Nx — CN. Then we have the following map:
O(=Ny) = O gV,

where ©(—Ny) is a sheaf on El(X), assuming that Nx,xa ezists.
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Remark 4.31. In general, if X is a topological space, and we consider the
inclusion of a subspace into a larger space followed by the contraction of its
neighborhood, the resulting space will typically not be the total space of a bun-
dle. While the space might still be manageable, it would not necessarily have a
description via a Thom isomorphism. For example, consider the inclusion of a
singular space into another singular space, and then contracting the complement.
The resulting space could behave unpredictably. Hence, it is crucial for the space
to have a normal bundle. When this condition is satisfied, the structure behaves
as expected. Otherwise, a more detailed study is required.

4.5.7 Examples
Let’s discuss the equivariant K-theory of projective spaces:

Example 4.32. Consider the projective space P* = {[zg : @1 : - : xy]} with
an action given by A = diag(ag,a1,...,a,). The equivariant K-theory of this
projective space 1S:

(]P;n _ il /H lt—

Let’s look at another example: the Riemann sphere, where n = 1.

Example 4.33. When n = 1, the projective space is a Riemann sphere with
two points: one at 0 and the other at co.

The equivariant K-theory class corresponding to x1 = 0 wvanishes when 1 —
1t_ = 0, while the class corresponding to xo = 0 vamshes when ag—ay ~ll =
O The vanishing of the product tells us that these two points do not intersect.

Let’s discuss the projective plane, when n = 2:

Example 4.34. For n = 2, the projective plane consists of two perpendicular
lines, one of which intersects both at infinity:

(E(]ZO

1'2:0
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Similarly, each of these lines corresponds to a divisor in the projective plane.
The class of ay =0 is 1 — ayt. Thus, the equation becomes:

[[a=a't ") =0.
=0

By analogous reasoning, instead of computing the class of a line, we can compute
the class of a point. For instance, at the origin, the class is given by:

(1 - aflt) (1 - a;lt_l) .

We can verify this result by examining the Koszul complex, which serves as the
resolution of the structure sheaf at that point. The expression above corresponds
to the character of this complex, confirming its correctness.

4.5.8 Geometric Objects

Since we want to study equivariant elliptic cohomology, we don’t have a ring,
but rather a geometric object. Therefore, we aim to consider the variety that
arises from the equation:

Ka(P)Z[a] /] (1=a; ') =0.

This gives us SpecK 4 (P!):

ai

ap = ax

ao

If we imagine this in terms of an additive group instead of a multiplicative
group, we have two planes that intersect along a line where ag = a;. This is the
projection SpecK 4(P') — SpecK 4(pt):
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ap = ax

If we do the same picture for 3 planes, we get:

For instance, in the n = 2 case, the origin corresponds to t = O(1), the functions
on the tautological line. Here, ag acts on (C,0,0), so agl acts on agl, and the
origin corresponds to when t = ay ! Similarly, the bottom right of the triangle
corresponds to (0, C,0) where t = a; ', and so on.

This process of gluing and intersecting planes is a familiar concept in toric
geometry, where the points correspond to planes, and the geometric structure
can be interpreted in terms of fans, with the dimension of the objects being
preserved.

Several important lessons emerge from this:

e The derived fiber over a € A is given by K(X®). A standard example
is the case where a = 1, corresponding to K2, (S*). This is significant
because it illustrates how equivariant geometry encapsulates the ordinary
geometry of the fixed loci of all subgroups.

e Away from certain subvarieties of the form a;/a; =1 (which can be gen-
eralized to character(A) = 1), it holds that K4(X) = Ka(X%). This
follows from the earlier statement, as a generic element of the torus will
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have a fixed locus that corresponds to the generic fiber. We thus have

-
7

KA(XA)U Ka(X)

.

where the top part is the pullback, which is functorial, and the bottom
part is the pushforward. Concretely, we have:

" f(t,0) > (fab,a), f(ar s a),..),

and

i (1,0,...,0) = [ —t7"a; ).
>0

Furthermore, by computing ¢*¢, = @(NX/XA), where N represents the
normal bundle, we observe that the weight of the action is given by

Hi>1(1 — ao/ai_l).
4.5.9 The Localization Theorem

Theorem 4.35 (The Localization Theorem). This map is an isomorphism away
from some subvariety. More algebraically, the kernel and cokernel of both maps
are torsion, meaning they are annihilated by some nontrivial element in A.

Proof. Consider the sequence:

Ki(Thom(X4 — X)) = K4(X) = Ka(X \ X4).

The first map, i, is injective because i*i, is defined using multiplication by
©(N), which has torus weights, resulting in a nontrivial polynomial that does
not divide zero. Hence, this map is injective.

The term K4(X \ X?4) is constructed from A/A’, where A’ # A. However,
K4(A/A") = K4 (pt), which is torsion. This concludes the proof. O

This result is particularly powerful because it tells us that, if we can compute the

K-theory for a vector bundle map to a point, we can compute the pushforward
to the point. Specifically, if V' € K4(X), we have

d |

KA(pt) > X(X7 V)

In topology, the Euler characteristic is defined earlier. Algebraically, the or-
dinary Euler characteristic can be expressed using the 0-complex, which is a
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complex of differential operators. In the realm of pseudo-differential operators,
we can deform at infinity as long as we have some kind of deformation. To
understand what it means to apply the d-operator, we need a notion of multi-
plication by I.

We can expand the diagram into the following;:

Ka(X4) 25 KuX) > V
\ » J
Ka(pt) > x(X,V)
Proposition 4.36.
Vv )
o)™

X(X, V) = x(x*,

This result is crucial, particularly in the context of Nekrasov’s lectures, when
the fixed locus is isolated. Although the expressions involved can be intricate,
their geometric interpretation is clear: the moduli space has a group action,
and its isolated fixed points correspond to partitions. While the computations
can be performed over the entire space, the most significant insight comes from
focusing on the fixed points.

At this point, one might think that geometry is no longer necessary, as we
can simply substitute expressions and apply the formula. However, geometric
insight is still essential, especially when analyzing the underlying structure of
the space. When working with algebraic expressions, it is important to consider
aspects like poles and support. The geometric framework provides the necessary
tools to handle these considerations effectively. For instance, geometry helps us
conclude that certain meromorphic functions are actually regular functions.

4.6 Elliptic Quantum Groups
4.6.1 Krichever Genera

Let X be a manifold, and consider its tangent bundle TX. If X is a complex
manifold, then T'X is a complex tangent bundle. However, X does not need to
be a complex manifold for its tangent bundle to be complex. All that is required
is some method of multiplying by I within the bundle.

Since adding a trivial bundle does not affect the structure, it is often more
convenient to consider TX @ PV with a complex structure, which possesses
Chern classes. These manifolds are referred to as stable almost complex
manifolds. In particular, we may consider ©(TX).

The goal of Krichever genera is to generalize expressions like %. To achieve

this, we set z = exp(2mie3) € U(1) or C*, which acts on the bundle by multi-
plication. We then tensor the tangent bundle with the defining representation,
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yielding a new bundle ©(TX ® z). Since scalars act on any vector space, they
similarly act on any vector bundle. Consequently, if we take any bundle, we can
act on it by multiplying by a scalar from U(1), a group of scalars. Thus, the
characteristic classes of the bundle are now multiplied by z.

Definition 4.37. The Krichever genus is

Kr(X) = (X — pt),O(TX @ z).

This genus depends on z and the group already acting on X. In Nekrasov’s
lectures, we encountered objects of the form:

0(...)
2 15075

which correspond to the Krichever genus of the moduli space of framed rank N
instantons on C2.

This applies to more specific scenarios, such as the framing of a vector bundle.
The key distinction here is that the underlying space is non-compact, making the
function particularly interesting. According to the Krichever rigidity theorem,
under certain conditions, the Krichever genus no longer depends on the group
already acting on X.

Next, let us discuss the K-theory analog. In K-theory, we have:
OTX®z2)=1—21T*+27'A°T" — ...

and

X(O) = ST (== ey (X, AFT),
k

where A*T* are the holomorphic k-forms. If X is a complex Kéahler manifold,
we can compute its topological cohomology using the topological cohomology
of the holomorphic k-forms. Thus, we have X — Hrop (X, C).

Let’s look at an example:

Example 4.38. Consider H7,,(P',C) = C” & C?, where C° corresponds to
H%(Op1) and C?* corresponds to H'(Tp,) = O(—2), which has a 1-dimensional
first Chern class. For any automorphism of P', the action on this bundle cannot
change the topological cohomology. Specifically, for a connected group acting on
the manifold, the topological cohomology must remain trivial because the action

simply permutes cycles. Therefore, H'(Ty,) is the trivial module for Aut(P').

A simpler proof follows: to show that a function is constant on a group, it
suffices to prove this for any one-parameter subgroup. Similarly, to demonstrate
that a representation is trivial, it is enough to show that it is trivial for any one-
parameter subgroup. In this case, we have a trivial action. Let S* — X, and let
a be a coordinate ring in A = C* and a component of S*. To compute the Euler
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characteristic of X, we apply localization, which gives the Euler characteristic
of the fized locus:

@(N@z))

;ﬂXiXTX@z»:X<XAJXTXA®z)(XN)

The tangent bundle of X, when restricted to the fixed locus, decomposes as:
TX|xa=TX*&N.

Notice that a only acts on the fraction. This implies that in K-theory, the

fraction becomes:
k

]:[1*’(1)7;_1'a -z
= )
1 —w;ta

for k # 0. Since X is compact, it follows that X is a finite-dimensional repre-

sentation of A, and more specifically, the character is a Laurent polynomial in
a. Furthermore, we observe that:

k

l—wi_l-a -z
11 ;

—1
1—-w; a

has a finite limit as a — 0 and a — oo. These facts together imply that the
product is constant, and the proof is complete.

We can draw further insights from this proof. For the limit:

lim

a—0 1— w;lak

1—w;1-ak-z_ 1 ifk>0,
e ifk<o.

and the product becomes Z#attracting directions in N'

In the limit:
1—wt-ak 2 z if k>0,

lim H —_—— = .

a—00 1—w; "a* 1 ifk<DO.
and the product becomes z#repelling directions in N " Thyg in the normal bundle,
some directions will be attracted to the fixed point, while others will be repelled.
This mirrors the theory of moment maps, where critical points and the structure
of the descent manifold help us understand the topology of the manifold. Despite

knowing that the function is constant in a, we can still use this action to gain
valuable insights into the function’s behavior.

Theorem 4.39 (Krichever, 1990; Hohn, 1991). Suppose that ¢1(TX) = 0 in
H?(X,Z) or N|ci(TX) and zN = 1. Let X be a compact stably almost complex
manifold. Then Kr(X) is a function of z only.
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Proof. We begin by considering the theta bundle, which is associated with the
tangent bundle of the manifold X of dimension n. The theta bundle is repre-
sented by the following diagram:

TX taut

| |

X —— BU(n)

BSU(n)

where v is a Gauss map. The theta bundle is pulled back from elliptic cohomol-
ogy, as shown below:

o(TX)
7o
E = Elly(y)(pt) ©(Taut) = O(one point is the origin)
EHU(n) (pt) = S*"E
T U
Ellgy(n)(pt) = n-tuples that sum to 0
0

ere, the BU(n) theory corresponds to Elly(,)(pt), and the BSU(n) theory cor-
responds to Ellgy(,)(pt).

We are pulling back from the locus of n-tuples that sum to 0, which is a pro-
jective space P"~ 1. Explicitly, this map is given by:

> pi

pr-t S"E E 0

where P"~! represents divisors linearly equivalent to n[origin], and S™E repre-
sents the divisors of degree n (denoted as p1,...,pn).

A key property of projective space is that all line bundles on projective space are
discrete families. If we have a continuous family of bundles of the same degree,
they are actually the same bundle. This implies that the bundle ©(TX ®
z), pulled back from elliptic cohomology, is a specific bundle that cannot be
deformed by z, because it is a bundle over projective space. Since bundles
on projective space cannot be continuously deformed into distinct bundles, we
conclude that O(TX ® z) is the same as ©z, as the structure does not change
in projective space.

Thus, the bundle ©1x for some space X is equivalent to the bundle © 4, and
the map (X — pt).(TX ® z) is a section of a trivial bundle, which means it is
constant. This completes the proof.
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4.6.2 Partitions

In Nekrasov’s lecture, we discussed r-tuples of a partition that was related to do
with the moduli spaces of bundles, instantons, shifts, or in general just some-
thing that lives on a plane with two coordinates, €1, €5. Then, we introduced a
defect along one of the lines. However, there is another direction in which one
can proceed, €3:

€2
a torus fixed point in

Hilb ((Cz, pts)

r — tuple
T
infinite €1
2
ideal in Clz1, 22, 23] € Hilb ((C3, curves)

€3

The r-tuples of such objects correspond to torus fixed points in m-sheaves of
rank 2 on C3. This framework arises within the context of Donaldson-Thomas
theory, which is primarily concerned with the enumeration of geometric ob-
jects—such as curves, points, and vector bundles—on threefolds.

4.6.3 R-Matrices

Consider

vol *+
A ) 7Zatlat23t3aala"'aar :Zz -

where represents an r-tuple of partitions within the space

Fock(a1) ® Fock(as) ® - - - ® Fock(a,),

which is a solution to the quantum Knizhnik-Zamolodchikov (qKZ) equations

for Uh(é[(l)), with A = t1t9, and the corresponding dynamical equation in z.
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Writing out the qKZ equations in full detail would occupy many pages, even in
the simplest of examples. However, the situation becomes much more manage-
able when viewed through a graphical lens. For instance, one can consider the
R-matrix

‘/1 (al ) V2 (G,Q )
&
&
Now, imagine we have a cylinder and a collection of representations Vi (aq), V2(as2), ..., Vi(a;).

While almost of these representations remain unaffected, one of them undergoes
a transformation:

N L~

| —

When working with R-matrices, the orientation of the system plays a crucial
role. While symmetries may exist that permit changes in orientation, the system
is typically fixed with a specific orientation. In our case, all lines are directed
downwards. This leads to the concept that in such systems, there can be an
additional operator that governs the transformation of the space as it crosses a
boundary:
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N e

|

This operator governs the behavior of the space as it crosses a line. The goal is
to express this operator in a form that mirrors the structure of the Yang-Baxter
equation. The core idea is that the crossing can be shifted either before or after
an action, which corresponds to performing the action in the tensor product of
two representations. Crucially, this operator must commute with the R-matrix.

/N

In general, the R-matrix could be an arbitrary function. But in our case, R
only depends on a; /as. For example, we can take the operator to be a shift:

V(a)

ZV(qa)

We can apply a shift using a difference operator, as the matrix depends solely
on the differences between elements. Acting on this space with any element,
denoted by Z (which represents an element of a quantum group), we obtain the
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condition
[Z® Z,R] =0.

For example, we can choose Z to be an element of the Cartan subgroup of the
quantum group. The Cartan subgroup is analogous to the maximal torus in
Lie groups and consists only of diagonal matrices. In the case of a quantum
group, the Cartan subgroup behaves like a one-dimensional torus, represented
by diagqnal matrices. For our purposes, z, an element of the Cartan subgroup

of Up(gl(1)) (which depends on t;, t5), acts by 2.

If we expand this equation, it can be viewed as a linear g-difference equation:
U(ay,qas,as,...) = Matrix(...)¥(ay, as, as, ... ),

where ¢ = t3. This equation corresponds to a genus of disjoint union spaces,
summed with weights 2¥°!. Consequently, objects with different volumes belong
to distinct moduli spaces, and we sum over discrete data. The moduli space
in question consists of connected components, each associated with the degree
of the curve. This degree is determined by the sizes of the partitions and the
volume of the object. In a manner similar to Nekrasov’s work, partitions of
different sizes belong to different moduli spaces. Here, we partition the genus
associated with the space.

One can imagine decomposing the space into smaller pieces and computing the
genus for each piece.

Theorem 4.40. The q-KZ equations are monomial in z.

This suggests that a vast number of conditions must hold simultaneously for the
result to be valid. The ratio of the left and right ¥’s should correspond to the
ratio of one matrix series divided by another. However, upon closer inspection,
each matrix coefficient turns out to be a monomial. Regardless of the form
of the R-matrix, when expressed in this manner, every coefficient is indeed a
monomial. Although this vanishing may initially appear trivial, it reflects an
underlying conservation law and is of significant importance from a geometric
perspective. This vanishing stems from rigidity.

What type of rigidity can we invoke? For K-theory, AH rigidity is always
effective, as it applies to the construction of the R-matrix. However, this is
not always the case for elliptic cohomology. Krichever rigidity requires ¢; = 0
or N|ep, with (parameter)™ = 1.

As demonstrated in Nekrasov’s lecture, it is more fruitful to view the application
of the Krichever genus not as a process on a moduli space, but as an integration
of 1 over a derived moduli space. In the lecture, the moduli space was smooth,
but upon adding a cotangent bundle, it became a zero-dimensional derived
object, and we compute its fundamental class. This situation is unavoidable in
our current context.
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ere, we face a moduli problem, and the tangent space to this problem is not a typ-
ical vector space. Instead, it is a more singular object that lacks a well-defined
tangent or cotangent bundle. Instead, we have the difference between these
structures, which leads to two terms: deformations and obstructions. Nekrasov
discussed a similar scenario, where the Krichever genus can be understood as
follows: every bundle or sheaf over a manifold has automorphisms; it is a linear
object, and scaling is always possible. There is a parameter & associated with
this process (related to the canonical class of ¢3):

T Moduli = Deformations — & - (Deformations)*.

In the case under consideration, & = ty,to,t3, as these correspond to the
canonical class. In a more general scenario for a 3-fold, & corresponds to the
canonical class. By examining this space, we can deduce the first Chern class:
¢1 = 2c¢;(Deformations). While no bundle exists over the deformation, if one
did, it would take the form given above. Moreover, we know that c¢; # 0, but
2|ey. A full-fledged version of the Krichever genus for this space is not feasible,
but we can still proceed if we require that se? = 1.

The R-matrix in this context marks the beginning of a lengthy and intricate
story. If we consider the framework of quantum field theory, where two particles
possess internal degrees of freedom in two spaces, one may interact by coming
together. This interaction suggests the presence of a more fundamental operator
governing the particles’ behavior when they meet. Specifically, there exists an
operator that describes the interaction when these particles collide, after which
the particles may decay into other entities:

where the two objects on the right are transposes of one another. Geometrically,
the following equivalence holds:

Fock(a;) ® - -+ ® Fock(a,) = Keq(Hilb(C?, pts)),

where Ko (Hilb(C? pts)) represents the equivariant K-theory of the Hilbert
scheme of points on C2. More generally, we have the map

Keq(M(r1)) @ Keq(M(r2)) = Keq(M(r1 +12)),

where Koq(M(r;)) denotes sheaves of rank r; on P2, and M (r;) represents the
moduli space of sheaves with rank r;. This is reminiscent of a scenario in which
two particles might interact but do not, emphasizing that to ensure something
meaningful occurs in this map, the operation must possess additional structure
or non-triviality that makes it interesting.
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.*)

0 =

M(ri) x M(r2) ~ =~ M(ry +r2),

where the map is given by a direct sum of bundles. This operation effectively
combines two bundles into one, resulting in an object that is fixed under the
group action. This situation mirrors the discussion in Nekrasov’s lecture, where
the action of GLg on the moduli space of sheaves involves a diagonal action.

Though the diagonal action might initially seem trivial, it is, in fact, crucial.
The action is non-trivial on each sheaf, as the matrix

(6 %)

is fixed by the group element

u
C diag(ay, ag,...),

1

where the diagonal matrices diag(ay, as,...) form a subgroup of GL,,, and the
matrix represents the fixed locus of the group action. The direct sum of these
sheaves is therefore preserved by the critical moment map associated with this
group.

In mathematical physics, there is often a distinction between those who focus
on the dynamics of a system and those who study its equilibrium properties. In
particular, some scholars focus on the critical loci of functions, which describe
equilibrium states. For instance, one might study a system by introducing
a moment map associated with a torus action. This arises naturally when
kinetic energy terms are added to systems exhibiting rotational symmetry, thus
introducing the corresponding moment map for the torus action.

To clarify, let us consider a situation where we have a function, with u repre-
senting an element of the Lie algebra associated with the moment map. The
moment map in this case might be expressed as the function

u(|z]? = [z2]? ..,

which is defined in terms of the difference of the squares of the coordinates. As
we vary the parameter u, we observe that the critical locus of the function can
change in a dramatic manner, leading to significant alterations in the system’s
behavior:
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u >0 u=20 u <0

We are interested in defining a map

K (fixed locus) — K (ambient space) L K (fixed locus),

which carries significance both mathematically and physically. Mathematically,
this map describes a transition between the K-theory of the fixed locus and that
of the ambient space. Physically, this map can be interpreted as a potential term
that undergoes a sign change, resulting in a shift of the critical locus. Such a
shift has important consequences, as it alters the nature of the critical points
of the function. Specifically, it transforms minima into maxima and vice versa,
fundamentally changing the system’s behavior.

To illustrate this concept, imagine placing a ball at the center of the parabola
when u > 0. As the ball rolls downward along the left side of the parabola, it
follows a path dictated by the critical points of the function. In the special case
where u = 0, the trajectory of the ball becomes a straight line. This scenario
underscores how variations in the parameter u influence the geometry of the
system and shift the critical locus, thereby changing the system’s dynamics.

u>0 u=20 u <0

Mathematically, we want a descending manifold that projects onto the fixed
locus, since by definition, a descending manifold is a set that evolves towards a
fixed locus. From this, we can deduce the stable manifold:

NiLp*

K (fixed locus)

K (ambient space) (+—)T  K(fixed locus)

projection p inclusion 4

stable manifold
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4.6.4 Interpolation Problems

Now, let us examine the geometric and physical challenges inherent in this
definition. The main issue lies in the fact that the descending or stable manifold
is not closed within the ambient space. The inclusion map is not closed, and
consequently, there is no strict pushforward. While the manifold may appear
closed locally, if we allow the ball to continue rolling, it could end up in an
entirely different configuration. In algebraic geometry, the process of taking
closures is often acceptable for abstract reasoning, but it does not always provide
practical insight. This is because we may not be able to ascertain what lies in
the closure, and even if we could, it could contain singularities that render the
map either non-smooth or undefined. Therefore, instead of directly working with
closures, it is more fruitful to approach the problem from a different perspective.

Historically, this difficulty has prompted the development of alternative defi-
nitions. A more practical strategy, however, is to begin with a more concrete
concept, such as elliptic cohomology. In this context, we consider the map

Ell(fixed locus) ~ipT Ell(ambient space),

where we must clarify that we are not using the traditional elliptic cohomology
ring that the notation might suggest. Rather, we are working with a map
between two line bundles, specifically a map that involves a section of some line
bundle (often a ©-bundle) for which we already have information about one
component of the fixed locus and wish to extend it.

In a previous discussion, we introduced Elleq(P"), where elliptic cohomology

was associated with a variable a and a collection of abelian varieties given by

the equations t = a;l.

*

14D

%

Ell(pt)
LLet us assume we start at the top of a projective space. This space contains

several fixed points, and in the case of a projective space P,, there are n + 1
such fixed points. These fixed points are where the parameters ¢t = a; L attract
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the system. The map of interest in this context is the interaction of sections
of line bundles. We can track how these sections evolve as we move along the
trajectory within the space. It is important to note that the section of the line
bundle is supported on the full attracting locus.

Fixing a starting point, we can observe the behavior of a section of the line
bundle from that point. Using this information, we can push forward or pull
back along the fixed points, reconstructing the sections of the line bundle by
examining the intersections and behaviors at these fixed points. As we move
along, we gain more information about the section. For instance, by induction,
we know the value of the section at the intersection of ¢t = ag' and ¢t = a; .
Once we gather sufficient information about the section of the line bundle on

the abelian variety, we can reconstruct it uniquely.

Let Y be an algebraic variety, £ a line bundle, and D a divisor on Y. We can
examine the following cohomological sequence:

HO(Y,L(-D)) — H°(Y,L£) - H(D, L) — H' (Y, L(—D)).

e The second map: The main interpolation problem is to reverse the sec-
ond map, i.e., given a section on a divisor, we aim to lift it to a section
defined on the whole variety. This is analogous to the problem of recon-
structing a polynomial in two variables from its restriction to a curve. In
essence, we are trying to reverse the map induced by this restriction.

e The last map. The cokernel of this map corresponds to the obstruc-
tions to the interpolation. These obstructions represent the difficulties
encountered in lifting the section from the divisor to the variety.

e The first arrow. The first map represents ambiguities in the interpo-
lation. Specifically, there may be cases where a section vanishes on the
divisor, leading to the trivial (zero) section.

For the interpolation problem to have a unique solution, we require the following
exactness in the cohomological sequence:

0— H°(Y,L(-D)) — H(Y,L£) - H°(D, L) — H Y, L(-D)) = 0.

Here, Y is an abelian variety, and both £ and D correspond to ©-bundles. If
deg K(—D) = 0, which reflects a balance from the symplectic form on X, then
either £(—D) is trivial, or H°(L(—D)) = 0.

This result implies that the interpolation problem will generally have a unique
solution except in the presence of special resonances. These resonances are
critical because if encountered, they may render the problem ill-defined. This is
illustrated by formulas such as #&L), which are used to interpolate a function
defined on an elliptic curve. In such cases, we attempt to lift a function defined
at 1 to the entire elliptic curve. The term 6(z) in the denominator introduces a
subtle issue: when the line bundle is trivial, a resonance arises that can lead to
division by zero.
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Thus, while the interpolation problem for a fixed line bundle usually has a
well-defined solution, there is a potential risk of encountering a resonance if we
venture too far. To avoid this, we introduce a variable Z from the outset. This
allows us to vary the line bundle and bypass the resonance. By twisting by
Pico(Ell(X)) D Pic(X) ® E, where Z and Z'°! are the dynamical variables in
elliptic quantum groups and Kahler variables, we ensure that the interpolation
problem remains well-posed. This transformation does not change the structure
of the problem, but rather stabilizes it.

The introduction of these variables allows us to solve the interpolation problem
in the context of varying line bundles. By integrating over elliptic functions,
we can obtain explicit solutions to the interpolation problem while avoiding the
pitfalls of resonance. The elliptic functions involved are g-constant, and their
integration provides explicit solutions. In the framework of elliptic quantum
groups, the introduction of these variables is indispensable for ensuring the
smooth resolution of the problem.

With these variables in place, we arrive at the Fock ® r function:

T
U(ay,...,ap,t1,ta,t3,2) = / (rational function - elliptic function - H F—q> dHaar
q

In this expression:
e The integral is taken over the maximal torus of the gauge group.
e The rational function corresponds to the off-shell Bethe arising from U (g).

e The elliptic function represents the analog of the contour integral coming
from EII.

e The term [] % represents the Bethe equation.
q

This formulation underscores the importance of integrating over elliptic func-
tions to resolve the interpolation problem, avoiding the resonance issues that
arise when the line bundle is fixed. By varying the line bundle and incorpo-
rating elliptic functions, we effectively ”solve” the interpolation problem while
ensuring that the solution remains well-defined and smooth.

158



Part 1T
Week 1 Talks

There were seven talks in week 1. There were no talks on Wednesday, June 26th.

Week 1

Monday, June 24th
e Mikhail Bershtein: Chiralization of Cluster Structures

The chiralization in the title denotes a certain procedure which turns clus-
ter X-varieties into ¢ — W algebras. Many important notions from cluster
and ¢ — W worlds, such as mutations, global functions, screening opera-
tors, R-matrices, etc. emerge naturally in this context. In particular, we
discover new bosonizations of ¢ — W algebras and establish connections
between previously known bosonizations. If time permits, I will discuss
potential applications of our approach to the study of 3d topological the-
ories and local systems with affine gauge groups. This talk is based on a
joint project with J. Shiraishi, J.E. Bourgine, B. Feigin, A. Shapiro, and
G. Schrader.

e What is... a Riemann-Hilbert problem?

In its classical setting, the Riemann-Hilbert problem refers to Hilbert’s
21st problem of constructing a Fuchsian ODE system with prescribed
poles and a given monodromy group. Using singular integral equation
techniques, Plemelj presented a solution to this problem in 1908 which
became widely accepted. However, Kohn, Arnold and Ilyashenko noticed
in the mid 1980s that Plemelj had actually worked on a problem similar
to Hilbert’s 21st for so-called regular ODE systems rather than Fuchsian
ones. These new investigations resulted eventually in a negative answer to
Hilbert’s original problem given by Bolibruch in 1989 with further develop-
ments by Bolibruch and Kostov soon after. Tangentially to the solution of
Hilbert’s classical problem, the singular integral equation techniques used
therein, a.k.a. analytic factorizations of given functions defined on curves,
gave rise to a class of modern Riemann-Hilbert factorization problems. In
fact nowadays we view such problems as part of a broad analytical tool-
box that is useful in the analysis of problems in mathematics and physics,
for instance the Wiener-Hopf methods in hydrodynamics and diffraction.
The goal of this talk is to first review some facts of the classical Riemann-
Hilbert theory and then present a few recent developments of its modern
counterpart. Special attention in the second part will be given to matrix-
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and operator-valued Riemann-Hilbert problems that arise in random ma-
trix theory and integrable probability.

Tuesday, June 25th

e Anton Zabrodin: Integrability and Time Discretization of the Deformed
Ruijsenaars-Schneider Model

We will discuss the recently introduced deformed Ruijsenaars—Schneider
(RS) many-body system. One the one hand, it is the dynamical system
for poles of elliptic solutions to the Toda lattice with constraint of type
B. On the other hand, equations of motion for this system coincide with
those for pairs of RS particles which stick together preserving a special
fixed distance between the particles. We prove integrability of the de-
formed RS system by finding the integrals of motion explicitly. We also
obtain Backlund transformations and integrable time discretization of the
deformed RS system.

e Henry Liu: Invariance of Elliptic Genus Under Wall Crossing

Elliptic genus, and its various generalizations, is one of the simplest nu-
merical invariants of a scheme that one can consider in elliptic cohomology.
I will present a topological condition which implies that elliptic genus is
invariant under wall-crossing. It is related to Krichever—Hohn'’s elliptic
rigidity. Many applications are possible; I will focus on elliptic Donald-
son—Thomas theory for this talk.

Thursday, June 27th
e Alexei Borodin: Geometry of Dimer Models

Random dimer coverings of large planar graphs are known to exhibit un-
usual and visually apparent asymptotic phenomena that include formation
of frozen regions and various phases in the unfrozen ones. For a specific
family of subgraphs of the (periodically weighted) square lattice known as
the Aztec diamonds, the asymptotic behavior of dimers admits a precise
description in terms of geometry of underlying Riemann surfaces. The
goal of the talk is to explain how the surface structure manifests itself
through the statistics of dimers. Based on joint works with T. Berggren
and M. Duits.

e Alexander Bobenko: Dimers and M-curves

We develop a general approach to dimer models analogous to Krichever’s
scheme in the theory of integrable systems. This leads to dimer models
on doubly periodic bipartite graphs with quasiperiodic positive weights.
Dimer models with periodic weights and Harnack curves are recovered
as a special case. This generalization from Harnack curves to general
M-curves, which are in the focus of our approach, leads to transparent
algebro-geometric structures. In particular, the Ronkin function and sur-
face tension are expressed as integrals of meromorphic differentials on
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M-curves. Based on Schottky uniformization of Riemann surfaces, we
compute the weights and dimer configurations. The computational re-
sults are in complete agreement with the theoretical predictions. The talk
is based on joint works with N. Bobenko and Yu. Suris.

Friday, June 28th
e Youjin Zhang: Bihamiltonian Integrable Systems and their Classification

Bihamiltonian structure plays an important role in the theory of inte-
grable systems. For a system of evolutionary PDEs with one spatial vari-
able which possesses a bihamiltonian structure, one is able to find, under
a certain appropriate condition, infinitely many conservation laws of the
system from the bihamiltonian recursion relation and to arrive at its in-
tegrability. In the case when the bihamiltonian structure of the system of
evolutionary PDEs possesses a hydrodynamic limit, one can f