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Part I

Courses

There were four courses, each spanning five days with sessions lasting 90 min-
utes per day.

Week 1: Monday, June 24 to Friday, June 28

• Samuel Grushevsky: The Integrable Systems Approach To The Schottky
Problem And Related Questions

We will review the integrable systems approach to the classical Schottky
problem of characterizing Jacobians of Riemann surfaces among all prin-
cipally polarized complex abelian varieties. Starting with the Krichever’s
construction of the spectral curve from a pair of commuting differential
operators, we will proceed to show that theta functions of Jacobians sat-
isfy the KP hierarchy, and will review Novikov’s conjecture (proven by
Shiota) solving the Schottky problem by the KP equation. We will finally
discuss some of the motivation for Krichever’s proof of Welters’ trisecant
conjecture, and related characterizations for Prym varieties.

• Pavel Etingof: The Hitchin System and its Quantization

Let G be a simple complex Lie group. I will review the classical Hitchin
integrable system on the cotangent bundle to the moduli space BunG(X)
of principal G-bundles on a smooth complex projective curve X (possibly
with punctures), as well as its quantization by Beilinson and Drinfeld using
the loop group LG. I will explain how this system unifies many important
integrable systems, such as Toda, Calogero–Moser, and Gaudin systems.
Then I’ll discuss operators (for the dual group G∨), which parameterize
the (algebraic) spectrum of the quantum Hitchin system. Finally, I will
discuss the analytic problem of defining and computing the spectrum of
the quantum Hitchin system on the Hilbert space L2(BunG(X)), and will
show that (modulo some conjectures, known in genus 0 and 1) this spec-
trum is discrete and parameterized by operators with real monodromy.
Moreover, we will see that the quantum Hitchin system commutes with
certain mutually commuting compact integral operatorsHx,V called Hecke
operators (depending on a point x ∈ X and a representation V of G∨),
whose eigenvalues on the quantum Hitchin eigenfunction ψL corresponding
to a real operators L are real analytic solutions β(x, x̄) of certain differ-
ential equations ∂β = 0, ∂̄β = 0 associated to L and V . This constitutes
the analytic Langlands correspondence, developed in my papers with E.
Frenkel and Kazhdan following previous work by Braverman–Kazhdan,
Kontsevich, Langlands, Nekrasov, Teschner, and others. I will review the
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analytic Langlands correspondence and explain how it is connected with
arithmetic and geometric Langlands correspondence.

Week 2: Sunday, June 30 to Friday, July 5 (minus Tuesday, July 2 which is
Igor Krichever’s Day)

• Andrei Okounkov: From Elliptic Genera to Elliptic Quantum Groups

This course will be an example-based introduction to elliptic cohomology,
Krichever elliptic genera, rigidity, and related topics. We will work our
way towards the geometric construction of elliptic quantum groups.

• Nikita Nekrasov: Integrable Many-Body Systems and Gauge Theories

Elliptic Calogero-Moser and Toda systems, Gaudin and other spin chains
are algebraic integrable systems which have intimate connections to gauge
theories in two, three, and four dimensions. I will explain two such connec-
tions: first, classical, through Hamiltonian reduction and second, quan-
tum, through dualities of supersymmetric gauge theories.
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1 Samuel Grushevsky: The Integrable Systems
Approach To The Schottky Problem And Re-
lated Questions

Abstract

We will review the integrable systems approach to the classical Schot-
tky problem of characterizing Jacobians of Riemann surfaces among all
principally polarized complex abelian varieties. Starting with the Krichever’s
construction of the spectral curve from a pair of commuting differential
operators, we will proceed to show that theta functions of Jacobians sat-
isfy the KP hierarchy, and will review Novikov’s conjecture (proven by
Shiota) solving the Schottky problem by the KP equation. We will finally
discuss some of the motivation for Krichever’s proof of Welters’ trisecant
conjecture, and related characterizations for Prym varieties.
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1.1 Motivation

There are two pieces of motivation, which we tie together:

1.1.1 Motivation #1: Solving differential equations

Our first motivation comes from solving differential equations. While this may
initially seem like a basic approach, it becomes more sophisticated as we pro-
ceed. The theory of linear differential equations is well-established and familiar
to most: for instance, linear equations such as u′+2u = 0 or u′′′′+· · ·+5u = 0 are
solvable with standard techniques. However, the situation becomes more compli-
cated with nonlinear differential equations, where the coefficients are functions
of x.

Introductory courses on ordinary differential equations often cover nonlinear
equations in a limited way, but the topic is far richer and more complex, leaving
room for deeper exploration.

What does it mean to solve for u? In the case of linear differential equations, so-
lutions often take the form of elementary functions such as exponentials, which
are easy to solve using established methods. But for more complex equations,
especially those involving nonlinearities, it is unlikely that solutions can be ex-
pressed in terms of elementary functions. Consider, for example, special func-
tions like the Gamma function or hypergeometric functions. Of course, these
functions appear in other situations as well and not just as solutions of differ-
ential equations, but we will use them as an example for motivation.

In some cases, the best way to describe a function is to state that it satisfies
a given differential equation, without necessarily seeking an explicit expression.
However, in this course, ”solving” will mean more than just this minimal char-
acterization. We want to gain additional insights of the function, so our goal
shifts towards constructing the function explicitly.

We are also interested in systems of differential equations. Among these, we will
focus on completely integrable systems. Such systems are characterized by the
property that, even if explicit solutions cannot be determined, all integrals of
motion are known in some form. This naturally leads to the study of algebro-
geometric solutions, a class of solutions determined from algebraic geometry
and constructed using specific geometric data. The foundational work in this
area, and a central focus of this course, lies in the groundbreaking contributions
of Igor Krichever from the 1970s, which established the basis for much of the
modern study in this field.

1.1.2 Motivation #2: Curves

The second motivation arises from the study of curves. In these lectures, we de-
fine a curve as a complex projective curve that is algebraic, compact, connected,
and reduced. Equivalently, it is a compact Riemann surface.
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Curves are associated with a wealth of geometric data, including the Jacobian
of a curve, denoted Jac(C). A curve can be embedded into its Jacobian via the
map C ↪→ Jac(C), where the Jacobian is a principally polarized abelian variety.
This is a concept we will discuss in more detail later.

The construction C 7→ Jac(C) induces an embedding Mg ↪→ Ag, where Mg

represents the moduli space of curves of genus g, and Ag represents the moduli
space of principally polarized abelian varieties.

This construction is of great interest becauseMg, the moduli space of curves,
is inherently a geometric object, which can be studied through complex or alge-
braic geometry. On the other hand, Ag, the moduli space of abelian varieties,
has a more arithmetic flavor. Since all abelian varieties are quotients of complex
vector spaces, the associated data is more arithmetic in nature.

Curves are associated with a wealth of geometric data, including the Jacobian
of a curve, denoted Jac(C). A curve can be embedded into its Jacobian via the
map C ↪→ Jac(C), where the Jacobian is a principally polarized abelian variety.
This is a concept we will discuss in more detail later.

The construction C 7→ Jac(C) induces an embedding Mg ↪→ Ag, where Mg

represents the moduli space of curves of genus g, and Ag represents the moduli
space of principally polarized abelian varieties.

This construction is of great interest becauseMg, the moduli space of curves,
is inherently a geometric object, which can be studied through complex or alge-
braic geometry. On the other hand, Ag, the moduli space of abelian varieties,
has a more arithmetic flavor. Since all abelian varieties are quotients of complex
vector spaces, the associated data is more arithmetic in nature.

1.1.3 Linking Them Together

The main problem we are concerned with, and the most celebrated result in this
area, is the Schottky problem. This 150 year old problem asks the following
question:

Problem 1.1 (Schottky Problem, 1888). Which abelian varieties are Jacobians
of curves? That is, describe

Jac(Mg) ⊂ Ag.

A weaker version of the problem asks:

Problem 1.2 (Weaker Version). Given an embedding C ↪→ A, is A = Jac(C)?
That is, given a curve embedded into an abelian variety, is the abelian variety
the Jacobian of a curve?

This weaker version is much simpler because we are provided with much more
data to work with: not only do we have the abelian variety, but we also have the
specific curve embedded within it. The Schottky problem, on the other hand, is
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more challenging because it asks: Given an abelian variety, can we find a curve
such that this abelian variety is the Jacobian of that curve?

The connection between the two motivations lies in the idea of solving differ-
ential equations via functions originating from curves. Then, these differential
equations will solve the Schottky problem. The core idea is: starting from a
curve, we’ll be able to construct some solutions to some differential equations.
The fact that we can do this characterizes curves among all abelian varieties.
This means we can try to do similar things starting from an abelian variety and
we will succeed if and only if this abelian variety is Jacobian.

The main result, which is one of the most celebrated in this subject, is Krichever
proof of the Welter’s trisecant conjecture characterizing abelian varieties
as Jacobians among abelian varieties by the property of the Kummer variety
having certain sequences. We will not prove this fully, but rather a slightly
weaker version. We are not yet in a position to understand what these words
mean, and it will take us a while to get into that position.

1.2 Commuting Differential Operators

1.2.1 Formal Eigenfunctions of One Differential Operator

Let L be the general differential operator in one variable x ∈ C, defined as

n∑
i=0

ui(x)
di

dxi
.

We are interested in finding the eigenfunctions of the equation:

L ·Ψ(x) = constant ·Ψ(x).

i.e., solving for a formal solution that can be expressed as a power series.

Exercise 1.3. Show that it is ”enough” to consider L = dn

dxn +
∑n−2
i=0 ui(x)

di

dxi .

Theorem 1.4. For all x0 ∈ C, there exists a unique formal solution Ψ of
LΨ = knΨ of the form

Ψ(x) =

∞∑
s=0

ξs(x)k
−sek(x−x0)

such that ξ0(x) = 1 and for all s > 0, ξs(x0) = 0.

Remark 1.5. We call this a solution that is normalized at x.

Note that no restriction is placed on k - the theorem holds for any k. This means
that, instead of solving for a single function, we can solve for all eigenfunctions
simultaneously for all possible values of k.

This observation highlights a key difference between this scenario and the finite-
dimensional case in linear algebra. In finite-dimensional spaces, there is a finite
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set of eigenvalues, each associated with a finite-dimensional eigenspace of so-
lutions. However, in this infinite-dimensional context, the eigenvalue can be
deformed, and the solutions will deform smoothly as the eigenvalue is varied.
This is crucial to the whole story.

We denote the solution as Ψ(x, k, x0). The proof is elementary:

Proof. Take Ψ = ek(x−x0)
(
1 + ξ1(x)k

−1 + ξ2(x)k
−2 + . . .

)
. Differentiating, we

get:
di

dxi

Ä
ξs(x)k

−sek(x−x0)
ä
= k−s

Å
diξs
dxi

+
di−1

dxi−1
+ . . .

ã
ek(x−x0).

Thus, at each order k−s, we simply need to solve for the next ξs.

Exercise 1.6. Finish the proof.

And we are done.

Corollary 1.7. Any formal solution of LΨ = knΨ has the form

Ψ(x, k) = Ψ(x, k, x0) ·A(k, x0).

Once we have the solution that is normalized at x, this corollary tells us that
we can find the rest of the solutions.

Exercise 1.8. Prove the corollary.

1.2.2 Formal Eigenfunctions of Multiple Differential Operators

Consider

L1 =
dn

dxn
+

n−2∑
i=0

ui(x)
di

dxi

and another differential operator of the same form

L2 =
dm

dxm
+

m−2∑
j=0

vj(x)
dj

dxj
.

We assume that m and n are coprime, e.g., n = 2, m = 3.

In finite-dimensional linear algebra, consider the case of two linear operators.
When do they share a common eigenfunction? Specifically, if we have two ma-
trices, we must be careful: do we want them to have one common eigenfunction,
or do we want them to have all eigenfunctions in common? This becomes an
even more interesting question in infinite-dimensional spaces. Ideally, we want
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the operators to share all eigenfunctions, meaning that the operators must com-
mute.

Therefore, the next question to ask is:

Problem 1.9. When is the commutator

[L1, L2] = 0?

Exercise 1.10. Write everything down explicitly for n = 2,m = 3.

Theorem 1.11. Assume we are given L1 and Ψ(x, k, x0). Then for L2, we
have

[L1, L2, ] = 0 =⇒ L2Ψ(x, k, x0)

Ψ(x, k, x0)
= A(k),

where A(k) is independent of x0.

Proof. If [L1, L2] = 0, then L2Ψ(x, k, x0) is also a kn-eigenfunction of L1:

L1L2Ψ(x, k, x0) = L2L1Ψ(x, k, x0) = L2 · knΨ(x, k, x0).

By the corollary, we have L2Ψ(x, k, x0) = Ψ(x, k, x0) · A(k, x0). For all x′0, we
have L2Ψ(x, k, x′0) = Ψ(x, k, x′0) ·A(k, x′0). We want A(k, x′0) = A(k, x0), so:

Ψ(x, k, x0)e
k(x0−x′

0) =
Ä
ek(x−x0) + ξ1(x)k

−1ek(x−x0)
ä

= ek(x−x
′
0)
(
1 + ξ1(x)k

−1 + . . .
)

which does not equal Ψ(x, k, x′0). But we can conclude that:

Ψ(x, k, x0)e
k(x0−x′

0) = Ψ(x, k, x0) ·B(k, x′0).

Comparing A(k, x′0) and B(k, x′0) gives us A(k, x0) = A(k, x′0).

Exercise 1.12. Finish this.

The other direction: if
L2Ψ(x, k, x0)

Ψ(x, k, x0)
= A(k),

then [L1, L2] = 0, or equivalently,

L1L2Ψ(x, k, x0) = L1A(k)Ψ(x, k, x0) = A(k) · knΨ(x, k, x0)

for all x0. Thus, [L1, L2] has an infinite-dimensional kernel for all x0, which
implies [L1, L2] = 0.

We did one differential operator previously, and two differential operators above.
What about three?
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Corollary 1.13. If [L1, L2] = [L1, L3] = 0, then [L2, L3] = 0.

Proof. For all Ψ(x, k, x0) (eigenfunction for L1),

L2Ψ(x, k, x0) = A2(k)

and
L3Ψ(x, k, x0) = A3(k)Ψ(x, k, x0)

which imply
[L2, L3]Ψ(x, k, x0) = 0.

So [L2, L3] has an∞-kernel for all k, x0, implying [L2, L3] = 0 and we are done.

Theorem 1.14 (Burchnall, Chaundy, 1923). If [L1, L2] = 0, then there exists
a polynomial Q(α, β) such that Q(L1, L2) = 0.

Proof. Let L(E) be the space of eigenfunctions L1Ψ = EΨ (with finite-dimensional
eigenspaces for all E). Then L2 : L(E) → L(E), and let QE(α) be the charac-
teristic polynomial of L2.

Claim: QE(α) depends polynomially on E. Thus, Q(α, β) ∈ C[α, β]. Conse-
quently, Q(L1, L2)|L(E) = 0 for all E, implying Q(L1, L2) = 0.

Exercise 1.15. Two parts:

1. Show that if [L1, L2] = 0, then L2 = dm

dxm .

2. For [L1, L2] = 0,dimL2 ≤ m+ 1.

The reason for focusing on explicit computations is that they play a crucial role
in understanding Krichever’s proof that characterizes Jacobians by their classes.
These computations are an essential part of the proof.

1.3 Curves and Their Jacobians

1.3.1 Fundamental Properties

Now, let’s switch to the other side of the story, focusing on curves. While
these two perspectives will ultimately converge, for now, we can treat them as
distinct. Consider the algebraic curve {Q(α, β) = 0} ⊂ C2, which may posess
singularities. For the purpose of this discussion, we will ignore the singularities,
although they present important challenges in many contexts.

Let C be a complex compact genus g curve. Let’s look at a couple (equivalent)
definitions of the Jacobian.
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If we look at the fundamental group of C, π(C) has generators A1, ..., Ag,
B1, . . . , Bg, subject to the relation

π1(C) = ⟨A1, . . . , Bg⟩/
g∏
i=1

[Ai, Bi] = 1.

Exercise 1.16. Convince yourself that this is true.

The homology group H1(C,C) is given by the quotient π1(C)/[π1(C), π1(C)],
which is isomorphic to Z2g, generated by A1, . . . , Ag, B1, . . . , Bg. Additionally,
there is a symplectic pairing on H1(C,C), defined by the following relations:

⟨Ai, Aj⟩ = 0, ⟨Bi, Bj⟩ = 0, ⟨Ai, Bj⟩ = δij .

Exercise 1.17. Think about this via Poincaré duality, Hodge theory,...

1.3.2 Analytic Definition of the Jacobian and Period Matrix

The analytic definition is as follows:

Definition 1.18.
Jac(C) = H1,0(C,C)/H∗(C,Z).

We can also give the explicit definition:

Definition 1.19. Given A1, . . . , Ag, B1, . . . , Bg, there exists a unique basis
ω1, . . . , ωg ∈ H1,0(C,C) such that∫

Aj

ωi = δij.

Then the period matrix τ of C is

τij =

∫
Bj

ωi ∈ C.

Theorem 1.20 (Riemann’s Bilinear Relations). τ is a symmetric matrix and
Im τ ∈ Matsymmetric

g×g (R) is positive definite.

Remark 1.21. Hg is the Siegel upper half space that is a subset of Matg×g
satisfying these conditions.

Viewing it from this perspective, the Jacobian of C is given by Jac(C) =
Cg/(Zg + τZg), where τ ∈ Hg is a period matrix.
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1.3.3 Moduli Spaces and Complex Tori

Let Mg denote the moduli space of genus g curves, and Ag the moduli space
of complex g-dimensional tori, which can be expressed as Cg/(Zg + τZg) for
τ ∈ Hg. Here, ”moduli” refers to isomorphism classes of objects, considered
up to biholomorphism. The key idea is the existence of a map from the Siegel
upper half-space Hg to the moduli space of abelian varieties, described by the
quotient Ag = Hg/Sp(2g,Z), where Sp(2g,Z) is the symplectic group acting on
the lattice. This map represents a quotient of a g-dimensional complex vector
space by a rank 2g integral lattice.

By Riemann’s bilinear relations, we have

(Zg + τZg)⊗Z R = Cg,

which implies that Zg + τZg defines a non-degenerate lattice in Cg. An isomor-
phism between these lattices corresponds to a linear map that can be lifted to
Cg → Cg, mapping one lattice to another. Such isomorphisms are represented
by elements of GL(2g,Z), and the additional structure of principal polarization
ensures that these transformations are symplectic matrices. While we will not
explore this in further detail now, we will discuss this later.

Definition 1.22. A complex torus is a quotient Cg/Λ, where Λ ≃ Z2g and
Λ ⊗Z R = Cg. A complex torus is called an abelian variety if there exists an
embedding of it into CPN .

Thus Cg/Λ is isomorphic to an abelian variety A ⊂ CPn. Why is CPn useful?
From a differential geometry perspective, it is endowed with the Fubini-Study
metric. From the viewpoint of algebraic geometry, we consider the line bun-
dle O(1). We can take the metric/bundle and restrict it to A, which gives a
positive/ample line bundle L on A.

Definition 1.23. A complex principally polarized abelian variety (A,L)
is a projective variety A with an ample line bundle L such that H0(A,L) = 1,
and there is a group structure A×A→ A.

Exercise 1.24. Prove that these two definitions of a principally polarized abelian
variety are equivalent.

Remark 1.25. For the exercise, the definition is slightly imprecise. Instead of
focusing directly on the line bundle itself, we should consider its Chern class.
This is important because, in the context of an abelian variety, translation by a
group element can modify the line bundle. Specifically, in a torus, adding a point
to itself results in a translation of the line bundle, which produces a new line
bundle. To avoid this, we focus on the first Chern class c1 of the line bundle,
which remains invariant under such translations.

Let’s relate everything to the setup:
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Theorem 1.26 (Torelli).

Mg ↪→ Ag
↓ ↓
C 7→ J(C)

is an embedding. Equivalently, given a principally polarized abelian variety that
is a Jacobian, it is the Jacobian of a unique curve.

1.4 Principal Polarizations and Theta Functions

1.4.1 Principal Polarizations

Let X be an algebraic variety.

Definition 1.27. A polarization of X is c1(L), where L is an ample line
bundle on X.

If X is smooth, is c1 ∈ H1,1
>0 (X,C)∩H2(X,Z). It’s easy to see that the homology

of an abelian variety is just generated by H1.

Definition 1.28. A polarization is principle if dimH0(X,L) = 1.

A physicist would likely start thinking about Ansatz - we will not do that here.

Now, let’s define a principal polarization on a lattice τ

1.4.2 Theta Functions and the Theta Divisor

Definition 1.29. For all τ ∈ Hg = {τ ∈ Matg×g(C) : τT = τ, Im τ > 0} and
for all z ∈ Cg, we define the theta function as

θ(τ, z) :=
∑
n∈Zg

exp
(
πin

T (τn+ 2z)
)

The fact that τ is symmetric makes it nice, and the fact Im τ > 0 makes sure
the expression converges.

Exercise 1.30. For all m1,m2 ∈ Zg, show that the theta divisor

θ(z, z +m1 +m2τ) = cθ(τ, z)

where c is a non-zero factor depending on m1,m2.

Corollary 1.31. The Θτ ⊂ Aτ (= Cg/Zg + τZg) defined by Θτ := {z ∈ Ai :
θ(τ, z) = 0} is well-defined.

It’s easy to see that this is a well-defined holomorphic function on Cg. But this
corollary tells us that the zero locus is independent under translations by the
lattice.
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1.4.3 Principal Polarization and Moduli of Abelian Varieties

Proposition 1.32. Θτ defines a principal polarization on Aτ .

Since Θτ is a codimension-1 subset of Aτ , it is a divisor on Aτ . It also has a
homology class in H1,1 because it is a complex subvariety of dimension 1. This
subvariety is well-defined, so it corresponds to an integral class, and we claim
that it is an ample class. Furthermore, we claim that the dimension of the space
of sections is 1.

Remark 1.33. This is a bit imprecise. When we refer to polarization, we
should think of three things simultaneously: an ample line bundle, its Chern
class, and the space of sections. This is imprecise because for any v ∈ Aτ , we
can translate Θτ by v (consider tvΘτ := z : Θ(τ, z + v) = 0).

One final point: Ag is the moduli (stack) of principal abelian varieties and is

also given by Hg/Sp(2g,Z). The dimension of Ag is dimAg =
g(g+1)

2 .

1.5 Jacobians

1.5.1 Divisors, The Picard Group, and Jacobians

Definition 1.34. A divisor on C is an expression of the form
∑N
i=1mipi with

mi ∈ Z and pi ∈ C, satisfying the condition that deg
∑
mipi → (

∑
mi) ∈ C.

Let f : C → P1 be a map such that f ̸= 0,∞, and

div(f) =
∑

(multzf) zeroes z of f−
∑

(multzf) poles of f

=
∑
p∈C

ord pf · p.

.

Definition 1.35. The Picard group is

Pic(C) := Div(C)/divisor functions.

Div(C) is an abelian group, and Pic is a subgroup (proof is easy since div(f ·g) =
divf+divg). This admits a map Pic(C)

deg→ Z, and the divisor always has degree
0 otherwise this map would not exist which is similar to the statement that the
number of zeroes of a function is the same as the number of poles of a function
counted with multiplicity. Note that it’s fine if we have a constant map, for
example.

Definition 1.36. A divisor on C is
∑N
i=1mipi with mi ∈ Z, pi ∈ C satisfying

deg
∑
mipi → (

∑
mi) ∈ C, f : C → P1, and f ̸= 0,∞ with

div(f) =
∑

(multzf) zeroes z of f−
∑

(multzf) poles of f

=
∑
p∈C

ord pf · p.
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.

Definition 1.37. The Picard group is

Pic(C) := Div(C)/divisor functions.

Div(C) is an abelian group, and Pic is a subgroup (proof is easy since div(f ·g) =
divf+divg). This admits a map Pic(C)

deg→ Z, and the divisor always has degree
0 otherwise this map would not exist which is similar to the statement that the
number of zeroes of a function is the same as the number of poles of a function
counted with multiplicity. Note that it’s fine if we have a constant map, for
example.

We can define Picd(C) ⊂ Pic(C) = degree d divisors.

We can define Picd(C) ⊂ Pic(C) as the set of divisors of degree d.

Proposition 1.38. Picd(C) consists of line bundles on C of degree d, up to
linear equivalence.

Definition 1.39. The Jacobian of C is given by

Jac(C) = Picg−1(C).

1.5.2 Principal Polarization and the Structure of the Jacobian

Note that this is also approximately Picd(C), where D ∈ Picg−1−d(C). The
purpose of this definition is to enable the construction of the principal polariza-
tion.

Definition 1.40. The principal polarization on Picg−1(C) is

Θ := {p1 + ...+ pg−1} ⊂ Picg−1(C).

One should convince oneself that dim(Θ) = g − 1, dim(Jac(C)) = g, and that
Θ is ample and has one section.

Remark 1.41. This is not the ”best” definition of the Jacobian, since it is
not clear that the Jacobian is a group: There exists a natural map Pic0(C) ×
Pic0(C) → Pic0(C) defined by D1 × D2 7→ D1 + D2, but there does not exist
a natural map Picg−1(C) × Picg−1(C) → Picg−1(C). However, we can take
D1 ×D2 = D1 +D2 −KC , where KC is the canonical divisor with deg(KC) =
2g − 2. Moreover, Picg−1(C) has a natural involution given by D 7→ KC −D,
which is responsible for Serre duality. This serves as a warning that although we
would like to think of the Jacobian as Picg−1(C) because the theta divisor can
be seen as the polarization inside it in a natural way, we are losing the natural
group structure.
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Theorem 1.42 (Riemann’s Theta Singularity Theorem). Let C be a smooth
projective curve of genus g, and let L ∈ Picg−1(C), where Picg−1(C) ∼= Jac(C)
denotes the space of line bundles of degree g−1 on C, identified with the Jacobian
variety of C. Then, for any L ∈ Picg−1(C), the following identity holds:

multLΘ = dimH0(C,L),

where multLΘ denotes the multiplicity of the theta divisor Θ at the point cor-
responding to the line bundle L, and H0(C,L) is the space of global sections of
L.

Recall that if L is a line bundle on C corresponding to a divisor D ∈ Divd(C),
then

H0(C,L) = {meromorphic functions f on C such that div(F ) +D ≥ 0}.

On Riemann surfaces, a point is the same as a divisor, which is also the same
as a line bundle. Then, we can trivialize a line bundle outside a finite collection
of points, which is how we can perceive them as sections. We won’t go too far
into this direction.

Exercise 1.43.

1. For g = 1, C ≈ Jac(C). What does Riemann’s Theta singularity theorem
say in this case? Is it true thatM1 = A1?

2. For g = 2, how is C related to the Jacobian? And what does the Riemann’s
Theta singularity theorem say in this case?

3. For g = 3, what are the singularities of theta divisors on Jacobians?

1.6 The Schottky Problem In Genera 4 and 5

1.6.1 The Map J

Consider the map
J :Mg → Ag

which assigns to a curve C its Jacobian, i.e., the abelian variety Jac(C).

The following fundamental result characterizes the injectivity of this map:

Theorem 1.44 (Torelli). The map J is injective (on the coarse spaces).

In other words, given an abelian variety and the promise that it is a Jacobian,
we can determine which curve it is the Jacobian of.

Remark 1.45. There are many proofs of this result, but we will not cover them
here. This theorem is a cornerstone of many classification problems in moduli
space theory. It is also an example of a result from Hodge theory, since the
Jacobian is a classifying space for weight 1 Hodge structures.
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The dimensions of the moduli spacesMg and Ag provide important context for
the Schottky problem. For g > 1, we know that:

dim(Mg) = 3g − 3 and dim(Ag) =
g(g + 1)

2
.

For the case of genus 2 and genus 3, we have the following proposition:

Proposition 1.46. The maps J :M2 → A2 and J :M3 → A3 are dominant
(i.e., their images are dense).

This implies that most 2-dimensional and 3-dimensional varieties are Jacobians
of curves, except for a small codimension subset. However, this phenomenon is
specific to g = 2 and g = 3, and can be confirmed by plugging into the dimension
formulas and comparing.

1.6.2 The Schottky Theorem for Genus 4

The complete solution to the Schottky problem for genus 4 is given by the
following theorem, which provides a characterization of Jacobians of curves in
terms of theta functions:

Theorem 1.47 (Schottky, 1880s; Igusa, 1970s). Aτ (with τ ∈ H4) is a Jacobian
(with Aτ ∈ J (M4)) if and only if∑

θ16
ï
ϵ
δ

ò
(τ, 0) =

Å∑
θ8
ï
ϵ
δ

ò
(τ, 0)

ã
where

θ

ï
ϵ
δ

ò
(τ, 0) = constϵ,θ

Å
τ,
τϵ+ δ

2

ã
and ϵ, δ ∈ (Z/2Z)4 are the theta constants.

These theta constants are simply the values of the theta function at various
2-torsion points. A 2-torsion point means that when we multiply it by two,
we get the lattice factor, i.e., it is a point on the abelian variety Aτ such that
multiplying it by two results in the origin.

This gives us one equation, which we can expect because dim(A4) = 10 and
dim(M4) = 9. This solves the Schottky problem completely for g = 4.

1.6.3 The Schottky Problem For Genus > 5

There is no such explicit characterization of J (Mg) ⊂ Ag for all g ≥ 5.

Theorem 1.48 (Grushevsky, Salvati Manni). The Schottky-Igusa equation does
not generalize to J (M5) in the obvious way.

This disproves a conjecture of Belavin, Knizhnik, Morozov, D’Hoker, and Phong
that the cosmological constant for E8×E8 and SO(32) type superstring theories
theories are the same. However, we do have the following result:
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Theorem 1.49 (Grushevky, Farkas, Salvati Manni). There exists an explicit set
of equations in the theta constants F1, . . . , FN such that J (Mg) is an irreducible
component of {F1 = ... = FN = 0} ⊂ Ag.

This provides a ”weak” solution to the Schottky problem, first discovered by
Andreotti and Mayer. While we do not fully characterize the Jacobian locus,
we describe it up to additional components. There is a whole theory of the
explicit Andreotti-Mayer locus, but it is quite complex and does not suffice to
fully characterize the locus.

1.7 Theta Functions

1.7.1 Theta Functions on Jacobians

Let’s consider the Theta function, which resides within the Jacobian, as a func-
tion of the curve. To do this, we first need to understand the Abel-Jacobi map
C ↪→ Pic1(C), p 7→ 1 · p.

Now, suppose we neglect the difference between Pic1 and Picg−1, which of course
we cannot do. We have a Theta function on Picg−1, where the divisor Θ is
defined. However, this divisor can also be interpreted as a function, implying
we have a function on the Jacobian, which we can restrict to the curve. The
goal is to determine which function on the curve arises from this restriction.

To make sense of this function, we need to make sure that the degrees match
up, as we are trying to map a point from Pic1 into Picg−1. Recall that Θ :=
{θ(τ, z) = 0}, and let’s consider a divisor of dimension g. Fix points p1, . . . , pg ∈
C and let Aτ = Jac(C) be the Jacobian. Consider the function θ(τ, p1 + p2 +
...pg − x), where x ∈ C and τ is the period matrix of c. The key observation is
p1 + p2 + ...+ pg − x = 0 if x = pi for all i = 1. Thus, we know g zeroes of this
function on the curve.

Proposition 1.50.

div θ(τ, p1 + ...+ pg − x) = p1 + ...pg ↔ θ(p1 + ...+ pg − x) = 0

if and only if x = pi.

Exercise 1.51. Show that θ(τ, z) = θ(τ,−z) for all τ ∈ Hg, z ∈ Cg. What is Θ
in genus 1? (Can you see modularity of θ(τ, z) with respect to τ for g = 1?)

1.7.2 Meromorphic Functions

Any (nonconstant) meromorphic function C → P1 can be expressed in terms of
theta functions (up to a constant factor):

div(f) =

N∑
i=1

mixi,

where mi ∈ Z
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Proposition 1.52.

f(x) = const

N∏
i=1

θmi(p1 + ...+ pg−1 + xi − x)

for any chosen points p1, . . . , pg−1 ∈ C.

Proof. The divisor of the function θmi (p1 + ...+ pg−1 + xi − x) is

div (θmi (p1 + ...+ pg−1 + xi − x)) = mi · (p1 + ...+ pg−1 + xi).

Since the degree of f at 0 and ∞ is the same as
∑
mi = 0,

N∑
i=1

mi(p1 + ...+ pg−1) +

N∑
i=1

mixi =

(
N∑
i=1

mi

)
(p1 + ...+ pg−1) +

∑
mixi.

Thus, the divisor of f(x) is consistent with the degree condition.

1.8 Weil Reducibility

1.8.1 The Weil Reducibility Theorem

Now, we move to the topic of Weil reducibility. The following theorem states
that for any curve C and for all p, q, r, s ∈ C, the intersection of two theta
divisors behaves in a specific way:

Theorem 1.53 (Weil Reducibility). For all C and for all p, q, r, s ∈ C, the
following inclusion holds:

Θ ∩Θp−q ⊂ Θp−r ∪Θs−q

where the notation Θa−b refers to the translate of a− b by Θ.

Here, Θ is a divisor. Take any point in Picg−1 and add to it a divisor p−q (which
is also a divisor of degree g− 1). Then, on the left hand side, we have two g− 1
dimensional gadgets in an abelian variety and we have two large codimension-
1 objects that intersect. For Jacobians, this intersection is irreducible, so the
intersection will have codimension 2.

It is important to notice that the left hand side does not contain r or s anywhere,
and this theorem holds for all r, s ∈ C. We’re defining a two parameter family of
unions of two theta divisors so that it always contains the intersection. Typically,
the intersection has two components: one in Θp−r and the other in Θs−q.
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Proof. Suppose D = [L] ∈ Θ ∩ Θp−q. We have D ∈ Θ ↔ h0(C,D) ≥ 1 by the
Riemann Theta singularity theorem. Similarly, D ∈ Θp−q ↔ h0(C,L+ p− q) ≥
1, so these are meromorphic functions on C with poles at D and a simple pole
at p vanishing at q.

We have two cases:

1. If h0(C,D+p) = 1↔ exists a unique (up to constant factor) s ∈ H0(C,D+
p) =⇒ s must vanish at q because H0(C,D+P ) ⊃ H0(C,D+p−q) ̸= 0.
Then h0(C,D + p) ⊇ H0(C,D) ̸= 0 =⇒ s has no pole at p. Thus,
s ∈ H0(C,D − q) ⊆ H0(C,D + s− q) so multDΘs−q ≥ 1, ie. D ∈ Θs−q.

2. If h0(C,D + p) ≥ 2. Suppose we have s1, s2 ∈ H0(C,D + p) not linearly
dependent. But then there exists a linear combination αs1 + βs2 (there

exists α, β ∈ C) such that (αs1 + βs2)(r) = 0 where
Ä
α
β = − s2(r)s1(r)

ä
. If

s1(r) = 0, choose α = 1, β = 0. Then α1 + βs2 ∈ H0(c,D + p − r), ie.
D ∈ Θp−r.

This finishes the proof.

Let’s try to understand what Weil reducibility means analytically for z ∈ Cg
(or in JacC): θ(z) = 0 and θ(z + p− q) = 0, then it follows that

θ(z + p− r) · θ(z + s− q) = 0.

It would be lovely if we can write this as one equation. One way to do this is
to show the existence of functions F (z) and G(z) such that

F (z)θ(z) +G(z)θ(z + p− q) = θ(z + p− r) · theta(z + s− q) = 0.

Observe that

θ(z + p− r) · θ(z + s− q) ⊂ H0(JacC, 2Θp+s−r−q).

We want the equation to be an equality of sections of line bundles on the Jaco-
bian, so

G(z) ∈ H0(zΘp+s−r−q −Θp−q) = H0(2Θs−r −Θp−q),

where 2Θp+s−r−q = Θ⊗2 ⊗ O(p + s − r − q) and −Θs−r = (Θ⊗O(s− r))−1.
For constants A,B ∈ C, we have

A · θ(z+p+ s− r− q)θ(z)+B · θ(z+ s− r)θ(z+p− q) = θ(z+p− r)θ(z+ s− q)

for all z ∈ Cg. To prove the equivalence of this equation to the previous one, a
Koszul cohomology computation is required, though we omit the details of this
computation here.
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1.8.2 The Isogeny Theorem and Theta Constants

Given a Jacobian and an arbitrary quadruple of points on the curve, one observes
that such a functional equation is satisfied by the theta function. Where does
this equation take place? It involves three distinct sections of the bundle 2Θ.
Since the bundle Θ itself has only one section and 2Θ is the square of Θ, we
should determine the number sections of 2Θ. Our goal now is to extract a nice
geometric statement from this equation.

Proposition 1.54. For any principally polarized abelian variety (A,Θ),

H0(A, 2Θ) = 2g

and a basis of H0(A, 2Θ) is given by the Theta constants of the 7th order:

{Θ[ϵ](τ, z) := θ(2τ, 2z + 2ϵ)}

for ϵ ∈ (Z/2)g.

Proposition 1.55 (Isogeny Theorem/Riemann’s Bilinear Relations).

θ(τ, x+ y) · θ(τ, x− y) =
∑

ϵ∈(Z/2)

Θ[ϵ](x) ·Θ[ϵ](y)

This is known as the isogeny theorem because there is a very interesting finite
linear map of abelian varieties A × A π→ A × A, (x, y) 7→ (x + y, x − y). Fur-
thermore, this map is surjective and the kernel has two torsion points, namely
x = y and 2x = 0. One might ask why π∗(Θ⊠Θ) = 2Θ⊠ 2Θ. There are many
ways to prove this, but straightforward computation works as well.

1.9 Kummer Maps

1.9.1 The Basics

Proposition 1.56. The Kummer map Kum : A
|2Θ|→ P2g−1, z 7→ {Θ[ϵ](τ, z)}ϵ∈(Z/2)

defines an embedding Kum : A/± 1 ↪→ P2g−1.

This result is not trivial and requires advanced techniques, which we will not
develop here. Let us examine the behavior of the Kummer map for different
genera:

• For g = 1, the map becomes a double cover of the elliptic curve branched
at two torsion points, yielding the map elliptic curve/± 1→ P1.

• For g = 2, we get a surface/ ± 1 → P3, which is called a Kummer
surface. The Kummer surfaces has 16 double points. It is possible to
write an explicit equation for the image and study the moduli of abelian
surfaces via this map, a result that has been explored in many texts.
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• For g = 3, the geometry becomes incredibly complicated because we have
a threefold embedded in P7. There are many papers on this, but the maps
are extremely complicated and we will not talk about this here.

For simplicity, define

Kum(x) ·Kum(y) :=
∑

ϵ∈(Z/2)

Θ[ϵ](x) ·Θ[ϵ](y),

precisely the expression in the Isogeny theorem. Now, let us revisit the explicit
equation arising from Weil reducibility and rewrite it as follows:

Aθ(z)θ(z++r− s− q)+Bθ(z+ p− q)θ(z+ r− s)+C(z+ p− s)θ(z+ r− q) = 0

where A,B,C ∈ C. This is simply a rearrangement, and the inclusion of the
constant C is valid since we are merely scaling the equation. Using our new
notation, we can express this as:

A ·Kum
(
z +

p+ r − s− q
2

)
·Kum

(p+ r − s− q
2

)
+B ·Kum

(
z +

p+ r − s− q
2

)
·Kum

(p+ s− r − q
2

)
+C ·Kum

(
z +

p+ r − s− q
2

)
·Kum

(p+ q − r − s
2

)
=0.

We factor this expression as:

Kum
(
z +

p+ r − s− q
2

)
· (∗) = 0,

which holds for all z, where (⋆) is independent of z. Since z + p+r−s−q
2 forms

a basis of sections of 2Θ, this equation is equivalent to saying ⋆ = 0. Thus, we
obtain the following equation:

A·Kum
(p+ r − s− q

2

)
+B·Kum

(p+ s− r − q
2

)
+C·Kum

(p+ q − r − s
2

)
= 0.

1.9.2 The Major Results

This is an equation in C2g and leads us to very important the identityL

Theorem 1.57 (Fay’s Trisecant Identity). For all C and for all p, q, r, s, the
Kummer images

p+ q − r − s
2

,
p+ r − s− q

2
,
p+ q − r − s

2

in C2g are collinear.
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The existence of this theorem is very surprising, which becomes evident when
we go into higher dimensions.

Consider CP2g−1, which has dimension 2g − 1, and a Kummer variety with
dimension dim(Kum(Jac(C))) = g. Given three points on the Kummer Variety,
the Welter’s conjecture states that they are collinear.

Furthermore, recall that we can pick p, q, r, s on the curve, allowing us to make
them coincide. This results in a differential equation satisfied by the theta
function in the limiting case. We will not discuss this approach in further detail
here.

Theorem 1.58 (Gunning, 1981). If (A,Θ) ∈ Ag is such that Kum(A) has a
1-dim family of trisecant lines, then A = Jac(C) for some C ∈Mg.

This result provides a solution to the Schottky problem: it tells us when a
principally polarized abelian variety is the Jacobian of a curve. However, there
is an important caveat: we require a 1-dimensional family of trisecant lines to
start with. If we are given both the abelian variety and the curve, then we know
that A is the Jacobian of the curve. This is a very useful starting point, but it
comes with certain limitations.

Theorem 1.59 (Welters, 1986). A germ of a 1-dim family of trisecants suffices.

Welters also conjectured the following:

Conjecture 1.1 (Welters). If Kum(A) has one trisecant, A = Jac(C).

At first glance, this may appear to be a very different statement, as we are not
given a curve or a germ of a curve as a starting point. However, this conjecture
was later proven by Krichever:

Theorem 1.60 (Krichever, 2015). The Welters conjecture holds.

We present this as one theorem, but it can be understood as three distinct cases
of trisecants:

1. A fully discrete trisecant

2. A trisecant tangent at one point

3. A flex line, ie. tangency contact of multiplicity 3.

The proofs for all three are different. We will see the proof of the flex line case
only. We will use Gunning’s result freely without proof because it requires a
whole set of techniques we haven’t developed, even though the proof is not hard.

1.10 The Kadomtsev-Petviashvilli Equation

1.10.1 Baker-Akhiezer Functions

We begin with a point p ∈ C. Let k−1 be a local coordinate on C around
p, with k(p) = ∞. This is a lot of data. In comparison, the moduli space of
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curves is finite-dimensional, and adding a point adds one complex dimension to
the moduli space. However, here we are making an infinite-dimensional choice,
since we are selecting a local coordinate up to all orders in the Taylor series
expansion. More precisely, the space of such data is infinite-dimensional and
admits a forgetful map to the moduli space of curves, with infinite-dimensional
fibers.

Definition 1.61. For all C, p, k−1, for all general D = p1+...+pg,, the Baker-
Akhiezer function ψ(x, y) is a function defined for all x ∈ C, z ∈ C satisfying:

• ψ is a meromorphic function on C−p with simple poles at D, holomorphic
on C − {p ∪D}.

• ψ has an essential singularity at p, such that ψ(x, p)e−k(z)·x is holomorphic
around p and equal to 1 at p.

Proposition 1.62. The Baker-Akhiezer function exists and is unique.

Proof. Uniqueness: if ψ,ψ′ are two such functions, then ψ
ψ′

• has no essential singularity at p, and is in fact equal to 1 at p =⇒ ψ
ψ′ ≡ 1.

• is holomorphic on C − p.

Existence: The explicit formula for ψ is given by

ψ(z) := exp

Ç∫ z

p

x · ω
å
· θ(z −D + ux)

θ(z −D)

where

• ·ω is a differential on C, with a douple pole of the form dk at p and
holomorphic elsewhere, with all A-periods zero, and

• u is a vector of B-periods of ω.

1.10.2 Generalized Baker-Akhiezer function

We can generalize the Baker-Akhiezer function as follows:

Definition 1.63. Let p0 be a point on a curve C, and let k−1 be a local
coordinate on C around p0. Given parameters t1, t2, ... ∈ C and a divisor
D = p1+...+pg ∈ Divg(C), there exists a unique function called the generalized
Baker-Akhiezer function ψ(t1, t2, . . . , C, p0, k)(p), which is a meromorphic
function on C−p0 with the poles at p1, . . . , pg, holomorphic on C−{p0, . . . , pg}
and satiesfies the following condition:

lim
p>p0

ψ(t1, t2, . . . , C, p0, k)(p) · exp

( ∞∑
i=1

kiti

)
= 1.
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Similar to earlier, we can prove it’s existence with an explicit formula:

ψ(t1, t2, . . . , C, p0, k)(p) := exp

Å∫ p∑
ti · ωi+1

ã
θ(p+

∑
Uiti + Z)

θ(p+ Z)

where ω1 is the meromorphic differential on C with an ith order pole at p0 and

all A-periods zero, Ui =
Ä∫
B1
ωi, ...,

∫
Bg
ωi
ä
∈ Cg, and Z is −D as a point on

the Jacobian of C. We want
∫
k→∞ ωi ∼ ki, so we also require that ωi ≈ d

(
ki
)

is holomorphic as k →∞ at p0.

We won’t prove uniquess, but it can be done by showing that θ(p+
∑
Uiti+Z)

θ(p+Z)

does not rely on A or B-periods.

Remark 1.64. Two minor remarks:

1. Notice that we did not write a lower bound: we cannot integrate from p0
or else it diverges. We have a choice of lower bound, and since we want
the limit in the definition to be 1, technically we should write

ψ(t1, t2, . . . , C, p0, k)(p) := exp

Å∫ p∑
ti · ωi+1

ã
θ(p+

∑
Uiti + Z)θ(p0 + Z)

θ(p+ Z)θ(p0 +
∑
Uiti + Z)

to normalize it, or replace 1 in the definition by θ(p+
∑
Uiti+Z)

θ(p+Z) . But then

this causes more difficulties to arise.

2. The statement made here is formal. Recall earlier that we solved differ-
ential equations using formal series in k−1. Here, ψ is global and mero-
morphic on the Riemann surface, not merely formal. This difference is
crucial, and the advantage of the new formulation is that it allows for
geometric solutions.

It is also a good question of why exp converges, but we will ignore it because
we will stop after the first three terms.

The main point is that dψ
dti

are functions of the same type for different values
of ψ (not entirely of the same sort because we haven’t stated precisely what
the exponentials and essential singularity at p looks like). There is a theorem
which states that the space of such functions is finite-dimensional, and therefore
uniqueness follows. If multiple constructions yield the same essential singularity,
they must correspond to the same function. This is a source of differential
equations.

1.10.3 Differential Operators

Theorem 1.65. For all meromorphic functions E : C → CP1 with an nth
order pole at p0 that are holomorphic on C− p0, there exists a unique nth order

differential operator L =
∑n
i=0 ui(x)

di

dxi such that

Lψ(t1, C, p0, k)(p) = E(p)ψ(t1, t2, . . . , C, p0, k)(p).
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Proof. We present the proof idea only: use the study of formal solutions to the
differential equation Lψ = Eψ to ensure that the essential singularity of both
sides at p0 is the same, and then use uniqueness of the Baker-Akhiezer function
to complete the argment.

Theorem 1.66. Let t1 = x, t2 = y, t3 = t, t4 = t5 = ... = 0 and consider
ψ(x, y, t, C, p0)(p). There exists unique differential operators

L1 =

2∑
i=0

ui(x, y, t)
∂i

∂xi

and

L2 =

3∑
i=0

vi(x, y, t)
∂i

∂xi

such that

L1ψ =
∂ψ

∂y
, L2ψ =

∂ψ

∂t
.

Remark 1.67. This is a shadow of a more general result: For exp(kx+Q(k)y+
R(k)t) where Q,R ∈ C[k], there exists unique differential operators L1, L2 where
degL1 = degQ and degL2 = degR.

Theorem 1.68. The commutator of L1 and L2 satisfies the following relation:

[L1 −
∂

∂y
, L2 −

∂

∂t
] = 0.

Proof. Since ψ is a kernel of the commutator, it provides an ∞-dim kernel of a
differrential operator in x only, implying the commutator is 0.

1.10.4 The Kadomtsev-Petviashvilli Equation and Beyond

Example 1.69. Consider

ψ(x, y, t) = exp(kx+ k2y + k3t)(1 + ξ1(x, y, t)k
−1 + ξ2(x, y, t)k

−2 + ...)

near p0. What are the corresponding differential operators?

We have

L1 =
∂

∂x2
− u, L2 =

∂3

∂x3
− 3

2
u
∂

∂x
− w

where

u = 2
∂ξ1
∂x

, w = 3
∂ξ2
∂x

+ 3
∂ξ1
∂x2
− 3

2
uξ1.
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Now, we can compute ξ1, ξ2 to show that

u = −2 ∂
2

∂x2
ln θ(U1x+ U2y + U3t+ Z)|p0 .

Then,

[L1 −
∂

∂y
, L2 −

∂

∂t
] = 0

gives a differential equation on u, ie. on Θ. Computing this gives

3

4
uyy =

∂

∂x

Å
ut −

3

2
u · ux −

1

4
yxxx

ã
which is called a Kadomtsev-Petviashvilli (KP) equation.

Remark 1.70. Note that we set t4 = t5 = ... = 0 for simplicity. The gen-
eralization with infinitely nonzero variables gives an integrable hierarchy of an
infinite sequence of equations.

Theorem 1.71 (Krichever). There exists a differential operators in one variable
L1, L2 with gcd(ord L1, ord L2) = 1 such that

[L1, L2] = 0.

Furthermore, there exists a curve C = {Q(α, β) = 0} ⊂ C2 satisfied by L1, L2,
p0 (point at ∞), and k, such that ψ(x, c, p0, k)(p) is a common eigenfunction of
L1 and L2.

Proof. We present the proof idea only. We learned earlier that there is a poly-
nomial equation Q(L1, L2) = 0 but this only holds for compact curves. So we
need to compactify, and we need to decide whether we want CP2 or CP1×CP1.
It turns out we need to add only one point at ∞ and it’s a singular point at
∞ which has n branches coming together. So k = z−

1
n , and we need to check

that this is a local coordinate. Then we just need to check that the number of
branches is correct and the corresponding ψ is a solution of L1 and L2.

1.11 The Flex Line Case

1.11.1 The Building Blocks

Recall the Welters’ trisecant conjecture. We can rewrite it as:

Kum(p+ q − r − s) ∧Kum(p+ r − q − s) ∧Kum(p+ s− r − q) = 0.

where p, q, r, s ∈ C.

To get it into the flex case, take the limit s→ p. This gives:

Kum(q − r) ∧Kum(r − q) ∧Kum(2p− r − q) = 0.
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This is somewhat trivial since Kum(q − r) = Kum(r − q), so we need to take
the next order term as s→ p. Let s = p− Uϵ, and we get

Kum(q − r + Uϵ) ∧Kum(r − q + Uϵ) ∧Kum(2p− r − q) = 0

Taking the limit limϵ→0 yields:

Kum(q − r) ∧ ∂UKum(q − r) ∧Kum(2p− r − q) = 0.

Next, take C ↪→ Jac(C), p 7→ 0 and consider the limit r → p. Let U and V
be the first and second order derivative of the Abel-Jacobi map C → JacC at
p, respectively. To interpret the derivatives in the map C ↪→ Jac(C), we can

take the explicit normalized basis ω1, . . . , ωg ∈ H1,0(C,C), z 7→
Ä∫ z
p
ωi
ä
, so that

U = (ω1(p), . . . , ωg(p)).

This gives

Kum(q−p−Uϵ−V ϵ2)∧∂UKum(p+Uϵ+V ϵ2−q)∧Kum(p−q−Uϵ−V ϵ2) = 0/

Exercise 1.72. Show that the lowest order nontrivial term is

Kum(q) ∧ ∂UKum(q) ∧
(
∂2U + ∂V

)
Kum(q) = 0

for all q ∈ C.

This is an equation of a 1-parameter family of flex lines. Take q → p, and
expand the equation from the exercise to all orders.

Exercise 1.73. Show that lowest order term isÅ
∂4U − ∂U∂V +

3

4
∂2V + c

ã
Kum(0) = 0

for some constant c, where W is the third order derivative of the Abel-Jacobi
map C → JacC at p.

Remark 1.74. If we have a hyperelliptic curve and start with a Weierstrass
curve, this becomes simpler.

Exercise 1.75. Use Riemann’s bilinear relation to deduce from this the lowest
order term equation for Θ(z).

1.11.2 The Major Theorems

Theorem 1.76 (Gunning). If A ∈ Ag, C ⊂ A, and z1, z2, z3 ∈ A satisfy

Kum(p+ z1) ∧Kum(p+ z2) ∧Kum(p+ z3) = 0

for all p ∈ C, then A = Jac(C).
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This is weaker than a solution to the Schottky problem because the curve is
given to us as we have a 1-parameter family of trisecants which are all obtained
by translating each other.

Theorem 1.77 (Welters). If A ∈ Ag, C ⊂ A, z ∈ A is fixed and Kum(p+ z) is
a flex point for all p ∈ C. Then A = Jac(C).

We can strengthen the condition from needing a geometric curve to having an
∞-order germ of a family of curve.

Theorem 1.78 (KP Hierarchy). An ∞-order formal germ of a formal family
of flexes suffices.

Theorem 1.79 (Ambarello-De Concini). For all g, there exists N = N(g) such
that an N th order formal germ of a family of flexes characterizes Jacobians.

Theorem 1.80 (Conjectured by Novikov, Proved by Shiota). For all g, the
existence of a 4th order germ of a family of flexes chracterizes Jacobians (↔
KP equation).

Morally, we want to begin with a fourth-order germ and keep increasing the
order of the germ. At each step, there will be some obstruction. However, since
the jet bundles are extensions of one another, we expect that if we can solve the
first order, we can solve the second order, and so on.

We present one final theorem:

Theorem 1.81 (Krichever). The existence of one flex line characterizes Jaco-
bians.

1.11.3 Convergence of the Two Stories

We have seen two views:

1. The geometry of flex lines, which gives the equation (stated with slightly
different notation compared to before)(

∂V − ∂2U − 2p∂U + (E − p2)
)
·Kum

(r
2

)
= 0 (equation K)

2. The story of commuting differential operators, which gives the following
equation (arising from L1ψ = ∂ψ

∂t ):(
∂2x − u(x)

)
ψ = ∂tψ (equation L)

for

ψ =
θ(r + Ux+ V t+ Z)

θ(Ux+ V t+ Z)
· epx+Ey,

where u = −2∂2x ln θ(Ux+ V t+ Z) for all Z ∈ A.

These two stories ultimately end up at the same point.
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Theorem 1.82 (Krichever). If (A,Θ) ∈ Ag satisfies equation K (equivalently,
equation L), then A = Jac(C) for some curve C ∈Mg.

Lemma 1.83. Equation L or equation K impliesÄ
(ΘV )

2 − (ΘUU )
2
ä
+2 (ΘUUΘUUU −ΘVΘUV )ΘU+(ΘV V −ΘUUUU ) (ΘU )

2
= 0

along the theta divisor.

Remark 1.84. The converse is unknown. The natural attempt would be to
take a divisor of a function, take a partial derivative, and restrict it to the
locus, yielding a section of the same bundle. However, we are not provided with
a method to extend this section.

1.12 Proof

The proof strategy is as follows: we have a partial differential equation for the
theta divisor. If we had another differential equation that commutes with this
one, then we could construct a spectral curve. . Once we have a spectral curve,
we hope that the abelian variety will be the Jacobian of that spectral curve.
The goal is to construct commuting differential operators, as the rest of the
argument involves technical computations.

1.12.1 Finding Formal Solutions

Consider ψ as a solution of the equation L, where u = −2∂2x ln τ(x, t), of the
form

ψ(x, t, k) = ekx+k
2t

(
1 +

∞∑
s=1

ξs(x, t)k
−s

)
.

Assume that the zeroes xi of τ(x, t) are simple as a function of t. Thus, we aim
to show that τ(x, t) =

∏
(x− xit) for xi ̸= xj . Expand near q = x1, we get

ψ =
z

(x− q)2
+ v + ω(w − q) + ...

ψ =
α

x− q
+ β + γ(x− q) + ...

Substitute this into equation L, perform the necessary eliminations, and com-
pute. Finally, differentiate with respect to t, using q̈ = zω, ḟ = ∂f

∂t , and f
′ = ∂f

∂x .

Lemma 1.85. Assuming τ(x, t) has simple zeroes at x = q, there exists a
solution ψ of equation L that has simple poles at x = xi and is holomorphic
everywhere else.

Proof. We have the form ξs =
rs
x−q + rs0 + rs1 · (x − q) + .... Equation L =⇒

zξ′s+1 = ξ̇s+u ·ξs−ξ′′s . For ξs+1 to exist in this form, the residue of the previous
equation at x = q must vanish.
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There is a miracle step: if this is true for ξs (no zero residue at previous step),
then the residue at the next step must also vanish. This is not difficult, but it
is tedious, so we omit the detailed computation.

1.12.2 Constructing U-Periodic Solutions Ψ

We’ve constructed Ψ as a formal function (which has no current meaning), but
we want to extend it to a less formal solution so that it is invariant under
translations by U . Let A be an abelian variety, and let AU be the Zariski
closure {Uz}z∈C ⊂ A. It turns out that 1 ≤ dimAU ≤ g. We want ”ψ to be
a solution on AU .” If this holds, we might be done: if dimAU = g, we have
the whole abelian variety and have constructed a global function, allowing the
remaining machinery to quickly work. When dimAU = 1, we get an elliptic
Calogero-Moser system. The real difficulty lies when 1 < dimAU < g.

Let’s define the bad locus
∑

:= {z : θ(z) = θU (z) = 0}.This represents a
problematic set because our solutions will fail somewhere in the previous step.
Since this involves two equations on abelian varieties, their codimension is either
1 or 2. If it is 1, they must share an irreducible component. However, on
an indecomposable abelian variety, the divisor is irreducible, so the only way
the codimension could be 1 is if the partial derivative vanishes identically on
the entire divisor. This is impossible, as the partial divisor is not a section
of a line bundle globally. Therefore, codimA

∑
= 2 for indedcomposable A

indecomposable (and fails for decomposable ones). We can choose a translate
of AU so this translate is not contained in

∑
.

Lemma 1.86. If equation D holds for the zeroes of τ(x, t), then equation L has
a solution with

u(x, t) = u(Ux+ Z, t), ψ = ekx+k
2tϕ(Ux + z, t, k),

where ϕ(z, t, k) = ebt (1 +
∑
ξs(z, t)k

−s), ξs(z, t) = τs(z,t)
τ(z,t) for τs holomorphic

are quasiperiodic with respect to to AU .

This means that ϕ(z + λ, t, k) = exp(...)ϕ(z, t, k), where λ is a period in the
lattice of AU . This solution λ ∈ the period lattice of AU . This solution is
unique up to some normalization, which can be explicitly written, but we will
omit it for simplicity.

1.12.3 Constructing The Differential Operator

Lemma 1.87. There exists a unique pseudo-differential operator

L = ∂x +

∞∑
s=1

ωs(Ux+ V t+ Z)∂−sx
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where z ∈ A such that

L(Ux + V t+ z, ∂x)ψ = kψ

for ψ as in the previous lemma.

Note that ωs is a meromorphic function of z ∈ A with poles only along the theta
divisor.

Remark 1.88.

1. The unique existence of L is by computation for any z ∈ Cg\
∑

, so ωs · θ
will be holomorphic on Cg\

∑
. By Hartogs’ theorem, this extends to all

of Cg.

2. L is independent of the normalization.

1.12.4 Constructing Many Differential Operators

Attempting to construct a differential operator from a pseudo-differential oper-
ator by discarding the pseudo-differential parts does not work. Instead, de-
fine Lm := (Lm)+ = the (∂mx , . . . , ∂x, const) terms of Lm. We know that
[∂t − ∂2x + u,Lm] = 0. We can now compute[

∂t − ∂2x + u, Lm
]
= 2∂x (res∂xLm)

where res∂xLm denotes the ∂−1x th term. Let Fm := res∂xLm.

Lemma 1.89. For all m, Fm has at most a second order pole along Θ.

The point of this is for all m,Fm ∈ H0(A, 2Θ). Since dimH0(A, 2Θ) = 2g, for
all but finitely manym, Fm is a linear combination of some fixed finite collection
Fi1 ..., Fi≥g

. Consequently, Fm = am1
Fi1 + ...+ ami2g

Fi2g . Therefore

[∂t − ∂2x + u, Lm − am1
Fi1 − ...− ami2g

Fi2g ] = 0.

This implies that Lψ = ∂
∂tψ gives the commutation relation [Lm, L], and thus

the operators satisfy a polynomial equation. This leads to the construction
that for all curves and values of a, there exists a Bethe Ansatz such that an
eigenfunction of L and Lm generates a curve C, which in turn leads to the
abelian variety A = Jac(C).

Finally, we may declare victory.
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2 Pavel Etingof: The Hitchin System and its
Quantization

Abstract

Let G be a simple complex Lie group. We will review the classical
Hitchin integrable system on the cotangent bundle to the moduli space
BunG(X) of principal G-bundles on a smooth complex projective curve
X (possibly with punctures), as well as its quantization by Beilinson and
Drinfeld using the loop group LG. We will explain how this system uni-
fies many important integrable systems, such as Toda, Calogero-Moser,
and Gaudin systems. Then I’ll discuss opers (for the dual group G∨),
which parametrize the (algebraic) spectrum of the quantum Hitchin sys-
tem. Finally, we will discuss the analytic problem of defining and com-
puting the spectrum of the quantum Hitchin system on the Hilbert space
L2(BunG(X)), and will show that (modulo some conjectures, known in
genus 0 and 1) this spectrum is discrete and parameterized by opers with
real monodromy. Moreover, we will see that the quantum Hitchin system
commutes with certain mutually commuting compact integral operators
Hx,V called Hecke operators (depending on a point x ∈ X and a represen-
tation V of G∨), whose eigenvalues on the quantum Hitchin eigenfunction
ψL corresponding to a real oper L are real analytic solutions β(x, x̄) of
certain differential equations ∂β = 0, ∂̄β = 0 associated to L and V . This
constitutes the analytic Langlands correspondence, developed in my pa-
pers with E. Frenkel and Kazhdan following previous work by Braverman-
Kazhdan, Kontsevich, Langlands, Nekrasov, Teschner, and others. We
will review the analytic Langlands correspondence and explain how it is
connected with arithmetic and geometric Langlands correspondence.
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2.1 Principal G-bundles

2.1.1 Motivation

This course is about Hitchin systems, both classical and quantum, as well as
the Langlands correspondence. These topics involve analysis, geometry, and
arithmetic, primarily in the context of function fields. All of this work centers
around a geometric object known as BunG(X), which is the moduli space (or
technically a stack) of principal G-bundles over a curve X.ß

Hitchin integrable systems: classical and quantum
Langlands correspondence for function fields

™
↕ß

analysis, geometry, and arithmetic
on BunG(X)

™
Here, X is an irreducible smooth projective curve over some field, and G is a
reductive algebraic group. To this data, we assign a very complex geometric
object, the moduli stack of principal bundles. This stack is extremely rich in
structure. When we study its geometry, analysis, or arithmetic, we uncover
many profound results, including those related to integrable systems. One ma-
jor topic is the Hitchin integrable system, a large class of finite-dimensional
integrable systems associated with this data. This system includes many (per-
haps most) of the interesting finite-dimensional integrable systems known. It
has also played a significant role in the work of Edward Witten and others.

Rather than spending too much time on motivation, it’s more effective to start
with basic definitions and build up from there. Let’s review some basic algebraic
geometry related to this moduli stack, which is indeed complicated. Many
details will be simplified or moved to the exercises.

Consider X, an algebraic variety over a field k. Often, X will be a one-
dimensional smooth projective irreducible curve over k. We can keep C in mind
as the base field, but it’s also important to consider non-algebraically closed
fields, such as finite fields or p-adic fields. G will be a reductive algebraic group,
assumed to be connected and split. In this case, G is defined over any field you
choose, essentially over the integers, and is attached to a root datum. The basic
examples to consider include the general linear group GLn, the special linear
group SLn, the projective general linear group PGLn, symplectic groups Spn,
and orthogonal groups On. One particularly important special case is GL1, the
multiplicative group. We can also consider tori, which are products of several
copies of the multiplicative group: GL1 × ...×GL1.

2.1.2 Definition and Clutching Functions

To define a principal bundle, we do not need to assume that the algebraic
group is reductive, connected, or split. This will be the starting point for our
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exploration.

First, let G be any affine algebraic group over k.

Definition 2.1. A principal G-bundle (or G-torsor) on a variety X consists
of a variety P equipped with a morphism π : P → X and a right action of a
group G on P that preserves π. Locally, in the étale topology on X, the bundle
is isomorphic to the right action of G on the product G×X → X, where G acts
on the first component by right multiplication.

This means there exists an étale open cover Ui of X such that, on each Ui, we
have the following isomorphism:

P |Ui
∼= G× U

Ui

π

where the structure is compatible with the G-action in a G-invariant manner.

The term ”étale” requires further explanation. In algebraic geometry, open
subsets of X typically refer to open subsets in the Zariski topology. However,
étale charts are somewhat more general:

Definition 2.2. An étale chart U → X consists of:

1. A Zariski open subset U ⊂ X.

2. A finite unramified cover U → U .

Thus, an étale chart is a map from a finite unramified cover of an open subset
of X, which generalizes the concept of a standard open set. For most purposes,
we can treat étale charts as if they were simply open subsets of X, as they are
sufficiently well-behaved for our constructions. For example, the intersection of
two étale charts Ui and Uj is given by the fiber product P |Ui = P · ×Ui. This
is not overly complicated; it simply means that the Ui’s are finite unramified
covers of open sets in X. However, we can treat these Ui as though they were
open in the Zariski topology for convenience.

Principal G-bundles are classified by clutching functions gij : Ui ∩ Uj → G,
where Ui ∩ Uj ̸=, satisfying the following conditions:

gij ◦ gji = id

gij ◦ gjk ◦ gki = id×

on the triple intersection Ui ∩ Uj ∩ Uk, modulo the transformation

hi : Ui → G, gij 7→ hi ◦ gij ◦ h−1j .
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Here, gij defines a 1-cocycle in the sheaf Z1(X,OX,G), where OX,G is the
sheaf of G-valued regular functions on X. The cocycle condition ensures that
we are gluing trivial G-bundles on each Ui in a consistent way. Changing the
functions gij on the left by an element hi and on the right by hj does not
affect the isomorphism class of the bundle. Therefore, two cocycles that are
cohomologous correspond to isomorphic bundles, implying that G-bundles are
classified by the group cohomology H1

ét(X,OX,G).

2.1.3 Bundles

Next, we consider the notion of an associated bundle. Given a group homo-
morphism φ : G → H, an associated H-bundle can be constructed from any
G-bundle by applying φ to the transition functions. Specifically, for G = GLn,
a principal G-bundle is equivalent to a vector bundle of rank n, since the transi-
tion maps from G×Ui to G×Uj can be viewed as maps between vector spaces.
This leads to a categorical equivalence between the category of principal GLn-
bundles and the category of vector bundles of rank n.

Additionally, given an algebraic representation ρ : G→ GL(V ), every G-bundle
E on X gives rise to an associated vector bundle Eρ of rank n, where the action
of G on E is translated into an action on the vector bundle.

In topology and geometry, the definitions of principal bundles are similar but
involve smooth functions instead of regular functions. In the topological setting,
X is a topological space and G is a topological group, while in differential
geometry, X is a manifold and G is a Lie group. In complex geometry, X is
a complex manifold and G is a complex Lie group, with holomorphic functions
replacing regular ones. In all these contexts, principal bundles can be described
by gluing data that respects the relevant structure of functions (continuous,
smooth, or holomorphic). While the underlying geometric spaces may vary, the
fundamental concepts of principal bundles and their classifications remain the
same.

In complex geometry, a similar story applies to holomorphic functions. In topol-
ogy, let X be a topological space and G a topological group, or alternatively, let
X be a manifold and G a Lie group, in which case we consider smooth functions.
In analytic geometry, X is a complex manifold and G is a complex Lie group,
and we work with holomorphic functions. In all of these settings, we can use
ordinary open subsets and obtain a principal bundle by gluing. If we are given
a usual open cover, we can literally glue: if we have a point in chart Ui and
a point in chart Uj which correspond to the same point on X, then we glue
fibers at those points by using the corresponding map. If we have étale covers,
it is slightly more complicated, and we use faithfully flat descent which is a
similar procedure with coverings of open sets, but we will skip this because it is
not relevant for our purposes.

Finally, for any point x ∈ X, the fiber of the principal bundle P at x is the fiber
π−1(x), denoted Px. This is a principal homogeneous space for G, meaning that
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G acts on Px transitively and simply. Note that this discussion assumes that X
is defined over an algebraically closed field. If we do not have an algebraically
closed field, then we should consider points not just over the original field (which
may be none), but over some field extensions.

2.1.4 Serre’s GAGA

One important result known as the GAGA theorem bridges the gap between
analytic and algebraic structures.

Theorem 2.3 (Serre’s GAGA). If X is a smooth complex projective variety,
then the category of analytic G-bundles on X is equivalent to the category of
algebraic G-bundles on X, where the equivalence in the direction from algebraic
to analytic is given by analytification.

This equivalence implies a one-to-one correspondence where every (smooth) al-
gebraic variety over C can be viewed as a complex manifold. Similarly, any
G-bundle in the algebraic context corresponds to an analytic G-bundle. This
generalization extends the classical result from complex analysis that meromor-
phic functions on the projective line are rational functions.

2.1.5 Étale Charts

Why is étale cohomology necessary? In classical topology, we generally do not
need to consider the étale topology because open neighborhoods of points are
contractible and have trivial cohomology. This allows us to use these neigh-
borhoods to compute global cohomology. However, the situation is different in
algebraic geometry, particularly in the Zariski topology. For example, in the
case of curves or lines, Zariski open sets are typically complements of finite sets
of points. On the complex line, for instance, one might remove finitely many
points, but there is no way to make these sets contractible in the same sense.
This introduces complications when trying to compute cohomology.

To illustrate this, consider the principal G-bundle P = C× → C× = X, where
the map is given by z 7→ z2. This is a µ2-bundle, where µ2 = Z/2 is the cyclic
group of order 2. This bundle is not Zariski locally trivial on any non-empty
Zariski open set in C×. The reason for this is that the monodromy of the
bundle, when traversing the circle in the punctured complex plane, results in
multiplication by −1. Removing finitely many points does not eliminate this
monodromy, and thus the bundle cannot be trivialized by Zariski localizations.
Thus, in order to describe such bundles, we require that every bundle has an
atlas of charts such that on each chart, the bundle becomes trivial. This is
precisely why we need to take finite coverings to trivialize this monodromy.

For connected groups, the situation is more manageable. However, even in the
case of connected groups, non-trivial subtleties can emerge, especially when
dealing with more complicated varieties such as surfaces.
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For connected, reductive groups, there is a well-known result, which we state
here without proof:

Theorem 2.4 (Borel, Springer). If X is a smooth curve and G a connected,
reductive group, any principal G-bundle on X is Zariski locally trivial.

Remark 2.5. For certain connected reductive groups, such as GLn and SLn,
the result always holds. For GLn, Hilbert’s Theorem 90 guarantees this for any
variety X. However, this is not true for all groups; for example, in the case of
PGLn and orthogonal groups, the situation is more subtle.

In the case of curves, however, the story is different, and we can focus on ordinary
Zariski covers without needing to invoke the étale topology. Specifically, any G-
bundle on a smooth curve will trivialize after removing a finite number of points.
This fact is a consequence of the structure of the Picard group for curves, which
we explore further below.

For semisimple groups, we have a more refined result. The following theorem,
which was later generalized by Drinfeld and Simpson to families of curves, is
non-trivial:

Theorem 2.6 (Harder). If G is semisimple, then a G-bundle on a smooth
affine curve is trivial. In particular, such a bundle can always be trivialized by
removing a single point.

This result does not hold for non-semisimple groups, such as GL1. To under-
stand this, consider the set of isomorphism classes of G-bundles on X when
G = GL1. These isomorphism classes correspond to the set of line bundles on
X, which is the Picard group Pic(X). For curves, the Picard group has several
important properties:

• Pic is a group under the tensor product operation

• This group fits in an exact sequence

0→ Pic0(X)→ Pic(X)
deg→ Z→ 0

where Pic0(X) is the connected component of the identity in Pic(X), and
Pic0(X) = Jac(X) is the Jacobian of X, which is a complex torus of
dimension g, where g is the genus of X.

• The Picard group without a point, denoted Pic(X \ x), is related to the
original Picard group by:

Pic(X\x) = Pic(X)/⟨O(x)⟩.

where O(x) is the line bundle corresponding to a divisor at x (a point
with a pole of order at most 1). Furthermore, this exact sequence splits,
so we have: Pic(X\{x}) = Jac(X). Therefore, if g(X) > 0, the bundle
generally cannot be trivialized by removing a point. More precisely, for
any finite set of points removed from X, there may exist a bundle that
does not become trivial when those points are removed.
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2.2 Moduli of G-Bundles on Smooth Projective Curves

2.2.1 Stacks

For any variety X and algebraic group G, we denote by BunG(X)(k) the set of
isomorphism classes of principal G-bundles on X. Although this is just a set,
there is much more to explore. We can extend this not only for a base field k,
but also for any field extension of k or more generally for ring extensions. In
algebraic geometry, we often extend scalars and consider bundles defined over
a field extension of k, meaning that the transition functions gij will have coeffi-
cients in this extension. If A is a commutative k-algebra, we define BunG(X)(A)
as the set of equivalence classes of principal G-bundles over X with coefficients
in A. This defines a functor of points BunG(X), which sends A 7→ BunG(X)(A).
This functor is a central object in algebraic geometry, especially when defining
affine schemes. More generally, schemes are defined as functors that satisfy cer-
tain properties, one of which is called representability by a scheme. However,
BunG(X) is not representable by a scheme because bundles can have automor-
phisms. Instead, BunG(X) is an algebraic stack. The main distinction between
schemes and stacks is that schemes correspond to sets of points with no addi-
tional structure, while stacks include automorphism groups for each point.

To illustrate this, consider G to be a finite group. We can then examine prin-
cipal G-bundles over a point, denoted by ∗. The stack BG := ∗/G, called
the classifying stack, is a model for the moduli space of principal G-bundles.
The functor of points for this stack is given by the category of principal G-
bundles over an affine scheme, such as SpecA. This corresponds to a morphism
from SpecA into ∗/G, which defines a principal G-bundle over SpecA. We have
framed the definition of bundles on varieties for simplicity, but the more general
and accurate setting is to define bundles on schemes. The essential concept
remains unchanged, with the term ”variety” replaced by the more general term
”scheme”.

This stack ∗/G consists of a one point with automorphism group G. If we con-
sider a specific point in BunG(X) corresponding to a specific bundle, this point
is not just an ordinary point, but an object like ∗/G. More generally, we can
consider stacks which are global quotients. Algebraic stacks are globalizations
of the notion of a quotient of a variety by group action. If Y is a variety and
H is an algebraic group acting on Y , we can associate the stack Y/H with this
action. The functor of points for this stack is Map(S, Y/H), which corresponds
to a principal H-bundle P → S with a commutative diagram

P → Y
↓ ↓
S → Y/H

where P → Y commutes with the H-action.

The purpose of using stacks is to handle situations where the group H does
not act freely on Y . If the group action is free, the quotient is straightforward.
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However, if there are stabilizers, the quotient space may exhibit undesirable
topological properties. The theory of stacks allows us to work with the quotient
in a way that preserves the group action while avoiding the problematic aspects
of the quotient space itself. In this framework, we consider Y with the H-action
and express everything in terms of Y and H, rather than directly in terms of
the quotient.

Next, we will define BunG(X). This is not a global quotient, nor is it of finite
type when Y is a variety or scheme of finite type. However, it can be repre-
sented as a nested union of open subsets BunG(X)j of the form Y/H, where
Y is a smooth variety and H is a group (e.g., GLn). Locally, one can work
with such quotients in neighborhoods of points. Although there is no natural
representation, various representations exist. For example, if H is a subgroup
of another group H ′, the quotient Y/H can be ”multiplied” by H ′, yielding an
action of H ′, and we have the isomorphism Y/H ∼= Y ×H H ′/H ′. This reveals
that there is no particularly nice or canonical representation, which makes the
study of these stacks subtle. Specifically, for every field K (such as the complex
numbers), BunG(X)(K) is a set, but it is not a well-behaved object beyond this.

BunG(X)(K) forms a topological space, as X/H yields a topological space.
However, the topology is very non-separated, where points need not be closed.
For example, in the case of the projective line X = P1, the closure of a point
may include all points. This contrasts with the situation for schemes, which are
also topological spaces but are more separated (although not Hausdorff, they
have closed points over fields).

2.2.2 Examples

• SLn-bundles are vector bundles of rank n with trivial determinant.

• PGLn-bundles are vector bundles of rank n, modulo tensoring with line
bundles.

• For GL1-bundles with k = C, we have:

BunG(X) = Pic(X) ∼= Pic0(X)× Z

This is a stack because for any line bundle L, the automorphism group
Aut(L) = C×. While individual points typically have no automorphisms,
in this case, every point shares the same automorphism group. This sug-
gests that the stack is, in many ways, not much different from a scheme.
To ”rigidify” the situation, we can consider bundles along with a chosen
point in one of the fibers. By fixing this point, the automorphism group
C× is effectively trivialized, and the result is a scheme. More specifically, it
is an infinite-type scheme due to the presence of infinitely many connected
components, but it remains a well-behaved scheme where each component
is an abelian variety.
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• For SL2 bundles, even on relatively simple curves like P1, the situation
becomes significantly more complicated due to the potential for automor-
phism groups of arbitrary dimension. As the bundle degenerates, the
size of its automorphism group increases correspondingly. To understand
this concretely, consider line bundles on P1. We have Pic(P1) = Z because
Jac(P1) = 0, implying that all line bundles are of the form O(n) = O(1)⊗n
for some degree n ∈ Z.

The line bundle O(1) can be described using two charts on P1 = A1∪{∞}:
U∞ = P1−{0} and U0 = A1∪{∞}. On A1, every vector bundle is trivial, a
result that follows from a theorem in commutative algebra (due to Quillen,
in response to a question by Serre), which states that vector bundles over a
polynomial ring in one variable are equivalent to finite projective modules,
and all such modules are free.

Now, observe that the intersection U0 ∩ U∞ = A1 − {0} = Gm, the mul-
tiplicative group of nonzero scalars. To glue the two charts, we need a
regular function g : U0 ∩ U∞ → Gm, called the clutching map, which de-
scribes the transition from the∞-chart to the 0-chart. This function must
be non-vanishing, and it takes the form g(z) = c · zn for some constant
c ̸= 0. Since this constant can be absorbed by rescaling, we may choose
c = 1, giving the clutching function g(z) = zn. The corresponding line
bundle is therefore O(n).

In particular, if P → X is a G-bundle, the sections are maps that split the
projection, meaning their composition gives the identity. We can discuss sections
for principal bundles, vector bundles, and line bundles. For the line bundleO(n),
the sections are pairs (f0, f∞) such that f0 = znf∞, where f0 is a polynomial in
z and f∞ is a polynomial in z−1. From this relation, we see that f0 is determined
by f∞, and since f∞ is a polynomial of degree at most n, the space of sections
has dimension n+ 1.

Now, suppose we have a GL(2) or SL(2) bundle of the form O(n) +O(−n), so
that the transition matrix is

g =

Å
zn 0
0 z−n

ã
.

The automorphisms of E consists of matrices of the form

Aut(E) =


Å
a11 a12
a21 a22

ã
|
a11, a22 ∈ C,
a21 = 0,
a12 ∈ Γ(O(2n))


where the second line follows from f0 = znf∞ which implies that

dimΓ(O(n)) =
®
n+ 1, n ≥ 0

0, n < 0
.
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The third condition follows from the fact that

Hom(O(n),O(−n)) = Hom(O,O(−2n)) = Γ(O(−2n)) = 0,

for n > 0, and Γ(O(2n)) is a space of dimension 2n + 1. Therefore, the auto-
morphism group Aut(E) consists of matrices of the form:

Aut(E) = {
Å
c α
0 c−1

ã
}, dim Aut(E) = 2n+ 2

where α has dimension 2n+1. We can now conclude that dim Aut(E) = 2n+2.
So this explains that the stack is complicated for SL2 bundles.

When the genus of X is greater than 1, this stack becomes even more compli-
cated, which is why Langlands theory and Hitchin systems theory are so rich.

2.2.3 Classification of Rank 2 Vector Bundles on P1

For those more familiar with analytic techniques, we can also approach this
using complex numbers through the lens of geometry of holomorphic bundles.

Theorem 2.7. Every rank 2 vector bundle E on P1 is isomorphic to O(m) ⊕
O(n) for some unique m ≤ n.

Proof. Uniqueness: We can recover the value of n from E by using the fact
that n = max(i | Hom(O(i), E) ̸= 0), because for i > M,N , there will be no
non-zero maps into the direct sum.

Existence: Let E be a fixed rank 2 vector bundle on P1. It has a meromorphic
section because it trivializes on some open set, either U∞ or U0, where there
exists a meromorphic section with a pole at the missing point. This gives a map
φ ̸= 0, φ : O(m)→ E, where φ is non-vanishing.

A subsection is a map from O(m) → E, but for the subsection to be mero-
morphic, it must have poles. To ”kill” these poles, we take a negative m to
account for them. This is a reasonable assumption because if we had a map
where the entire fiber vanishes at some point, we would avoid this by rescaling
m appropriately.

Thus, we have a short exact sequence:

0→ O(m0)→ E′ → O(mj)→ 0.

The classification of extensions is given by:

Ext1(O(n),O(m)) = H1(P1,O(m− n)) Serre dual
= H0(P1,O(n−m)⊗K),

where K = O(−2). If m ≥ n− 1, then n−m− 2 < 0, implying that Ext1 = 0,
and thus E = O(m) ⊕ O(n). Therefore, we have nothing further to prove in
this case.

46



Assume m < n − 1. Let r be the maximal integer such that Hom(O(r), E) ̸=
0. This integer exists because it corresponds to a position in the long exact
sequence.

We can realize this bundle by:

g =

Å
zm f(z)
0 zn

ã
,

where f(z) is a Laurent polynomial. We can change g by conjugating with
matrices:

h1 =

Å
1 φ(z)
0 1

ã
, h2 =

Å
1 φ(z−1)
0 1

ã
.

It is left as an exercise to show that we can reduce f to a form where it consists
of monomials zs for m < s < n.

A map O(r)→ E is a subsection of O(−r)⊗ E. The transition map is:Å
zm−r z−rf(z)
0 zn−r

ã
.

A subsection consists of a pair:ÅÅ
x0(z)
y0(z)

ã
,

Å
x∞(z)
y∞(z)

ãã
,

with x0(z) = zm−rx∞(z−1)+z−rf(z)y∞(z−1) and y0(z) = zn−ry∞(z−1). These
expressions have no monomials below degree r, so we can ignore x0 and y0 and
only focus on x∞ and y∞. Thus, we can bound deg(y∞) ≤ n− r and show that
f(z)y∞(z) has no terms of degree between m+ 1 and r.

With n − r + 1 unknowns (the coefficients of the polynomial f(z)y∞(z)) and
r−m linear homogeneous equations, nonzero solutions exist if r−m < n−r+1,
or equivalently, if r ≤ m+n

2 . Hence, we have:

0→ O(rmax)→ E → O(r′)→ 0,

where r′ = m+ n− rmax ≤ m+n
2 . This sequence splits, and we conclude:

0→ O(rmax)→ E → O(r′)→ 0,

which implies that E ∼= O(rmax)⊕O(r′). Thus, we are done.

Corollary 2.8 (Grothendieck). Rank n vector bundles on P1 are uniquely of
the form O(m1)⊕ · · · ⊕ O(mn), where m1 ≤ · · · ≤ mn.
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Proof. Proof is via induction: Suppose we have the sequence

0→ O(m0)→ E → O(m1)⊕ · · · ⊕ O(mn)→ 0.

This implies there exists a sub-bundle E′j ⊂ E such that:

0→ O(m0)→ E′ → O(mj)→ 0.

Assume m0 is the maximal value in E, so m0 ≥ m0+mj

2 =⇒ m0 ≥ mj . This
implies that the extension splits.

Thus, when we consider the stack BunSL2
(P1), we observe that bundles become

more and more degenerate as the index increases: P0
∼= O(0)2, P1

∼= O(1) ⊕
O(−1), P2

∼= O(2) ⊕ O(−2), . . . . The closure of each point in the stack is the
union of successive bundles, and this suggests that the closure of the point P0

contains all other bundles.

Next, we discuss the tangent bundle of BunG. When the genus of X is greater
than or equal to 2, BunG, although a stack, has a large open set of stable bundles,
which forms a smooth variety. This enables us to consider its cotangent bundle
and perform symplectic geometry on it. In particular, this bundle carries an
integrable system known as the Hitchin system, which we will construct, discuss
its integrability, and explore its quantizations.

2.2.4 Principal G-bundles on P1

Let’s generalize Grothendieck’s theorem to an arbitrary connected reductive
group, using a reformulation of the original theorem that makes it applicable to
any connected reductive group.

Recall that rank-n vector bundles are the same as GLn-bundles. Since GLn is
the group of invertible n× n matrices, it contains a maximal torus T , which is
the set of diagonal matrices, or equivalently, T = (C×)n.

Theorem 2.9 (Grothendieck’s Theorem, reformulated). Every GLn-bundle on
P1 is associated to a T -bundle.

In other words, the structure group of the bundle reduces to the torus. More-
over, the same G-bundle can be realized as a collection of T -bundles, since the
ordering of m1, . . . ,mn is significant for T -bundles but not for G-bundles. Fur-
thermore, if E1 and E2 are T -bundles on P1, then E1 ×T GLn ∼= E2 ×T GLn if
and only if there exists a permutation σ ∈ Sn such that E1

∼= σ(E2). Now, if
G is a connected reductive group, T ⊂ G is a maximal torus, and N(T ) ⊂ G is
the normalizer of T , the Weyl group W = N(T )/T acts on T .

Theorem 2.10. Any G-bundle on P1 is associated to a T -bundle E, and

E1 ×T G ∼= E2 ×T G

if and only if E1
∼= w(E2) for some element w ∈W .
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Although we won’t provide a proof, it can be shown by reducing to the case of
vector bundles and considering the representations of G.

Now, suppose T is a torus. How can we classify T -bundles on P1? We know
that T ∼= (C×)n, meaning T can be viewed as an n-tuple of integers in a non-

canonical way. More canonically, the cocharacter lattice is given byX×(T )
def
=

Hom(C×, T ). It is clear that this is canonical when we recall that a T -bundle
on P1 is defined by a transition map g(z) : U∞ → U0 of the form

g : C× → T ≃
(
C×
)n

given by

z →

á
c1z

m1

c2z
m2

...
cnz

mn

ë
.

Thus, we have the identification

{T -bundles on P1} ∼= X×(T ).

The theorem states that G-bundles on P1 are classified by X×(T )/W , where W
is the Weyl group.

Remark 2.11. The cocharacter lattice X×(T ) is equivalent to the weight lattice
Λ∨ of the Langlands dual group G∨. A connected reductive group, by definition,
has a root datum consisting of a root system, a dual root system, a weight lattice,
and a dual weight lattice. The root system defines an involution, allowing the
exchange of roots with coroots and weights with coweights. This involution also
swaps the group G with its Langlands dual group G∨, for instance, exchanging
SLn with PGLn and Sp2n with SO2n+ 1. Langlands duality establishes a deep
connection between objects associated with G and those related to G∨. A simple
example of this duality is given by the identification

X×(T )/W = Λ∨/W = Λ∨+

where Λ∨+ denotes the dominant integral weights, which correspond to the ir-
reducible representations of G∨. Thus, we have a bijection between principal
G-bundles on P1 and irreducible representations of G∨.

2.3 Double Quotient Realization of BunG(X) and Number
Theory

2.3.1 The Construction

Consider a smooth irreducible projective curve X, a split connected reductive
group G over k, and attach to this data the moduli stack BunG(X) of principal
G-bundles on X. This is a very complicated object, but fortunately, most of the
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complications are not relevant for our purposes. Earlier, we defined BunG(X)
through its functor of points - let’s now develop a more explicit way to define
it.

For simplicity, assume that G is semisimple and k is an algebraically closed
field, so that E ∈ BunG(X) trivializes once you remove any point (by Harder’s
theorem). We fix a point x ∈ X, and cover X by two charts: X \ x and a
(formal) disk Dx around x. With bundles and these two charts, there is no 1-
cocycle condition, and we can simply fix one transition map. The intersection is
the punctured disk D×x = (X \x)∩Dx. To be more precise, let R = O(X \x) be
the ring of regular functions on the affine curve X \x. If t is a formal coordinate
at x, we can define

O := O(Dx) ∼= k[[t]],

K := O(D×x ) ∼= k((t))

Note that O(X \ x) ⊂ K is similar to a ring of integers, so we have a non-
Archimedean valuation ≥ 0. We can embed R ↪→ K by taking the Laurent
expansion. To perform this Laurent expansion, we need to choose a coordinate,
but it is easy to show that, canonically, the inclusion does not depend on the
choice of coordinates. Bundles E are defined by the transition map g(t) : Dx →
X \ x, where g ∈ G(K) is defined by g 7→ h1gh

−1
2 , with h1 ∈ G(R) and h2 ∈

G(O).

Thus, we have proved the following:

Proposition 2.12.

BunG(X) ∼= G(R)\G(K)/G(O).

Consider the affine Grassmannian GrG = G(K)/G(O). The G-bundles corre-
spond to orbits of G(R) on GrG.

We can generalize this by removing finitely many points from X. Let S ⊂ X be
a finite subset with S ̸= ∅. We have two charts: U1 = X \S and U2 =

⋃
x∈S Dx,

so
U1 ∩ U2 =

⋃
x∈S

D×x .

Thus, we can write

BunG(X) = G(X \ S)\
∏
x∈S

G(D×x )/
∏
x∈S

G(Dx).

This description is valid for semisimple groups, which have the property that we
can trivialize any bundle by removing just one point. However, for G = C×, the
simplest example of a reductive group, this is not the case, and there is no set
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S that we can remove to trivialize all possible bundles. One might think that
removing all points results in an empty set, but in algebraic geometry, we allow
functions that have poles at all those points. Thus, we can consider arbitrary
meromorphic or rational functions, and we should replace the ring R with the
field of rational functions on the curve.

The further generalization is to take the colimit with respect to S, which gives

BunG(X)(k) = G(k(X))\
′∏

x∈X
G(D×x )/

∏
x∈X

G(Dx).

The prime on the product indicates the restricted product, meaning that only
finitely many coordinates are not in G(Dx) (i.e., have a pole).

If k is not algebraically closed, we proceed similarly but with S ⊂ X(k) that
are Galois-invariant. In this case, we obtain

BunG(X)(k) = G(k(X))\
∏

x∈X(k)/Gal(k/k)

G(D×x )/
∏
x∈X

G(Dx).

Example 2.13. If k is finite, then F := k(X) is a global field, and the first
product is a product over all valuations of k(x). We get

BunG(X)(k) = G(F)\G

Ñ
′∏

v∈Val(F)

Fv

é
/G

Ñ
′∏

v∈Val(F)

Ov

é
.

2.3.2 Number Theory

This is called the arithmetic quotient and the name comes from number
theory. Here, we have a global field of characteristic p because k is a finite field,
but there are also global fields of characteristic 0 which are the number fields:
the finite extensions of Q.

Definition 2.14. If F is a global field, the ring of adèles is

A := Ap :=
∏

v∈Val(F )

Fv

Over global characteristic p, all valuations have this form. However, for number
fields, there are two kinds of valuations: Archimedean (embeddings of the field
into R and C, with the usual absolute value) and non-Archimedean (such as
p-adic valuations). The prime in the product in this case makes sense for non-
Archimedean valuations.

Let OA =
∏
v∈Valnon-Archimedean(F )Ov. Then

M := G(F )\G(A)/G(OA)

as a generalization. Therefore, if F = k(X), we getM = BunG(X)(k).
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Example 2.15. Take F = Q with Val(F ) = p,∞, where p corresponds to
Q ↪→ Qp and ∞ corresponds to the usual absolute value valuation. We have

A = R×
′∏
p

Qp, OA =
∏
p

,

and

M = G(Q)\G(R)×
′∏
p

G(Qp)/G(Zp).

In number theory, it is important that this is equal to G(Z)\G(R).

• If G = Sp2n, we get

Sp(2n,Z)\Sp(2n,R)/U(n) = An

.

• If G = SL2, we get
SL2(Z)\SL2(R)/U(1),

but SL2(R)/U(1) is the upper half-plane (so we use modular forms), mean-
ing this equals A1.

Langlands wanted to understand modular forms and their higher-rank general-
izations. To do this, we often need to use algebraic geometry tools.

It is important to note that the arithmetic quotient is well-defined for any re-
ductive group, and we no longer need the semisimple condition because we have
removed all of the points. If we move to the field of functions, any G-bundle
will be trivialized, since, as we saw earlier, they are all Zariski locally trivial.

If G = GL1, we get
Jac(X) = C(X)×\A×/O×A ,

where A×/O×A is the group of divisors on X · C× and C(X)×.

2.4 Hitchin Systems

2.4.1 Stable Bundles

For the purposes of this course, the Hitchin system is an integrable system.
Integrable systems live on symplectic manifolds, so we need to introduce one.

The most common symplectic manifolds are cotangent bundles of ordinary man-
ifolds. We want to define T ∗BunG(X). Note that BunG(X) is neither a manifold
nor a scheme - it is a smooth stack, so locally it is the quotient of a smooth
variety by an algebraic group. For such objects, we can define the cotangent
bundle and cotangent spaces as complexes, but we won’t go into this here.
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Assume that the genus g ≥ 2 and G is simple and adjoint (i.e., it has no center).
Consider an open set. BunG(X) is a stack, and the main feature of a stack
compared to a scheme is that points have automorphisms. However, generic
bundles have trivial automorphism groups and form a smooth algebraic variety
Bun0G(X). The first part implies that they correspond to a locus, which means
in our presentation the group acts freely and stabilizers are trivial. The second
part implies that, as long as we restrict to an open set, this stack (which is a
functor of points) is representable by some variety. There are many ways to
choose this open set—one nice way is to consider stable bundles:

Consider G = PGLn. Then G-bundles are rank n vector bundles modulo line
bundles. For stable bundles, the ”modulo line bundles” condition doesn’t matter
because stability is preserved when we tensor the bundle with a line bundle.

If E is a vector bundle on X, then we have two integers associated with it: the
degree d(E) (the first Chern class) and the rank r(E) (the dimension of the
fiber). We can now define the slope:

Definition 2.16. The slope of E is defined as

µ(E) =
d(E)

r(E)
.

The purpose of defining the slope is to show what it means for E to be stable.

Definition 2.17. E is stable if for all sub-bundles, O ̸= E′ ⊊ E, µ(E′)µ(E).

Why did we define these?

Theorem 2.18. Stable bundles form a smooth variety, which is an open subset
of BunG(X).

Exercise 2.19. If L is a line bundle and E is a vector bundle, show that E is
stable if and only if E ⊗ L is stable.

So, generic bundles are stable and have no nontrivial automorphisms. We define
Bun0G(X) as the moduli space of stable bundles, which is a smooth variety.
We can now consider µ0

G = T ∗Bun0G(X). This is where the Hitchin system
will initially live. However, there is a partial compactification, which is also a
smooth variety, that creates the Hitchin moduli space, and the Hitchin system
naturally lives on this compactification.

2.4.2 Higgs Field

What is the dimension of Bun0G(X)? To answer this, we need to ask: what is
TEBun

0
G(X)? This is the deformation space of E.

Exercise 2.20. Deformations of E are classified by H1(X, ad(E)), where ad(E)
is the adjoint bundle, the vector bundle associated with E corresponding to the
adjoint representation.
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Example 2.21. Consider G = GLn as a vector bundle. The deformations
of E are similar to the deformations of projective modules over the sheaf of
functions on X of rank n. Deformations of modules over any ring are classified
by Ext1(E,E) because deformation means defining a module over the ring of
dual numbers k[[h]]/h2, and our module is free in this view. So, in our case, the
deformations are classified by

Ext1(E,E) = Ext1(O, E∗ ⊗ E)

= H1(X, ad(E))

.

Consider T ∗EBun
0
G(X) = H1(X, adE). By Serre duality, this is equivalent to

H0(X, (adE)∗⊗KX). But there is a trace form on the Lie algebra g given by the
Killing form, so ad has an invariant inner product which implies (adE)∗ = adE,
leaving us with

H0(X, (adE)⊗KX) = H0(X,KX ⊗ adE).

What is the dimension of H0(X,KX ⊗ adE)? Recall the Euler characteristic

χ(X,KX ⊗ adE) = dimH0(X,KX ⊗ adE)− dimH1(X,KX ⊗ adE).

In geometry, this doesn’t change under deformations. But dimH1 = 0 for
generic bundles, which is intuitive because χ is invariant. If we take a non-
generic bundle, dimH1 will be positive and dimH0 will be larger, which is
what happens when we have singularities—the tangent space at a singularity is
larger than the tangent space at a generic point. So, computing dimH0(X,KX⊗
ad(E)) is equivalent to computing the Euler characteristic.

If our group is adjoint we have to be slightly more careful because we have
several connected components of BunG but if it is simply connect when can
compute χ for the trivial bundle (because χ is deformation invariant), which is
given by

dimH0(X,KX) dim g− dimH1(X,KX) dim g.

but H0(X,KX) dim g = g and H1(X,KX) = H0(X, 0)∗ = C by Serre duality,
and we are left with

dimH0(X,KX ⊗ adE) = (g − 1) dim g

for semisimple groups.

If G = C×, then BunG(X) = Jac(X), which has dimension g. For G a general
reductive group,

dimBunG(x) = (g − 1) dim g+ dimZ(g).
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Example 2.22. For G = GLn,

dimBunG(x) = (g − 1)n2 + 1.

This has a clear and vivid geometric interpretation: it corresponds to the 1-
forms on X with coefficients in ad(E). These objects are significant in physics,
and they lead us to define the space of Higgs fields.

2.4.3 The Hitchin Integrable System

Let’s (finally) define the Hitchin integrable system on T ∗Bun0G(X).

Definition 2.23. An integrable system is a collection of Poisson commut-
ing functions that are functionally independent, where the number of functions
equals half the dimension of it’s symplectic manifold.

We can think of it as follows: if we make these functions into a vector, we
have map to a vector space of dimension dimBun0G(X), which is a Lagrangian
fibration. Generically, a Lagrangian fibration corresponds to the functions being
functionally independent and forming an involution.

Example 2.24. For SLn, dimBun = (n2 − 1)(g − 1), and

Bun0G(X) = {(E, ϕ)}.

where E is a stable bundle and ϕ is a Higgs field.

Definition 2.25. The Hitchin map is

p : T ∗Bun0G(X)→
n−1⊕
i=1

H0(X,K⊗i+1
X )

(E, ϕ) 7→ (Tr ∧2 ϕ,Tr ∧3 ϕ, ...,Tr ∧n ϕ)

where Hitch :=
⊕n−1

i=1 H
0(X,K⊗i+1

X ) is called the Hitchin base

By Riemann-Roch, the dimH0(X,K⊗i+1
X ) = (2i+ 1)(g − 1) so

dim⊕n−1i=1 H
0(X,K⊗i+1

X ) = (n2 − 1)(g − 1).

Since ϕ is a 1-form, Trϕ2 is a quadratic differential, Trϕ3 is a cubic differential,
and so on, making the map well-defined.

Theorem 2.26 (Hitchin). The Hitchin map is an integrable system.

Hitchin’s theorem implies that coordinate functions on B are pulled back by
p. Let d = dimB = (n2 − 1)(g − 1). The basis H1, ...,Hd Poisson commute
on T ∗Bun0G(x): {Hi, Hj} = 0 and are functionally independent. Therefore,

p(E, ϕ) =
∑d
j=1Hj(E, ϕ)bj .
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Let’s generalize to an arbitrary semisimple G. Before we do this, recall Cheval-
ley’s Theorem: C[g]G = C[P1, . . . , Pr] where r = rank(G), and the Pi are ho-
mogeneous with degree degPi = di.

Example 2.27.
C[sln]sln = R[TrA2,TrA3, ...,TrAn].

Let P ∈ C[g]G be a homogeneous element of degree m, and let (E, ϕ) be a Higgs
pair, where E is a G-bundle and ϕ ∈ Ω1(X, ad(E)). To this data, we associate
P (ϕ).

The fibers of adE are copies of g and we have clutching maps which are con-
jugations by some element of this group, so the fiber of this bundle cannot be
canonically identified with g. Fortunately, we can identify it canonically with g
up to conjugation, so if we have a conjugation invariant function on g, we can
canonically compute it for ϕ. Since ϕ is a 1-form, we obtain an m differential
and we can conclude that ϕ ∈ H0(X,K⊗mX ).

We now define the Hitchin base B =
⊕r

i=1H
0(X,K⊗diX ), where di are the

degrees associated with the group G. Recall that 2di − 1 corresponds to the
degrees of the generators of the cohomology ring of G. Therefore, the dimension
of B is given by

dimB =
∑
i

(2di − 1)(g − 1) = (g − 1) dimG = dimBun0G(X).

We may now define

p : T ∗Bun◦G(X)→ B

(E, ϕ) 7→ (P1(ϕ), . . . , Pr(ϕ))

Theorem 2.28 (Hitchin). This is an integrable system.

Hitchin proved it for classical groups, and later others completed the proof
for exceptional groups. We will explain the proof in the case SLn or GLn.
The proof consists of two parts: these functions define an involution, and they
are functionally independent. For the second part, functional independence is
equivalent to showing that the map is a dominant map.

2.4.4 Marsden-Weinstein Symplectic Reduction

For G = SLn.

Part 1: Poisson Commuting

Let’s start by explaining Hamiltonian reduction in the simple case of cotangent
bundles. Let Y be a manifold (or variety), and H a Lie algebra (or group)
acting on Y on the right. Then H acts by Hamiltonian transformations on
T ∗Y because the symplectic form on the cotangent bundle is canonical and
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therefore preserved by the action of any group that acts on Y . Moreover, this
action is Hamiltonian, meaning the action is defined by some Hamiltonian or
equivalently, there exists a moment map

µ : T ∗Y → h∗

dual to the action map

a : h→ Vect(Y ) = Γ(Y, TY ),

such that
µ(x, p)(b) = (p, a(b)x), ∀(x, p) ∈ T ∗Y, b ∈ h.

Theorem 2.29 (Marsden, Weinstein). Suppose H acts freely on Y . Then
µ−1(0)/H ∼= T ∗(Y/H) has a natural symplectic structure.

We can use this to construct integrable systems: Suppose dimY/H = n, and
F1, . . . , Fn are Poisson commuting functions on T ∗Y . {Fi, Fj} = 0 and Fi are
H-invariant, so they descend to functions Fi on T ∗ (Y/H). Then {Fi, Fj} =
0, where F : T ∗Y → C are H-invariant and F is the descent of F |µ−1(0) to
µ−1(0)/H ∼= T ∗ (Y/H). It is easy to check that these functions are an involution
downstairs on T ∗ (Y/H), and there are exactly the right number of them to
form an integrable system. If they happen to be functionally independent, then
F1, . . . , Fn form an integrable system on T ∗(Y/H). Note that there are too
few functions to form an integrable system on T ∗Y , so we must descend to
T ∗ (Y/H).

This is a powerful method to construct integrable systems, and we will use
them in our case, except we will start with something of infinite dimension.
This method is good because it can be hard to check that certain functions
are an involution, especially if we don’t have an effective way of writing them
down explicitly. However, often it is the case that upstairs on Y , F1, . . . , Fn
Poisson commute for some trivial reason. For example, if Y is a vector space,
on T ∗Y we have coordinate and momentum variables, and often F1, . . . , Fn only
depend on momentum so they Poisson commute. When we go downstairs to
the quotient, things become less trivial. Luckily, we don’t have to check they
Poisson commute because it follows from the construction.

Let’s now apply this to the Hitchin system. Recall that BunG0(X) = G(X \
x)\G(K)/G(O), K = C(D∗x) ∼= C((t)), O = C[Dx] ∼= C[[t]], and set G0(K) ⊂
G(K) as the preimage of Bun0G(X). On G0(K), this acts on G(X\x)×G(0) al-
most freely, with stabilizer Z(G). So T ∗BunG0(X) is the Hamiltonian reduction
of the loop group Y = T ∗G0(K) by H = G(X\x)×G(0).

To construct an integrable system downstairs, we need to find some commuting
elements upstairs. Y is a Lie group, so we have

T ∗G0(K) = G0(K)× g((t))∗.
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But for a ∈ g((t)), b ∈ g((t)) dt, we can define the pairing

(a, b) = Rest=0⟨a(t), b(t)⟩,

so we have g((t))∗ = g((t)) dt and

T ∗G0(K) = G0(K)× g((t)) dt.

We have considered (g, ϕ) where ϕ is the Higgs field x on D×, so we can take
Pi(ϕ) ∈ C((t))( dt) di. Define

Hi,n := Res(tnPi(ϕ)), ∀ 1 ≤ i ≤ r and n ∈ Z.

Observe that Hi,n depends only on momenta on T ∗G0(K), which implies

{Hi,n, Hj,m} = 0.

Momenta on T ∗(G) commute like Lie algebra elements but over Pi, they are
G-invariant so they Poisson commute. In other words, the dual space of a
Lie algebra is a Poisson manifold (with Poisson structure coming from the Lie
bracket), but invariant functions lie in the center of the Poisson algebra, so
they still Poisson commute. The group is nonabelian and the momenta don’t
commute, but the invariant functions of momenta commute with momenta and
thus with each other:

T ∗G0(K)
⊕

iC((t))(dt)di

µ−1(0)

T ∗Bun0G(X)
⊕

iH
0(X,K⊗diX )

(H1,...,Hr)

p̃

p

commutes where the right map is the Taylor series expansion of differentials.
Additionally, this map is injective by analytic continuation.

Part 2: Independence

Suppose b = (b2, . . . , bn) ∈ B =
⊕n−1

i=1 H
0(X,K⊗i+1

X ) where bj ∈ H0(X,K⊗jX ).
For convenience, we will redefine

p(E, ϕ) = (Tr ∧2 ϕ,−Tr ∧3 ϕ, ..., (−1)nTr ∧n ϕ).

Consider the polynomial λn+ b2λ
n−2 + ...+ bn = (λ−λ1)...(λ−λn). Note that

λi are all 1-forms on X, but we have an Galois group action so they are not
single valued. When we go around the Hitchin base, the λi will be be permuted.
Let x ∈ X. This factorization allows us to write {λ1(x), . . . , λn(x)} ⊆ T ∗xX.
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This gives a subset Cb ⊂ T ∗X consisting of λi(x) for various x. In fact, Cb is an
algebraic curve inside the surface T ∗X defined by the equation λn+b2(x)λ

n−2+
...+ bn(x) = 0. Furthermore, we have a projection π : Cb → X of degree n.

Definition 2.30. The curve Cb is called the spectral curve of b.

Suppose we have (E, ϕ) ∈ T ∗Bun0G(X) and attach p(E, ϕ) = (b2, . . . , bn), where
bi are coefficients of the characteristic polynomial of ϕ. Thus,

λn + b2λ
n−2 + ...+ bn = det(λ− ϕ),

where λi(x) are the eigenvalues of ϕ(x) for x ∈ X. The name ”spectral” comes
from the fact that Cp(E,ϕ) is traced out by the spectrum of ϕ(x) when x varies
along X. Because ϕ ∈ Ω1(X,EndE) is a 1-form, the eigenvalues are also 1-forms
(not functions) and live in T ∗X.

Why is this curve useful when studying the Hitchin integrable system? Because
C(E, ϕ) depends only on the b of p(E, ϕ). Now, it is natural to ask: can we
recover (E, ϕ) from C and something else?

Theorem 2.31 (Hitchin). C is smooth and irreducible for generic b.

The proof is not hard but we will not present it.

If we have ϕ whose spectral curve is C, then we have an eigenline bundle
Lϕ on C: the fiber of Lϕ at λ ∈ C (which projects to x ∈ X) is the eigenline
of ϕ(x) with eigenvalue λ. In the generic case where all of the eigenvalues are
distinct, we can attach to a point λ ∈ C a certain line which is the line of ϕ
with eigenvalue λ, giving us a line bundle on the spectral curve. We have to be
slightly more careful when the eigenvalues collide, but it is similar.

Proposition 2.32.
E ∼= π∗Lϕ.

Algebraically, if we have a module over functions on C, it is a module over
functions on X by π. Geometrically, when the eigenvalues are distinct, Ex =⊕

λ∈π−1(x)(Lϕ)λ. Suppose Lϕ has degree d, which follows from the fact that
the moduli space is connected and reducible, and the degree is a topological
invariant. Thus,

Lϕ ∈ Picd(Cb) ∼= Jac(Cb).

Moreover, if we know Lϕ, we can recover (E, ϕ) from Lϕ. This implies that
p−1(b) ⊂ T ∗Bun0G(X) gets identified with a subset of Jac(Cb). This is exactly
what we want because this shows that there is a linear flow some torus on the
integrable system.

It remains to show for generic b,

dim p−1(b) = (n2 − 1)(g − 1)

59



and not larger because then there would be undesired functional dependence.
To estimate the dimension of the fiber, we know that the fiber is contained in
the Jacobian of a curve, so we can just compute the genus.

Consider the group G = GLn and a curve C defined by λn + b1λ
n−1 + ...+ bn.

Theorem 2.33. The genus of C is

n2(g − 1) + 1 = Bun0GLn
(x).

Proof. Compute the genus when b1, . . . , bn−1 = 0 and C is given by the equation
xn + bn(x) = 0. We map C → X,n → 1 if bn(x) ̸= 0. Note that bn ∈
H0(X,K⊗nX ) has degree (2n−2)n, so generically, bn has this many zeros. Thus,
we compute the Euler characteristic of C as follows:

χ(C) = ((2− 2g)− (2g − 2)n)n+ (2g − 2)n

= n2(2g − 2).

This gives the genus of C:

g(C) =
2 + n2(2g − 2)

2
= 1 + n2(g − 1).

Therefore, we conclude that p−1(b) is dense in Jac(C), and the dimension of
p−1(b) is bounded by

dim p−1b ≤ 1 + n2(g − 1) = dimBun0G(x),

completing the proof.

2.5 Bundles with Parabolic Structure

2.5.1 Principal Bundles

We continue our discussion of Hitchin integrable systems from earlier, prior to
the proof. In this section, we will compute a few examples. Unfortunately,
computing for curves of genus ≥ 2 is quite complex, as the moduli space BunG
is icomplicated and difficult to express in explicit coordinates. While Hitchin
managed this for GLn, the computations are still quite challenging. Therefore,
we will instead consider a generalization of Hitchin systems, which includes
punctured curves. This generalization allows for a non-trivial structure when
the genus is 0 or 1, providing a more desireable setting for explicit calculations.

Suppose G is a connected reductive group, H ⊂ G, and E is a G-bundle on X.

Definition 2.34. An H-structure at x is an H-orbit in Ex.
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There are exactly G/H choices for the H-structure and H only matters up
to conjugation because right-multiplication by g ∈ G transforms an H-orbit
into a gHg−1-orbit. Fix distinct t1, . . . , tN ∈ X, and let P1, . . . , Pn ⊂ G be
parabolic subgroups (containing Borel subgroups, ie. the quotient G/P is a
projective variety). For GLn, a simple example arises when n = n1 + · · ·+nr is
a composition, corresponding to the upper triangular block matrices with block
sizes n1, . . . , nr. The smallest parabolic occurs when ni = 1 for all i.

Definition 2.35. BunG(X, t1, . . . , tN , P1, . . . , PN ) is the moduli stack of G-
bundles on X with a Pi-structure at ti for i = 1, . . . , N .

For G = GLn, G-bundles correspond to vector bundles of rank n. Let E be
the rank n vector bundle and E be the corresponding GLn-bundle. Canonically,
the fiber is Ex = {bases in Ex}, which is a classic example of a torsor over GLn
because we can perform change of basis via a matrix. In particular, if P is a
parabolic subgroup, i.e., the stabilizer of a partial flag 0 ⊂ V1 ⊂ · · · ⊂ Vr =
V , where the dimensions of the quotients Vi/Vi−1 are given by ni, then a P -
structure is a set of bases compatible with this flag. Specifically, there is a subset
of the bases that forms a basis for each of the spaces Vi. Thus, a P -structure is
equivalent to fixing a flag.

Example 2.36. For G = GL2,

Pi = B =

ßÅ
∗ ∗
0 ∗

ã™
.

Thus, a B-structure on E at x ∈ X is simply a line ℓ ∈ Ex. We then have a
fibration BunG(x, t1, . . . , tN , P1, . . . , PN )→ BunG(X) with fiber G/P1×G/P2×
...×G/Pn.

We care about these structures because they allow us to consider the cases
g = 0 and g = 1. Adding this data means that the automorphism groups of
the bundles must preserve it, which makes the automorphism group smaller,
thus creating more objects with a trivial automorphism group. If N ≥ 3, then
a generic G-bundle on P1 with parabolic structures has a trivial automorphism
group. Let E be the trivial bundle. Then, Aut(E) = PGL2, since a holo-
morphic function on a compact Riemann surface must be constant. However,
we have parabolic structures ℓ1, . . . , ℓN , where ℓi ∈ PEti = P1. Thus, the set
BuntrivG (x, t1, . . . , tN ), the bundles with parabolic structures and trivial auto-
morphism group, is given by (P1)N/PGL2. This contains an even smaller open
set (y1, . . . , yn). It is well known that PGL2 acts trivially on triples of distinct
points on P1, and there is a theorem stating that there is a unique element in
PGL2 that maps these points to 0, 1, and ∞. Therefore, we want

(P1)N−3 ⊂ (P1)N/PGL2

which is a variety.

From now on, we will live on (P1)N/PGL2, which is still a stack but simpler
than the general version. Now, we can do simpler calculations using coordinates
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(Y1..., YN ) ∈ (P1)N with yi ∈ P1 = C ∪∞. In general,

BuntrivG (X, t1, . . . , tN , P1, . . . , PN ) ∼=

(∏
i

G/Pi

)
/Gdiagonal.

2.5.2 Classical Hitchin Systems

Recall that we constructed the Hitchin system by realizing BunG as a double
quotient and descending a certain collection of Hamiltonians upstairs on the
quotient bundle of the loop group down to the double quotient. We can do the
same with parabolic structure. Recall that

BunG(X) = G(X \ {t1, . . . , tN})\
∏
i

G(D×ti )/
∏
i

G(Dti).

Now, we take the same Hamiltonians Hi,j,n := ResPti(ϕ)z
n
j on T ∗G((H×t1)) ×

...× T ∗(D×tn), and do the reduction to G(X\{ti})×
∏
P̃i

If we want to fix parabolic structures, we should modify
∏
iG(Dti). We have

ev : G(D) → G, where ev(g(z)) = g(0). Then we can define P̃i = ev−1(Pi),
which gives an integrable system on T ∗BunG(t1, . . . , tN , P1, . . . , PN ). Points of
this space are (E, ϕ) where E is a parabolic bundle and ϕ is a Higgs field with
singularity. More precisely, we have the condition that

ϕ ∈ Ω1(X\{ti}, adE)

has at most first order poles at ti and the residue strictly preserves (lies in the
unipotent of StabFi) the flag Fi at Ti. In the general case GLn, this means
flags are a filtration on our space, and strictly preserves means that it maps i-th
piece of the filtration to i− 1, so it acts by 0 in the associated gradient.

Exercise 2.37. Check that we have the right condition.

2.5.3 The Garnier System

For PGL2, ϕ has simple poles at ti, and Restiϕ is nilpotent and act by 0 on
ℓi ⊂ Et. Now let’s compute the Hitchin system for PGL2 in genus 0. Assume
t1, . . . , tN ∈ A1 ⊂ P1 and the parabolic structure at ti is yi ∈ A. The Higgs field
ϕ is a 1-form with simple poles at t1 valued in sl2:

ϕ =

N∑
i=1

Ai
z − zi

dz

with Ai ∈ sl2 with

• Regular at ∞ because there must not be a puncture there. Our form is
regular at ∞ if it has 2nd order decay. Our condition is equivalent to∑N
i=1Ai = 0.
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• Ai are nilpotent: Ai

Å
yi
1

ã
= 0. GivenA

Å
a b
c d

ã
= 0, we have

Å
a b
c d

ãÅ
yi
1

ã
=

0 which implies ay + b = 0, cy + d = 0 giving us

A =

Å
cy −cy2
c −cy

ã
=⇒ Ai = pi

Å
yi −y2i
1 −yi

ã
where pi momenta coordinates with symplectic form

∑
dyi ∧ d pi.

We still have a PGL2 symmetry, so we will some system in terms of y and then
take the reduction with respect to PGL2. Let’s compute the Hitchin Hamilto-
nians:

Hn,2 =
1

2
Trϕ2( dz)2

=
1

2
Tr

Ñ∑
i,j

Ai
z − ti

· Aj
z − tj

é
( dz)2

=
∑
i<j

TrAiAj
(z − ti)(z − tj)

( dz)2

=
∑
i ̸=j

TrAiAj
(ti − tj)(z − ti)

( dz)2

=
∑
i ̸=j

pipjTr

Å
yi −y2i
1 −yi

ã
Tr

Å
yj −y2j
1 −yj

ã
(ti − tj)(z − ti)

( dz)2

=
∑
i ̸=j

pipj(yi − yj)2

(ti − tj)(z − ti)
( dz)2

where the third line follows from i = j dropping out as A2
i = 0, the fourth line

follows from the identity

1

(z − a)(z − b)
=

1

a− b

Å
1

z − a
− 1

z − b

ã
.

We can take residues (since scaling doesn’t matter to us):

Gi − RestiH2 =
∑
i ̸=j

pipj(yi − yj)2

tj − ti

which gives us the Garnier system.

2.6 The Twisted Hitchin/Garnier System

We can create even more generalized integrable systems by ”twisting” Hitchin
systems for bundles with parabolic structure. To do this, let’s explain Hamilto-
nian reduction along an orbit. LetM be a symplectic manifold with H acting on
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M . We can generalize a moment map µ : M → h∗ to µ−1(O)/H with O ⊂ h∗,
an H-orbit which we call a coadjoint orbit. We can check that µ−1(O)/H
has a canonical symplectic structure and use the same construction: if Fi are
involutions on M , then Fi H-invariant 7→ descent to Fi on µ

−1(O)/H also are
involutions. The proof is the same.

Consider ∏
i

G(D×ti ) ⊃ G(X\{t1, . . . , tN})×
∏
i

G(Dti).

with ker denoting the evaluation map
∏
iG(Dti)→ GN , evaluated at t1, . . . , tN .

We can first reduce by ker and then take the residual action of GN , after which
we descend the Hitchin Hamiltonians to µ−1(O)/GN for O ⊂ (g∗)N .

The points of µ−1(0)/GN = (E, ϕ). For G = PGL2, fix the orbits in sl∗2
∼= sl2 at

ti: the twisted Hitchin system corresponds to the coadjoint orbit of a nilpotent
element Å

λi 0
0 −λi

ã
,

while the original Hitchin system with parabolic structure corresponds toÅ
0 1
0 0

ã
.

Note that these two are in the same conjugacy class with λi → 0.

Thus, the condition on ϕ is that ϕ has simple poles at ti:

Restiϕ|ℓi = λi · Id.

Letting ϕ =
∑
i
Ai

z−ti dz gives

Ai

Å
yi
1

ã
= λi

Å
yi
1

ã
which gives

Ai =

Å
−λi + piyi 2λi − piy2i

pi λi − piyi

ã
.

Thus, we have

Tr(AiAj) = −(yi − yj)2pipj + 2(λipj − λjpi)(yi − yj) + 2λiλj

and

Gi(λ1, ...λN ) =
∑
j ̸=i

−(yi − yj)2pipj + 2(λipj − λjpi)(yi − yj) + 2λiλj
ti − tj

.

These equations define the twisted Garnier system.

64



2.6.1 Elliptic Calogero-Moser System

For genus 1, let X be an elliptic curve with 0 ∈ X. Consider generic bundles
of degree 0 and rank n: these are direct sums of line bundles. However, in this
case, the line bundles have parameters and are elements of the Jacobian. Since
the Jacobian is isomorphic to the curve itself, we have

La = O(a)⊗O(0)−1

with meromorphic sections of the form θ(z−a)
θ(z) . Atiyah showed that generic rank

n bundles are of the form

E = La1 ⊕ ...⊕ Lan .

Now, consider G = PGLn, place a puncture at 0, and perform a twisted reduc-
tion for O ⊂ g∗ with

O =

â
1

1
1

. . .

−n+ 1

ì
.

This is the smallest semisimple orbit, consisting of matrices with n eigenvalues
equal to 1 and one eigenvalue equal to −n+ 1, which forces Tr = 0.

When c→ 0, the orbit degenerates toÑ
0

∗
1

0 0

é
,

which is a nilpotent matrix of rank 1. This corresponds to the maximal parabolic
subgroup

P =

Å
(n− 1)× (n− 1) ∗

0 1× 1

ã
so G/P = P1.

What is the automorphism group of this bundle? The automorphism group
is given by Aut(E) = (C×)n−1, which acts on Pn−1. Therefore, we need to
consider the free orbits of the vectorá

1
1
...
1

ë
.
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Next, let ϕ = (ϕij), where ϕij is a section of Lqi ⊗ L−1qj = Lqi−qj , which has a

first-order pole at z = 0, with the residue preserving the vector
(
1 1

... 1

)
acting

with eigenvalue c. This bundle has only one such section, up to scaling, so

ϕij = aij
θ(z − qi + qj)

θ(z)θ(qi − qj)

for i ̸= j, and ϕii = pi represents the momenta.

The condition for the Aij must satisfy

A

á
1
1
...
1

ë
= c

á
1
1
...
1

ë
with aii = 0, and A has only two eigenvalues. Therefore, all aij = C for some
constant C. Substituting this into the expression for the trace, we get

Trϕ2 =
∑

p2i + C
∑
j ̸=i

θ(z − qi + qj)(z − qj + qi)

θ(z)2θ(qi − qj)2
.

An interesting identity is∑
j ̸=i

θ(z − qi + qj)(z − qj + qi)

θ(z)2θ(qi − qj)2
= ℘(z)− ℘(qi − qj)

where ℘ is the Weierstrass elliptic function. This leads us to the elliptic
Calogero-Moser system. Moreover, taking Tr ∧i ϕ yields higher Calogero-
Moser Hamiltonians.

2.7 Quantizations

2.7.1 Quantum Integrable System

What is a quantum integrable system, and what does it mean to quantize a clas-
sical integrable system? Classical integrable systems are defined on symplectic
manifolds. Before addressing this, we should first understand what it means to
quantize a symplectic manifold.

This discussion can be framed in the context of smooth real manifolds, complex
analytic manifolds, or algebraic varieties, even over arbitrary fields of positive
characteristic. For simplicity, we will gloss over some technical details as our
aim is to provide motivation. Suppose M is a symplectic manifold. Then,
O(M) is a Poisson algebra. In the case of non-affine algebraic varieties or
non-Stein complex manifolds, we may need to consider sheaves. Given two
functions f and g, we can assign the Poisson bracket f, g 7→ {f, g} which is
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a Lie algebra structure and a derivation with respect to each argument. In
classical mechanics, M is a phase space of some Hamiltonian system and O(M)
consists of the classical observables. The quantization of M involves replacing
these observables with operators, which still form an algebra but no longer
commute.

Definition 2.38. The quantization of M is an algebra over k[[ℏ]] or k[ℏ],
noncommutative, such that A/ℏA ∼= O(M), and

lim
h→0

f ∗ g − g ∗ f
ℏ

= {f, g}.

We have intentionally glossed over some details here, and a full course could be
dedicated to this topic. However, for the sake of motivation, we will not delve
deeper into the technicalities.

Example 2.39. Let M = T ∗Y . Then the natural quantization is the algebra of
differential operators on Y , denoted D(Y ). More precisely, Dℏ(Y ) is generated
locally by the coordinates xi and the derivatives ℏ∂i. Recall that O(T ∗Y ) is
generated locally by the coordinates xi, pi, satisfying Heisenberg’s uncertainty
relations

[p̂i, xi] = ℏ.

Classically, an integrable system is defined as follows:

Definition 2.40. An integrable system is a collection of functions H1, ...Hn

that Poisson commute ({Hi, Hj} = 0) and are functionally independent (or
algebraically independent).

This defines a map p : T ∗Y → An with the pullback p∗ : O(An) = C[X1, . . . , Xn]→
O(T ∗Y ), where Xi 7→ Hi, defining a Poisson-commutative subalgebra.

Theorem 2.41. Any function that Poisson commutes with H1, . . . ,Hn is alge-
braically dependent on them.

This suggests that, locally, the system is maximal (up to finite algebraic exten-
sion).

If Y is a smooth algebraic variety, then classical integrable systems on T ∗Y cor-
respond to Poisson-commutative subalgebras of O(T ∗Y ), with the trace degree
equal to the dimension of Y .

Suppose A is a noncommutative algebra quantizing O(T ∗Y ). We then have an
inclusion C[X1, . . . , Xn] ↪→ A = D(Y ), where the commutative subalgebra is
given by Xi 7→ Hi. There is a similar result in the quantum setting:

Theorem 2.42 (Makar-Limanov). If [H,Hi] = 0, then H is algebraically de-
pendent on H1, . . . ,Hn.

To construct a quantum integrable system, we seek a maximal (up to algebraic
extension) commutative subalgebra within D(Y ). This quantizes a classical
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system if, as ℏ→ 0, the quantum system converges to its classical counterpart,
with the swapping p̂i ↔ pi.

The naive quantization approach is to replace pi with ∂̂i. However, this is
problematic due to the ordering issue: partial derivatives do not commute with
coordinates. For instance, should we map xipi to tixi∂i or ℏ∂ixi = ℏxi∂i + ℏ?
In many cases, this procedure fails, though it can work in certain situations,
such as for the Garnier system:

2.7.2 Quantizing the Garnier System

Let

Gi =
∑
j ̸=i

−(yi − yj)2pipj + 2(λipj − λjpi)(yi − yj) + 2λiλj
ti − tj

.

The quantized system is

1

ℏ2
Ĝi =

∑
j ̸=i

−(xi − xj)2∂i∂j + 2(xi − xj)
Ä
λi

ℏ pj −
λj

ℏ pi
ä
+ 2λi

ℏ
λj

ℏ

ti − tj

=
∑
j ̸=i

−(xi − xj)2∂i∂j + 2(xi − xj) (Λi∂j − Λj∂i) +
1
2ΛiΛj

ti − tj
.

by setting Λi =
2λi

ℏ , which gives the Gaudin system for PGL2.

The representation theoretic way of writing this: the action of U(sl2) by differ-
ential operators on the line via

f 7→ −∂x
h 7→ 2x∂x + Λ

e 7→ x2∂x + Λx.

This action on the line extends naturally to an action on the projective line,
which then maps to twisted differential operators acting on sections of some
Λ-power of the bundle O(1), where Λ is an integer.

The Casimir tensor Ω ∈ (sl2 × sl2)
sl2 is given by

Ω = e⊗ f + f ⊗ e+ 1

2
h⊗ h.

where e, f , and h are the standard generators of sl2. The numerators in the
formula for Ĝi are simply Ωij for Λi. Therefore, we can express the operators
as

Ĝi =
∑
j ̸=i

Ωij
ti − tj

∈ U(g)⊗n
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Now, we can verify that [Ω12,Ω13+Ω23] holds, which is true for any (semi)simple
Lie algebra g because Ω ∈ (S2g)g is invariant. This invariance implies that
[Ĝi, Ĝj ] = 0, so the elements Ĝi commute. These commuting elements in
U(sl2)⊗n can be promoted to operators by having them act on representations.
For formal Ωij satisfying the condition [Ω12,Ω13+Ω23], arbitrary complex num-
bers ti, tj will commute, which gives the Gaudin Hamiltonians for sl2.

If V1, . . . , Vn are representations of g, then Ĝi ∈ End(V1 ⊗ · · · ⊗ Vn) commute
with g, meaning they act on the invariant subspace (V1⊗ · · · ⊗Vn)g. This gives
rise to an interesting family of commuting operators.

For Lie algebras of higher rank, however, we no longer obtain a quantum inte-
grable system, as higher-order operators must be considered. Thus, while this
procedure works in some cases, it is not universally applicable. As an illustra-
tion, consider the following example:

2.7.3 Quantizing the Elliptic Calogero-Moser System

Consider the elliptic Calogero-Moser system with Hamiltonian

H2 =
∑
i

pi −
∑
j ̸=i

℘(qi − qj).

Quantizing gives
1

ℏ2
Ĥ2 =

∑
i

∂2i −
1

ℏ2
∑
j ̸=i

℘(qi − qj).

Theorem 2.43. This defines a quantum integrable system, which is the cen-
tralizer of Ĥ2 in D.

However, this does not follow directly from the classical case. Consider the
Hamiltonian

H3 =
∑
i

p3i +
∑
i

pifi(q) + g(q).

There is still the ordering problem with the term
∑
i pifi(q): does pifi(q) cor-

respond to ∂ifi(q), fi(q)∂i, or something else?

In general, there is no universal method for quantizing an integrable system.
We must return to the definition of the classical system and explore whether
the way we obtain quantizations can be adjusted.

2.7.4 The Quantum Hitchin Integrable System

Recall how we constructed classical Hitchin on Bun0G(X):

Step 1: Represent BunG(X) as a double quotient, for example, G(X\x)\G(K)/G(O).

Step 2: Construct some commuting Hamiltonians on T ∗G(K), invariant under
the left and right actions of G(K).
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Step 3: Perform Hamiltonian reduction byG(X\x)×G(O) to obtain T ∗BunG(X),
which gives the Hitchin integrable system.

To retrace our steps, we now need to discuss quantum Hamiltonian reduction
along an orbit. Classically, suppose H acts on a symplectic manifold M with
a moment map µ : M → h∗ ⊃ 0. The Hamiltonian reduction is given by
µ−1(0)/H, which results in a symplectic manifold if the action is ”nice.”

Quantum mechanically, we need to understand the quantum analogs of these
constructions. We have H acting on A, a noncommutative algebra.

Returning to the classical case, we have the following data: a moment map
µ : S(h) = O(h∗)→ O(M), which is a Poisson homomorphism between Poisson
algebras. Furthermore, µ−1(0)/H ⊂M/H is defined by the equation µ(m) = 0,
so O(M/H) = O(M)H ⊂ O(M) is a Poisson subalgebra, and O(µ−1(0)/H)
is the quotient of O(M/H) = O(M)H by the ideal defined by the equation
µ(m) = 0.

Now, we can extend this to the quantum case:

Definition 2.44. The quantum Hamiltonian reduction of A by H is the
algebra AH/(Aµ(h))H .

Aµ(H) is only a left ideal in A, but (Aµ(h))H is a two-sided ideal in AH .
Furthermore, if H is reductive (which is not the case for the Hitchin system),
this is the same as (A/Aut(ℏ))H . Notice that A/Aut(ℏ) is an A-module (not
an algebra), but taking H-invariants gives it an algebra structure.

If we replace 0 with an orbit O ⊂ h∗, the equation µ−1(O)/H becomes µ(m) ∈
O. In the quantum mechanical setting, we need to find an ideal in U(h) that
quantizes O, so that U(h)/I is a quantization of O.

The quantum Hamiltonian reduction is then given by AH/(Aµ(I))H . In the
case where O = 0, I is the augmentation ideal, ker(U(g) → C), which is the
same as Aµ(I) = Aµ(h).

In the classical case, the condition for the moment map is

∀z ∈ h, z ◦ a = {µ(z), a}

The quantized moment map satisfies

z ◦ a = [µ(z), a]

where µ is H-invariant.

We can now attempt to implement this for the Hitchin system. For simplic-
ity, let’s use the version without punctures. We take the loop group A :
D(G(C((tt)))). The quantum Hitchin system should be obtained from certain
two-sided differential operators on G(K). This is an infinite-dimensional group,
and considering differential operators on it involves complex differential geom-
etry. However, Beilinson and Drinfeld have figured out how to handle this. For
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now, we will ignore these details and treat L = G(K) as if it were a finite-
dimensional Lie group. This leads to the following question: What are the
two-sided invariant differential operators on L?

The left invariants are given by U(ℓ) with ℓ ∈ L. The two-sided invariants
are given by U(ℓ)L = Z(U(ℓ)), the center of the enveloping algebra. We have
Lie(G((t))) = g((t)), withG simple. It turns out that Z(U(g((t)))) = C, which is
disappointing. This Lie algebra is infinite-dimensional, so we should ask whether
we need some completions. The bad news is that this does not help us, and
the center remains trivial. The problem arises because the Hitchin Hamiltonian
system upstairs was defined by very simple formulas, and we cannot lift them
into the quantum world.

Classically, H2 = 1
2Trϕ

2, with ϕ = ϕ(z), dz ∈ g((z)). Writing ϕ =
∑
ϕnz

−n

gives

H2 =
1

2

∑
zn

(
Tr
∑
m

ϕmϕn−m

)
( dz).

The trace here means summing over some orthonormal basis ai of g, with ϕ =∑
ϕiai, which givess ai of g with ϕ =

∑
ϕiai, which gives

H2 =
∑
n,i

zn

(∑
m

ϕimϕ
i
n−m

)
.

Here, z is just a parameter on the Higgs field defined on the punctured formal
disc. We want z to be invariant under the action of the Lie algebra, so we
require that [ϕjp, H2] = 0. Expanding the commutator gives an infinite sum,
and we need ordering to make this expression meaningful on the highest-weight
representations. However, this commutation relation ultimately fails.

In fact, the issue arises because Beilinson and Drinfeld showed that every glob-
ally defined differential operator on BunG(X) is a scalar. To address this, we
need to recall some physics: for M = T ∗Y , we want classical observables to
quantize operators on L2(Y ). However, to define this, we need a measure on Y .

We do this by taking L2
Ä
Y,Ω

1
2

ä
, where Ω denotes bundles of densities, with

∥f(y)|dy| 12 ∥2 =

∫
|f(y)|2|dy|.

Thus, the most natural quantization is D(Y,K 1
2 ).

Let Y be a smooth variety and L a line bundle on Y . We can define differen-
tial operators acting on subsets of L, denoted D(Y, L). Note that this is not
equivalent, but Morita equivalent, to the usual differential operators on Y .

Next, we can define D(Y,L⊗n), generated by functions and vector fields, with
relations involving n as a parameter. Locally, we pick a connection with curva-
ture ω, and the relations on L between functions and vector fields are the same
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as usual, but we now have

[∇V ,∇U ] = ∇[V,U ] + nω(v, u)

so we can take any n ∈ C.

Now, we want to replace D(BunG(x)) by D(BunG(X),K
1
2 ). To do this, we need

to understand how to obtain K
1
2 as a line bundle on G((t)). In ordinary Lie

groups, we don’t have interesting line bundles because H2 = 0. However, H2

of a loop group, by transgression, is the same as H3 of the underlying group G,
which is 1-dimensional if G is simple. Therefore, we do have an interesting line
bundle on the loop group. This line bundle is related to the central extension,
and Kac-Moody groups naturally arise. There exists a Kac-Moody group with
the sequence

Ĝ 7→ C× → Ĝ→ G((t))→ 1,

which is just the central extension and defines a principal C× bundle on G((t)),
denoted E .

Thus, LieĜ is the affine Kac-Moody algebra g((t))⊕CK, with the commutator
relation

[a(t), b(t)] = [a, b](t) + Rest=0(a(t) db(t))K.

Theorem 2.45. KBunG
is obtained by reduction of E−2h∨

, where h∨ is the dual
Coxeter number of G.

For example, E8 has dual Coxeter number 30, so the reduction is given by E−60.

If we want to consider differential operators on K
1
2 , we should look at the two-

sided invariant elements in D(G((t)), E−h∨
), which is

Z(Û(ĝ)/K = −h∨).

Theorem 2.46 (Feigin and Frenkel, 1991). Pi(θ) lift to this center and can be
quantized.

In conformal field theory, this implies the existence of a quantum anomaly:
if K = 0, we do not have a center due to the ordering problem. However, if we
apply normal ordering, we obtain an anomaly that vanishes. The value of K is
referred to as the level, and h∨ is the critical level. The representation theory
of Kac-Moody algebras is fully differential at this level due to the existence of
this center. It turns out that this is the only value of K for which the center is
non-trivial.

Theorem 2.47 (Beilinson-Drinfeld). The two-sided invariant differential op-
erators on G((t)) acting on E−h descend to differential operators on BunG(x).

This map is surjective onto D(BunG(X),K
1
2 ), and the algebra is a polynomial

algebra of (g − 1) dimG generators that quantizes the Hitchin system.

72



Both the Gaudin and elliptic Calogero-Moser systems are examples of this the-
orem. This resolves the ordering problem - if we compute the action of the
Feigin-Frenkel central elements (which are difficult to compute but can be done
for GLn, for example) and evaluate their image, we obtain the correct ordering
that gives an integrable system.

2.7.5 The Sugawara Construction

The behavior of the quadratic operators gives the Sugawara construction, which
plays a crucial role in representation theory and conformal field theory.

Classically, we have 1
2Trϕ

2. In the quantum mechanical case, Tn = 1
2

∑
m,i :

ϕimϕ
i
m−n :, where :: denotes normal ordering with the larger index placed first.

This works as an operator in the highest weight representations.

Definition 2.48. The Sugawara construction is given by the following com-
mutation relations:

[ϕp, Tn] = p(K + h∨)ϕn+p,

[Tn, Tm] = (K + h∨)(n−m)Tm+n +
n3 − n
12

K(K + h∨) dim g · δn−m.

Theorem 2.49 (Sugawara). When Ln = Tn

K+h∨ , with K ̸= h∨, this gives a
Virasoro algebra with central charge

c =
K dim g

K + h∨
.

When L = −h∨, we obtain the central case.

There are higher-order operators involving cubics, etc., which arise from higher
central elements, but we won’t cover those here. Ultimately, Beilinson and
Drinfeld used the Feigin-Frenkel theorem as input to construct this quantum
Hitchin system.

This is a good place to stop.
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3 Nikita Nekrasov: Integrable Many-Body Sys-
tems and Gauge Theories

Abstract

Elliptic Calogero-Moser and Toda systems, Gaudin and other spin
chains are algebraic integrable systems which have intimate connections to
gauge theories in two, three, and four dimensions. I will explain two such
connections: first, classical, through Hamiltonian reduction and second,
quantum, through dualities of supersymmetric gauge theories.
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3.1 Introduction

3.1.1 Overview

This course explores the relationship between integrable systems (which we refer
to as many-body systems, since quantum and classical many-body systems are
prime examples) and their connections to classical and quantum gauge theories.

From a physics perspective, gauge theories are fundamental because they de-
scribe most of the known interactions of elementary particles. They also have
significant mathematical importance, as many concepts in differential topology
have emerged over the past 40 years from studying solutions to partial differ-
ential equations motivated by gauge theory. By examining the moduli spaces
of these solutions, alongside cohomology theory, intersection numbers, and enu-
merative geometry, we have made considerable progress in understanding the
invariants of four-manifolds, knot invariants, and categorification. These math-
ematical theories have developed alongside advances in physics.

The connection between integrable systems and gauge theory will be presented
in two main forms, with an emphasis on duality - a concept that has seen
significant development in recent months. In the context of physics, duality is
a central theme, while in mathematics, it is a well-established notion that has
taken many forms, from the Fourier transform and the Legendre transform to
Langlands duality. A simplified version of Langlands duality will be discussed
here.

We can identify two types of relationships between these fields:

• ”Gauge theory is equivalent to an integrable system.” This occurs in rare
cases where we can directly analyze the Lagrangian of the gauge theory,
solve the constraints in the appropriate variables, and observe that the
resulting dynamics correspond to those of a many-body system. This is
sometimes useful, and we will explore more examples later.

• Indirect relation: ”Correlation functions of quantum gauge theory obey
classical (or quantum) equations of some integrable system.”

The key difference between these two relationships lies in the connection be-
tween the quantization parameters. In the first case, the Planck constant of the
gauge theory is equal to that of the integrable system: ℏG = ℏI . This estab-
lishes an equivalence between the two systems, both classically and quantum
mechanically. In the second case, the quantization in one theory is not directly
related to the quantization in the other, meaning the Planck constants differ:
ℏG ̸= ℏI . This difference is intriguing because it suggests that we can study a
quantum system in one theory by solving the classical equations of motion of a
simpler integrable system, and potentially vice versa.

In some instances, the integrable systems for both direct and indirect relations
may be the same, while the gauge theories differ. This points to a duality
between the gauge theories: simple questions in one gauge theory correspond to
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more complex questions in another, and vice versa. This duality is a key reason
why studying these connections is so valuable.

3.2 Examples of Integrable Systems

3.2.1 The Calogero-Moser-Sutherland System

The Calogero-Moser-Sutherland many-body system describes particles moving
in one dimension.

x1 xN
...

Consider 1D indistinguishable particles. These are non-relativistic, and their
Hamiltonian is given by

H2 =

N∑
i=1

1

2
p2i +

1

2
ν2
∑
i<j

1

(xi − xj)2

where the phase space is endowed with the symplectic form

ω =

N∑
i=1

dpi ∧ dxi

and the phase space is
P = T ∗(Rn\∆)/S(n).

with ∆ representing the diagonal in RN . Since the particles are indistinguish-
able, the configuration space is the set of positions modulo permutations. To
correctly account for this symmetry, we consider the quotient by the symmetric
group acting on both the coordinates and momenta.

If ν2 > 0, there is repulsion between the particles. This repulsion ensures that
in finite-energy configurations, the particles cannot collide, which is why we
exclude the diagonal from the phase space.

The system is Hamiltonian, and the equations of motion follow from the Hamil-
tonian: ®

ẋ = ∂H
∂p

ṗ = −∂H∂x

Remarkably, these equations can be packaged in one equation, of Lax form:

L̇ = [L,A]

where L is an N ×N Hermitian matrix defined by

L = ∥piδij +
√
−1ν 1

xi − xj
(1− δij)∥.
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The term 1
xi−xj

(1−δij) is antisymmetric, but we multiplied it by
√
−1 to ensure

that L is Hermitian.

The crucial claim here is that there exists a matrix, depending on p(x), such that
the time derivative of this matrix operator satisfies the commutation relation.
This implies that the eigenvalues of L are constants of motion. As the particles
repel each other, in the limit as t→ ±∞, their positions become well-separated:
xσ(1) ≪ xσ(2) ≪ · · · ≪ xσ(N). In this limit, the off-diagonal terms in L become
negligible, and the eigenvalues of L correspond to the asymptotic momenta
p±1 , p

±
2 , . . . , p

±
N . While the individual eigenvalues at t → ±∞ need not be the

same, they are permuted versions of the same set. These eigenvalues are not
typically useful functions of p and x directly, as they are the solutions to an
algebraic equation. Instead, we form polynomial functions of the momenta and
rational functions of the coordinates by taking powers of the operator L and
computing the trace:

Hk =
1

k
TrLk

which are the integrals of motion. This is the simplest example of a direct
relationship between gauge theory and an integrable system.

3.2.2 Symplectic Quotients

A more complex evolution of this system arises from a projection of a simpler
dynamics within a larger phase space. The larger phase space hidden in this
problem is

T ∗(U(N)× RN ),

which is a symplectic vector space of dimension 2(N2+N). We can parameterize
elements of this phase space as

{(
√
−1P,

√
−1X;w, v)}

where X = XT and P = PT are N ×N matrices, v ∈ RN , and w ∈ (RN )∗. On
this larger space, we study two aspects:

1. First, we introduce very simple dynamics. In this context, P is conjugate
to X and w is conjugate to v, where we use ”conjugate” in the sense of a
symplectic form w = Tr, dP ∧ dX + dw ∧ dv. We define the Hamiltonian
Hk = 1

2TrP
k, which generates the following evolutions:

X(t) = X(0) +

N∑
k=1

tkP
k−1(0),

P (t) = P (0),

v(t) = v(0),

w(t) = w(0).
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2. In principle, k can be arbitrary, but the evolution will be generated by the
Hk when k > N . For k > N , the evolution can be reduced to one already
covered. This describes a free motion in the large space.

3. Next, we assume that our problem has a symmetry and perform the sym-
plectic quotient with respect to this symmetry. The symmetry is gen-
erated by G = U(N), and it acts as follows: for g ∈ G, (P,X, z) 7→
(g−1Pg, g−1Xg, g−1z), where z = v+

√
−1w. The only effect of the sym-

metry is to transform z under the action of U(N). This is a symmetry
that preserves the symplectic form, and it also preserves the Hamiltonians.
Therefore, if we take a simple motion in the large phase space PL with
G-orbits, we can project it onto the smaller phase space PS = PL/G. On
the small phase space, a trivial motion from the larger phase space may
now appear more complicated, as we are identifying points according to
the group action.

The simplest example of this construction, when N = 2, is not difficult
to discuss: consider a free motion of a particle in R3. R3 is the Lie
algebra of SU(2). Take the free motion r⃗ = r⃗0 + v⃗t and project it onto
the quotient space R3/SO(3). The invariant here is the distance from the
origin. Therefore, if we look at the time dependence of r(t) = |r⃗0 + v⃗t|,
we observe that the particle (represented by the radial coordinate of the
free particle in R3) experiences a force that repels it from the origin. This
force is the centripetal force.

3.2.3 The Momentum Map

In the standard setting of spaces with symmetry, it is common to take a quotient
by identifying points within an equivalence class, effectively contracting the
entire orbit of the symmetry group to a single point. However, in classical
mechanics, where we work with symplectic manifolds, taking the quotient of a
symplectic manifold by the action of a group does not, in general, yield another
symplectic manifold. This issue is addressed through a construction known as
the momentum map, which we will now describe.

The momentum map, denoted by µ : PL → Lie(G)∗, can be thought of as the
collection of Hamiltonians that generate the symmetry. Rather than discussing
the general procedure, we will compute it explicitly for our example.

For a free particle moving in 3D space, the phase space is T ∗R3 = (p⃗, r⃗), a 6-
dimensional space. The symmetry group in this case is SO(3), and the associated
generators of the symmetry are the components of the angular momentum,
L⃗ = p⃗× r⃗. The angular momentum is a classic example of a momentum map: a
map from the 6D phase space to the 3D space, which is dual to the Lie algebra
of SO(3).

To compute the infinitesimal version of this symmetry, consider a perturbation
of the symmetry group given by g = 1 + ξ + . . . , where ξ ∈ Lie,U(N). This
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leads to a vector field of the form:

Vξ(P,X, z) = ([P, ξ], [X, ξ],−ξ · z),

Since the vector field preserves the symplectic form, there has to be a Hamilto-
nian that generates this vector field. Since each component of the vector field
is linear, each component of the Hamiltonian must be linear. We have

HVξ
= Trξ([P,X] +

√
−1(z ⊗ zT )),

which preserves the symplectic form. By the properties of symplectic geometry,
we know that there must be a Hamiltonian that generates this vector field. Since
each component of the vector field is linear in ξ, the Hamiltonian that generates
this vector field must also be linear. Therefore, we obtain:

µ(P,X, z) = [P,X] + z ⊗ zT .

It is important to note that the momentum map is not unique because the
relationship between the vector field and the Hamiltonian is not one-to-one.
Specifically, if H differs by a constant, the resulting vector field will be the
same. However, if we are given the vector field and wish to reconstruct the
Hamiltonian, we can do so up to a constant. Consequently, we construct µ(ξ) up
to an additive constant, which is linear in ξ. There is also a cohomological issue
that arises when adjusting these constants in such a way that the G-equivariance
of the momentum map holds. In particular, we require the following condition:

{µ(ξ1), µ(ξ2)} = µ([ξ1, ξ2]).

This condition imposes some restrictions on the choice of constants, but there
remains some flexibility, especially if the group G is not simple. If G contains
a center, for instance, we may find that the momentum map takes the form
µ(P,X, z) = [P,X] +

√
−1(z ⊗ zT − ν · 1N ), where ν is a constant associated

with the center of G.

We are almost ready to project. Since µ−1(0) is G-invariant, we can take the
quotient µ−1(0)/G.

Proposition 3.1. µ−1(0)/G is a symplectic manifold.

Now, let’s attempt to solve µ = 0, which gives us the condition [P,X] =
√
−1(ν ·

1N−z⊗zT ), modulo G-symmetry. Since P andX are Hermitian matrices and G
acts by conjugation, we can choose a representative from the G-orbit of (P,X, z),
where we can set X = diag(x1, . . . , xN ). Fixing this representative, there is still
residual symmetry remaining. Specifically, we are left with transformations that
preserve the diagonal form of X, reducing G to U(1)N ⋉ S(N).

In the basis when X is diagonal, we have

[P,X]ij = Pij(xi − xj) =
√
−1(νδij − zizj).
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If i = j, then everything becomes 0, so ν = |zi|2 for all i = 1, . . . , N . Now, we
use g = diag(eiθ1 , . . . , eiθN ) to make zi =

√
ν for all i = 1, ...N , reducing G to

S(N).

At this point, we can solve for P . The solution is given by:

P = piSij +
√
−1ν δij − 1

xi − xj

The conclusion is that if we parametrize the orbits of the group action by the
diagonal of X, P takes the form above, and the motion becomes nontrivial. The
eigenvalues of X evolve according to the equation:

xi(0)δij + ti(piδij +
√
−1ν δij − 1

xi − xj
).

In particular, the transformations of X and P under the group action are:

X 7→ g−1(X + tP )g

P 7→ g−1Pg

where g = g(t).

This is a gauge symmetry - a symmetry transformation that depends on time.
To represent this using a Lagrangian, we start with the standard Lagrangian
that corresponds to the symplectic structure and the Hamiltonian:

L = Tr(PẊ + zT ż)− 1

2
TrP 2 + ν(At)

where At is a Lagrange multiplier, a 1-form valued in the Lie algebra Lie(G),
introduced to reduce the number of degrees of freedom. We can quantize this
action and write it as:

S = Tr
(
P dX + zT dz

)
− 1

2
dtTr(P 2) + µ(P,X, z) (At dt)

where S is a functional defined on Maps(R, PL)×Ω1(R⊗ g)/Maps(R, G). If we
perform the transformation

(P (t), X(t), z(t)) 7→ (g−1(t)P (t)g(t), g−1(t)X(t)g(t), g−1(t)z(t)),

the action is not invariant under this transformation. However, by adjusting
At 7→ g−1Atg+g

−1∂tg, we achieve invariance, providing us with our first glimpse
of gauge invariance.

3.2.4 Generalizations

This many-body system is a realization of the simplest 1D gauge theory: it is
a gauge theory where the spacetime is just time (with no spatial dimensions).
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However, the variables have matrix structure, suggesting that both P and X
represent components of a higher-dimensional gauge field. Specifically, we in-
terpret Ax = X and Ay = P , which implies that this rational Calogero-Moser
system may have a generalization or deformation in which these extra dimen-
sions will become apparent. In fact, there are many such generalizations:

rational CM

trigonometric CM
(Sutherland)

relativistic CM
(Ruijsenaars-Schneider)

elliptic CM trigonometric RS

elliptic RS

Each model corresponds to a different gauge theory living in different space time
dimensions:

• The trigonometric CM corresponds to the 2D Yang-Mills theory.

• The elliptic CM corresponds to the hybrid hopological holomorphic 2D
Yang-Mills theory.

• The trigonometric RS corresponds to the 3D Chern-Simons theory.

• The elliptic RS corresponds to the 4D hybrid topological holomorphic
Chern-Simons theory.

Example 3.2 (The trigonometric CM system). For the trigonometric CM sys-
tem, the systems now live on the circle so we map R→ R/Z and the Hamiltonian
is

H2 =

N∑
i=1

1

2
p2i +

1

8
ν2
∑
i<j

1

sin2 (π(xi − xj))
.

We can think of the system where the symmetric group (which was permuting
particles) gets promoted to an affine Weyl group, so in addition to permutations,
we also have shifts (with period 2π).

A well-known construction by Kazhdan, Kostant, and Sternberg explains how
this system arises through a projection method. Specifically, the method involves
replacing the Lie algebra of U(N) in the large phase space with the corresponding
group, and repeating the entire construction. However, this approach does not
account for the emergence of additional dimensions. To do this, we need to

promote U(N) to the affine group ’U(N) = {(E(x), c)|x ∈ S1, E(x) ∈ U(N), c ∈
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R} with the Lie bracket operation

[(E1(x), c1), (E2(x), c2)] =

Å
[E1(x), E2(x)],

∫
S1

TrE1 dE2

ã
.

One should verify that this bracket satisfies the Jacobi identity.

Next, consider the dual space

T ∗’U(N) = {(E(x), c; k∂x +Ax)|k, c ∈ R, E,Ax are g-valued on S1}.

Here, we combine k∂x and Ax into the first differential operator because we have
a natural pairing

kc+

∫
S1

TrEAx dx.

When acting on the adjoint representation, the coadjoint action is computed so
that this pairing is preserved, and the coadjoint action acts on the differential
operator. At the level of the group, the LG-action on (E,Ax, k, c) is given by

(g−1(x)E(x)g(x), g−1(x)Axg(x) + kg−1(x)∂xg(x), k, c+ ...).

Here, we can think of E as analogous to P , and Ax as analogous to X.

Now, let’s fix k = 1. In this case, the commutator µ = [P,X] becomes µ =
DxE = ∂xE + [Ax, E]. In physics, E is called the electric field, Ax is called the
vector potential, and the new commutator is a form of Gauss’s law (though it
may appear slightly different from the usual statement). The term ν ·1N − z · zT
arises from the n-dimensional representation of U(N) which we used exactly
once: when fixing the gauge, we did not fully utilize all of the symmetry, leaving
behind some residual symmetry associated with diagonal transformations. We
introduce this vector in CN to absorb this remaining symmetry. The analog of
X = diag(x1, . . . , xN ) is now Ax = diag(x1, . . . , xN ), where each xi are constant.

This is a result of Floquet-Lyapunov theory: consider an anti-Hermitian N ×N
matrix-valued function Ax(x) defined on S2. If we define the gauge transforma-
tion Ax(x) 7→ g−1(x)Ax(x)g(x) + g−1(x)∂xg(x), where g : S1 → U(N), what is
the canonical normal form of Ax?

It turns out that we can always diagonalize Ax and make it constant. The
strategy is to ”kill” Ax by finding a gauge function g such that Ax = ∂xgg

−1.
This leads to the first-order ordinary differential equation ∂xg = Axg, which
can be easily solved with an appropriate initial condition.

The issue arises when we wrap around the circle and solve for g(x). Specifically,
when solving g(x) = P exp

(∫ x
0
Ax, dx

)
, the solution is not the same as the

original g, and the holonomy becomes P exp
∮ 2π

0
Ax, dx = G. Thus, there is

no g such that ∂xg = Axg globally, but we can always find a g such that
∂xg = Axg−gX, where X is a matrix with constant diagonal entries, effectively
undoing the holonomy.
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Once we find the gauge, there are still transformations that preserve the fact
that Ax is diagonal, but which change the eigenvalues. For example, consider
g(x) = diag(ein1x, . . . , einNx), where ni ∈ Z. Under such a transformation,
the eigenvalues xi transform as xi 7→ xi + ni. Additionally, we can introduce
transformations of the form g(x) = diag(eiθ1 , . . . , eiθN ), which do not affect
the eigenvalues. To absorb the remaining symmetry, we need an analog of the
vector z. This explains why, at the end, the expression ν · 1N − z · zT becomes
δ(x)(ν · 1N − z⊗ zT ), and the Hamiltonian takes the form H2 = 1

2

∫
dx,Tr(E2).

In the examples discussed, we observed how gauge theory is directly equivalent
to a quantum or classical mechanical system of interacting particles. In the
next section, we will explore how this framework extends from 2-dimensional
Yang-Mills theory on smooth manifolds to Yang-Mills theory on forms, where
many integrable systems arise.

3.3 Complexification

3.3.1 Classical Mechanics

Complexification is a process that sends R → C,Z/2 → U(1),C×. What hap-
pens in classical mechanics? Earlier, we discussed paths in the phase space. We
would like to complexify the space of paths in a phase space P . One way to do
this is to complexify the phase space PC, but keep the paths real.

Definition 3.3. A complex phase space is a complex manifold with a holo-
morphic symplectic structure ωC ∈ Ω2,0(PC) such that dimC PC = 2n and ωnC ̸=
0.

Even if a problem involves dynamics in a real phase space, one might want to do
statistical mechanics where we integrate over the phase space with some proba-
bility measure (induced by the Liouville form and the Hamiltonian). However,
we are interested in integral quantities like averages. To compute an integral,
we can use Stokes’ theorem and deform the integration contour, which often
results in integrating over contours in the complexification of the original space.

If we take complex paths in P (compared to real paths in PC), this leads to
string theory (where we replace worldlines with worldsheets), which gives a
different kind of complexification. These two approaches are related: when one
approaches quantization as a study of periods, we end up studying not just
paths but maps of high-dimensional objects. But this is a story for later.

This simple process allows us to freely talk about things that are otherwise
difficult to discuss in full generality. Let’s see an example:

3.3.2 Example: Many-body Elliptic Calogero-Moser System

Consider the Hamiltonian

H2 =
∑ 1

2
p2i + ν2

∑
i<j

℘(xi − xj ; τ)
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where ℘ is the Weierstrass ℘-function on C/Z + τZ and τ2 := Im τ > 0. In
general, the function inside the summation is not real, so it would make the
dynamics look awkward unless we allow (pi, xi)

N
i=1 to be complex.

Now, an interesting phenomenon occurs: when both position and momentum
are real, and we study configurations of finite energy, it becomes clear that we
cannot allow the points to collide because doing so would require infinite energy.
However, once position and momentum become complex, it’s possible to keep
the energy finite by allowing particles to approach each other. This can be
achieved by making the momenta very large and complex in such a way that
the potential energy compensates for the kinetic energy.

This change makes the phase space much more interesting, as it is now‚�(T ∗E)N/S(N),
where E is an elliptic curve. This is a smooth hyperkähler manifold. Inside the
elliptic curve, there is a circle S1. If we start with a configuration of points, all
of which are real and lie on this circle, and then set some initial conditions for
the momenta (also real), the complex Hamiltonian will force these particles to
move. They will not remain confined to the circle. However, we can still restrict
their motion by adjusting the momenta in such a way that the coordinates stay
real.

When we quantize this system, we can look for solutions where the momenta and
coordinates remain real, even as the particles move. In quantum mechanics, we
would construct a differential operator from this function pi =

√
−1ℏ ∂

∂xi
acting

on wave functions, which are analytic and defined in a neighborhood around
the circle. We can require that the wave functions be normalizable only when
x is on the circle. Nevertheless, we don’t have to restrict the parameters to
be purely imaginary. The Hamiltonian will generally have complex eigenvalues,
so the operator Ĥ2 will, in general, take complex values as a function of the
parameters ν and τ .

The interesting and nontrivial part is that on this phase space, the symplectic
form ω, despite looking like an exact form, is actually not exact. In particular,
the coordinates p and x are not global coordinates, meaning they do not cover
the entire phase space. As a result, [ωC] is nontrivial in cohomology, and there
exists a 2-dimensional sphere inside the space such that the period of

∫
S2 ωC ∼ ν.

The coupling constant (the coefficient in front of the potential term) measures
the topological non-triviality of the symplectic form. This non-triviality arises
due to the resolution of singularities.

Let’s discuss the case where n = 2 to see how this works in more detail. For
simplicity, consider the center of mass frame, where p1 + p2 = 0. This means
we perform the symplectic quotient PC//E acting by (x1, . . . , xN ) 7→ (x1 +
z, . . . , xN + z) for z ∈ E, and the moment map is µ = p1 + · · · + pN . The
phase space is acted upon by the group, which in this case is the elliptic curve
itself. The group acts by shifting all coordinates by the same amount. As an
exercise, we can perform the reduction by fixing the total momentum to zero
and identifying configurations of points that are related by an overall shift. In
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this case, the reduced phase space is (T ∗E)/(Z/2). The elliptic curve here is
given by the coordinate x1−x2, which is invariant under the transformations of
Z2 that exchange x1 and x2. These transformations act on both the coordinates
and the momenta, exchanging the momenta p1 and p2.

Now, there is a naive phase space, which is just the quotient of the cotangent
bundle over the elliptic curve by the involution that changes the sign of the
coordinates. This involution has fixed points, and we need to understand how
many fixed points there are.

We have four fixed points. To visualize this, the elliptic curve has four points
where the involution (p, x)→ (−p,−x) fixes them. These points lie in the fiber
of the cotangent bundle. The involution also acts by changing the sign in the
fiber, so at these fixed points, the zero in the fiber times the fixed points gives
the final set of fixed points. The set of points is

(p, x) = (0, 0);

Å
0,

1

2

ã
,
(
0,
τ

2

)
,

Å
0,

1 + τ

2

ã
.

The number of fixed points for the involution is important in understanding the
structure of the phase space. In fact, there are 16 fixed points for the involution
on the 4-dimensional torus, which is crucial when studying the K3 manifold
— we’re focusing on a simpler version. The key feature here is that the local
geometry near each of these fixed points is identical. This space generally has
more complex structures than we can easily visualize, but it’s crucial to note that
each of these fixed points can be resolved by gluing in a 2-dimensional sphere
at each of these points. Normally, we could make these spheres completely
independent, and that would give us a four-dimensional parameter space, but
in our case, due to the symmetries, we only have one deformation accessible to
us.

Now, let’s focus on the local geometry. We can model the local structure near
these points as C2/(Z/2), where C2 is a complex symplectic manifold with
symplectic form dz1 ∧ dz2. We want to consider the orbifold of C2 by the
cyclic group of order 2, which acts by (z1, z2) 7→ (−z1,−z2). Algebraically, the
quotient is Spec[X,Y, Z].⟨Y Z − X2⟩, where X = z1z2, Y = z21 , Z = z22 . Any
polynomial in z1 and z2 that remains invariant under the sign change can be
expressed as a polynomial in these three variables. However, there’s a relation
between these functions: X2 = Y Z, which describes a cone in C3.

This cone structure is central to understanding the geometry. We can blow up
this singularity to make it into the total space of an O(−2) bundle over P1, where
the singularity is replaced by a non-contractible 2-dimensional sphere. We can
also do a complex deformation by adding a constant term: Spec[X,Y, Z].⟨Y Z−
X2 − ζ2⟩.

This procedure replaces the space with a new one, making it a non-singular
quadric X2 − Y Z = ζ2 ̸= 0. Now, we can examine the two-form ωC = dz1 ∧
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dz2 = dY,dZ
4X . At this point, we keep the form but deform the relation between

X,Y, Z. It turns out this form has a non-trivial period, which we can see by
parameterizing:

X = ζx,

Y = ζ(y +
√
−1z),

Z = −ζ(y −
√
−1z).

This turns the quadric into a complexification of the sphere x2 + y2 + z2 = 1.
In addition, we have

ωC =

√
−1ζ
2

dy ∧ dz
x

Proposition 3.4.
dy ∧ dz

x
|S2 = volS2

This is the standard volume form on the two-sphere, and it has a nontrivial

period, which is π. Therefore,
√
−1ζ
2

dy∧dz
x has a nontrivial period proportional

to ζ.

3.3.3 Complexification In The Elliptic Case

Now, let’s go back to the original example. We will do a similar analysis in
the elliptic case. Suppose we have two variables p and x, where x is an elliptic
variable, defined up to periods. We want to find the invariant functions on this
space, allowing functions with poles in x, because the elliptic curve is compact.
One such function, which is famously invariant under x→ −x, is the Weierstrass
℘-function:

℘(x; τ) =
1

x2
+

∑
(m,n)=(0,0)

Å
1

(x+m+ nτ)2
− 1

(m+ nτ)2

ã
+ c

where we choose a constant so that the expansion of this function near 0 starts
at the x2 term.

In this notation, the Hamiltonian is H = p2 + ν2℘(x; τ). This Hamiltonian has
a symmetry that changes the sign of the variables, but this is not a symmetry
of the symplectic form ωC = dp ∧ dx. Let

X1 = ℘(x; τ) = ℘(−xτ).

Since ℘ is an even function, its derivative is an odd function. If we multiply by
p, we get another invariant function

Y = p℘′(x; τ)

and a third invariant function
X2 = p2.
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Any invariant function of p and x, meromorphic with respect to x, can be
expressed as a polynomial in these three functions. However, these functions
are not independent. So, what is the relation between them?

Let’s compute Y 2. We have:

Y 2 = X2(4X
3
1 − g2(τ)X1 − g3(τ)).

where g2 and g3 are constants.

Proposition 3.5. This function satisfies the kDV equation.

Proof. To verify this, we expand both sides of the equation in terms of X near
zero. After subtracting the right-hand side from the left-hand side, the result
should no longer have any singularities in X, implying that the difference is
constant. By adjusting this constant, we can make the difference zero.

Remark 3.6. The constants g2 and g3 are expressed in terms of the fourth and
sixth Eisenstein series.

Thus, this equation replaces the quadric equation we had in the local picture
earlier. Expanding this cubic polynomial in terms of its roots will lead to similar
structures near each of the roots. There is also another important singularity
to consider when X1 →∞.

Moving on, the phase space now resembles a complex surface, with an affine part.
There is a region of this space described by the equation we just discussed, but
this equation does not cover the entire elliptic curve. The elliptic curve itself
is compact, and our equation describes the complement of a point. This is an
algebraic curve, so to make this a complete description, we need to either make
the equation homogeneous or add a point to it. By adding some points, we can
partially compactify the surface.

The final result of this analysis is that PC is a two-dimensional complex manifold,
and we want to represent it as a fibration over a one-dimensional complex base.
The base is a complex manifold of dimension one, and the fibers above each
point in the base are one-dimensional complex spaces. These fibers are elliptic
curves Eu, with their complex structures varying depending on the base point
u.

Recall that the Hamiltonian is

H = X2 + ν2X1.

We can rewrite this as

Y 2 = 4(H − ν2X1)(X1 − e1)(X1 − e2)(X1 − ζ)

where e1, e2, e3 are the roots of the polynomial (℘′)2. Similar to how g2 and g3
are Eisenstein series, e1, e2, e3 are theta constants that sum to zero.
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Now, rescale H = ν2u to get:

Y 2 = 4ν2(u−X)(X1 − e1)(X1 − e2)(X1 − ζ).

If we fix the value of the Hamiltonian, the fiber (the set of points in the phase
space with the same energy) is a solution to this equation. The deformation
consists of adding a point X1 at infinity, and Y tends to infinity as X2

1 .

By considering the affine curve described by this equation, we get an elliptic
curve missing two points. Adding those points back complexifies the fiber, and
the complex structure of the elliptic curve depends on [u : e1 : e2 : e3]. By
compactifying the curve with a point at infinity, the base becomes CP2, and the
fibers degenerate at points e1, e2, e3.

We see that once we complexify the problem, the fibers degenerate in different
ways depending on the base point. This regularity becomes apparent only after
complexification, as real slices do not capture the irregular behavior of elliptic
curves. Once complexified, everything becomes regular and beautiful.

3.4 Lax Representation

The goal of this section is to show that the structure we’ve discussed extends
to all values of n, not just n = 2.

3.4.1 The Basics

To establish this, we need to explore the Lax representation for eCM-systems,
as developed by Krichever in the 1980s. By formulating this representation,
Krichever identified what later became known as the Hitchin systems. In the
context of these lectures, where we are working within the framework of gauge
theory, we will present this construction as an analog of the two-dimensional the-
ory we examined earlier. However, we have since complexified the problem, so
I will proceed with this complexified approach. In particular, this construction
can be seen as a complexification of the 2D Yang-Mills framework.

Previously, we considered the infinite-dimensional symplectic manifold

P∞ = {(E,A)|E ∈ Maps(S⊥, g), {A ∈ Ω1(S1)⊗ g} ⊗ O//LG}

where O is a finite-dimensional orbit. For our purposes, we take g = su(N),
O = CPN−1, and G = SU(N).

Let us now review the action of the loop group on this data. For x ∈ S2, the
action is given by

g(x) · (E,A) = (g−1Eg, g−1Ag + g−1dg)

and
g(x) · (z1 : ... : zN ) = ((g−1(0)z)1 : ... : (g−1(0)z)N )

89



where 0 is the base point of S1. The moment map for this system is

µ = DXE + Jδ(x)

where

J : O → g∗

J(z1 : ... : zn) = ∥
√
−1ν(zizj − δij)∥Ni,j=1

assuming that
∑N
i=1 |zi|2 = 1. Note that J is traceless and anti-Hermitian, and

it forms an N ×N matrix.

Earlier, we showed that if we solve

H2 =
1

2

∫
S1

dxTrE2,

we obtain the trigonometric CM system. We now move to a complexified version
of this by replacing S1 with an elliptic curve.

3.4.2 Transition to the Complexified Version: Elliptic Curves and
Gauge Fixing

Let
PC
∞ = {(E,A)} × OC

where E is a function on T 2 valued in slN (Z), depending on z and z, and A is
a (0, 1)-connection.

The gauge group action now depends on the choice of complex structure. Upon
complexification, the degrees of freedom increase. OC is the complexification of
CPN−1, and since z and z are now independent, we have

OC = {(z ∈ CN , w ∈ (CN ))∗|w(z) = 1}/C×.

with the group action
(z, w) 7→ (tz, t−1w)

for t ∈ C×. Furthermore, the moment map is given by

J(z, w) = |
√
−1ν(ziwi − δij)|Ni,j=1

which is a traceless N ×N matrix.

3.4.3 The Lax Matrix and Its Spectral Invariance

Next, we want to make a group of maps from T 2 (the 2-torus) to the com-
plexification of my group, SL(n). The group SL(n) acts on this phase space as
follows: mark a point and call it z, and the group G will act on the quadruple
(E, Ē, Z,W ) by pointwise conjugation:

g(z, z)(E,A; (z, w)) = (g−1Eg, g−1Ag + g−1∂g, (g−1(0)z, wg(0)))
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The action is by evaluation at the marked point, and it allows us to compute
the momentum map, which will be used for the reduction process. The moment
map is

µ = ∂E + [A,E] + Jδ2(z, z).

We want to solve this equation and then divide by the group’s action to perform
the reduction. To solve this equation, the trick is to find the representative
normal form for Ā, meaning we need to to find the canonical form where we
can make the connection on the trivial bundle look like a 0-1 connection by
performing complex gauge transformations.

There exists a ”complexified version” of gauge theory, where A can be written
as diag(α1, . . . , αN ), with αi ∈ C being constant with respect to z and z. This
gauge choice works for a generic A, meaning that with probability 1, we can di-
agonalize the matrix. However, in some exceptional cases, something interesting
happens: the diagonal elements may not correspond to connections on trivial
U(1) bundles, but instead could have non-trivial first Chern classes. While this
phenomenon is significant in condensed matter physics, we will not delve into
it here.

Instead, we focus on the concept of diagonalization: a rank r vector bundle
with trivial degree generically splits into a direct sum of line bundles, each with
degree zero:

E =

N⊕
i=1

Li.

In practical terms, this means that, via a complex gauge transformation, we
can diagonalize most of the matrix A, turning it into a diagonal matrix with
constant coefficients. However, as we saw earlier, there remain some gauge
transformations of the form of diagonal matrices where the diagonal elements
are periodic functions of z and z̄:

g(z, z) = diag

Å
e2πini

z − z
τ − τ

− 2πimi
zτ − zτ
τ − τ

ã
.

These transformations affect the α values:

αi 7→
2πi

τ − τ
(ni +miτ).

It’s convenient to introduce new variables xi =
τ2
π αi, where xi ∼ xi+mi+niτ .

Next, we need to solve the equation involving A. We do this in analogy to the
way we approached it for the circle. In the basis where A is diagonal, we have

∂Eij + (αi − αj)Eij + Jijδ
2(z, z) = 0.
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3.4.4 When i = j

When i = j, the equation simplifies to a condition on the diagonal matrix
element of E: it must be holomorphic outside zero and possess only a first-order
pole at the origin. Specifically, the equation D = δ is solved by a meromorphic
function with a first-order pole. This is a complex analog of the equation

δxEii + Jiiδ(x) = 0,

where a function on the circle with a jump discontinuity corresponds to a first-
order pole in the complex case.

Drawing an analogy with the real case, this is similar to a function on a circle
with a jump discontinuity, where the ”jump” corresponds to the residue of the
pole. To ensure smooth behavior, the residue must vanish, which forces Eii to
be constant ouside x = 0. Additionally, we have the condition:

Eii(+0)− Eii(−0) = Jii.

This is analogous to the fact that a function on an elliptic curve can have
at most a first-order pole at a single point. The residue of this pole must
vanish, which implies that the function is constant everywhere. This serves as
a complexification of the theorem, leading to the conclusion that Jii = 0 and
Eii = Pi is constant.

Then, we have
Jii =

√
−1ν(ziwi − 1) = 0

which implies ziwi = 1 for all i. This is analogous to the situation on the circle,
where we have additional transformations. Specifically, when g = diag(t1, . . . , tN ),
with ti ∈ C× and

∏
i ti = 1, these transformations allow us to map zi 7→ 1 and

wi 7→ 1.

3.4.5 When i ̸= j

When i ̸= j, the situation becomes more interesting. Away from the origin, the
solution is

Eij(zz) = e(z−z)(αi−αj)Lij(z),

for some function L that depends only on z and satisfies the following properties:

• Lij has a first-order pole at zero, since Lij ∼ Jij
z =

√
−1ν
z (1− δij).

• Lij(z + 1) = Lij(z).

• Lij(z + τ) = e(τ−τ)(αi−αj).

Proposition 3.7. These three properties uniquely determine L as

Lij(z) =
√
−1ν θ(z + xi − xj)θ′(0)

θ(z)θ(xi − xj)
,

which we call the Lax matrix.
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Unlike the trigonometric case, where the electric field E had an exponential
dependence but the prefactor did not depend on the position of the circle, here
the function exhibits a nontrivial z-dependence. This leads to a remarkable fact:

The electric field depends on both z and z, but the Casimir has no z-dependence:
TrE2 is a meromorphic function of z with a second-order pole at z = 0. The
space of meromorphic functions with a second-order pole at a single point is
two-dimensional. These functions can take the form

ν2℘(z; τ) +H2.

If we return to the phase space, which includes variables like E, A, and others,
and begin to study the classical evolution generated by the Hamiltonian—essentially
an averaged version of the trace squared—we find that the second-order pole
has important implications. The meromorphic nature of the Casimir allows us
to define the principal value integral of the trace squared in a well-defined way,
yielding a well-defined Hamiltonian:

H2 =

∫
T 2

d2zTrE2.

This Hamiltonian results in a simple evolution in the high-dimensional phase
space of variables. We can then project the evolution by the action of the gauge
group, leading to a highly non-trivial evolution of the eCM particles.

At this point, we can identify the algebraic integrable structure of this phase
space, which is now known to have the structure of a fibration over an N -
dimensional base. The fibers of this fibration are abelian varieties, one of the
possible complexifications of Liouville tori in real integrable systems.

The abelian varieties are defined as follows: we aim to extract as much as pos-
sible from the Lax operator. The spectral invariance of this operator provides
conserved quantities, because in this infinite-dimensional space, any flow gener-
ated by a suitably regularized Casimir of the electric field will commute with the
flow generated by E2. This is because anything built from the electric field will
Poisson commute with each other: these are commuting flows. Furthermore,
by reducing by the gauge transformations—which do not affect the spectral
invariance—we obtain conserved quantities and integrals of motion.

Since we have something that depends on a point on an elliptic curve, the
spectral invariance varies from point to point. The object that is convenient to
study in this context is the spectral curve, which resides on the elliptic curve:

det(λ− L(z)) = 0.
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Over a generic point on the elliptic curve, this equation has n solutions. How-
ever, when z = 0, L has a pole, and the residue at this pole is a matrix of a
special form:

L(z) ∼
√
−1ν(1− z ⊗ w)

z
.

If we shift it, there’s a way to resolve the structure near z = 0, but we will not
go into the details.

This curve can be partially compactified, sitting in the partial complexification
of E minus the point where z = 0. To resolve the structure near this point,
we need to perform a blow-up. The key claim is that this results in a genus
(N − 1) curve that covers the elliptic curve E, and the Jacobian of this curve
depends on a meromorphic polynomial R(λ, z). As a polynomial, it has n − 1
non-trivial coefficients, each of which is a meromorphic function of z. There are
only a limited number of functions that have a singularity at z = 0, so we can
count the number of parameters, yielding exactly n parameters. Let’s call the
coefficients in this polynomial u. For any given value of u, we have a specific
curve, and its Jacobian is the fiber of this fibration.

This is just one example of integrable systems that have a Lax representation
with the spectral parameter. Here, we have seen a gauge theory description of
such systems. There are other systems where, instead of the base curve being
an elliptic curve with one point, it can be a genus-0 curve with many points.
These systems are the complexification of systems you would get by marking
several points on a circle.

Later on, we will begin describing a completely different story. At first, it may
seem like a different topic, with origins in gauge theory. However, the end
point will bring us right back to the same structure we’ve been discussing. We
will recover these integrable systems, both classical and quantum, by applying
probability theory to some finite (or infinite but filtered) sets. The statistics
of the expectation values in this probability problem will be described by the
system we’ve been working with.

3.5 Partitions

We now turn the page to introduce a new cast of characters, which will ulti-
mately turn out to be the full cast of characters. As we proceed, we’ll eventually
reconnect the second half of the course with the first. To speed things up, we
will make a jump and discuss supersymmetric gauge theory in 4, 5, and 6 di-
mensions. Without delving into the details, we can translate these theories into
a class of statistical models. In essence, we will be studying complexified prob-
ability measures µ: measures on the set of multi-partitions. These measures
will depend on several parameters, so it will take some time to introduce all the
details.
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3.5.1 Partitions via Young Diagrams

Let’s begin by discussing partitions:

Definition 3.8. A partition

λ = (λ1 ≥ λ2 ≥ ... ≥ λℓ(λ) > 0)

has size |λ| = λ1 + λ2 + ...+ λℓ(λ) and length ℓ(λ).

Geometrically, partitions can be visualized through a Young diagrams:

where the total number of boxes is |λ|, and the ith row contains λi boxes. We
assign coordinates (i, j) to each box, where i counts vertically and j counts
horizontally. Specifically, note that

(i, j) ∈ λ⇐⇒ 1 ≤ j ≤ λi ⇐⇒ 1 ≤ i ≤ λTj .

Definition 3.9. The Young graph is an infinite graph whose vertices and
partitions and two partitions are connected by an edge if there is a way to obtain
one from another by adding or removing a box:

∅

For any tableau in the Young graph, let ∂+λ be the number of corners where
we can add a box, and let ∂−λ be the number of corners where we can remove
a box.
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Proposition 3.10.
#∂+λ−#∂−λ = 1.

3.5.2 Partitions via Characters

Another way to describe the shape of a partition is through its character:

Definition 3.11. The character

Chλ = Xλ(q1, q2) =
∑

(i,j)∈λ

qi−11 qj−12

This character becomes more meaningful if we identify λ with a monomial ideal
in C[z1, z2] of codimension |λ|.

In algebraic geometry, when you want to specify a position in space and time,
you can’t just say, ”I’m here.” You must also specify that if you move in one
direction, you will be multiplied by a function that vanishes in that direction.
If you make another move, you’ll be multiplied by a function that vanishes in
the next direction, and so on. This idea is central to the concept of a resolution,
which we will now use to understand the boundaries of partitions.

Definition 3.12. A monomial ideal is an ideal of the form

Y = ⟨zai1 z
bi
2 ⟩i=1,...,N .

For example, in the infinite diagram

z22 z1z
2
2 z21z

2
2

z2 z1z2 z21z2

1 z1 z21

everything above and to the right of za1z
b
2 forms a monomial ideal.

Proposition 3.13. The elements of ∂+λ are the generators of the monomial
ideal Jλ:

Jλ = ⟨zi−11 zλ2
2 ⟩.

Note that given (i, j) ∈ λ,

⟨zi−11 zj−12 ⟩ ∈ C[z1, z2]/Jλ = Kλ,

where dimKλ = |λ|.
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he number of elements in ∂+ could be smaller than what’s shown here because
this is an exhaustive list, but it’s not necessarily minimal. #∂+ corresponds to
the minimal set of generators.

What about ∂−? The key point is that ∂+λ corresponds to the generators of
Jλ, whereas ∂−λ corresponds to the relations in Jλ.

Proposition 3.14. Jλ is invariant under C× × C× action via

(z1, z2) 7→ (t1z1, t2z2).

Thus, Kλ is a representation of the 2-dimensional torus. Moreover,

Proposition 3.15. Chλ is a character of the C× × C× action on Kλ.

Definition 3.16. Let

Sλ = 1− (1− q1)(1− q2)Xλ(q1, q2)

=
∑

□∈∂+λ

ec(□) − q1q2
∑

■∈∂−λ

ec(■)

where ec(i,j) − qi−11 qj−12 .

Proposition 3.17. Given the character of the partition, performing this alge-
braic manipulation extracts two characters, precisely those of ∂+λ and ∂−λ.

This essentially repeats what we discussed regarding the generators and rela-
tions: it’s the calculation of the Koszul resolution, but at the level of characters.
Note that

Sλ
(1− q1)(1− q2)

=
∑

qi−11 qj−12

=
1

(1− q1)(1− q2)
Xλ(q1, q2)

=

∑
□∈∂+λ e

c(□)

(1− q1)(1− q2)
−
q1q2

∑
■∈∂−λ e

c(■)

(1− q1)(1− q2)

where in the first line we are summing over all (i, j) such that zi−11 zj−12 ∈ Jλ.

Let’s proceed with a bit of homological algebra.

Proposition 3.18. There is a tautological (C× ×C×-equivariant) complex as-
sociated with the partition λ:

Kλ
d1→ Kλ ⊗Q⊕ C d2→ Kλ ⊗ Λ2Q

where Q = C2, with d1(k) = ((z1k), (z2k); 0) and d2(k1, k2, u) = u+z2k1−z1k2.
This complex satisfies the condition:

d2 ◦ d1 = 0.
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What is the cohomology here?

Proposition 3.19. The cohomology of this complex is given by:

χH1(q1, q2) =
∑

□∈∂+λ

ec(□),

and
χH0(q1, q2) = q1q2

∑
■∈∂−λ

ec(■).

Here, H0 = Ker d1, which corresponds to the elements of the quotient space
that vanish under multiplication by z1 and z2. Specifically, multiplication by
z1 shifts us down, while multiplication by z2 shifts us to the right. Therefore,
Ker d1 is spanned by the vectors corresponding to the ■ elements.

3.5.3 Multi-Partitions

Now that we are familiar with partitions, let us introduce multi-partitions. Since
we want to study systems in multiple planes of reality, investigating multi-
partitions is a natural next step.

Definition 3.20. A mutli-partition is a collection (λ(α)) of partitions where
A is a finite set.

Next, we discuss the partition function, which will involve a sum over a multi-set
of partitions. The corresponding measure depends on the shape of the partitions
and certain parameters, and is given by:

Z =
∑

(λ(α))

∏
α∈A

q|λ
(α)|

α µ(λ(α))(aα, ϵ1, ϵ2, . . . ).

There are 3 theories to consider here for µ:

• Topological theory H: Uses rational functions and corresponds to 4-
dimensional space.

• K-theoryK: Uses trigonometric functions and corresponds to 5-dimensional
space compactified over S1.

• Elliptic theory Ell: Uses elliptic functions and corresponds to 6-dimensional
space compactified over an elliptic curve E.

The origin of these measures comes from localization in elliptic cohomology of
moduli spaces of solutions to partial differential equations on R4. By adding two
dimensions corresponding to the elliptic curve, we form a 6-dimensional theory.
In the K-theory case, there’s a hidden S1 that leads to a 5-dimensional theory.

Several tools are available for this purpose, but we will focus on a few. For
example, there are measures associated with Hodge surfaces, which admit a
cohomological treatment but cannot be expressed in K-theory.
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3.5.4 Example: Â0

Consider A = {1, . . . , N}, where the elements are called colors. The param-

eters are (a1, . . . , aN ) ∈ CN , (ϵ1, ϵ2, ϵ3, ϵ4) ∈ C4 with
∑4
a=1 ϵa = 0, and q =

exp(2π
√
−1τ), where Im τ > 0. Given the random variables (λ(1), . . . , λ(N)),

the measure is expressed as:

µ = q
∑N

α=1 |λ
(α)|

N∏
α,β=1

∏
(i,j)∈λ(β)

θ(ϵ3 + ϵ1(i− λ(β)j ) + ϵ2(1 + λ
(α)
i − j) + aα − aβ)

θ(ϵ1(i− λ(β)j ) + ϵ2(1 + λ
(α)
i − j) + aα − aβ)

×
∏

(i,j)∈λ(α)

θ(ϵ3 + ϵ1(λ
(α)t
j + 1− i) + ϵ2(j − λ(β)i ) + aα − aβ)

θ(ϵ1(λ
(α)t
j + 1− i) + ϵ2(j − λ(β)i ) + aα − aβ)

.

Here, the θ function is defined as:

θ(x) =


x (for linear functions)

1− e−x (for exponential functions)∏∞
n=1(1− pn−1e−x)(1− pnex) (for elliptic functions)

depending on the theory in use, where p = exp(2π
√
−1σ) and Im σ > 0.

In the above product, if α = β, arm(i, j) = λ
(α)
i and leg(i, j) = λ

(α)t
j − i.

3.5.5 Visualizing with Young Diagrams

We can visualize this in terms of Young diagrams. When we rotate a Young
diagram by 135◦, it resembles a pile of bricks,correspond to complex points
A1, . . . , AN ,

ϵ2

ϵ1
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thrown in a gardening cart:

λ(1) λ(N)

• • • •

• • C

a1 ... ... aN

3.5.6 Growth Process on the Complex Plane

We have a growth process on the complex plane.

The growth starts with seeds at the points A1, A2, . . . , An, and the growth steps
are governed by ϵ1 and ϵ2. The Young diagram is simply the boundary of this
growth process. The boundary of this process interacts with itself, and there is
a ”potential” between the corners of the diagram: the □ and ■ we discussed
earlier, akin to dipole-dipole interactions. This is a discrete process, meaning
that the ”charges” (the boxes) can only occupy specific positions. However, if
we decipher this setup, we can think of it as a Coulomb gas (a system of dipoles
interacting in a discrete way).

The simplest case is N = 1. The formula simplifies to∑
λ

q|λ|
θ(ϵ3 + ϵ1(−leg□) + ϵ2(arm□ + 1))θ(ϵ3 + ϵ1(leg□ + 1)− ϵ2arm□)

θ(ϵ1(−leg□) + ϵ2(arm□ + 1))θ(ϵ1(leg□ + 1)− ϵ2arm□)

where ϵ1 + ϵ2 + ϵ3 + ϵ4 = 0. Many physicists call ϵ3 the ”joint mass” and
ϵ4 = −ϵ3. Although not immediately obvious, there is a symmetry that allows
us to exchange ϵ1 ↔ ϵ2 and ϵ3 ↔ ϵ4.

Remarkably, this formula can be summed up. We won’t bother with the elliptic
case, but in the rational case when θ(x) = x, this sums to

( ∞∏
n=1

(1− qn)

)− (ϵ3+ϵ1)(ϵ3+ϵ2)
ϵ1ϵ2

.

There is a special case related to the representation theory of the symmetric
group: ϵ1 = −ϵ2, q → 0, ϵ3 → ∞, and ϵ23q = Λ2 is fixed. Then the mea-
sure simplifies and becomes the Plancherl measure, giving us the famous hook
formula:
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Proposition 3.21.

µ =
(dimλ)2

|λ|!
=
∏
□

1

h2□

For the experts: we don’t think we live in R4, rather C2. But, it’s not just
any C2; it’s a C2 embedded inside C4. Since there is are four parameters
ϵ1, ϵ2, ϵ3, ϵ4, there’s a four-dimensional space hiding within this structure. Our
C2 is just a two-dimensional slice inside this four-dimensional space, and a three-
dimensional torus (C×)3 ⊂ SL(4) acts on it. So our space we’re dealing with is
abstracted in a certain way: it’s C2 with a two-dimensional bundle on it, and
the ϵ3 and ϵ4 parameters are the weights of this bundle.

Back to the N = 1 case, the formula becomes

n∑
n=1

qn
∫ Ell

Hilb[n](C2)

∑
i

(−1)iΛT ∗Hilb[n](C2).

Recalling information from Okounkov’s lecture, we can recognize that this corre-
sponds to considering the cotangent bundle and then looking at the zero section
to find the zeros of a generic section. This relates to characteristic classes, but
we want to make things a bit more interesting by introducing weight factors.
Instead of just multiplying by (−1)n, we use the following weight instead

n∑
n=1

qn
∫ Ell

Hilb[n](C2)

∑
i

(−q3)iΛT ∗Hilb[n](C2)

where q3 = eϵ3 . We’re allowed to break the symmetry between ϵ3 and ϵ4 because
of the symplectic nature of the manifold we’re dealing with.

For general n, it is not simple. For n = 2, Z describes conformal blocks of a
2-dimensional conformal field theory on an elliptic curve with a parameter q
and one puncture.

Let’s summarize the big idea. As explained previously, everything presented will
be connected with everything else. Pairs of Young diagrams are related to the
representation theory of ĜL2, and inside ĜL2, there’s ŜL2, which is connected
to the symmetry of the Liouville theory. So, this is the rough explanation.
Next, we will introduce a new tool for studying these partition functions and
expectation values, In the next section, we will introduce a new tool for studying
these partition functions and expectation values. This new tool is called a QQ
character.

As an even broader big idea, we’re studying expectation values of some ob-
servables, where we defined a measure that can be noramlized on the set of
multi-partitions

1

Z
µλ

(α)
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We want to study expectation values of these observables evaluated on Λ:

⟨O⟩ = 1

Z

∑
(λ(α))

µ(λ(α))O[λ(α)].

There exists observables O such that ⟨O⟩ solve interesting equations:

• Knizhik-Samolodchikov ˆslN

• Belvain-Polyakov-Zamoldodchikov (Vir, W3, etc)

• Wave functions of A,D,E, Â, D̂, Ê spin chains

When we take ϵ1, ϵ2 → 0,

Z ∼ e
1

ϵ1ϵ2
F(a,ϵ3,q)

where F is the prepotential of some special Kähler geometry.

Often there is a family of curves with Krichever data that captures these asymp-
totics. The asymptotics at the level of these Young diagrams corresponds to the
limit shape problem.

There are also other interesting limits. For example, when ϵ2 → 0 with ϵ1 fixed,

Z ∼ e
1
ϵ2
W̃ (a,ϵ1,ϵ3,q)

where W describes the deformation of special geometry: sometimes it is quan-
tization and sometimes it’s a classical geometry but in a rotated complex struc-
ture.

3.6 From Generating Functions to qq-Characters

3.6.1 The Generating Function of Krichever Genera

Okounkov just talked about the generating function of Krichever genera

Z inst =

∞∑
k=0

qkKr(Mframed
k (N))

or of the moduli spaces of rank n, charge k = ch2 instantons, which are mathe-
matically torsion-free sheaves on P2, trivial over P1

∞.

Consider (q1, q2) ⊂ GL(2) and z = q3 = eϵ3 . Yesterday, both q1 and q2 were cru-
cial because they rotated the space on which the sheaves live, while q3 is a more
peculiar parameter used to weight the exterior powers of the tangent bundle.
Today, we will remedy this and restore the ”democracy” between q1, q2, q3, q4
by crossed isntantons.

But let’s digress and continue the logic of the presentation. The logic so far
was that localization provides a way to express the genera as a sum over fixed
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points. Without much explanation, we saw fixed points presented as collections
of partitions. So, this whole problem reduced to the partition function of some
statistical model. However, we are not primarily interested in the partition
function itself; we want to study correlation functions. So what are the good
observables? As learned from the lecture by Smirnov, there are two types of
interesting observables: order operators and disorder operators. We will study
both for this model. These operators can also be called observables, as under-
stood in complexified probability theory.

3.6.2 The Y-Observable

What’s the difference between order and disorder operators? An order operator
is something that can be easily defined. An original problem might involve
a (complexified) measure on some measurable set and an operator is simply
a function on that measurable set. It’s easy to define, and its expectation
value can be computed as an integral against the measure. It turns out that
there are smarter ways of organizing these functions, and we want to have a
way of assigning an interesting quantity to the collection of Young diagrams,
using essentially the characters we introduced last time. So, let me begin by
introducing the Y-observable:

Definition 3.22. A Y-observable is

Y (x)[λ(1), . . . , λ(n)] =

N∏
α=1

∏
□∈∂+λ(α) (x− aα − c12(□))∏

■∈∂−λ(α) (x− aα − c12(■)− ϵ1 − ϵ2)

where c((i, j)) = ϵ1(i− 1) + ϵ2(j − 1), valued in

• rational functions of X for H

• degree N line bundles on E for Ell

Proposition 3.23. In the rational case,

lim
x→∞

Y (x) = xN exp

∞∑
i=1

(−1)
i

x−ichi(ϵ),

where ϵ is the universal sheaf lcoalized to the point O ∈ C2 = P2\P1
∞.

Unfortunately, it is unpleasant that Y is a meromorphic function, so it has
poles. Y should be ”thought of” as characteristic function det(x−Φ). If E were
a vector bundle, not a sheaf, the expression would sum up to a polynomial in x.
Even in cohomology, we would get a holomorphic section of some line bundle
over E, not a meromorphic one. This means that the presence of poles reflects
the fact that it’s not a good idea to restrict to sheaves at a point. However,
there is a way to fix this problem.

Let eϵ1 = q1, e
ϵ2 = q2. Consider

⟨Y (x+ ϵ1 + ϵ2)⟩ :=
1

Z

∑
λ(1)...λ(N)

µλ(1)...λ(N) (⃗a, ϵ⃗, q)× Y (x+ ϵ1 + ϵ2)[λ
(1)...λ(N)]
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Proposition 3.24. There are poles at x = aα + ϵ1(i− 1) + ϵ2(j − 1) for some
(i, j) ∈ N× N.

These poles come from the sum of all configurations of Young diagrams where
(i, j) ∈ ∂−λ

(α). If we remove (i, j) from λ(α), we get λ̂(α). That is, we have
replaced (λ(1)...λ(α)...λN ) with (λ(1)...λ̃α...λ(N)).

3.6.3 The qq-Character

Proposition 3.25.

Y (aα + ϵ1(i− 1) + ϵ2(j − 1))[λ(1)...λ̃(α)...λ(N)] = 0.

This means that if we add something proportional to c
Y (x) to this expression for

some value c, the poles might be removed. Indeed:

Proposition 3.26. There are no poles for

X(x) =

≠
Y (x+ ϵ1 + ϵ2) + q

(ϵ1 + ϵ3)(ϵ1 + ϵ4)

ϵ3ϵ4

Y (x− ϵ3)Y (x− ϵ4)
Y (x)

+ ...q2 (...) + ...

∑
which we call the qq-character.

Note that by adding each qi term for some i, we have removed the poles of
the previous expression. Unfortunately, the price we have paid is that new
poles have appeared. This begins a process where we keep adding terms, each
multiplied by smaller and smaller coefficients, and then we cross our fingers,
hoping that we end up with the full formula for the entire series. It is fortunate
that our series happens to be convergent, which is not guaranteed.

Proposition 3.27.

X(x) =
∑
□∈λ

q|λ|
θ(ϵ3(arm□ + 1)− ϵ4leg□ + ϵ1)θ(−ϵ3arm□ + ϵ4(leg□ − 1) + ϵ1)

θ(ϵ3(arm□ + 1)− ϵ4leg□)θ(−ϵ3arm□ + ϵ4(leg□ + 1))

×
∏

□∈∂+λ Y (x+ ϵ1 + ϵ2 + c34(□))∏
■∈∂−λ Y (x+ c34(■))

where c34(□ = (i, j)) = ϵ3(i− 1) + ϵ4(j − 1).

This is some expression built out of the Y -functions, constructed according to
the shape of the Young diagram we are summing over. We use the contents of the
boxes of that Young diagram to shift the arguments of the Y -observable, which
was the observable on the ensemble of n Young diagrams. Importantly, there
is a prefactor - this is precisely the prefactor of Kr(Hilb[k](C2), z = eϵ1 = q1),
which is C× × C× equivariant with weights (q3, q4).
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3.6.4 Localization Formulas

Notice that the roles of the variables have shifted: ϵ3, which was just sitting
in the numerator, not doing much, has now become quite important as it is all
over the denominator of this localization formula. But why bother with all of
this trouble?

Theorem 3.28.

⟨X(x)⟩ −
N∏
α=1

θ(x−Aα)

where Aα(q) = aα + q(...) is holomorphic in x.

Now, we’re going to generalize this problem and make it look like a problem
that describes sheaves living on a cross

C2
34

C2
12

Horizontally, we can study rank N sheaves, whereas vertically, we study rank 1
sheaves. In between, there are some cross factors. This is a picture from string
theory, where open strings are connected to stacks of branes.

Let’s introduce the disorder operator, which are also known as surface defects,
and are obtained by a procedure called orbifolding. Previously, we were studying
sheaves on P2 which were trivial on the line P1

∞. This was related to doing U(N)
gauge theory on R4.

In gauge theory with some path integral
∫
DAe

− 1
q2

∫
TrFA∧∗FA+...

, we can study
observables as well. Typical observables people study in gauge theory are the
holonomy of Wilson lines ⟨TrP exp

∮
C
A⟩. Physicists studying quantum chro-

modynamics use supercomputers to study them. Unfortunately, in our world,
when everything is formulated in terms of holomorphic bundles or sheaves, we
don’t have access to those observables. However, invariants using Chern-Simons
theory tell us that in three dimensions, such observables can also be understood
as a disorder operator. This is because in Chern-Simons theory, given a link,
an observable is associated with some contour in the gauge field and has a sin-
gularity such that the curvature of the gauge field has a delta function source:
FA ∼ JRδC .

We can generalize this aspect of knots/links to four dimensions and define ob-
servables that will be codimension two defects. There are two main ways to do
this:
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• Algebraic geometry: Given a complex surface S and a complex curve C,
we are interested in studying sheaves E over S such that

E|C ⊃ E1 ⊃ E2 ⊃ ... ⊃ En.

• Homological algebra: If C is defined by the equation z2 = 0, wen can
study the flag

E ⊃ E1 ⊃ ... ⊃ En ⊃ z2E.

This is the moral of the story we’re going to follow. This is analogous to the
well-studied problem in the world of holomorphic bundles on curves, where we
fix a parabolic structure at points. We can think of curves as divisors, and we’re
fixing a parabolic structure on the divisors.

3.6.5 Orbifold Structures and Parabolic Sheaves

It turns out that there is a very convenient construction that realizes this
parabolic structure via an orbifold story. Imagine that we’re doing gauge the-
ory not on the (z1, z2)-plane, but on a (z1, z̃2) plane, where z̃N2 = z2. We will
assume that n is the rank of the gauge group, which is not always the case.

Imagine that we are doing something simple on the covering space (z1, z̃2), and
then project it to (z1, z2), which is a complex manifold C × C/(Z/N). But
there’s a defect at the origin...

Let’s define a more refined measure. In addition to the characters with respect
to the torus C×a1×C

×
a2×C

×
a3 , we will also keep track of the representations of the

cyclic group Γ = Z/n, which acts on C4 by rotating the Z2 and Z4 coordinates
in opposite directions, and is part of the Calabi-Yau 4-structure.

Definition 3.29. The Γ-action on C4 is given by

(z1, z̃2, z3, z̃4) 7→ (z1,Γz̃2, z3, γ
−1z̃4)

where ΩN − 1.

Additionally, this group Γ acts in a framing space: CN , which is the fiber of the
torsion free sheaf at ∞, becomes a regular representation of Γ. This is because
we are taking the maximal flag of subsheaves.

Now we assign brackets

[aα] = c(α) ∈ Z/N = Rep(Γ)[ϵ1] = 0[ϵ2] = 1[ϵ3] = 0[ϵ4] = −1

The map c : {1, . . . , N} → {0, . . . , N − 1} should be a 1-to-1 correspondence.

Let Rγ ∈ Rep(Γ) be given by Ω 7→ e
2π

√
−1ω

N .
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Definition 3.30. The new measure is

µnew
λ(1)...λ(N) =

N−1∏
ω=0

qkωω
∏

θ

(∑
α

aα + k1ϵ1 + k2ϵ2 + k3ϵ3

)

where
∑
nαc(α)+k2 = 0 (mod N) and kω =

∑N
α=1 #{(i, j)|(i, j) ∈ λ(α), c(α)+

j − 1 ≡ ω (mod N)}.

For combinatorics, we have the following map:

Definition 3.31. There’s a projection map π : (λ(α))Nα=1 → (Λ(α))Nα=1 such
that

Λ
α(t)
j = λ

(α)t
α+N(j−1)

This map corresponds to the projection from the moduli space of parabolic
sheaves to the moduli space of sheaves, forgetting about the parabolic structure.

Proposition 3.32.∑
λ⃗∈π−1(Λ(1),...,Λ(N))

µnew
λ(1),...,λ(N) = q|Λ⃗|µold

Λ⃗
× observables

where the observables are
∑∏

ω q
kω
ω

∫
1 and the integral is over all parabolic

structures on a given ϵΛ⃗, and q =
∏N−1
ω=0 qw.

If we let qω = zω
zω−1

, we have zω+N = qzω, which is the start of an elliptic curve.

The elliptic curve begins with the collection of particles, which forms an infinite
set. When we shift the label of a particle by n, we obtain another copy of the
same particle on the elliptic curve (quotiented by q). The resulting structure
can Ω times the first Chern class of the associated quotient. Ω× the first Chern
class of the corresponding quivers. Despite its initial complexity, this formula
is explicit and combinatorial in nature.

How big are the fibers in the map? The fibers are ∞-to-1, meaning the pre-
image of any collection of partitions is an infinite set. However, this set has an
interesting structure. This structure is related to maps, specifically quasimaps
to flag varieties. Let me explain a few basic points to help clarify things.

If α = 1, then Λ
(1)t
1 = λ

(1)t
1 . If α = 2, then Λ

(2)t
1 = λ

(2)t
2 ≤ λ

2(t)
1 , so there

is 1 integer freedom. If α = 3, then Λ
(3)t
1 = λ

(3)t
3 ≤ λ

3(t)
2 ≤ λ

(3)t
1 , so there

are 2 integers of freedom. More generally, for α = N , there are N − 1 degrees
of freedom. This gives rise to a Gelfand-Zetlin table of numbers, which are
degrees of quasi maps QMaps(Cz,P1, T ∗Flag). To understand why we have this
triangular table of numbers, one way is to use the quiver variety representation
of the flag variety.

This takes care of most of the fiber, but not all. There are also finite pieces,
having to do with the possibility of inserting columns between N successive
steps.

107



3.7 Connecting The Two Stories

Our goal is to connect two stories: the story of the integration of instan-
tons/moduli spaces of sheaves and the story of integral systems (classical and
quantum). These are rich and vast topics, so we’ll only touch on a few aspects.
We will focus on understanding the origin of the Lax operators of integrable
systems and how they come from the geometry of moduli spaces of instantons
and their generalizations.

Before diving into the main discussion, we mention one remark about the ter-
minology we used for the observables introduced in our previous sessions: why
are they called qq-characters and how are they connected to characters? To
clarify this, we will generalize both the problem and the observables in such a
way that the classical Lie algebras and root systems associated with simple Lie
algebras naturally emerge. In this context, we will see that these qq-characters
are indeed related to the characters of representations of these Lie algebras. We
will sketch the construction of this relationship, with the goal of providing a
clearer understanding of the connection.

3.7.1 Linking Instantons and Integrable Systems

Previously, we discussed a problem that became a statistical mechanics problem
through the process of localization. Initially, this problem involved calculating
integrals over the moduli space of instantons, which were defined on a two-
dimensional complex plane C2

12 ↪→ C4
1234, which is a Calabi-Yau 4-fold. The

4-fold intersects our plane at a single point, which corresponds to the C2
34 plane.

Then, we introduced a defect by performing an orbifold action inside the two-
dimensional plane such that the orbifold action, when observed from a certain
point of view, looks like a complex line.

Let’s change the orbifold action:

C2
12

C2
34/Γ

Nrank sheaves

U(N) instantons

We want to modify the geometry so that the observer (denoted by the dot)
observes nothing: the world is flat and in 3-dimensions, but the transverse
space is now modified by quotienting out a finite subgroup Γ ⊂ SU(2). There
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is an ADE choice for this subgroup, but we won’t dwell on the details.

3.7.2 The Geometry of Instantons and Moduli Spaces

Example 3.33. Γ = Zr+2 acts by

(z3, z4) 7→ (ωz3, ω
−1z4)

where ωv+2 = 1. The framing space is important because the rank-N sheaves
describe surfaces with multiplicities, and these multiplicities are spread out in
the transverse direction. So we can think of N -points moving on the transverse
plane, and the group acts on the collection of these points. One simple way to
let the group act is to say that the N points form orbits of the group: the framing
N = functions on N copies of Γ orbits.

Algebraically, let the manifold C2
34 be described by the equation AB = Cr+2,

where A = zr+2
3 , B = zr+2

4 , and C = z3z4. On the quotient space, we have N
points which leads to an orbit. Then on the covering space, we have N(r + 2)
sheaves with Γ-actions.

Then

ChN =

N∑
α=1

r+1∑
s=0

eaα,sR̂S

with Rep(Γ) = {R̂0, ˆRr+1}, where R̂s is the irreducible representation corre-
sponding to ω 7→ ωs. For each representation, we have an N -dimensional vector
space, which is the fiber of the trivialization of my shift at infinity in that space.

The framing group is (GL(N))×(r+2) = GL(N(r+2))Zr+2 . Now, each irreducible
representation of Γ has its own frame. Therefore, if we formulate the problem
of instanton counting as an integral over R-products, we can proceed with this
framework.

The moduli space of quiver instantons is M, which satisfies ⊔k⃗Mk⃗(derived
moduli space of framed rank = N(r + 2) sheaves on P2, with trivializations

over P1
∞
⊕r+1

s=0Ns ⊗ R̂s)
Zr+2 = {(E0, . . . , Er+1)} such that Es is torsion free on

P2,Es|P1
∞
∼= Ns ⊗G, rank Es = N , and ch2(Es) = ks.

Now, we replace q 7→ (q0, . . . , qr+1). Then

Zinst(aα,s; q⃗; ϵ1, ϵ2, ϵ3) =
∑
k⃗

r+1∏
s=0

qkss
∑
λ(α,s)

∏
where λ(α,s) is a N(r+2)-tuple of Young diagrams, ks =

∑N
α=1(λ

(α,s)), [
∑
nα,saα,s+

maϵa] = (
∑
nα,ss + m3 − m4) (mod r + 2), [aα,s] = s, [ϵ1] = [ϵ2] = 0, [ϵ3] =

1, [ϵ4] = −1.
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We organize the representations of Zr+2 into a McKay graph, where the vertices
are the representations and the edges represent the decomposition

R̂s ⊗ C2
34 =

⊕
S1

Rs′ ⊗ Cmss′”R1

...

”R0

’Rr+1

Then, we promote the vertices into sheaves of rank N , and study the moduli
spaces of these sheaves:

E1

...

E0

Er+1

But on top of these sheaves, we should think of these moduli spaces as abstract
spaces with obstructions coming from∫

Mframed
0 ×Mframed

1 ×...×Mframed
r+1

cϵ3

(⊕
S

RHom(Es,Es+1)

)
.

Although it looks like we are complicating things, things will become simpler
soon.

3.7.3 Example: Ar Type Theory

Let q0 = 0 = qr+1, so the chain of sheaves become fixed vector spaces. Then
the measure becomes

µA1(λ
(α)) =

∏
α,α′

∏
□∈λ(α) θ(aα −m−s + c12(□))

∏N
s=1 θ(aα −m+

s + c12□)∏
□∈λ(α) θ(...)

∏
□∈λ(α′) θ(...)

where aα,r+1 = m−α , aα,r+1 + ϵ1 + ϵ2 = m+
α .
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The observables are

Ys(x) =

N∏
α=1

∏
□∈∂+λ(α,s)(x− aα,s − c12(□))∏

■∈∂−λ(α,s)(x− aα,s − ϵ1 − ϵ2 − c12(■))

and the fundamental qq-characters are

Xs(x) = Ys(x+ ϵ1 + ϵ2) + qs
Y (x+ ϵ1 + ϵ2)Ys+1(x)

Ys(x)
+ ...

This is the same as the summation over the Young diagram

z4 z3

• • • • • • •

• s s+ 2 •

• s+ 1 ... •

• s s+ 2 •

• s+ 1 •

• s •

•

The weight of this daigram is q3sq
2
s+1q

2
s+2, and in the Ar situation (q0 = 0, qr+1 =

0), the weight is q|λ| →
∏

(i,j)∈λ qs+i−j , where we are considering only the λ’s

for which (i, j) ∈ λ with 0 < s+ i− j < r + 1, so there are
(
r+1
s

)
choices for λ.

Then

Y0(x) =

N∏
α=0

(x−m−α )

Yr+1(x− ϵ1 − ϵ2) =
N∏
α=1

(x−m+
α )

and

Xs(x) = Y0(x+ ϵ(1− s))
∑

0≤i1<...<iℓ≤r+1

ℓ∏
β=1

Λiβ (x+ ϵ(β − 1))

zβ−1

where

Λi(x) = zi
Yi+1(x+ ϵ)

Yi(x)

for i = 0, . . . , r + 1
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3.8 The Limit Shape Phenomenon

3.8.1 The Limit Shape Phenomenon

Let’s take the limit as ϵ1, ϵ2 → 0. In this case, the expectation values we were
computing factorize.

⟨Y (x)⟩

⟨Y −1(x)⟩ = 1

⟨Y (x)⟩
This is called the limit shape phenomenon. This is because ⟨Xs(x)⟩ = Ts(x)
has no poles in x and it’s a holomorphic section of a degree N line bundle L|E ,
where

Ts(x) =
Y0(x)

z0...zs−1
es(Λ0, . . . ,Λr+1)

where Λi = limϵ1,ϵ2→0 zi⟨Yi+1(x)
Yi(x)

⟩.

Now, we have a system of algebraic equations. To solve it, we need to fix some
poles or theta functions, and recover the Λ’s by inverting the system. To do
this, compute the generating function

0 =

r+1∑
s=0

z0...zr−1Γs(x)(−z−1)s = Y0(x)

r+1∏
i=0

(1− z−1zi
Yi+1(x)

Yi(x)
)

where the sum, denoted R(x, z), is an algebraic curve in E × P1 and z(i) =

zi
Yi+1

Yi(x)
.

3.8.2 Spectral Curve Construction

Furthermore, we will describe this algebraic curve as a spectral curve, but in
order to do this we first need to define an operator satisfying det(R̂(x, z)) =
R(x, z). To build this operator, we need to combine the orbifold structure we
had before and introduce an additional orbifold in the C2

24 plane. This adds
a surface defect by introducing a ZN orbifold with respect to a bigger group
ZN × Zr+2.

The representations of this larger group are now labeled by two integers. This
results in a more complex quiver structure with an additional dimension:

E1

...

N0

Nr+1

ZN
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Now, each representation will create a Zn-cyclic structure, and the resulting
diagram resembles a lattice model on the 2-dimensional torus.

Concretely, Ys(x) becomes

Ys,ω(x) = θ(x− as,ω)
N∏
β=1

∏
□∈λ(β,s)

Å
θ(s− as,w − c12(□)− ϵ2)

θ(x− as,ω − c12(□)− ϵ1 − ϵ2)

ã
if β + j ≡ s (mod N) and

Ys,ω(x) = θ(x− as,ω)
N∏
β=1

∏
□∈λ(β,s)

Å
θ(s− as,w − c12(□)− ϵ1)
θ(x− as,ω − c12(□))

ã
if β + j − 1 ≡ s (mod N)

3.8.3 Lax Operators, Residues, and Integrability

Now, we can organize this collection of observables into an N ×N matrix:

Ŷs(x) = diag(Ys,0, . . . , Ys,N−1).

As ϵ1, ϵ2 → 0,

Ŷ0(x)
∏Ç

1− ĈzẐi
Ŷi+1(x)

Ŷi(x)

å
=
∑ s−1∏

i=0

(ĈZẐi)X̂s(x)

where

Ĉz =

à
0 1

. . . 1
. . . 1

z−1 0

í
,

Ẑi = diag(Zi,ω), and
Zi,ω+1

Zi,ω
= qi,ω. By expanding the brackets and reordering

on the right hand side, we can see that coefficients are the collection of the
qq-characters.

Theorem 3.34. ⟨Xs,ω(x)⟩ is a holomorphic section of degree 1 L|E.

The excitement lies in the fact that the degree is 1, meaning that it has a simple
structure.

Now, I organize them in a diagonal matrix operator

D̂(x, z) =
∑ s−1∏

i=0

(ĈZẐi)X̂s(x).

As a function of x, this is a linear function; it’s a section of a degree-one line
bundle. As a function of z, it is a polynomial.
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If we want to reconstruct the entries of the matrix, we just need to solve the
equation D̂(x, z)ψ = 0.

Let’s bring the Lax operator back into the story. In the rational case, D̂(x, z)
is a degree 1 polynomial in x such that

D̂(x, z) = xD̂0(z) + D̂1(z)

= D̂0(z)(x− L̂(z))

where D̂0(z) =
∏r+1
i=0 (1 − ĈzẐi) and the Lax operator L̂(z) = D̂0(z)

−1D̂1(z).

Since det(1 − ĈzÂ) = 1 − z−1 det Â, det D̂0(z) = 1 − z−1zi. The poles of L̂(z)
are at z = z0, . . . , zr+1, so we can write L̂(z) in the form

L̂(z) =

r+1∑
i=0

L̂i
z − zi

which is the Lax operator on the Gaudin-Garnier system on genus 0 curve with
r + 3 punctures (the additional ones being at 0 and ∞).

Theorem 3.35. The residues are rank-1 matrices.

This is because when we invert an operator that’s a polynomial in z, the residues
correspond to projections onto the kernel and the dual kernel of the operator.

These L̂(Z) matrices contain information about the theory both with and with-
out the surface defect. From the perspective of an integrable system, they can
be seen as integrals of motion. The surface defect adds extra data, such as the
Zi parameters, which are not visible in the bulk theory. These Zi values are
degrees of freedom that change the dynamics in the Lax flow. In total, there
are 2(N − 1)× r dynamical parameters.

The Higgs operator is ϕ(z) = dz
z L̂(z).

Theorem 3.36. The eigenvalues of the residues of ϕ at 0 and ∞ are m−α and
m+
α .

Where does the Poisson structure come from? Let Ψ be the surface defect
expectation value. We have

qs,ω
∂Ψ

∂qs,ω
= ⟨as,ω + ϵ1ks,ω⟩.

As ϵ1, ϵ2 → 0,

ψ = e
1
ϵ1
S(zs,ω,as,ω,...)

and ∂S
∂Zs,ω

are the entries of ui, vi. This relation is a Hamiltonian-Jacobi po-

tential where the momenta are related to the coordinates, allowing us to derive
a symplectic structure for the residues of the Lax operator. Ths enumerative
geometry creates a Lagrangian subvariety in the phase space of the integral
system.
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We’ve build part of the finite A-type theory. Let’s finish with one last point:
there’s a similar but more complicated formulas for the Â0 involving infinite
product in both directions, where we replace Ŷi(x) with Ŷ (x + iϵ3) and X̂s(x)
with X̂(x+ sϵ3).
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4 Andrei Okounkov: From Elliptic Genera to
Elliptic Quantum Groups

Abstract

This course will be an example-based introduction to elliptic cohomol-
ogy, Krichever elliptic genera, rigidity, and related topics. We will work
our way towards the geometric construction of elliptic quantum groups.
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4.1 Introduction

The speakers at this conference have already covered various aspects of Krichever’s
work. In this session, we will focus on his early contributions to topology. This
follows the work of Sergei Novikov, who also passed away recently. Krichever
made significant strides in topology, and these contributions will be the central
theme of my lectures. Later, we’ll explore how his work evolved toward inte-
grable systems. Even in his early topological papers, however, we can observe
connections to Baker-Akhiezer functions and other areas. For Krichever, these
subjects were always closely intertwined. In fact, today’s leading research in
integrable systems often engages with topological questions.

We will begin by explaining the concept of the elliptic genus, discussing its
rigidity and other key properties. We’ll also touch on how these ideas have
evolved and highlight some of the current directions in the field. Those working
in integrable systems should be particularly interested in this work, as we can
apply representation theory and geometry to gain deeper insights into these
systems. Geometry, in particular, offers a powerful way to simplify and prove
complex identities, especially those involving elliptic functions. For instance,
when dealing with a complicated multivariable expression of elliptic functions,
it can be difficult to discern how it simplifies. The traditional approach to
proving elliptic function identities involves verifying that the function transforms
correctly when shifted by periods. Then, for a rational expression, one would
aim to show that it has no poles. Typically, this involves proving that all
poles cancel out. However, geometry provides a much more robust method to
demonstrate that a rational expression is regular. Even for those not directly
interested in geometry, this type of argument can still be of significant interest.

We will begin our discussion with genera, starting with the classical example of
the Gauss map.

4.2 The Gauss Map

4.2.1 Definition and The Degree

Let C be an orientable surface of genus g embedded in R3. At each point on
the surface, there is a unique normal vector and a corresponding tangent plane.
Using this information, we can define a map that sends each point on the surface
to a point on the unit sphere S2, where the position on the sphere corresponds
to the direction of the normal vector at that point on the surface, preserving
the orientation. This defines the Gauss map:

γ : C → S2 = Gr+(1, 3,R) = Gr+(2, 3,R),

where Gr refers to the Grassmannian. What is the degree of this map?

Proposition 4.1. The degree of the Gauss map is given by deg γ = 1 − g(C),
where g(C) is the genus of the surface C.
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Proof. There are several ways to prove this result. One approach involves ex-
amining the preimages of the north and south poles of S2. These correspond to
points on C where the tangent plane is horizontal, which are the critical points
of the height function on C. By analyzing these critical points, we can derive the
degree. Even if the surface is embedded differently, Morse theory tells us that
there may be additional critical points, but since the cohomology of the surface
can be computed using the critical points, the degree remains unchanged.

Another proof uses vector fields on S2 and the Hopf index theorem, which relates
the sum of the indices of a vector field to the Euler characteristic of the surface.
Let v be a vector field on S2, which is a section of the tangent bundle TS2.
Then the pullback γ∗TS2 is the tangent bundle of C, and γ∗v defines a vector
field on C. This gives an index:

ind(v) =
∑
v(p)=0

indp(v) = C ∩ C inside TC = Euler(TC) = χ(C),

where Euler denotes the Euler class, and

ind(γ∗v) =
∑
v(p)=0

(deg γ) · indp(v) = deg γ · indv.

Combining these, we obtain:

χ(C) = deg γ · χ(S2),

where χ(C) = 2− 2g is the Euler characteristic of C and χ(S2) = 2 is the Euler
characteristic of the sphere. Thus, we find that

deg γ = 1− g,

as desired.

4.2.2 Characteristic Classes and Pullbacks

For a vector bundle, there are characteristic classes that capture important topo-
logical information. When the bundle is pulled back by a map, the characteristic
classes also pull back accordingly. The Euler class is one such characteristic class
- it encodes how many times a subsection of the bundle vanishes, counting with
multiplicity.

The topological computations we are performing here have an analytic coun-
terpart, which is often encountered in applications. Although we won’t focus
on this analytic side, its important to note that many problems can be viewed
through this lens. When a bundle is pulled back by a map, not only can we pull
back the characteristic classes, but we can also pull back other structures like
connections and curvature.
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For example, the sphere S2 = SO(3)/SO(2) has an invariant metric. Since the
metric is invariant under the action of the group, parallel transport with respect
to this metric is simply given by the group action. If we want to translate along
a geodesic, we can achieve this by acting with an element of the group that
moves us along that geodesic. A concrete example involves a geodesic triangle:
if we rotate it by an angle θ, the computation of the rotation’s effect reduces to
the commutator in the group, which, in this case, equals the area of the triangle.

In particular, when we pull back a metric or connection, we can also pull back the
associated data, including the curvature. While some might think of curvature
as merely a number, it is, in fact, a 2-form that tells us how much the geometry
deviates as we traverse a small parallelogram. This leads to the following integral
expression: ∫

C

curvature(TC) = (1− g)
∫
S2

Area

In our case, the area of a sphere is 4π and we get the Gauss-Bonnet theorem.

In modern high-energy physics, many integrals are written in the form of Rie-
mann or Lebesgue integrals. However, these integrals often have a deeper mean-
ing related to the characteristic classes of vector bundles. While we can compute
these integrals using standard calculus techniques, they can also be understood
from a topological perspective.

We won’t dive deeply into connections and curvature here, as these topics are
well-covered in many texts. Instead, we will focus on two analytic aspects of
this story. The first relates to integrals, as illustrated in this example, and the
second concerns the indices of (pseudo)-differential operators. These are defined
analytically, but in the end, they reduce to integer values.

The topological computations we’re working with today have corresponding
analytic counterparts. While we won’t emphasize this aspect, it’s worth noting
that these connections are often encountered in practical applications. When a
bundle is pulled back by a map, we can pull back all its structures - connections,
curvature, and so on.

Take the sphere, for example. While it may seem too large or imprecisely drawn,
the sphere is a homogeneous space, and this property makes it particularly well-
behaved in the context of pullbacks. Specifically, the sphere is the quotient of
the rotation group by SO(2), and it carries an invariant metric under this group
action. Since the metric is invariant, parallel transport with respect to it is
simply given by the action of the group.

To illustrate this, consider translating along a geodesic on the sphere: we can
achieve this by acting with an element of the rotation group that moves us along
the desired geodesic. For example, imagine we have a geodesic triangle. If we
take a tangent vector at one point, translate it along the geodesic to another
point, and then repeat the process, eventually returning to the original point,
the vector will have rotated by some angle, say θ. The amount of rotation can
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be computed as the commutator in the group, which, in this case, is equal to
the area of the triangle.

When we pull back a metric or connection, we also pull back the associated data,
including curvature. This allows us to derive the property that integrating the
curvature of the tangent bundle over a curve C gives an expression of the form∫

C

curvature(TC) = (1− g) · deg(γ)

where g is the genus of the surface C and deg(γ) is the degree of the map. For
sphere, the curvature is directly related to the area, which in this case is π

In modern high-energy physics, many integrals are written in the form of Rie-
mann integrals, but they often have a deeper meaning tied to the characteristic
classes of vector bundles. While we can compute these integrals using standard
calculus, they also have a topological interpretation.

We won’t focus on connections and curvature here, as these are well-covered
in many books. Instead, we’ll explore two key analytic aspects of this story:
one involving integrals, as we’ve just illustrated, and the other concerning the
indices of differential operators. These are defined analytically, but ultimately,
they are integers.

4.2.3 Interpreting The Degree

Now, let’s interpret the degree of the map more concretely. Consider the graph
of the map. On the sphere, we can choose a point and ”stretch” the space
from this point toward another. For instance, we might use a Morse flow to
move everything from the north pole to the south pole. What happens if we
continue this process? We obtain a result where we can split the space into
subsets consisting of a curve and a bunch of spheres. The curve is collapsed to a
point, and the spheres are mapped with degree ±1 (counting with orientation)
to 1− g. Thus, we end up with a Gauss map:

C → ∨S2 → S2.

graph γ
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If we’re computing a Riemann integral or something pulled back from here,
that’s good enough because whatever lives over that point doesn’t matter. How-
ever, if we’re computing indices of differential operators, this is not sufficient
because it’s not smooth. But there’s a way to write a smooth cobordism be-
tween the Gauss map and the union of 1 − g spheres. Consider the graph of a
function f(x) = x21+x

2
2−x23. The graph of this function is a cone roughly looks

like the follows:

with the following inverse maps

f−1(1) =

f−1(0) =

f−1(−1) =

So we can smoothly pinch any handle on this surface, make a surface a bunch
of spheres, and turn it into nothing because the surface in the 3-space bounded
by 3-manifolds is cobordant to 0.

The problem is at the origin since the Gauss map is γ(x) = 1
∥x∥ (x1, x2,−x3),

but we can fix this by turning the function into f(x) = x21+x
2
2−x23− ϵ

∥x∥ which

would make a hole in the graph:
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which will change add a sphere for one of the inverse functions:

f−1(−1) =

So we have ⊔1−gspheres. In particular, we have

ind(∂ : C∞ → C∞dz)

and
indC

(
∂
)
(1− g)indS2

(
∂
)
.

Now, we can see that the kernel is holomorphic functions, and the cokernel ∼
holomorphic differentials. So, not only can we compute some Riemann state-
ments topologically, but we can also compute statements about indices of elliptic
operators in this topological fashion.

In this course, we will not deal with Riemann integrals or elliptic differential
operators. Instead, we will focus on situations where the manifold is complex,
and we are dealing with the sheaf of holomorphic functions χ(OC) where we have
OC → C∞

∂→ C∞ dz → 0 and we can tensor every term by any holomorphic
bundle F , allowing us to compute χ(F).

We will always work in the case where we have this sheaf and we can compute
this, but in principle we can also phrase it as an index of a differential operator,
namely the Dolbeault operator.

To summarize this discussion, there are is an important notion of a vector
bundle. With vector bundles, particularly in the context of a manifold, which
by definition has a tangent bundle (a very important bundle), we can associate to
it characteristic classes. These classes can be related to connections, curvature,
and other differential-geometric concepts, but ultimately, they can be computed
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purely topologically. Some involve more sophisticated topology, but in the end,
the computations remain completely topological.

4.3 Elliptic Genus and K-theory

This leads us to the discussion of elliptic genus and K-theory. Elliptic genus is
a kind of elliptic function associated with a bundle on a manifold, and K-theory
involves associating a certain group to a topological space, which we’ll discuss
in more detail.

4.3.1 K-Theory of Vector Bundles

Let X be a compact Hausdorff topological space, such as a smooth manifold or
a simplicial complex. For such a space, we will define the K-group of vector
bundles, denoted K0(X), which is an algebraic structure that encodes the
classification of vector bundles over X. Elements of this group correspond to
isomorphism classes of vector bundles, and the group is equipped with a ring
structure.

Definition 4.2. A vector bundle is a topological space V together with a
projection map p : V → X, where for each point x ∈ X, the fiber Vx = p−1(x)
is a vector space.

In this context, we primarily focus on complex vector bundles since complex
vector spaces offer richer structural properties. Given a vector bundle V with
projection p : V → X, for any open set U ⊂ X, we have an isomorphism
p−1(U) ∼= U × Cn for some n, where n is the rank of the bundle over U .
Moreover, the transition maps between different neighborhoods must be linear
in the fiber Cn.

Given two vector bundles V1 and V2 over X, we can construct their direct sum
V1 ⊕ V2, which is also a vector bundle over X. The transition functions for
V1⊕V2 arise from those of V1 and V2, and can be expressed through the general
linear group GL(n). Specifically, if the transition functions for V1 and V2 lie in
GL(n1) and GL(n2), respectively, then the transition functions for V1 ⊕ V2 lie
in GL(n1+n2). Similarly, the tensor product V1⊗V2 of two vector bundles is
another vector bundle, and the direct sum and tensor product together generate
a semiring of vector bundles.

In a semiring, subtraction is not typically defined. However, we can introduce
a formal notion of subtraction by defining an operation ⊖ as follows: for two
vector bundles V1 and V2,

V1 ⊖ V2 =W1 ⊖W2 ↔ V1 ⊕W2 =W1 ⊕ V2.

Thus, ⊖ serves as a formal subtraction that respects the structure of the semir-
ing.

Proposition 4.3. For any vector bundle V , there exists an integer N such that
V ⊂ CN .
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Alternatively, we can say that V is a quotient of a trivial bundle or there is a
surjection Cn ↠ V :

Proposition 4.4. For any vector bundle V , there exists an integer N ≫ 0 such
that V ⊕ V ⊥ = CN .

Using the formal subtraction operation, we can express the result as:

⊖V = ⊖CN ⊕ V ⊥.

This formalism allows for more algebraic manipulation of vector bundles within
the framework of K-theory.

4.3.2 Stably Isomorphic

In K-theory, vector bundles are considered equal if they are stably isomor-
phic. Although we primarily work with complex vector bundles, we simplify the
concept by considering the tangent bundle of a sphere. Specifically, if we take
the tangent bundle of a sphere and add a trivial bundle, the resulting bundle
is trivial. This is because the normal bundle to the sphere is trivial, and since
the sphere is orientable, the tangent bundle, when combined with the trivial
bundle, gives us the ambient space R3 restricted to the sphere. Thus, while
the two bundles may not be isomorphic initially, they become isomorphic once
we add a trivial bundle. This construction shows that even non-trivial bundles
can become equivalent when supplemented with additional structure, a concept
that is widely applied in complex algebraic geometry.

This idea of stable isomorphism allows us to extend the framework of vector bun-
dles, and more importantly, it facilitates the definition of an analog of the Gauss
map. Let X be a topological space, CN a trivial bundle, and V a sub-bundle of
CN . In this context, we can form a map to the Grassmannian Gr(rank V,N,C),
which parametrizes all the subspaces of rank rank V in CN . This map allows
us to identify the sub-bundle V with a point in the Grassmannian. The Grass-
mannian is a well-behaved manifold, a homogeneous space with a rich geometry,
and this allows us to apply this analogy in complex settings.

Moreover, there exists a tautological bundle Taut over the Grassmannian, whose
fibers correspond to the subspaces themselves. By pulling back this tautological
bundle via the map γ, we obtain a bundle V = γ∗(Taut), which is the pullback
of the tautological bundle over X. This construction shows how the Gauss map
extends naturally to more general spaces.

Working with complex vector bundles is particularly advantageous because the
cohomology of the complex Grassmannian is significantly more intricate than
that of the real Grassmannian. While the cohomology of real Grassmannians
can be studied, it is often characterized by mod 2 torsion, which renders it
less interesting from a topological perspective. In contrast, the cohomology of
complex Grassmannians is more flexible, allowing for operations such as adding
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trivial bundles. Furthermore, we can take limits over increasing dimensions:

Gr(rank V,N,C) ↪→
⋃
N

Gr(r,N,C),

and the cohomology of these Grassmannians behaves well under such limits.
This provides a means to extend the cohomology in a natural way.

4.3.3 Characteristic Classes

Next, we examine characteristic classes in the context of cohomology. These
are represented by pullbacks of cohomology classes from the Grassmannian.
For instance, when r = 1, the Grassmannian Gr(1, n) is isomorphic to the
projective space Pn−1, which has a nice cell decomposition. Each cell in this
decomposition is complex and of even dimension, meaning there are no boundary
maps between them. In particular, we can identify the cohomology ring of Pn−1
as H•(Pn−1) = Z[x]/⟨xn = 0⟩, where x is the generator, corresponding to
the Poincaré dual to the hyperplane. As n → ∞, this cohomology extends to
H•(P∞) = Z[x].

he infinite projective space P∞ can be expressed as:

P∞ =
C∞\0
GL(1)

=
S∞

U(1)
,

where C∞ =
⋃
N CN , and S∞ is contractible. This construction is the classify-

ing space BU(1), which serves as the base for understanding line bundles over
complex spaces.

For higher ranks, we consider the Grassmannian Gr(r,N), which can be de-
scribed as the space of r×N matrices of full rank, modulo the action of GL(r).
As N → ∞, this Grassmannian converges to the classifying space BU(r) of
r-dimensional complex vector bundles. The cohomology of these spaces is gov-
erned by the characteristic classes, which are typically expressed as symmetric
polynomials in the Chern roots of the corresponding vector bundles. For exam-
ple, the Chern classes can be written as elementary symmetric polynomials in
the roots x1, x2, . . . , xr, leading to expressions like:

er = x1x2 . . . xr,

which lies in H2r, the cohomology class corresponding to the real dimension of
Cr.

When a section of a vector bundle vanishes, it imposes constraints on the man-
ifold. In the context of K-theory, the principle is that every vector bundle can
be pulled back from the universal bundle. To compute sections of the universal
bundle, we consider homomorphisms Hom(Cr → CN ). In this case, Cr becomes
the tautological bundle, and the vanishing of any row in the matrix representing
the homomorphism corresponds to a hyperplane condition. These sections, and
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the invariance under certain operations, provide the foundation for computing
characteristic classes, such as the Chern classes.

More generally, we can consider the case where cr−i represents the locus where
i + 1 sections of the bundle are linearly dependent. In this case, we can write
the bundle V as V = Ci ⊕ V ′, where V ′ is a sub-bundle associated with the
vanishing sections.

In cohomology, the characteristic classes are expressed as:

cK(v) = γ∗ek,

where ek ∈ H•(Gr(·, ·)) are the cohomology classes of the Grassmannian. These
classes can be multiplied and integrated over the manifold, as demonstrated in
previous examples involving the Euler class.

In K-theory, we focus on operations such as tensor products and wedge products
of bundles, which serve as analogs of cup products in cohomology. For example,
in cohomology, we compute integrals like:∫

X

∏
cki(V ),

whereas in K-theory, we compute the Euler characteristic of the tensor product:

χ(⊗ ∧ki V ),

which serves as the topological invariant of the vector bundle in the K-theoretic
context.

4.4 Towards Equivariant Cohomology Theories

Equivariant cohomology theory extends the classical cohomology theory by in-
corporating group actions on spaces. This theory is a powerful tool in both
topology and geometry, enabling the study of spaces with symmetries. To un-
derstand equivariant cohomology, we begin by discussing the foundational ele-
ments of cohomology and then consider how group actions influence the theory.

4.4.1 Foundations of Cohomology

Cohomology is a topological invariant that can be defined for a wide range of
spaces. Let X be a topological space, and we are interested in understanding
its cohomological properties. Typically, one studies spaces like cell complexes
or manifolds, and for our purposes, we often focus on complex manifolds or
algebraic varieties defined over fields.

To define cohomology, we consider maps f : X → Y between topological spaces,
where these maps are identified up to homotopy equivalence. For the purposes
of equivariant cohomology, we equip these spaces with group actions. Let G be
a compact group acting on X, and suppose there is a map f : X → Y that also
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respects a group action by G on Y , with a compatible map φ : G→ H between
the group actions on X and Y .

Given this data, cohomology theory is typically formalized through a functor.
The cohomology groups h•(X) form a complex of abelian groups or modules
over a ring, with the map f∗ : h•(Y ) → h•(X) induced by the map f . These
constructions are functorial, and cohomology satisfies important properties, such
as the preservation of long exact sequences.

Example 4.5. Consider a simplicial complex, or the de Rham complex:

Ω0 δ→ Ω1 δ→ Ω2 δ→ · · · ,

where each Ωn represents the space of functions on oriented n-cells. The differ-
ential δ acts like a discrete version of the de Rham differential, capturing the
change in function values between adjacent vertices of a cell. This differential
satisfies δ2 = 0, forming a well-defined complex.

A deeper understanding of cohomology is achieved by introducing derived cat-
egories and long exact sequences. When studying topological spaces, we often
encounter different ways of constructing cohomology complexes for the same
space. For example, one might subdivide a simplicial complex by adding more
vertices, resulting in a new complex. Although the individual complexes may
differ, the maps between them can be shown to induce isomorphisms in coho-
mology.

This leads to the concept of derived categories, where maps that induce
isomorphisms in cohomology are considered equivalent. This is a finer notion
than simply declaring two spaces to be isomorphic based on their cohomology
groups. The notion of exact sequences also plays a crucial role in the study of
cohomology. The main property that we wish for the functor to satisfy is that
in the category of topological spaces, every map is the start of a long exact
sequence:

X
f→ Y → Cone(f)→ ...

The condition for a functor to be a cohomology theory is that it should take
cones of topological maps to cones of complexes.

Remark 4.6. Every map between topological spaces can be replaced, up to ho-
motopy, by a nice embedding. This is achieved by using the cylinder construc-
tion: we attach a cylinder to Y by gluing it along the map f , which satisfies
Cyl(f) ∼ Y . After this attachment, we can contract the non-glued side of the
cylinder to a point, yielding the cone of f . If Y is contracted to a point, we
obtain the suspension ΣX of X.

Here is a crucial (and non-obvious) exercise:

Exercise 4.7. The next map in the long exact sequence is
∑
X

∑
f→
∑
Y .

Now, we present a slightly technical point.
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Remark 4.8. It is often more convenient to work with a base point in each
space. By choosing a base point in X and ensuring that all maps respect this
base point (i.e., they map the base point of X to the base point of Y ), we can
apply the cylinder or cone construction. This ensures that when we contract the
cylinder, we obtain what is called the reduced suspension of X.

There are several consequences:

1. For the identity map id : pt → pt, we have Cone(id) = pt, and hence
h•(pt) = Cone(id) = 0.

2. For any space X, define X+ = X ⊔ pt, where pt is a marked point. Then
h•(X+) is an ”old unreduced cohomology,” while h•(S0) is the old coho-
mology of a point, which is nice.

By considering the sequence:

X → CX → ΣX → · · ·

where CX is the cone of X, we observe that h•(ΣX) is simply the shifted
cohomology of X, specifically h0(ΣX) = h0(X) and hi(ΣX) = hi−1(X) for i ≥
1. This shifting property is important because it suggests that the suspension
operation only shifts the cohomology groups. Consequently, for large enough n,
the cohomology of ΣnX behaves as hn−1(X).

We can consider the following sequence of spaces:

X → CX → ΣX → · · ·

where CX denotes the cone of X, and ΣX represents the suspension of X. The
cone of the suspension ΣX is contractible to a point. This gives rise to a shift
in cohomology: h•(ΣX) with the cone shift becomes h0(X), and for i ≥ 1, we
have hi(ΣX) = hi−1(X). This shift property is important because it shows that
the suspension operation only shifts the degree of the cohomology groups, and
this shift is independent of the specific details of the space as n→∞.

For long exact sequences of spaces, such as

· · · → ΣnX → ΣnY → · · · ,

it suffices to focus on n ≫ 0. While these spaces have additional structure,
we observe that the space of maps Map(ΣnX,Z) becomes a group for n ≥ 1,
and this group is abelian for n > 1. The reasoning behind this is analogous
to the argument for π2(Z). The addition of maps in this context corresponds
to the addition of maps in a category of complexes, which can be verified by
showing that any homomorphism between two abelian groups, when restricted
to the identity on one side and zero on the other, must be an addition map.
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This insight reveals that the functorial behavior we observe is not limited to
topological spaces but also preserves the structure of map addition.

Next, let’s turn to an example from equivariant K-theory.

4.4.2 Equivariant K-Theory and Bott Periodicity

Consider a compact Hausdorff space X and a vector bundle V over X. A vector
bundle over X consists of a collection of vector spaces Vx parameterized by the
points x ∈ X. If we have a map g : x 7→ g(x) from X to itself, this map
induces a group action on the fibers of the vector bundle. Specifically, for each
x, the group action lifts to the fibers Vx → Vg(x), which is a linear map. This
situation is analogous to studying a group representation, where the group acts
on a vector space. However, in this case, the group is acting on a family of
vector spaces (the fibers), and the group action permutes the indices associated
with each vector space.

Consider KG(pt), which represents a semiring of group representations (with
operations ⊕ and ⊗). When we add the operation ⊖, we obtain the represen-
tation ring of G. If T ⊂ KG(pt) is a maximal torus, the ring takes the form
Z[z±11 , . . . , z±1r ]W , where W is the Weyl group. In the case of GLn, this is
closely related to the Laurent polynomial ring, because the representation is de-
termined by a character, and a character can be expressed as a sum of Laurent
polynomials. By allowing subtraction of these polynomials, we recover the full
set of Laurent polynomials. Thus, we are left with a ring K0

G(X) along with a
homomorphism K0

G(pt)→ K0
G(X).

Next, define K−1G (X) := K0
G(SX), where SX is the suspension of X and the

group action does not extend to SX. Intuitively, this construction allows us to
perform an operation known as the suspension of a vector bundle by a nontrivial
representation. While we won’t dive further into this here, we can think of this
operation as adding a ”point at infinity” to the space, which induces a suspension
by a nontrivial representation of the group. This in turn enables the definition
of functors that operate at infinity and at negative indices.

Theorem 4.9 (Bott Periodicity).

K0
G(S

2X) = K0
G(X).

Remark 4.10. If we introduce a new fixed point to the space, we have K̃0
G(X ⊔

pt) := K0
G(X), where the symbol ∼ indicates that when we restrict the vector

bundle to the point, we obtain a trivial bundle.

This implies that Ki exhibits 2-periodicity, meaning that for all i, we have
Ki+2 = Ki.
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4.4.3 The Thom Isomorphism

Now, we move towards a more general result. But before we get there, we need
to present another definition.

Definition 4.11. Given a space X and a complex vector bundle V , the Thom
space Thom(V ) is constructed by introducing a metric on V , taking a ball of
fixed radius within each fiber, and then collapsing the spheres to a point.

With this definition in place, we can state the following result:

Theorem 4.12 (Thom Isomorphism).

K̃G(Thom(V )) ∼= K̃G(X).

Remark 4.13. If V = C, this results in Bott periodicity.

Now consider a pair Y ⊂ X, and let K(X/Y ) denote the space of complexes
of vector bundles over X that become exact when restricted to Y . Specifically,
for vector bundles V1 and V2 over X, suppose there is a map φ : V1 → V2
such that when restricted to Y , φ becomes an isomorphism. In this context,
K̃G(Thom(V )) can be interpreted as complexes of vector bundles over the total
space of V , which remain exact away from the zero section of V . Another
way to think of this is that the infinity, S∞, is homotopically equivalent to the
complement of the zero section of the vector bundle.

In general, elements of a K-theory group are of the form V1⊖ V2. In the case of
K(X/Y ), this means that the map φ : V1 → V2 gives rise to an exact complex:

0→ V1 → V2 → 0.

Thus, K̃G(Thom(V )) forms a module over KG(X). This is because if we have
an exact complex, we can tensor it with any object pulled back from X, and
exactness is preserved. Thom periodicity implies the following corollary:

Corollary 4.14. The module is free, with rank 1, and is generated by the Koszul
complexes.

Next, we observe that in the context of elliptic cohomology, the Thom isomor-
phism does not hold. Specifically, in elliptic cohomology, K̃G(X) corresponds to
a scheme, while K̃G(Thom(V )) corresponds to a line bundle over that scheme.
Although the line bundle is rank 1 and locally free, it is not trivial. This dis-
tinction is crucial because it is the failure of the Thom isomorphism in elliptic
cohomology that contributes to its richness and uniqueness.

All cohomology theories share a common feature when we apply functorial maps
(such as pullbacks under maps). However, the real richness of a cohomology the-
ory emerges when we consider pushforward operations. The Thom isomorphism
plays a key role in defining the pushforward in K•, since it provides a basic ex-
ample of the pushforward, namely the pushforward from the zero section to the

130



ambient space. We have the following sequence:

K(X)
Thom−−−−→ K(Thom)→ K(Total Space of V ),

where the second map is functorial. Note that the Thom isomorphism is not
functorial in all cases; for example, it does not hold in the case of elliptic coho-
mology.

Example 4.15. Consider G = S1 = U(1). In this case, EllG(pt) corresponds
to an elliptic curve E. Suppose we have a bundle C over the point, with a
representation acting on it. Then Thom(0 ↪→ C) corresponds to the line bundle
on the elliptic curve E with the origin 0, which is represented by OE(−[0]), the
sheaf of functions vanishing at the origin 0.

Now, let’s discuss a specific case of the Thom isomorphism, which will be very
instructive.

Problem 4.16. Let V = Cn be a vector space, and consider the defining action
of G = GL(n) on V . Determine KG(P(V )), where

P(V ) = (V \ {0})/GL(1),

with GL(1) denoting the center of GL(n).

Proposition 4.17. If a group G acts freely on a space X, then

KG(X) ∼= K(X/G).

Thus,
KG(P(V )) ∼= KG×GL(1)(V \ {0}),

where GL(1) represents the center of GL(n). From this, we derive the sequence:

KG×GL(1)(Thom(0→ V ))→ KG×GL(1)(V )→ KG×GL(1)(V \ {0}),

where V can be treated as a single point. Consequently, the middle term sim-
plifies to

KG(pt)[u
±1],

where u is a formal parameter corresponding to the grading induced by the
GL(1)-action.

The term KG×GL(1)(Thom(0 ↪→ V )) consists of complexes of vector bundles
that are exact away from the origin. Since the group GL(n) × GL(1) acts
equivariantly, the resulting maps are homogeneous and can be interpreted as
polynomials.

Rather than viewing these as complexes of vector bundles, we can reinterpret
them as graded equivariant complexes of modules over the polynomial ring
C[x1, . . . , xn], where the xi are the coordinates in V . This reformulation em-
phasizes the algebraic structure of the problem while retaining the essential
geometric information.
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4.4.4 Coherent Sheaves

In algebraic geometry, vector bundles are modules over the ring of functions on
an algebraic variety that are locally free. However, we can generalize this notion
by considering coherent sheaves:

Definition 4.18. A coherent sheaf is a finitely generated module that does
not need to be locally free.

This broader perspective allows for greater flexibility in describing K-theory.

In algebraic geometry, vector bundles are modules over the ring of functions
on an algebraic variety that are locally free. But in this case, there is no need
to restrict ourselves to modules that are locally free, and we can consider any
finitely generated modules, ie. coherent sheaves. Coherent sheaf generalizes the
concept of a vector bundle by allowing modules that are not necessarily free but
are still finitely generated.

Example 4.19. Consider O0 = C[x1, . . . , xn]/m0, where m0 = (x1, . . . , xn).
This module represents the structure sheaf of the origin in V . The following
exact sequence illustrates its behavior:

KCoh(0) = KCoh
G (pt)[O0]→ KCoh

G (V )→ KCoh
G (V \ {0})→ 0.

In algebraic geometry, it is evident that coherent sheaves supported only at the
origin are all multiples of O0. This is because being zero outside the origin
implies that the coordinates act nilpotently. In other words, at least some of the
coordinates must vanish to ensure they are not invertible. This nilpotent action
creates a flag or filtration structure where the coordinates effectively act as zero.

Next, let’s introduce an essential tool for describing coherent sheaves:

Definition 4.20. A Koszul complex is a resolution of O0 by free modules.

Let’s dive into an example:

Example 4.21. If R = C[x1, x2], the Koszul complex takes the form:

0→ x1x2R→ x1R⊕ x2R→ R→ O0 → 0.

This exact sequence describes the resolution of O0 by free R-modules, illustrating
how coherent sheaves are constructed algebraically.

4.4.5 Long Exact Sequences

Consider the group cohomology hiG(X) in the context of K-theory. In practice,
these quantities are not always expressed as the cohomology of some complex.
For instance, when we study K-groups, we often consider them individually,
rather than as part of a larger complex. However, they still adhere to a general
pattern, which can be described via a long exact sequence:

X
f−→ Y → Cone(f),
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where we have the following diagram:

hi(Y )

hi(Cone) hi(X)

f∗

+1

This structure arises naturally when we examineK-groups, where maps between
spaces induce relations between their cohomology groups.

We are still discussing the question:

Problem 4.22. Let U(V ) ↪→ P(V ), where V is a complex vector space of di-
mension n. What is KU(V )(P(V ))?

Consider the projective space S2n−1/U(1) and its associated disc. When we take
the disc and collapse the sphere, we obtain a topological space. The question
arises: what is the relationship between the cohomology of the projective space
and that of the sphere?

In general, we have the following result:

Proposition 4.23. If G acts freely on X, then

KG(X) = K(X/G).

From this, we can deduce the following corollary for the specific case of projective
spaces:

Corollary 4.24.

KU(V )(P(V )) = KU(V )×U(1)(S
2n−1).

Thus, for G-equivariant K-theory of a homogeneous space, understanding the
behavior of vector bundles under group actions is crucial. For example, when
considering a 3-dimensional sphere and a vector bundle that is equivariant under
all rotations, it suffices to understand how the stabilizer of a point acts on the
fiber. The stabilizer’s action uniquely determines the group action on the entire
bundle:

Proposition 4.25.
KG(G/H) = KH(pt).

In this context, the G-equivariant cohomology of a point corresponds to the
representation ring of G, denoted Z[h/ ∼], which is the Z-linear span of the
irreducible representations of G. For a circle, this becomes the Laurent polyno-
mial ring with integer coefficients.
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To further explore the relation between the cohomology of projective spaces, we
consider the long exact sequence associated with the inclusion of the sphere into
the disc:

· · ·K0
G(Thom(0→ V ))→ K0

G(D
2n)→ K0

G(S
2n−1) · · ·

where the terms correspond to:

• K0
G(S

2n−1) is the K-group of a sphere where the group G acts transitively.
Thus, K0

G(S
2n−1) = Rep(GV ), where GV is the stabilizer subgroup of a

nontrivial vector.

• The action on K0
G(D

2n) corresponds to the action on a point in the center
of the space, so K0

G(D
2n) = Rep(G), which is the ring of functions on the

group G: R = Z[G/ ∼].

• K0
G(Thom(0→ V )) consists of representations of G that are trivial when

restricted to GV , the stabilizer subgroup. These are functions that vanish
when restricted to the subgroup, and can be described as R · det(1− tg).

• K0
G

(
S2n−1) is a sphere where the group acts transitively, soK0

G

(
S2n−1) =

Rep(GV ), where Gv is the stabilizer subgroup of a nontrivial vector.

• The action on K0
G

(
D2n

)
is the same as the action on the point on the

center of the space, so K0
G

(
D2n

)
= Rep(G). This is functions on the

group G: R = Z[G/cong]

• The group K0
G(Thom(0 → V )) consists of representations of G that be-

come trivial when restricted to GV . More specifically, consider the pair
(g, t), where g ∈ U(V ) is represented by a block matrix of the form

g =

Å
a1 ∗
0 g′

ã
∈ U(V ),

and t ∈ U(1). The condition a1t = 1 ensures that the pair (g, t) fixes a
vector in the vector bundle. In other words, the corresponding functions
vanish when restricted to the subgroup GV . These functions can be de-
scribed as elements of the ring R ·det(1− tg), where R represents the ring
of functions on the group.

Thus, we obtain the following exact sequence:

0→ K0
G(Thom(0→ V ))→ K0

G(D
2n)→ K0

G(S
2n−1)→ 0,

with the odd cohomology of a point being zero.

Finally, we observe the following important result:

Proposition 4.26.

KU(V ) = KU(V )(pt)
[
t±1
]
/ det(1− tg) = 0,

where t ∈ OP(1) and KU(V )(pt) = Z[g]/conj.
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If we decompose V = V1⊕V2⊕ . . . and compute
∏

U(Vi) ⊃ U(V ) by performing
the same computation in smaller steps, we will obtain the same answer but with
conjugation taken with respect to the smaller group.

Example 4.27.

KT (P(V )) = Z[a±11 , a±12 , . . . ]
[
t±1
]
/
∏
i=1

(1− tai) = 0.

4.4.6 Kozsul Complexes

From the perspective of Koszul complexes, det(1 − t−1g−1) is related to the
Koszul complex. As before, we have the following exact sequence:

0→ x1x2C[x1, x2]→ x1C[x1, x2]⊕ x2C[x1, x2]→ C[x1, x2]→ O0 → 0,

where O0 = C[x1, x2]/m and m = (x1, x2). The terms in this complex are
elements of KU(2)×U(1)(C2).

Term by term, we obtain the representation:

1− V ∗t−1 + ∧2V ∗t−2.

The character is given by:

1− tr(g−1) · t−1 + det(g−1) · t−2 = det(1− t−1g−1).

Remark 4.28. There’s a funny relationship between topological and algebraic
K-theory — sometimes they are very closely related, and other times they di-
verge. However, for a point, they are very closely related. Any representation of
a compact group is holomorphic, so any spaces built from points in simple ways
inherit the relationship between topological and algebraic K-theory.

4.5 Elliptic Cohomology

4.5.1 An Introduction

Let G be a compact group, for example, G = U(1). Then,

KU(1)(pt) = Rep(U(1)) = Z[t±1],

which can be interpreted as the ring of trigonometric polynomials on U(1) =
S1 = R/Z, or equivalently, as the ring of Laurent polynomials on C× = GC. We
aim to understand

EllU(1)(pt) ≈ elliptic functions on U(1),

which corresponds to the set of holomorphic functions on E = C∗/qZ, an elliptic
curve.
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However, it turns out that there are no non-constant holomorphic functions
on this elliptic curve, which is a crucial observation when considering certain
properties. One significant property, proven by key results in the theory, is
rigidity, which eventually reduces to the fact that there are no such non-constant
holomorphic functions on this curve.

Recall that the cohomology groups of a space X can take values in vector spaces,
but more generally, they should take values in some category where exact se-
quences are well-defined. Thus, instead of merely saying that the cohomology
groups are modules over a ring, we need to ask: what does it mean for the
cohomology to be ”equivariant K-theory”?

Every equivariant K-theory group is indeed a module over the K-theory of a
point. However, we might extend this by allowing h•G to take values in coherent
sheaves over some space. For example, in the case of elliptic cohomology, we
have

h•G,ell = sheaf of EllG(pt),

which for G = U(1) corresponds to a sheaf on the elliptic curve E.

To clarify, K-theory is a module over a ring. But in the context of elliptic
cohomology, this is just a special case of a sheaf on an algebraic variety. When
dealing with non-affine algebraic varieties, such as an elliptic curve, it becomes
natural for cohomology to be represented as a sheaf rather than simply as a
vector space.

Thus, cohomology doesn’t necessarily take values in vector spaces. It can instead
take values in more general structures, such as bundles over other spaces or
sheaves on spaces. This is an important distinction, especially when studying
non-affine varieties like elliptic curves, where cohomology is often more naturally
represented by sheaves.

4.5.2 Elliptic Analogs

Let’s look at some elliptic analogs of our previous work: Let G be a compact
group, e.g., G = U(1). We define the elliptic cohomology of a point as:

EllT (pt) = Er,

where Er denotes a certain space (often associated with the cohomology of an
elliptic curve or a related structure). Here, we are not merely referring to rings,
but to the objects that these rings define. Specifically, a ring can be thought of
as the ring of functions on an algebraic variety, and this variety is an algebraic
object that we consider.

Additionally, we have:

EllT (P(V )) = {one of the ai’s is equal} ⊂ Er × E,
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where ai ∈ Er and t ∈ E. This structure is invariant under the action of a
group, specifically the Weyl group S(1) in this context. These correspond to
ordered r-tuples; when we consider unordered r-tuples, we obtain:

EllU(V )(P(V )) = {one of the ai’s is equal} ⊂ SrE × E.

We can think of
EllU(R)(pt) = SrE

as a definition, but we still want to think of an element g ∈ SrE as somewhat
analogous to an element in a group. Hence, there should be some kind of map
from the group element to this structure.

To motivate this, consider identifying the unit circle with another circle, where
|z| = 1 is mapped to a circle of radius |q|, where q is typically less than one.
The identification is achieved by multiplication by q. This process defines our
elliptic curve.

If g is an element of a group G, we can construct a vector bundle over the elliptic
curve by considering sections of a vector bundle that satisfy the equation:

f(qz) = g · f(z),

where f is a section of the bundle. Thus, each group element defines a vector
bundle over the elliptic curve. The classification of these bundles is up to con-
jugation, and the degree of the bundle is zero because the transition function is
constant. Therefore, SrE can be viewed as the space of semistable GL(r)-degree
0 bundles on E.

In the lectures by Nikita Nekrasov, we have encountered pictures where one
traverses a circle and experiences a monodromy represented by g. This idea is
analogous, though in a lower-dimensional context. For K-theory, we can express
it as:

KG(X) ≈ H0
eq(Maps(S2 → X/G)),

which is equivariant with respect to the parameter q. If we move to one higher
dimension, we have elliptic cohomology:

Elliptic Cohomology ≈ H0(Maps(E → X/G)).

Although a precise treatment of these objects is outside the scope here, we can
interpret computations in elliptic cohomology as calculations in this framework.
However, it is often more convenient to work with the direct definitions.

To proceed, we need to address some general constructions, including the general
statement of the Thom isomorphism.
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4.5.3 The Thom Isomorphism

Let X be a space and V a complex vector bundle. The Thom isomorphism
states:

KG(Thom(X ↪→ V )) ≃ KG(X),

where the left-hand side represents the K-theory of vector bundles over a neigh-
borhood of the zero section of V , which are exact away from the zero section.
Within this framework, we can introduce an element, namely the Koszul com-
plex Θ =

∑
(−1)i ∧i V ∗. The Thom isomorphism asserts that this Koszul

complex is a generator.

To express this geometrically, consider the inclusion map:

K(X)

K(Thom) ∪

ΘK(X)

i∗

We have a map from complex vector bundles of rank r to BU(r) = Gr(r,∞),
where r is the rank of the tautological bundle = Cr. Therefore, Θ(V ) =
γ∗Θuniversal, where the universal Theta class is given by:

Θuniversal =

r∏
i=1

(
1− a−1i

)
,

and ai are the Chern roots of the universal bundle.

This expression suggests that a matrix fixes a vector if the vector is an eigen-
vector of the matrix. In other words, if a matrix has an eigenvalue, the equation
implies that the matrix fixes the corresponding eigenvector.

4.5.4 The Theta Divisor

In the context of elliptic cohomology, we encounter the concept of the Theta
divisor inside the symmetric powers of an elliptic curve Θ ⊂ SrE. This divisor
is distinguished by the property that one of the variables (or points) is zero, or
lies at the origin. In terms of the corresponding bundle over the elliptic curve,
this condition implies that the bundle has a subsection.

This concept plays a crucial role in integrable systems. Many spaces in inte-
grable systems are moduli spaces of bundles or similar objects, and these moduli
spaces often contain canonical divisors. While these divisors are not canonical in
the traditional sense, they are distinguished because they correspond to objects
with an extra subsection — this often occurs when a determinant vanishes or
a similar condition holds. Such divisors are referred to as Theta divisors. For
example, on an elliptic curve, the Theta divisor is the only degree zero bundle
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that has a subsection. Theta divisors are also encountered in the context of de-
gree g−1 bundles that have a subsection, as discussed in earlier lectures. These
subsections are typically characterized by determinants or Theta functions.

The key takeaway here is that the elliptic analog is both similar and distinct
from other cases. For instance, there is a Thom isomorphism in elliptic coho-
mology. However, unlike the standard Thom isomorphism, which is an actual
isomorphism, the elliptic version indicates that the object in question is a rank-
one module that is locally free but not globally trivial.

Practically speaking, when we consider the pullback in elliptic cohomology, it
behaves differently from the standard case. Instead of being globally trivial, it
becomes a line bundle, and the global structure introduces non-trivial factors.
For example, if we take a product of Theta functions:

r∏
i=1

θ(ai),

this product vanishes precisely when one of the variables is equal to 1 or 0,
depending on how we choose to represent the origin on the elliptic curve. Im-
portantly, this product is not just a function — it is actually a subsection of a
line bundle, and this subsection changes when we shift the periods or adjust the
variables by a parameter q.

To clarify further, if we alter the periods or shift a variable by q, this introduces
a non-trivial factor. This is a significant point: formulas in elliptic cohomology
often involve Theta functions, but these functions are not ordinary functions.
Rather, they represent subsections of a line bundle. The meaning of these
subsections and line bundles arises from the fact that they define a locus where
one of the variables is zero, which corresponds to a non-trivial divisor in the
product of the elliptic curve that defines a non-trivial line bundle.

4.5.5 Koszul Complex and Pushforward Map

Next, we define the Koszul complex in the context of Theta functions. For
example, we may encounter an expression like:

∞∏
n=1

(1− qnz)(1− qnz−1),

which can be interpreted as analogous to the Koszul complex, albeit with some
correction factor arising from the context of loops. Essentially, when q acts like
a rotation of a loop by some parameter, this structure naturally emerges.

With the Koszul complex defined, we can proceed to define the pushforward
map. This leads us to the concept of a ”wrong-way” map in algebraic geometry.
Suppose we have a variety X embedded in some ambient space Y . If we con-
sider the normal bundle of X inside Y , and this normal bundle has a complex
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structure (not necessarily holomorphic), we can collapse certain points in Y to
map it to the Thom space of X:

Y → Thom(X ↪→ Y ).

This construction allows us to define a push-forward map in K-theory:

K(Y )
←
i∗ K(X).

In algebraic geometry, if X is a holomorphic submanifold within a holomorphic
manifold, we can take the structure sheaf of X and push it forward. However,
in the topological setting, this is handled as described above.

he key property of this pushforward map is:

i∗i∗ = multiplication by Θ(V ).

This means that when we pushforward using the Koszul complex and then pull
it back, we obtain the class of the Koszul complex.

4.5.6 Complex Oriented Maps

When considering a general map, the concept of ”complex oriented” comes into
play.

Definition 4.29. A map is said to be complex oriented if we can embed X
into a trivial bundle CN × Y , and subsequently collapse it into the Thom space
of X within its normal bundle:

Thom(Y → Y × CN )→ Thom(X → N).

This map’s pullback is functorial, and by applying the Thom isomorphism, we
obtain the identities:

Thom(Y → Y × CN ) = K(Y ) and Thom(X → N) = X,

resulting in a map K(X)→ K(Y ).

In the context of algebraic geometry, this notion enables us to pushforward
objects. For instance, given a subvariety, it defines a coherent sheaf on the
ambient space, which can then be pushed forward. Similarly, if a sheaf is defined
on a variety that maps to another variety or point, we can also push the sheaf
forward.

Let’s unravel this a bit more.

Proposition 4.30. Let Nf = NX − CN . Then we have the following map:

Θ(−Nf )→ ΘEll(r)V,

where Θ(−Nf ) is a sheaf on Ell(X), assuming that NX/XA exists.
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Remark 4.31. In general, if X is a topological space, and we consider the
inclusion of a subspace into a larger space followed by the contraction of its
neighborhood, the resulting space will typically not be the total space of a bun-
dle. While the space might still be manageable, it would not necessarily have a
description via a Thom isomorphism. For example, consider the inclusion of a
singular space into another singular space, and then contracting the complement.
The resulting space could behave unpredictably. Hence, it is crucial for the space
to have a normal bundle. When this condition is satisfied, the structure behaves
as expected. Otherwise, a more detailed study is required.

4.5.7 Examples

Let’s discuss the equivariant K-theory of projective spaces:

Example 4.32. Consider the projective space Pn = {[x0 : x1 : · · · : xn]} with
an action given by A = diag(a0, a1, . . . , an). The equivariant K-theory of this
projective space is:

KA(Pn) = Z[a±1i ]/
∏

(1− a−1i t−1).

Let’s look at another example: the Riemann sphere, where n = 1.

Example 4.33. When n = 1, the projective space is a Riemann sphere with
two points: one at 0 and the other at ∞.

x1 = 0 x0 = 0

The equivariant K-theory class corresponding to x1 = 0 vanishes when 1 −
a−11 t−1 = 0, while the class corresponding to x0 = 0 vanishes when a0−a−10 t−1 =
0. The vanishing of the product tells us that these two points do not intersect.

Let’s discuss the projective plane, when n = 2:

Example 4.34. For n = 2, the projective plane consists of two perpendicular
lines, one of which intersects both at infinity:

α1 = 0

x2 = 0

x0 = 0
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Similarly, each of these lines corresponds to a divisor in the projective plane.
The class of α1 = 0 is 1− a1t. Thus, the equation becomes:

∞∏
i=0

(
1− a−1i t−1

)
= 0.

By analogous reasoning, instead of computing the class of a line, we can compute
the class of a point. For instance, at the origin, the class is given by:(

1− a−11 t
) (

1− a−12 t−1
)
.

We can verify this result by examining the Koszul complex, which serves as the
resolution of the structure sheaf at that point. The expression above corresponds
to the character of this complex, confirming its correctness.

4.5.8 Geometric Objects

Since we want to study equivariant elliptic cohomology, we don’t have a ring,
but rather a geometric object. Therefore, we aim to consider the variety that
arises from the equation:

KA (Pn)Z
[
a±1i

]
/
∏(

1− a−1i t−1
)
= 0.

This gives us SpecKA(P1):

t

a1

a0 = a1

a0

If we imagine this in terms of an additive group instead of a multiplicative
group, we have two planes that intersect along a line where a0 = a1. This is the
projection SpecKA(P1)→ SpecKA(pt):
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a0 = a1

t = a−11

t = a−10

If we do the same picture for 3 planes, we get:

For instance, in the n = 2 case, the origin corresponds to t = O(1), the functions
on the tautological line. Here, a0 acts on (C, 0, 0), so a−10 acts on a−10 , and the
origin corresponds to when t = a−10 . Similarly, the bottom right of the triangle
corresponds to (0,C, 0) where t = a−11 , and so on.

This process of gluing and intersecting planes is a familiar concept in toric
geometry, where the points correspond to planes, and the geometric structure
can be interpreted in terms of fans, with the dimension of the objects being
preserved.

Several important lessons emerge from this:

• The derived fiber over a ∈ A is given by K(Xa). A standard example
is the case where a = 1, corresponding to K0

S1(S1). This is significant
because it illustrates how equivariant geometry encapsulates the ordinary
geometry of the fixed loci of all subgroups.

• Away from certain subvarieties of the form ai/aj = 1 (which can be gen-
eralized to character(A) = 1), it holds that KA(X) = KA(X

A). This
follows from the earlier statement, as a generic element of the torus will
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have a fixed locus that corresponds to the generic fiber. We thus have

KA(X
A) KA(X)

i∗

i∗

where the top part is the pullback, which is functorial, and the bottom
part is the pushforward. Concretely, we have:

i∗ : f(t, a)→ (f(a10, a), f(a
−1
1 , a), . . . ),

and
i∗ : (1, 0, . . . , 0)→

∏
i>0

(1− t−1a−1i ).

Furthermore, by computing i∗i∗ = Θ(NX/XA), where N represents the
normal bundle, we observe that the weight of the action is given by∏
i>1(1− a0/a

−1
i ).

4.5.9 The Localization Theorem

Theorem 4.35 (The Localization Theorem). This map is an isomorphism away
from some subvariety. More algebraically, the kernel and cokernel of both maps
are torsion, meaning they are annihilated by some nontrivial element in A.

Proof. Consider the sequence:

KA(Thom(XA ↪→ X))→ KA(X)→ KA(X \XA).

The first map, i∗, is injective because i∗i∗ is defined using multiplication by
Θ(N), which has torus weights, resulting in a nontrivial polynomial that does
not divide zero. Hence, this map is injective.

The term KA(X \ XA) is constructed from A/A′, where A′ ̸= A. However,
KA(A/A

′) = KA′(pt), which is torsion. This concludes the proof.

This result is particularly powerful because it tells us that, if we can compute the
K-theory for a vector bundle map to a point, we can compute the pushforward
to the point. Specifically, if V ∈ KA(X), we have

KA(X) V

KA(pt) χ(X,V )

p

∈

∈

In topology, the Euler characteristic is defined earlier. Algebraically, the or-
dinary Euler characteristic can be expressed using the ∂-complex, which is a

144



complex of differential operators. In the realm of pseudo-differential operators,
we can deform at infinity as long as we have some kind of deformation. To
understand what it means to apply the ∂-operator, we need a notion of multi-
plication by I.

We can expand the diagram into the following:

KA(X
A) KA(X) V

KA(pt) χ(X,V )

i∗

p

∈

∈

Proposition 4.36.

χ(X,V ) = χ(XA,
i∗V

Θ(N)
).

This result is crucial, particularly in the context of Nekrasov’s lectures, when
the fixed locus is isolated. Although the expressions involved can be intricate,
their geometric interpretation is clear: the moduli space has a group action,
and its isolated fixed points correspond to partitions. While the computations
can be performed over the entire space, the most significant insight comes from
focusing on the fixed points.

At this point, one might think that geometry is no longer necessary, as we
can simply substitute expressions and apply the formula. However, geometric
insight is still essential, especially when analyzing the underlying structure of
the space. When working with algebraic expressions, it is important to consider
aspects like poles and support. The geometric framework provides the necessary
tools to handle these considerations effectively. For instance, geometry helps us
conclude that certain meromorphic functions are actually regular functions.

4.6 Elliptic Quantum Groups

4.6.1 Krichever Genera

Let X be a manifold, and consider its tangent bundle TX. If X is a complex
manifold, then TX is a complex tangent bundle. However, X does not need to
be a complex manifold for its tangent bundle to be complex. All that is required
is some method of multiplying by I within the bundle.

Since adding a trivial bundle does not affect the structure, it is often more
convenient to consider TX ⊕ PN with a complex structure, which possesses
Chern classes. These manifolds are referred to as stable almost complex
manifolds. In particular, we may consider Θ(TX).

The goal of Krichever genera is to generalize expressions like θ(xz)
θ(x)θ(z) . To achieve

this, we set z = exp(2πiϵ3) ∈ U(1) or C×, which acts on the bundle by multi-
plication. We then tensor the tangent bundle with the defining representation,
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yielding a new bundle Θ(TX ⊗ z). Since scalars act on any vector space, they
similarly act on any vector bundle. Consequently, if we take any bundle, we can
act on it by multiplying by a scalar from U(1), a group of scalars. Thus, the
characteristic classes of the bundle are now multiplied by z.

Definition 4.37. The Krichever genus is

Kr(X) = (X → pt)∗Θ(TX ⊗ z).

This genus depends on z and the group already acting on X. In Nekrasov’s
lectures, we encountered objects of the form:∑ ∏

□∈...

θ(. . . )

θ(. . . )
,

which correspond to the Krichever genus of the moduli space of framed rank N
instantons on C2.

This applies to more specific scenarios, such as the framing of a vector bundle.
The key distinction here is that the underlying space is non-compact, making the
function particularly interesting. According to the Krichever rigidity theorem,
under certain conditions, the Krichever genus no longer depends on the group
already acting on X.

Next, let us discuss the K-theory analog. In K-theory, we have:

Θ(TX ⊗ z) = 1− z−1T ∗ + z−1Λ2T ∗ − . . .

and
χ(Θ) =

∑
k

(−z−1)kχ(X,ΛkT ∗),

where ΛkT ∗ are the holomorphic k-forms. If X is a complex Kähler manifold,
we can compute its topological cohomology using the topological cohomology
of the holomorphic k-forms. Thus, we have X ↪→ HTop(X,C).

Let’s look at an example:

Example 4.38. Consider H0
Top(P1,C) = C0 ⊕ C2, where C0 corresponds to

H0(OP1) and C2 corresponds to H1(T ∗P1) = O(−2), which has a 1-dimensional
first Chern class. For any automorphism of P1, the action on this bundle cannot
change the topological cohomology. Specifically, for a connected group acting on
the manifold, the topological cohomology must remain trivial because the action
simply permutes cycles. Therefore, H1(T ∗P1) is the trivial module for Aut(P1).

A simpler proof follows: to show that a function is constant on a group, it
suffices to prove this for any one-parameter subgroup. Similarly, to demonstrate
that a representation is trivial, it is enough to show that it is trivial for any one-
parameter subgroup. In this case, we have a trivial action. Let S1 ↪→ X, and let
a be a coordinate ring in A = C∗ and a component of S1. To compute the Euler
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characteristic of X, we apply localization, which gives the Euler characteristic
of the fixed locus:

χ(X,Θ(TX ⊗ z)) = χ

Å
XA,Θ(TXA ⊗ z)Θ(N ⊗ z)

Θ(N)

ã
.

The tangent bundle of X, when restricted to the fixed locus, decomposes as:

TX|XA = TXA ⊕N.

Notice that a only acts on the fraction. This implies that in K-theory, the
fraction becomes: ∏ 1− w−1i · ak · z

1− w−1i ak
,

for k ̸= 0. Since X is compact, it follows that X is a finite-dimensional repre-
sentation of A, and more specifically, the character is a Laurent polynomial in
a. Furthermore, we observe that:

∏ 1− w−1i · ak · z
1− w−1i ak

has a finite limit as a → 0 and a → ∞. These facts together imply that the
product is constant, and the proof is complete.

We can draw further insights from this proof. For the limit:

lim
a→0

∏ 1− w−1i · ak · z
1− w−1i ak

=

®
1 if k > 0,

z if k < 0.

and the product becomes z#attracting directions in N .

In the limit:

lim
a→∞

∏ 1− w−1i · ak · z
1− w−1i ak

=

®
z if k > 0,

1 if k < 0.

and the product becomes z#repelling directions in N . Thus, in the normal bundle,
some directions will be attracted to the fixed point, while others will be repelled.
This mirrors the theory of moment maps, where critical points and the structure
of the descent manifold help us understand the topology of the manifold. Despite
knowing that the function is constant in a, we can still use this action to gain
valuable insights into the function’s behavior.

Theorem 4.39 (Krichever, 1990; Höhn, 1991). Suppose that c1(TX) = 0 in
H2(X,Z) or N |c1(TX) and zN = 1. Let X be a compact stably almost complex
manifold. Then Kr(X) is a function of z only.
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Proof. We begin by considering the theta bundle, which is associated with the
tangent bundle of the manifold X of dimension n. The theta bundle is repre-
sented by the following diagram:

TX taut

X BU(n)

BSU(n)

γ

where γ is a Gauss map. The theta bundle is pulled back from elliptic cohomol-
ogy, as shown below:

Θ(TX)

E = EllU(1)(pt) Θ(Taut) O(one point is the origin)

EllU(n)(pt) = SnE

EllSU(n)(pt) = n-tuples that sum to 0

0

γ∗Θ

=

∪

ere, the BU(n) theory corresponds to EllU(n)(pt), and the BSU(n) theory cor-
responds to EllSU(n)(pt).

We are pulling back from the locus of n-tuples that sum to 0, which is a pro-
jective space Pn−1. Explicitly, this map is given by:

Pn−1 SnE E 0
∑
pi

where Pn−1 represents divisors linearly equivalent to n[origin], and SnE repre-
sents the divisors of degree n (denoted as p1, . . . , pn).

A key property of projective space is that all line bundles on projective space are
discrete families. If we have a continuous family of bundles of the same degree,
they are actually the same bundle. This implies that the bundle Θ(TX ⊗
z), pulled back from elliptic cohomology, is a specific bundle that cannot be
deformed by z, because it is a bundle over projective space. Since bundles
on projective space cannot be continuously deformed into distinct bundles, we
conclude that Θ(TX ⊗ z) is the same as ΘZ , as the structure does not change
in projective space.

Thus, the bundle ΘTX for some space X is equivalent to the bundle ΘZ , and
the map (X → pt)∗(TX ⊗ z) is a section of a trivial bundle, which means it is
constant. This completes the proof.
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4.6.2 Partitions

In Nekrasov’s lecture, we discussed r-tuples of a partition that was related to do
with the moduli spaces of bundles, instantons, shifts, or in general just some-
thing that lives on a plane with two coordinates, ϵ1, ϵ2. Then, we introduced a
defect along one of the lines. However, there is another direction in which one
can proceed, ϵ3:

ϵ2

ϵ1

ϵ3

r − tuple

infinite

a torus fixed point in

Hilb
(
C2, pts

)

ideal in C[x1, x2, x3] ∈ Hilb
(
C3, curves

)
The r-tuples of such objects correspond to torus fixed points in m-sheaves of
rank 2 on C3. This framework arises within the context of Donaldson-Thomas
theory, which is primarily concerned with the enumeration of geometric ob-
jects—such as curves, points, and vector bundles—on threefolds.

4.6.3 R-Matrices

Consider

Z

Ö
, , z, t1, t2, t3, a1, . . . , ar

è
=
∑

zvol
...

...

where represents an r-tuple of partitions within the space

Fock(a1)⊗ Fock(a2)⊗ · · · ⊗ Fock(ar),

which is a solution to the quantum Knizhnik-Zamolodchikov (qKZ) equations

for Uℏ(
ˆ̂
gl(1)), with ℏ = t1t2, and the corresponding dynamical equation in z.
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Writing out the qKZ equations in full detail would occupy many pages, even in
the simplest of examples. However, the situation becomes much more manage-
able when viewed through a graphical lens. For instance, one can consider the
R-matrix

⊗

⊗

V1(a1) V2(a2)

Now, imagine we have a cylinder and a collection of representations V1(a1), V2(a2), . . . , Vr(ar).
While almost of these representations remain unaffected, one of them undergoes
a transformation:

V1(a1) V2(a2) V r(ar)

When working with R-matrices, the orientation of the system plays a crucial
role. While symmetries may exist that permit changes in orientation, the system
is typically fixed with a specific orientation. In our case, all lines are directed
downwards. This leads to the concept that in such systems, there can be an
additional operator that governs the transformation of the space as it crosses a
boundary:
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V1(a1) V2(a2) V r(ar)

This operator governs the behavior of the space as it crosses a line. The goal is
to express this operator in a form that mirrors the structure of the Yang-Baxter
equation. The core idea is that the crossing can be shifted either before or after
an action, which corresponds to performing the action in the tensor product of
two representations. Crucially, this operator must commute with the R-matrix.

=

In general, the R-matrix could be an arbitrary function. But in our case, R
only depends on a1/a2. For example, we can take the operator to be a shift:

V (a)

ZV (qa)

We can apply a shift using a difference operator, as the matrix depends solely
on the differences between elements. Acting on this space with any element,
denoted by Z (which represents an element of a quantum group), we obtain the
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condition
[Z ⊗ Z,R] = 0.

For example, we can choose Z to be an element of the Cartan subgroup of the
quantum group. The Cartan subgroup is analogous to the maximal torus in
Lie groups and consists only of diagonal matrices. In the case of a quantum
group, the Cartan subgroup behaves like a one-dimensional torus, represented
by diagonal matrices. For our purposes, z, an element of the Cartan subgroup

of Uℏ(
ˆ̂

gl(1)) (which depends on t1, t2), acts by z
vol.

If we expand this equation, it can be viewed as a linear q-difference equation:

Ψ(a1, qa2, a3, . . . ) = Matrix(. . . )Ψ(a1, a2, a3, . . . ),

where q = t3. This equation corresponds to a genus of disjoint union spaces,
summed with weights zvol. Consequently, objects with different volumes belong
to distinct moduli spaces, and we sum over discrete data. The moduli space
in question consists of connected components, each associated with the degree
of the curve. This degree is determined by the sizes of the partitions and the
volume of the object. In a manner similar to Nekrasov’s work, partitions of
different sizes belong to different moduli spaces. Here, we partition the genus
associated with the space.

One can imagine decomposing the space into smaller pieces and computing the
genus for each piece.

Theorem 4.40. The q-KZ equations are monomial in z.

This suggests that a vast number of conditions must hold simultaneously for the
result to be valid. The ratio of the left and right Ψ’s should correspond to the
ratio of one matrix series divided by another. However, upon closer inspection,
each matrix coefficient turns out to be a monomial. Regardless of the form
of the R-matrix, when expressed in this manner, every coefficient is indeed a
monomial. Although this vanishing may initially appear trivial, it reflects an
underlying conservation law and is of significant importance from a geometric
perspective. This vanishing stems from rigidity.

What type of rigidity can we invoke? For K-theory, AH rigidity is always
effective, as it applies to the construction of the R-matrix. However, this is
not always the case for elliptic cohomology. Krichever rigidity requires c1 = 0
or N |c1, with (parameter)N = 1.

As demonstrated in Nekrasov’s lecture, it is more fruitful to view the application
of the Krichever genus not as a process on a moduli space, but as an integration
of 1 over a derived moduli space. In the lecture, the moduli space was smooth,
but upon adding a cotangent bundle, it became a zero-dimensional derived
object, and we compute its fundamental class. This situation is unavoidable in
our current context.
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ere, we face a moduli problem, and the tangent space to this problem is not a typ-
ical vector space. Instead, it is a more singular object that lacks a well-defined
tangent or cotangent bundle. Instead, we have the difference between these
structures, which leads to two terms: deformations and obstructions. Nekrasov
discussed a similar scenario, where the Krichever genus can be understood as
follows: every bundle or sheaf over a manifold has automorphisms; it is a linear
object, and scaling is always possible. There is a parameter æ associated with
this process (related to the canonical class of c3):

T Moduli = Deformations− æ · (Deformations)∗.

In the case under consideration, æ = t1, t2, t3, as these correspond to the
canonical class. In a more general scenario for a 3-fold, æ corresponds to the
canonical class. By examining this space, we can deduce the first Chern class:
c1 = 2c1(Deformations). While no bundle exists over the deformation, if one
did, it would take the form given above. Moreover, we know that c1 ̸= 0, but
2|c1. A full-fledged version of the Krichever genus for this space is not feasible,
but we can still proceed if we require that æ2 = 1.

The R-matrix in this context marks the beginning of a lengthy and intricate
story. If we consider the framework of quantum field theory, where two particles
possess internal degrees of freedom in two spaces, one may interact by coming
together. This interaction suggests the presence of a more fundamental operator
governing the particles’ behavior when they meet. Specifically, there exists an
operator that describes the interaction when these particles collide, after which
the particles may decay into other entities:

= ◦

where the two objects on the right are transposes of one another. Geometrically,
the following equivalence holds:

Fock(a1)⊗ · · · ⊗ Fock(ar) = Keq(Hilb(C2,pts)),

where Keq(Hilb(C2,pts)) represents the equivariant K-theory of the Hilbert
scheme of points on C2. More generally, we have the map

Keq(M(r1))⊗Keq(M(r2))→ Keq(M(r1 + r2)),

where Keq(M(ri)) denotes sheaves of rank ri on P2, and M(ri) represents the
moduli space of sheaves with rank ri. This is reminiscent of a scenario in which
two particles might interact but do not, emphasizing that to ensure something
meaningful occurs in this map, the operation must possess additional structure
or non-triviality that makes it interesting.
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M(r1)×M(r2)

Ñ
∗ 0
0 ∗

é
↪→ M(r1 + r2),

where the map is given by a direct sum of bundles. This operation effectively
combines two bundles into one, resulting in an object that is fixed under the
group action. This situation mirrors the discussion in Nekrasov’s lecture, where
the action of GLR on the moduli space of sheaves involves a diagonal action.
Though the diagonal action might initially seem trivial, it is, in fact, crucial.
The action is non-trivial on each sheaf, as the matrixÅ

∗ 0
0 ∗

ã
is fixed by the group element

u
u

u
1

1
1

 ⊂ diag(a1, a2, . . . ),

where the diagonal matrices diag(a1, a2, . . . ) form a subgroup of GLn, and the
matrix represents the fixed locus of the group action. The direct sum of these
sheaves is therefore preserved by the critical moment map associated with this
group.

In mathematical physics, there is often a distinction between those who focus
on the dynamics of a system and those who study its equilibrium properties. In
particular, some scholars focus on the critical loci of functions, which describe
equilibrium states. For instance, one might study a system by introducing
a moment map associated with a torus action. This arises naturally when
kinetic energy terms are added to systems exhibiting rotational symmetry, thus
introducing the corresponding moment map for the torus action.

To clarify, let us consider a situation where we have a function, with u repre-
senting an element of the Lie algebra associated with the moment map. The
moment map in this case might be expressed as the function

u(|x1|2 − |x2|2 . . . ),

which is defined in terms of the difference of the squares of the coordinates. As
we vary the parameter u, we observe that the critical locus of the function can
change in a dramatic manner, leading to significant alterations in the system’s
behavior:
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u > 0 u = 0 u < 0

We are interested in defining a map

K(fixed locus)→ K(ambient space)
T←− K(fixed locus),

which carries significance both mathematically and physically. Mathematically,
this map describes a transition between the K-theory of the fixed locus and that
of the ambient space. Physically, this map can be interpreted as a potential term
that undergoes a sign change, resulting in a shift of the critical locus. Such a
shift has important consequences, as it alters the nature of the critical points
of the function. Specifically, it transforms minima into maxima and vice versa,
fundamentally changing the system’s behavior.

To illustrate this concept, imagine placing a ball at the center of the parabola
when u > 0. As the ball rolls downward along the left side of the parabola, it
follows a path dictated by the critical points of the function. In the special case
where u = 0, the trajectory of the ball becomes a straight line. This scenario
underscores how variations in the parameter u influence the geometry of the
system and shift the critical locus, thereby changing the system’s dynamics.

u > 0 u = 0 u < 0

Mathematically, we want a descending manifold that projects onto the fixed
locus, since by definition, a descending manifold is a set that evolves towards a
fixed locus. From this, we can deduce the stable manifold:

K(fixed locus) K(ambient space) (←−)T K(fixed locus)

stable manifold

≈i∗p∗

projection p inclusion i
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4.6.4 Interpolation Problems

Now, let us examine the geometric and physical challenges inherent in this
definition. The main issue lies in the fact that the descending or stable manifold
is not closed within the ambient space. The inclusion map is not closed, and
consequently, there is no strict pushforward. While the manifold may appear
closed locally, if we allow the ball to continue rolling, it could end up in an
entirely different configuration. In algebraic geometry, the process of taking
closures is often acceptable for abstract reasoning, but it does not always provide
practical insight. This is because we may not be able to ascertain what lies in
the closure, and even if we could, it could contain singularities that render the
map either non-smooth or undefined. Therefore, instead of directly working with
closures, it is more fruitful to approach the problem from a different perspective.

Historically, this difficulty has prompted the development of alternative defi-
nitions. A more practical strategy, however, is to begin with a more concrete
concept, such as elliptic cohomology. In this context, we consider the map

Ell(fixed locus)
≈i∗p∗→ Ell(ambient space),

where we must clarify that we are not using the traditional elliptic cohomology
ring that the notation might suggest. Rather, we are working with a map
between two line bundles, specifically a map that involves a section of some line
bundle (often a Θ-bundle) for which we already have information about one
component of the fixed locus and wish to extend it.

In a previous discussion, we introduced Elleq(Pn), where elliptic cohomology
was associated with a variable a and a collection of abelian varieties given by
the equations t = a−1i .

t = a−10

t = a−11

t = a−1i

t = a−1j

t = a−10

t = a−11

ai = aj

a

Ell(pt)

i∗p
∗

LLet us assume we start at the top of a projective space. This space contains
several fixed points, and in the case of a projective space Pn, there are n + 1
such fixed points. These fixed points are where the parameters t = a−1i attract
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the system. The map of interest in this context is the interaction of sections
of line bundles. We can track how these sections evolve as we move along the
trajectory within the space. It is important to note that the section of the line
bundle is supported on the full attracting locus.

Fixing a starting point, we can observe the behavior of a section of the line
bundle from that point. Using this information, we can push forward or pull
back along the fixed points, reconstructing the sections of the line bundle by
examining the intersections and behaviors at these fixed points. As we move
along, we gain more information about the section. For instance, by induction,
we know the value of the section at the intersection of t = a−10 and t = a−11 .
Once we gather sufficient information about the section of the line bundle on
the abelian variety, we can reconstruct it uniquely.

Let Y be an algebraic variety, L a line bundle, and D a divisor on Y . We can
examine the following cohomological sequence:

H0(Y,L(−D))→ H0(Y,L)→ H0(D,L)→ H1(Y,L(−D)).

• The second map: The main interpolation problem is to reverse the sec-
ond map, i.e., given a section on a divisor, we aim to lift it to a section
defined on the whole variety. This is analogous to the problem of recon-
structing a polynomial in two variables from its restriction to a curve. In
essence, we are trying to reverse the map induced by this restriction.

• The last map. The cokernel of this map corresponds to the obstruc-
tions to the interpolation. These obstructions represent the difficulties
encountered in lifting the section from the divisor to the variety.

• The first arrow. The first map represents ambiguities in the interpo-
lation. Specifically, there may be cases where a section vanishes on the
divisor, leading to the trivial (zero) section.

For the interpolation problem to have a unique solution, we require the following
exactness in the cohomological sequence:

0→ H0(Y,L(−D))→ H0(Y,L)→ H0(D,L)→ H1(Y,L(−D)) = 0.

Here, Y is an abelian variety, and both L and D correspond to Θ-bundles. If
degK(−D) = 0, which reflects a balance from the symplectic form on X, then
either L(−D) is trivial, or H0(L(−D)) = 0.

This result implies that the interpolation problem will generally have a unique
solution except in the presence of special resonances. These resonances are
critical because if encountered, they may render the problem ill-defined. This is

illustrated by formulas such as θ(xz)
θ(x)θ(z) , which are used to interpolate a function

defined on an elliptic curve. In such cases, we attempt to lift a function defined
at 1 to the entire elliptic curve. The term θ(z) in the denominator introduces a
subtle issue: when the line bundle is trivial, a resonance arises that can lead to
division by zero.
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Thus, while the interpolation problem for a fixed line bundle usually has a
well-defined solution, there is a potential risk of encountering a resonance if we
venture too far. To avoid this, we introduce a variable Z from the outset. This
allows us to vary the line bundle and bypass the resonance. By twisting by
Pic0(Ell(X)) ⊃ Pic(X) ⊗ E, where Z and Zvol are the dynamical variables in
elliptic quantum groups and Kähler variables, we ensure that the interpolation
problem remains well-posed. This transformation does not change the structure
of the problem, but rather stabilizes it.

The introduction of these variables allows us to solve the interpolation problem
in the context of varying line bundles. By integrating over elliptic functions,
we can obtain explicit solutions to the interpolation problem while avoiding the
pitfalls of resonance. The elliptic functions involved are q-constant, and their
integration provides explicit solutions. In the framework of elliptic quantum
groups, the introduction of these variables is indispensable for ensuring the
smooth resolution of the problem.

With these variables in place, we arrive at the Fock⊗ r function:

Ψ(a1, . . . , ar, t1, t2, t3, z) =

∫ Å
rational function · elliptic function ·

∏ Γq
Γq

ã
dHaar

In this expression:

• The integral is taken over the maximal torus of the gauge group.

• The rational function corresponds to the off-shell Bethe arising from Uℏ(ĝ).

• The elliptic function represents the analog of the contour integral coming
from Ell.

• The term
∏ Γq

Γq
represents the Bethe equation.

This formulation underscores the importance of integrating over elliptic func-
tions to resolve the interpolation problem, avoiding the resonance issues that
arise when the line bundle is fixed. By varying the line bundle and incorpo-
rating elliptic functions, we effectively ”solve” the interpolation problem while
ensuring that the solution remains well-defined and smooth.
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Part II

Week 1 Talks

There were seven talks in week 1. There were no talks on Wednesday, June 26th.

Week 1

Monday, June 24th

• Mikhail Bershtein: Chiralization of Cluster Structures

The chiralization in the title denotes a certain procedure which turns clus-
ter X-varieties into q−W algebras. Many important notions from cluster
and q −W worlds, such as mutations, global functions, screening opera-
tors, R-matrices, etc. emerge naturally in this context. In particular, we
discover new bosonizations of q −W algebras and establish connections
between previously known bosonizations. If time permits, I will discuss
potential applications of our approach to the study of 3d topological the-
ories and local systems with affine gauge groups. This talk is based on a
joint project with J. Shiraishi, J.E. Bourgine, B. Feigin, A. Shapiro, and
G. Schrader.

• What is... a Riemann-Hilbert problem?

In its classical setting, the Riemann-Hilbert problem refers to Hilbert’s
21st problem of constructing a Fuchsian ODE system with prescribed
poles and a given monodromy group. Using singular integral equation
techniques, Plemelj presented a solution to this problem in 1908 which
became widely accepted. However, Kohn, Arnold and Ilyashenko noticed
in the mid 1980s that Plemelj had actually worked on a problem similar
to Hilbert’s 21st for so-called regular ODE systems rather than Fuchsian
ones. These new investigations resulted eventually in a negative answer to
Hilbert’s original problem given by Bolibruch in 1989 with further develop-
ments by Bolibruch and Kostov soon after. Tangentially to the solution of
Hilbert’s classical problem, the singular integral equation techniques used
therein, a.k.a. analytic factorizations of given functions defined on curves,
gave rise to a class of modern Riemann-Hilbert factorization problems. In
fact nowadays we view such problems as part of a broad analytical tool-
box that is useful in the analysis of problems in mathematics and physics,
for instance the Wiener-Hopf methods in hydrodynamics and diffraction.
The goal of this talk is to first review some facts of the classical Riemann-
Hilbert theory and then present a few recent developments of its modern
counterpart. Special attention in the second part will be given to matrix-
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and operator-valued Riemann-Hilbert problems that arise in random ma-
trix theory and integrable probability.

Tuesday, June 25th

• Anton Zabrodin: Integrability and Time Discretization of the Deformed
Ruijsenaars-Schneider Model

We will discuss the recently introduced deformed Ruijsenaars—Schneider
(RS) many-body system. One the one hand, it is the dynamical system
for poles of elliptic solutions to the Toda lattice with constraint of type
B. On the other hand, equations of motion for this system coincide with
those for pairs of RS particles which stick together preserving a special
fixed distance between the particles. We prove integrability of the de-
formed RS system by finding the integrals of motion explicitly. We also
obtain Backlund transformations and integrable time discretization of the
deformed RS system.

• Henry Liu: Invariance of Elliptic Genus Under Wall Crossing

Elliptic genus, and its various generalizations, is one of the simplest nu-
merical invariants of a scheme that one can consider in elliptic cohomology.
I will present a topological condition which implies that elliptic genus is
invariant under wall-crossing. It is related to Krichever—Höhn’s elliptic
rigidity. Many applications are possible; I will focus on elliptic Donald-
son—Thomas theory for this talk.

Thursday, June 27th

• Alexei Borodin: Geometry of Dimer Models

Random dimer coverings of large planar graphs are known to exhibit un-
usual and visually apparent asymptotic phenomena that include formation
of frozen regions and various phases in the unfrozen ones. For a specific
family of subgraphs of the (periodically weighted) square lattice known as
the Aztec diamonds, the asymptotic behavior of dimers admits a precise
description in terms of geometry of underlying Riemann surfaces. The
goal of the talk is to explain how the surface structure manifests itself
through the statistics of dimers. Based on joint works with T. Berggren
and M. Duits.

• Alexander Bobenko: Dimers and M-curves

We develop a general approach to dimer models analogous to Krichever’s
scheme in the theory of integrable systems. This leads to dimer models
on doubly periodic bipartite graphs with quasiperiodic positive weights.
Dimer models with periodic weights and Harnack curves are recovered
as a special case. This generalization from Harnack curves to general
M-curves, which are in the focus of our approach, leads to transparent
algebro-geometric structures. In particular, the Ronkin function and sur-
face tension are expressed as integrals of meromorphic differentials on
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M-curves. Based on Schottky uniformization of Riemann surfaces, we
compute the weights and dimer configurations. The computational re-
sults are in complete agreement with the theoretical predictions. The talk
is based on joint works with N. Bobenko and Yu. Suris.

Friday, June 28th

• Youjin Zhang: Bihamiltonian Integrable Systems and their Classification

Bihamiltonian structure plays an important role in the theory of inte-
grable systems. For a system of evolutionary PDEs with one spatial vari-
able which possesses a bihamiltonian structure, one is able to find, under
a certain appropriate condition, infinitely many conservation laws of the
system from the bihamiltonian recursion relation and to arrive at its in-
tegrability. In the case when the bihamiltonian structure of the system of
evolutionary PDEs possesses a hydrodynamic limit, one can further ob-
tain from it a flat pencil of metrics, and relate it to Frobenius manifold
structures or their generalizations under a certain condition, such a re-
lationship may help one to find applications of the integrable system in
different research areas of mathematical physics. In this talk, we will recall
the notion of bihamiltonian integrable systems, explain their relationship
with Frobenius manifold structures or their generalizations, and review the
results on the classification of bihamiltonian integrable hierarchies which
possess semisimple hydrodynamic limits.
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5 Mikhail Bershtein: Chiralization of Cluster
Structures

Abstract

The chiralization in the title denotes a certain procedure which turns
cluster X-varieties into q −W algebras. Many important notions from
cluster and q −W worlds, such as mutations, global functions, screening
operators, R-matrices, etc. emerge naturally in this context. In particular,
we discover new bosonizations of q−W algebras and establish connections
between previously known bosonizations. If time permits, I will discuss
potential applications of our approach to the study of 3d topological the-
ories and local systems with affine gauge groups. This talk is based on a
joint project with J. Shiraishi, J.E. Bourgine, B. Feigin, A. Shapiro, and
G. Schrader.
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5.1 Introduction

The purpose of this talk is to discuss the following connection:

{representation theory of ∞-dim algebras} ↔ {cluster structures}

On the right-hand side, the term cluster structures refers to cluster varieties and
cluster algebras. On the left-hand side, examples of ∞-dimensional algebras
include vertex algebras, W-algebras, and affine Lie algebras ĝ. Since cluster
structures possess a multiplicative nature, we focus on the q-deformed setting,
considering Wq,t, Ug(ĝ), and toroidal algebras.

5.2 Quantum Cluster Algebras

What is a quantum cluster algebra? A quantum cluster algebra begins with an
oriented graph, or quiver. Consider the simple quiver with two vertices and a
single arrow between them:

A B

The arrows in the quiver represent commutation relations between the asso-
ciated variables, in this case ab = q2ba. More generally, the relation for two
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variables xi and xj is given by

xixj = q2bijxjxi,

where bij is the skew-symmetric integer matrix determined by the number of
arrows between the vertices. Specifically, bij is given by the difference between
the number of arrows directed from vertex i to vertex j and the number of
arrows directed in the opposite direction.

In practice, the algebra

C⟨x±11 , . . . , x±1n ⟩/x1xα = q#xαx1

is often referred to as the quantum torus. These algebras are relatively simple,
and their connection to quantum groups lies in the fact that representations of
quantum groups can be realized using these algebras.

5.3 The Quantum Group Realization

Example 5.1. Consider the quiver

x3

x4 x2

x1

We can define the following expressions:

E = x1 + qx1x2

K = x1x2x3

F = x3 + qx3x4

K ′ = x3x4x1.

These expressions satisfy the relations of the quantum group, specifically D(Uq(b)),
the double of the universal enveloping algebra of the Borel subalgebra. When the
relation KK ′ = 1 holds, we recover the algebra Uq(sl2).

This quantum group realization can be viewed as a representation of q-difference
operators. For example, by setting x1 7→ x, x2 7→ D−1, x3 7→ x2D, and x4 7→
q−2x−1x, we obtain a representation of Uq(sl2) using q-difference operators.

This realization of a quantum group in terms of difference operators is analogous
to the classical representation of a Lie algebra using differential operators. For
example, for sl2, we have:

sl2 → Diff(A1), E 7→ ∂x, H 7→ −2x∂x + λ, F 7→ −x2∂x + λx.

163



5.4 Cluster Variables and Mutation Formulas

The q-deformation replaces these differential operators with q-difference oper-
ators, which enables the introduction of cluster variables and the study of
their algebraic properties.

At this stage, we have defined quantum tori and, more geometrically, cluster
varieties corresponding to a single quantum torus. However, one of the most
important concepts in cluster varieties is the notion of mutation, which describes
the transformation of one cluster variety into another, typically by separating or
”gluing” charts. We will illustrate this with an example rather than providing
the full formal definition.

Example 5.2. Consider the mutation of a quiver:

b b̃

a c ã c̃

mutation

The mutation yields the following relations:

ã = a(1 + qb), b̃ = b−1, c̃ = c(1 + qb−1)−1.

Proposition 5.3. The generators of the quantum group remain Laurent poly-
nomials after mutation.

For more complicated quantum groups, such as Uq(sl3), larger quivers are re-
quired. For example, consider the following quiver:

• •

•

• • • •

•

• •

The squares in the diagram arise from the geometry of local systems on surfaces,
as explored by Goncharov. The quiver corresponds to a disc with a puncture
and two marked points on the boundary. This configuration can be thought
of as encoding the geometric structure of local systems on the disc, where the
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marked points represent boundary conditions. There is a natural second chart,
corresponding to a different type of surface:

• • •

• • •

• • •

• •

This new chart represents a cylinder, which serves as an alternative realization
of the quiver. The transformation from the punctured disc to the cylinder is part
of a more general transition between charts, though it is non-trivial to compare
quivers in different charts directly. The topology of the surface influences the
structure of the quiver and the mutation process.

What is the size of the quiver? The number of vertices in the quiver corresponds
geometrically to the dimension of the manifold associated with the system. This
means that in the case of a punctured disc, for instance, the number of vertices
reflects the underlying geometric structure of the surface, which in turn dictates
the algebraic properties of the quantum torus or cluster variety in question. For
higher-dimensional surfaces, the number of vertices in the corresponding quiver
increases, reflecting the more complex geometry involved.

Another way to think about the mutation formulas is in terms of conjugation
by the quantum dilogarithm

φ(b) =
∏
j

(1 + q2j+1b)

Geometrically, one can think about this as a quantization of the algebra of global
functions, but instead of A1 we have the additional restraint P1.

5.5 Chiralization

We now turn to the main point of this talk: chiralization. We begin similarly
to the previous discussion, with a quiver:

A BP

but this time, the arrow is assigned a weight P . In this case, we work with
current equations such as:

A(z) = a0 exp
(∑ an

n
zn
)
,
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where the an’s satisfy the relations of a Heisenberg algebra. The commutation
relations for the operators A(z) and B(w) are given by:

A(z)B(w) =
qpz − q−1w
pz − w

: A(z)B(w) :, B(z)A(w) =
q−1z − qpw
z − pw

: B(z)A(w) : .

The operator product expansion is bosonic, and the negative-indexed terms are
shifted to the left, while the positive-indexed terms are shifted to the right.
Additionally, the commutator relations for the vertex operators are:

A(z)A(w) =
(z − w)n

(z − qw)(z − q−1w)
: A(z)A(w) : .

This can be viewed as a deformation of the commutation relations for the vertex
algebra, where instead of assigning a single variable to each vertex, we assign
an infinite sequence of variables. The quantization of these variables removes
the commutative structure, and we obtain the relations:

[an, bm] = np−n(q−2n − n)δm+n,0,

[an, am] = n(−q−2n + 2− q2n)δm+n,0.

How crucial are the weights P? First, it’s important to note that there are gauge
transformations acting on these weights. Specifically, for each vertex, we can
assign a current A(z)→ A(tz). Since we are already working in the q-deformed
world, we are comfortable with having poles on shifted diagonals. This means
there’s no intrinsic preference for a particular choice of the variable. Thus, the
gauge transformation takes the following form:

p2 tp3

p1 p3 t−1p4 tp2

• •

p5 p4 t−1p1 t−1p5

Here, the outgoing edges are multiplied by a factor of t, while the incoming
edges get a factor of t−1.

A consequence of this observation is that the precise choice of the weights is not
that important. What matters more is the monodromy around closed loops -
at least, for our purposes, this is sufficient. Weights may vary, but the essential
features of the system are encoded in the monodromies, which are invariant
under gauge transformations.
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5.6 The Geometric Perspective

There are additional examples we should consider that come from geometric
perspectives: in the context of the works of Fock and Goncharov, quivers are
often drawn on surfaces. On these surfaces, we impose a condition that the
product of the monodromies around a local cycle equals q−2. This condition
implies that the essential monodromies are related to the homology group of
the surface, thereby tying the quiver’s algebraic properties to the topology of
the underlying surface.

Example 5.4. In the case of the quantum group Uq(sl3), we can assign weights
as follows: assign a weight of 1 to the vertical vectors, q1 to the horizontal
vectors, and q3 to the diagonal vectors. The corresponding relation between
these weights is:

q1q
2q3 = 1,

where q2 = q2. This illustrates how the weights interact and the corresponding
relations that govern the structure of the quiver in this example.

Theorem 5.5. We have two important properties:

1. The formulas in the example give representations of Ug(g̈l3) in the Waki-
moto representation.

2. This representation is mutation-equivalent to the known one.

One might ask: what happens to mutations when quivers are weighted? It’s
easy to suspect that the mutation process is no longer purely combinatorial.
Indeed, algebraically, we encounter a complication for c̃, since the term 1+qb−1

transforms into an infinite sum. However, rather than focusing on this directly,
we can take a more conceptual approach and view the mutation as a system of
equations. We won’t explicitly state the system, but its existence is crucial to
understanding the mutation process.

In this alternate perspective, mutation becomes an intertwining operator on the
Fock space corresponding to the Heisenberg algebra B, mapping the space to
itself: FB → FB . This action arises from the R-matrix associated with U(g̈l1).

When considering a loop that returns to itself, we recognize that this corresponds
to the Maulik-Okounkov q-deformed R-matrix. More specifically, it’s the q-
deformed analog of the Liouville reflection operator, as introduced by Maulik
and Okounkov.

We mention two final remarks:

• There exist screening operators. The main thing we should know about
them is the combinatorics of the screening operators can betray the com-
binatorics of the cluster varieties.

• We did not discuss geometry (such as surfaces), and it makes sense to ask
whether the pentagon identitfy holds for this mutations. The answer is
that it holds in projective space, leading to the Fock-Rosly brackets.
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Finally, we can ask whether we expect quantized cluster varieties to possess a
chiralization. While this is still an open question, there is reason to be hope-
ful. In a related story, non-quantized cluster varieties that exhibit a chiraliza-
tion arise as Coulomb branches of four-dimensional supersymmetric theories.
A similar narrative holds for three-dimensional theories, where these varieties
correspond to associated varieties for certain vertex algebras. Given these par-
allels, it is reasonable to expect that quantized cluster varieties may also admit
a chiralization in the future.

168



6 Thomas Bothner: What is a Riemann-Hilbert
Problem?

Abstract

In its classical setting, the Riemann-Hilbert problem refers to Hilbert’s
21st problem of constructing a Fuchsian ordinary differential equation sys-
tem with prescribed poles and a given monodromy group. Using singular
integral equation techniques, Plemelj presented a solution to this prob-
lem in 1908 which became widely accepted. However, Kohn, Arnold and
Ilyashenko noticed in the mid 1980s that Plemelj had actually worked on a
problem similar to Hilbert’s 21st for so-called regular ordinary differential
equation systems rather than Fuchsian ones. These new investigations re-
sulted eventually in a negative answer to Hilbert’s original problem given
by Bolibruch in 1989 with further developments by Bolibruch and Kos-
tov soon after. Tangentially to the solution of Hilbert’s classical problem,
the singular integral equation techniques used therein, a.k.a. analytic fac-
torizations of given functions defined on curves, gave rise to a class of
modern Riemann-Hilbert factorization problems. In fact nowadays we
view such problems as part of a broad analytical toolbox that is useful
in the analysis of problems in mathematics and physics, for instance the
Wiener-Hopf methods in hydrodynamics and diffraction. The goal of this
talk is to first review some facts of the classical Riemann-Hilbert theory
and then present a few recent developments of its modern counterpart.
Special attention in the second part will be given to matrix- and operator-
valued Riemann-Hilbert problems that arise in random matrix theory and
integrable probability.
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6.5.2 Ulam’s Problem . . . . . . . . . . . . . . . . . . . . . . . 181
6.5.3 Universality For Invariant Random Matrix Models . . . . 181

169



6.1 Origins

The first Riemann-Hilbert problem was introduced 125 years ago, in 1900, at
the 2nd International Congress of Mathematics in Paris. During one of the
sessions, David Hilbert delivered his address and presented a list of problems
that he anticipated would shape the mathematics of the 21st century. Among
these, 23 problems were particularly significant, many of which have become
famous and have had a profound influence on the development of mathematics.
We will focus on Problem 21.

Problem 21 involves the proof of the existence of linear differential equations
with a prescribed monodromy group. At the time, Hilbert stated that this
problem was one that Riemann had “probably already thought about.” The
problem asks for the construction of a linear differential equation belonging to
the Fuchsian class, with prescribed singular points and a prescribed monodromy
group. Specifically, the task is to demonstrate the existence of n functions of
the complex variable z, which are regular and complex analytic in the z-plane,
except at certain singular points. At these singularities, the functions may
become infinite, but only to a finite order. Moreover, as one traverses a loop
around a singularity, the function changes according to the specified monodromy
group.

This is often considered the first Riemann-Hilbert problem because Hilbert for-
mulated it and explicitly noted that Riemann had likely pondered it as well.
Although no direct evidence from Riemann’s papers addresses this particular
type of problem, we continue to refer to it as the Riemann-Hilbert problem,
following the convention established by Anosov and Bolibruch. These schol-
ars, whose names will frequently appear in the first half of this discussion,
co-authored a book on Hilbert’s 21st problem and have been instrumental in
shaping our understanding of it. We adopt their terminology in referring to it
as the original Riemann-Hilbert problem, as it is indeed rooted in Riemann’s
broader mathematical ideas, particularly his work on constructing global func-
tions from local data, a theme central to Riemann’s contributions to complex
analysis.

Since the problem’s introduction, 125 years have passed, making it natural to
ask whether it has been resolved. A quick search of ”21st problem” onWikipedia
yields the answer: partially resolved. Moreover, the resolution depends on the
specific formulation of the problem, allowing for various interpretations with
different answers: yes, no, or still open.

Hilbert’s formulation of the problem was notably vague, raising several questions
about its precise nature. Specifically, given a monodromy group, one must ask
whether it is realized by:

1. A Fuchsian linear nth-order differential equation? This interpretation is
possible because Hilbert never explicitly refers to a matrix system in his
statement.
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2. A linear system with only regular singularities? Hilbert described the
functions he sought as having singularities of finite order, but he did not
use the term “Fuchsian singularity,” which has since become the standard
term. Instead, he referred to regular singularities, which differ significantly
from Fuchsian singularities, as we will see later.

3. Fuchsian system on the entire Riemann sphere CP1? This interpretation
is also plausible, as Hilbert mentions the Fuchsian class in his problem
statement.

These three interpretations lead to different conclusions:

1. No. By the time of the conference, it was already known (to Poincaré)
that the answer was no, meaning Hilbert was likely not considering this
option. Prior to the conference, Poincaré had determined that the number
of parameters in a finite linear scalar differential equation was strictly less
than the dimension of the admissible monodromy group.

2. Yes. This interpretation was highly influential in the development of the
modern theory of Riemann-Hilbert problems. In 1908, Plemelj published
two papers that demonstrated a positive answer to this question. Plemelj
also claimed that his methods solved the third interpretation as well, but
this claim was later refuted after his death in the late 1950s by Ilyashenko
and Treibich (1983-1988). Nevertheless, Plemelj’s techniques were semi-
nal, and we will revisit them later in this discussion.

3. More subtle. The resolution of this interpretation is credited to Bolibruch
and Kostov (1992)

6.2 Background terminology

Consider the p× p system

dΨ

dz
= A(z)Ψ(z) (1)

with

1. A(z) is analytic in a disc Dr(z0) ⊂ C. By the Picard-Lindelöf theorem,
any fundamental solution to (1) is analytic in Dr(z0). However, we are
interested in differential equations of singularities so we have to move to
the case with n punctures.

2. A(z) analytic in S := CP2\{a1, . . . , an}. By the monodromy theorem,
any fundamental solution to (1) can be continued along any path in S.

3. The monodromy of (1) is defined as follows: fix a0 ∈ S and continue
Ψ(z) along γ ∈ π1(S, a0) to obtain Ψ̃(z). Since Ψ(z) = Ψ̃(z)Gγ , the map
[γ] 7→ Gγ defines a representation χ : π1(S, a0)→ GL(ρ,C).

171



4. The monodromy matrix at a singular point ai equals Gi = χ([γi]) for
i = 1, . . . , n and {G1, . . . , Gn} generate the monodromy group.

5. Strictly speaking, monodromy is defined up to conjugation equivalence, so
it is really an element of the space

M := Hom(π1(S, a0),GL(ρ,C))/GL(ρ,C).

Note that

M∼= {(G1, . . . , Gn) : G1 · ... ·Gn = I}/GL(ρ,C)

so dim(M) = (n− 1)p2 − (p2 − 1) = (n− 2)p2 + 1.

6. A system (1) is called Fuchsian if all of its singular points {a1, . . . , an}
are first order poles of A(z), ie. without loss of generality we have

A(z) =

n∑
i=1

Bi
z − ai

,

n∑
i=1

Bi = 0

In particular, the point at infinity is not a singularity.

Now we have everything in place to give a precise formulation of the original
Riemann-Hilbert problem in the third setting:

Problem 6.1 (The Original Riemann-Hilbert, 1900). Is the monodromy map
µ :M∗ →M from the space

M∗ :=

{
(B1, . . . , Bn) : Bi ∈ Mat(ρ,C),

n∑
i=1

Bi = 0

}
/GL(ρ,C)

of Fuchsian systems with fixed singularities a1, . . . , an intoM surjective?

6.3 Plemelj’s Solution

In 1908, Plemelj published what he claimed be a solution, and it was accepted
by the community for almost 80 years. Plemelj tackled this problem by reducing
the original problem to a Hilbert boundary value problem in the theory of
integral equations. This was an analytic solution using state-of-the-art methods
at the time - Fredholm had developed the theory of integral equations 10 years
before.

Plemelj did the following: join all singularities a1, . . . , an ∈ C by a simple closed
contour Γ. Now define the piecewise constant matrix-valued invertible function
G(z) := GiGi−1...G1, z ∈ [ai, ai+1), i = 1, . . . , n − 1 and let C− denote the
domain in C bounded by Γ, as well as C+ the complement of C− in CP1.

Let’s state the Hilbert boundary value problem.

Proposition 6.2 (Hilbert Boundary Value Problem). Find all pairs (Y+, Y−)
of matrix-valued p× p functions such that
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1. Y±(z) are analytic in C
± and Y± are continuous up to the contour Γ\{a1, . . . , an}

2. On (ai, ai+1), the functions are connected by the relation

Y+ = Y−G(z)

1. Y±(z)(z − ak)κ → 0 as z → ak with some 0 ≤ κ < 1 and zDY+(z)→ I as
z →∞ with some integral diagonal matrix D.

This problem is equivalent to a system of singular integral equations, which
we won’t write out. Using the theory of singular integral equations, Plemelj
showed in 1908 that the above BVP is solvable (but not necessarily uniquely).
This relates back to the Riemann Hilbert problem because the matrix product

Ψ(z − a1)DY±(z), z ∈ CP1\Γ

satisfies the linear equation

dΨ

dz
= R(z)Ψ(z) (2)

where R(z) is rational with poles at {ai}ni=1 and whose monodromy group is
generated by (G1, . . . , Gn). However, (2) in general is not a Fuchsian system,
but rather a regular system!

It’s a good time to explain regular vs Fuchsian singularities.

Definition 6.3. A singularity ai of (1) is called regular if any solution of the
system has at most polynomial growth in a vicinity of ai (solutions have either
a removable singularity or a pole at ai)

The difference is that a Fuchsian singularity of a linear system is always regular
(Sauvage, 1886), but the converse is not true for p > 1:

dΨ

dz
=

Å
− 3

16z

ãÅ
0 0
1 0

ã
+

Å
0 1
0 0

ã
Ψ

has a fundamental solution of the form

Ψ(z) =
1

4

ïÅ
4z 4z
1 3

ãò
z
− 1

4

Ñ
3 0
0 1

é
Ψ, z ∈ C\(−∞, 0]

Thus {Fuchsian systems} ⊊ {regular systems} but Plemelj wanted to solve
Hilbert’s 21st problem for Fuchsian systems, so he applied a procedure that
takes him from the regular system to another system with equal monodromy
and same singular points. Plemelj’s error was that he believed he could do this
procedure for all singularities, which is incorrect because this transformation
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is valid for all but one point. However, if we add an additional constraint,
Plemelj’s argument does work:

Theorem 6.4 (Plemej’s Theorem, 1908 + Ilyashenko, Treibich, 1983-1988). If
at least one of the generators G1, . . . , Gn is diagonalizable, then Hilbert’s 21st
problem has a positive solution.

As a corollary to Plemelj’s work, we have a positive solution to Hilbert’s 21st
problem for regular systems! Although parts of Plemelj’s original work was
wrong, the following (correct) theorem did later come out of it:

Theorem 6.5 (Röhrl-Plemelj Theorem, 1957). Any matrix group with n gener-
ators G1, . . . , Gn satisfying the constraint G1 · ... ·Gn = ⊮ can be realized as the
monodromy group of a regular system on CP1 having all singularities Fuchsian
with at most one exception.

6.4 Further Down the Timeline

The community had accepted Plemelj’s argument as a positive affirmative solu-
tion to Hilbert’s 21st problem for Fuchsian systems for a long time, and hence-
forth the community focused on other aspects of this problem.

1. In 1913, Birckhoff simplified Plemelj’s argument, generalizing into systems
of difference equations, but we will not focus on this for this talk.

2. In 1929, Lappo and Danilevskii gave an effective construction (using power
series related techniques) of Fuchsian systems with given mondromy ma-
trices, but only for monodromy matrices ”close” to the identity matrix.

3. In 1956, Krylov provided an effective construction (using hypergeometric
functions) of Fuchsian system for p = 2, 3 singular points. Erugin followed
this up for four singular points in 1983 (using ideas from the Painlevé
equations).

4. In addition to making things more concrete, people started generalizing.
In particular, in 1957, Röhrl reformulated and generalized Hilbert’s 21st
problem to holomorphic vector bundles over Riemann surfaces. This was
a very geometric approach, and nowadays all of these beautiful general-
izations to surfaces are attached to the name Riemann-Hilbert correspon-
dence. We will not talk about this side of the story any further.

5. Between 1989-1992, Bolibruch and Kostov showed the irreducibility of the
mondromy group. In these years, they gave the necessary and sufficient
conditions for the solvability of Hilbert’s 21st problem on the Riemann
sphere. Here is one of their theorems:

Theorem 6.6 (Bolibruch-Kostov Theorem, 1989). Any irreducible mondromy
group can be realized by a Fuchsian system on CP1.

But certain reducible monodromy groups cannot be realized by Fuchsian sys-
tems. Furthermore, they gave a recipe to construct counter examples, with the
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first example found by Bolibruch for n = 3, p = 4. So we can finally answer the
original Riemann-Hilbert problem in the third case: we cannot always realize a
given monodromy group by a Fuchsian system on CP1. Bolibruch first lectured
these lectures at the 1994 International Congress of Mathematics, but sadly
soon after he passed away.

Now, let’s see some developments tangential to Plemelj’s work. The analysis
techniques he used in his ”almost solution” continued to reappear in problems
related to integrable systems. Let’s walk through some of that history and show
the whole toolbox around this problem.

6.4.1 The Wiener-Hopf method in linear elasticity, hydrodynamics,
and diffraction

There is this famous Sommerfeld diffraction problem in 1896 in wave me-
chanics. Sommerfeld came up with a solution but we will use a different ap-
proach requiring the Hilbert BVP.

The question is as follows: we have incoming plain waves as indicated by the
orange arrows and an infinite barrier along the positive x-axis, creating a bound-
ary that the waves cannot pass through. Consequently, we will have a reflection
region where the waves are reflected and a shadow region that is in perpetual
darkness since the rays cannot penetrate it. Now, we take the 2d wave equation
and try to solve the associated BVP. How do we do that?

The Sommerfield problem (electromagnetic wave diffraction by a perfectly con-
ducting half plane) is analyzed as a BVP for

∆ϕ+ k20ϕ = 0, ϕ = ϕ(x, y)⊕ BC
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and then reduced via Fourier techniques to a Hilbert boundary value problem
or Wiener-Hopf integral equations. We leave a out a lot of details, such as
the boundary condition, but we mention it because his problem was the first
problem in mathematical physics where Hilbert BVP can be used efficiently.

6.4.2 The integrable systems revolution

By Gardner, Green, Kruskal, Miura, 1967; Lax, 1968; Faddeev, Zakharov, 1971;
and Shabat, Zakharov, 1971.

In order to solve the Cauchy problem for the defocusing nonlinear Schröodinger
equation, y = y(x, t) : R2 → C,

iyt + yxx − 2|y|2y = 0, y(x, 0) = y0(x) ∈ S(R);

one first computes the reflection coefficient r(z) ∈ S(R) associated to y0 through
the direct scattering transform.

There’s not much wiggle room in this because if you start with Cauchy data
from S(R), there is a bijection to the class of reflection coefficients in the same
function space, and moreover, reflection coefficients with ||sup|| < 1. Very rarely
we will have an actual formula for r(z) but that’s ok because we have a bunch
of nice analytic properties.

After that we solve the following BVP:

Proposition 6.7 (Zakharov-Shabat Problem). For any (x, t) ∈ R × (0,∞),
determine X(z) = X(z;x, t) ∈ C2×2 such that

1. X(z) is analytic for z ∈ C \ R and continuous on C+.

2. The limits X±(z) := limϵ→0X(z ± iϵ), z ∈ R, satisfy

X+(z) = X−(z)

Å
1− |r(z)|2 −r(z)e−2i(2tz+xz)

r(z)e2i(2tz+xz) 1

ã
;

3. As z →∞, we require X(z) = I +X1z
−1 +O(z−2), Xi = Xi(x, t).

How does this relate to the partial differential equation intial value problem?
Provided this problem is solvable, its (unique) solution solves dNLS with y(x, 0) =
y0(x) via y(x, t) = 2iX12

1 (x, t).

6.4.3 The isomonodromy method

This part was developed by [Jimbo, Miwa, Ueno, 1981; Flachka, Newell, 1980;
and Its, Novokshenov, Kapaev, Kitaev, 1986].

Besides partial differential equations, there are ordinary differential equations,
many of which are very important in mathematical physics. One of these famous
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ordinary differential equations is the Painlevé equation, and we will focus on the
second one.

How do we ”solve” the second Painlevé equation

uxx = xu+ 2u3, u(x) = u(x)?

We added the constraint that says the solution is real valued on the real axis.
”Solve” is in quotation marks because u = 0 solves this of course, but there’s a
hard theorem that says any other nontrivial solution cannot be constructed in
terms of classical special and a finite number of contour integrals. Here, we will
replace it in terms of it’s Hilbert BVP.

Given

M = {(s1, s2, s3) ∈ C3 : s1 − s2 + s3 + s1s2s3 = 0, s1 = s3, s2 = s2}

we set with sk+3 = −sk for k = 1, . . . , 6, the Stokes’ matrices

Sk =

Å
1 0
sk 1

ã
, k ≡ 1 (mod 2); Sk =

Å
1 sk
0 1

ã
, k ≡ 0 (mod 2)

and look at the following Riemann-Hilbert factorization problem:

Problem 6.8 (Painlevé-II Problem). For any (x, t) ∈ R × (0,∞) determine
X(z) = X(z;x, t) ∈ C2×2 such that

1. X(z) is analytic for z ∈ C \ R and continuous on C +.

2. The limits X ∗ ±(z) := lim ∗ϵ→ 0X(z ± iϵ), z ∈ R satisfy

X+(z) = X−(z)

ï
1− |r(z)|2 −r(z)e−2i(2tz+xz)

r(z)e2i(2tz+xz) 1

ò
;

1. As z →∞, we require X(z) = I +X1z
−1 +O(z−2), Xi = Xi(x, t).

Note that the s1 − s2 + s3 + s1s2s3 = 0 constraint makes M a 2d manifold,
which is fine because we are looking at a second order differential equation.
Furthermore, the s1 = s3, s2 = s2 restraints are added because we are looking
for the solutions which are on the real axis, giving us a real 2d manifold.

For any s = (s1, s2, s3) ∈ M the above problem for X(z) is meromorphically
(wrt x) solvable and

u(x) = u(x|s) = 2X12
1 (x|s)

solves the Painlevé-II equation (3); in addition u(x) = u(x) and
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{solutions of Painlevé-II equation} ∼→M

is a bijection.

6.4.4 The study of quantum integrable systems

This part was developed by [Jimbo, Miwa, Mori, Sato, 1981 and Bogoliubov,
Izergin, Korepin, Its, 1990]. Consider the spin- 12XY model in a magnetic field
with Hamiltonian

H = −1

2

∑
ℓ∈Z

(
σxℓ σ

x
ℓ+1 + σzℓ

)
for which we can compute the so-called autocorrelation function χ(t) of the first
spin component as

χ(t) = e−
1
2 t

2

det(1−Kt ↾L2(−1,1)),Kt(x, y) = ϕ(x)
sin it(x− y)
π(x− y)

,

where det is the Fredholm determinant. Fredholm determinants are very highly
complicated objects, and we can calculate them efficiently by recasting them in
terms of a Hilbert BVP:

Problem 6.9 (XY Correlation Function Problem). For any t > 0 determine
X(z) = X(z; t) ∈ C2×2 such that

1. X(z) is analytic for z ∈ C\[−1, 1].

2. The limits X±(z) := limϵ↓0X(z ± iϵ), z ∈ (−1, 1) satisfy

X±(z) = X−(z)

ï
1 + phi(z) −ϕ(z)e2zt
ϕ(z)e−2zt 1− ϕ(z)

ò
.

1. X(z) is square-integrable on [−1, 1] and as z → ∞, we require X(z) =
I+X1z

−1 +O
(
z−2

)
, Xi = Xi(t).

This problem is (uniquely) solvable for all t > 0 and have

d

dt
ln det(1−Kt ↾L2(−1,1)) = −2X11

1 (t).

6.4.5 The analysis of orthogonal polynomials and random matrix
models

By Fokas, Its, Kitaev, 1991.

Equip the vector space of n×n Hermitian matrices with the probability measure
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P (M) dM = ce−NtrV (M) dM, c

∫
e−NtrV (M) dM = 1,

where V : R→ R is real analytic and satisfies

V (x)

ln(x2 + 1)
→∞ as |x| → ∞.

Thanks to Dyson, Gaudin, Mehta, 1970, we know how to compute correlation
and gap functions in terms of the Christoffel-Darboux kernel

Kn,N (x, y) = e−
N
2 V (x)e−

n
2 V (y)

n−1∑
j=0

pj,N (x)pj,N (y)

with

∫ +∞

−∞
pj,N (x)pk,N (x)e−NV (x) dx = δjk.

However, now there is the issue that it’s not immediately clear if we have good
formulas for calculating some efficient asymptotic analysis of our orthogonal
polymomials. It turns out we can characterize these through a Hilbert BVP:

Problem 6.10 (Fokas-Its-Kitaev Problem). For any n ∈ Z≥0, determine X(z) =
X(z;n) ∈ C2×2 such that

1. X(z) is analytic for z ∈ C\R.

2. The limits X±(z) := limϵ↓0X(z ± iϵ), z ∈ R satisfy

X+(z) = X−(z)

ï
1 e−NV (x)

0 1

ò
.

1. As z →∞, we require X(z)z−nσ3 = I+O
(
z−1

)
.

The above problem is uniquely solvable for a given n ∈ Z≥0 if and only if the
nth monic orthogonal polynomial πn(x) for e

−NV (x) dx exists. And

πn(z) = X11(z;n), z ∈ C

6.5 The Swiss Army Knife

As we have seen, Hilbert factorization problems appears in a lot of scenarios,
but we haven’t seen what we have achieved by characterizing problems with the
Hilbert BVP because there aren’t able to write down explicit formula for many
of these problems. Let’s see what we have achieved.
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why the Hilbert BVP characterization . But we haven’t seen why the Hilbert
BVP

We should think of the Hilbert factorization representation as a nonlinear con-
tour integral representation which underlies a large class of integrable models.
As such it allows us to

1. systematically derive dynamical systems for the quantities under consid-
eration [Plemelj, 1908; Its, 1990].

2. analyze the models asymptotically in their thermodynamical limits [Its,
Novokshenov, Kapaev, Kitaev, 1986; Deift, Zhou, 1993]

A few selected results that were derived from a Hilbert factorization problem:

6.5.1 Connection Formula for Painlevé Transcendents

Consider the Painleve-II with (s1, s2, s3) = (−i√γ, 0, i√γ), γ ≥ 0, the Ablowitz-
Segur (1981) family of solutions. Then as x→ +∞,

µ(x) ∼ √γ x
− 1

4

2
√
π
e−

2
3x

3
2 .

Now we know how the solution behaves in one direction, the connection prob-
lem asks us to construct asymptotics in a different direction. It turns out that
this connects to

Theorem 6.11 (Bounded Oscillatory, 0 ≤ γ < 1). u(x) ∼ (−x)− 1
4

√
−2β cos

Ä
2
3 (−x)

3
2 + β ln

Ä
8(−x) 3

2

ä
+ ϕ

ä
, x→

−∞ with β = 1
2π ln(1− γ) and ϕ = π

4 − argΓ(iβ).

or

Theorem 6.12 (Unbounded algebra, γ = 1).

u(x) ∼
…
−x
2
, x→ −∞

or

Theorem 6.13 (Singular oscillatory, γ > 1).

u(x) ∼
√
−x

sin

Å
2

3
(−x) 3

2 + β̂ ln(8(−x) 3
2 ) + φ

ã , x→ −∞

with β̂ = 1
2π ln(γ − 1) and φ = π

2 − arg Γ
Ä
1
2 + iβ̂

ä
.

The behavior at x = −∞ can be uniformized with the help of Jacobi elliptic
functions, which was done by the speaker in 2017.
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6.5.2 Ulam’s Problem

Choose a permutation π ∈ Sn. For 1 ≤ i1 < i2 < ... < ik ≤ n, we say that
π(i1), . . . , π(ik) is an increasing subsequence of π ∈ Sn of length k if

π(i1) < π(i2) < ... < π(ik).

Denote with ℓn(π) the maximal length of all increasing subsequences of π.

Example 6.14. Consider π = (5, 1, 3, 2, 4) ∈ S5 which has increasing subse-
quences (1, 3), (1, 2), (1, 4), (3, 4), (2, 4) and (1, 3, 4), (1, 2, 4), so ℓ5(π) = 3.

Problem 6.15 (Ulam’s Problem). Suppose you pick π ∈ Sn at random (uni-
formly distributed), how does ℓn behave statistically?

Very many people contributed to this area, but we will only mention three
results because they give the final answer.

Theorem 6.16 (The Baik-Deift-Johansson Theorem, 1999).

lim
n→∞

P
Å
ℓn − 2

√
n

n
1
6

≤ x
ã
= exp

ï
−
∫ ∞
x

(y − x)u2(y) dy
ò
, x ∈ R

where u(x) = u(x|(−i, 0, i)) solves Painlevé-II.

This result follows from an intruiging combination of (de)-Poissonization argu-
ments, Toeplitz determinants (Gessel formula), and OPUCs that were analyzed
asymptotically based on a Hilbert factorization problem.

6.5.3 Universality For Invariant Random Matrix Models

Though the choice of the external field V : R→ R, the mean eigenvalue density
1
nKn,N (x, x) has a limit

lim
n,N→∞

n
N→1

1

n
Kn,N (x, x) = ρV (x) ≥ 0

where ρV is the density of the equilibrium measure µV in the presence of the
external field V . The local eigenvalue statistics are in turn determined by its
local characteristics:

Theorem 6.17 (Bulk Universality - Pastur, Shcherbina, 1997; Bleher, Its 1999;
Deift et al, 1999). For x∗ ∈ supp(µV ) with ρV (x

∗) > 0 we have:

lim
n→∞

1

nρV (x∗)
Kn,n

Å
x∗ +

x

nρV (x∗)
, x∗ +

y

nρV (x∗)

ã
=

sin(π(x− y))
π(x− y)

and
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Theorem 6.18 (Edge Universality - Deift et al 1999; Deift and Gioev 2007).
If ρV vanjishes as a square root at x∗ ∈ ∂(supp(µV )), then for a certain c > 0,

lim
n→∞

1

(cn)
2
3

Kn,n

Ç
x∗ +

x

(cn)
2
3

, x∗ +
y

(cn)
2
3

å
=

∫ ∞
0

Ai(x+ t)Ai(y + t) dt.
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7 Anton Zabrodin: Integrability and Time Dis-
cretization of the Deformed Ruijsenaars-Schneider
Model

Abstract

We will discuss the recently introduced deformed Ruijsenaars—Schneider
(RS) many-body system. One the one hand, it is the dynamical system
for poles of elliptic solutions to the Toda lattice with constraint of type
B. On the other hand, equations of motion for this system coincide with
those for pairs of RS particles which stick together preserving a special
fixed distance between the particles. We prove integrability of the de-
formed RS system by finding the integrals of motion explicitly. We also
obtain Backlund transformations and integrable time discretization of the
deformed RS system.

Contents

7.1 The RS Model and Variants . . . . . . . . . . . . . . . . . . . . . 184
7.1.1 The RS Model . . . . . . . . . . . . . . . . . . . . . . . . 184
7.1.2 The Deformed RS Model . . . . . . . . . . . . . . . . . . 186
7.1.3 Integrable Time Discretization of The Deformed RS Model 186

7.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

183



7.1 The RS Model and Variants

7.1.1 The RS Model

Integrable many-body systems play a significant role in mathematical physics.
The Calogero-Moser (CM) and Ruijsenaars-Schneider (RS) systems are the main
examples.

These models exist in rational, trigonometric (or hyperbolic), and elliptic ver-
sions, in which the interaction between particles is described by rational, trigono-
metric (hyperbolic), and elliptic functions, respectively.

The elliptic models are the most general: the other ones can be obtained from
them by appropriate degenerations, where one or two periods of the elliptic
functions go to infinity.

Definition 7.1. The Weierstrass σ-function is given by the infinite product

σ(x) = σ(x|ω1, ω2) = x
∏
s̸=0

(
1− x

s

)
e

x
s +

x2

2s2

where s = 2ω1m2 + 2ω2m2 for integers m1,m2.

Here, ω1 and ω2 are periods but the Weierstrass σ-function is not periodic, but
rather quasiperiodic because when we shift the argument by a period, some
exponential factors appear in front of the Weierstrass σ-function. Nonetheless,
this function is a very convenient building block for the construction of elliptic
functions and doubly periodic functions as ratios of products of such σ-functions.

The Weierstrass ζ and ℘-functions are connected with the σ-function as follows:

ζ(x) = σ′(x)/σ(x)

℘(x) = −ζ ′(x) = −∂2x log σ(x).

The Weierstrass ℘-function is already doubly periodic - it has second order poles
in all lattice points (including the origin). In the Laurent expansion, the first
term is 1

x2 .

Recall the CM model:

Definition 7.2. The CM model is defined by the equations of motion

ẍi = 4

N∑
j ̸=i

℘′(xij), xij = xj

where dot means the time derivative.

The elliptic CM model is Hamiltonian and completely integrable, ie. it has N
independent integrals of motion in involution. Integrability of the model was
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proved by different methods by [Perelomov, 1977] and [Wojciechowski, 1977].
The proof by Perelomov was very direct - he proved that the eigenvalues of the
lax matrix Poisson commute by direct computation.

Recall that RS model, a deformation of the CM model, which can be viewed as
a ”relativistic extension”:

Definition 7.3. The RS model is defined by the equations of motion

ẍi +

N∑
j ̸=i

ẋiẋj (ζ(xij + η) + ζ(xij − η)− 2ζ(xij)) = 0.

where ζ is the zeta function.

Two important propties of the zeta function is that it has first order pole in the
origin and is an odd function.

Taking the limit η → 0 leads to the equations of motions of the CMmodel. Addi-
tionally, the discrete second derivatives becomes a second continuous derivative,
so we have Weierstrass ℘-function. Furthermore, ẋ becomes 1+ ẏ for some other
ẏ, and this limit process becomes quite sophisticated.

Integrability of the RS system was proved by Ruijsenaars. The previous proof
method does not work, and he proved this by considering the quantum version of
this model and showing that all of the higher shift operators commute. When
we have ℏ → 0, we get Poisson brackets, and it appears that proving that
quantum integrals of motion commute as operators is much easier than proving
with Poisson brackets.

Now, we discuss the time discretization of the RS-model from [Nijhoff, Ragnisco,
Kuznetsov, 1996].

Definition 7.4. Let xni be the coordinate of the ith particle at the nth step
of discrete time. The equations of motion of the time discretization of the
RS-model are:

N∏
k=1

σ(xni − xn+1
k − η)σ(xni − xnk − η)σ(xni − xn−1k )

+

N∏
k=1

σ(xni − xn+1
k )σ(xni − xnk − η)σ(xni − xn−1k + η)

=0.

The properly taken continuous time limit yields the equations of motion of the
RS model.
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Remarkably, these equations are in the same form as the Bethe equations for the
nested Bethe Ansatz for models with elliptic R-matrix. In applications to spin
chains, n is the level of the Bethe Ansatz and it varies from 0 to m = rank (G),
a finite number of values. Here, it takes an infinite number of values, from −∞
to ∞.

7.1.2 The Deformed RS Model

The RS model admits a deformation [Krichever, Zabrodin, 2022], the deformed
RS model.

Definition 7.5. The deformed RS model admits equations of motion:

ẍi +

N∑
j ̸=i

ẋiẋj(ζ(xij + η) + ζ(xij − η)− 2ζ(xij)) + g(U−i − U
+
i ) = 0

where

U±i =

N∏
j ̸=i

U±(xij), U±(xij) =
σ(xij + 2η)σ(xij ∓ η)
σ(xij ± η)σ(xij)

and g is the deformation parameter.

At g = 0, we have the RS system. It is evident that g ̸= 0 can be eliminated
from the formulas by rescaling the time values t→ g−

1
2 t. In what follows we fix

g to be g = σ(2η).

7.1.3 Integrable Time Discretization of The Deformed RS Model

Definition 7.6. The equations of motion in the time discretization of the
deformed RS model are:

µ
N∏
k=1

σ(xni − xn+1
k )σ(xni − xnk + η)σ(xni − xn−1k − η)

+µ

N∏
k=1

σ(xni − xn+1
k + η)σ(xni − xnk − η)σ(xni − xn−1k )

=µ−1
N∏
k=1

σ(xni − xn+1
k − η)σ(xni − xnk + η)σ(xni − xn−1k )

+µ−1
N∏
k=1

σ(xni − xn+1
k )σ(xni − xnk − η)σ(xni − xn−1k + η),

where µ is a parameter related to the lattice spacing in the time lattice.
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When µ → 0, only the right hand side remains. It was predicted by Krichever
that there should exist an equation with four terms, with each term a product
of cubic sigma functions. This result shows that he was correct.

Recall:

Definition 7.7. The N-particle elliptic RS model is a completely integrable
Hamiltonian system. The canonical Poisson brackets are given by {xi, pj} = δij.
The integrals of motion in involution:

In =
∑

I⊂{1,...,N},|I|=n

exp

(∑
i∈I

pi

) ∏
i∈I,j /∈I

σ(xij + η)

σ(xij)
.

We have two particularly important cases:

I1 =

N∑
i=1

epi
∏
j ̸=i

σ(xij + η)

σ(xij)

which is the Hamiltonian H1 of the chiral RS model and

IN = exp

(
N∑
i=1

pi

)
.

One can also introduce integrals of motion I−n (dependent on IN but are still
important) as

I−n = I−1N IN−n

=
∑

I⊂{1,...,N},|I|=n

exp

(
−
∑
i∈I

pi

) ∏
i∈I,j /∈I

σ(xij − η)
σ(xij)

.

In particular,

I−1 =

N∑
i=1

e−pi
∏
j ̸=i

σ(xij − η)
σ(xij)

.

The Hamiltonian of the RS model is I1 + I−1, and the limit to the Calogero-
Moser model is very straightforward.

It is also convenient to renormalize the integrals of motion:

Jn =
σ(|n|η)
σn(η)

In, n = ±1, . . . ,±N.

The higher Hamiltonians of the RS model can be obtained from the equation
of the spectral curve

zN +

N∑
n=1

θn(λ)Jnz
N−n = 0, θn(λ) =

σ(λ− nη)
σ(λ)σ(nη)

,
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which is the determinant of the characteristic polynomial of the Lax matrix, as

Hn = Resz=∞
(
zn−1λ(z)

)
.

For example,

H1 = J1

H2 = J2 − ζ(η)J2
1

H3 = J3 − (ζ(η) + ζ(2η))J1J2 +

Å
3

2
ζ2(η)− 1

2
℘(n)

ã
J3
1

shown in [Prokofev, Zabrodin, 2021]. We also introduce the Hamiltonians

H±n = Hn ±Hn.

On the Toda lattice side, the RS dynamics corresponds to the dynamics of
poles of elliptic solutions. In the Toda hierarchy, there are an infinite number
of commuting flows, and each flow corresponds to a time variable. Here, the
Hamiltonians H±n generate the flows ∂tn +∂tn , where tn, tn are canonical higher
times of the Toda lattice hierarchy.

The RS dynamics is the same as the dynamics of poles of elliptic solutions
to the 2D Toda equation in the Toda times t1, t1 [Krichever, Zabrodin, 1995].
Moreover, this correspondence extends to a complex isomorphism between the
elliptic Ruijsenaars-Schneider model (with higher Hamiltonian flows) and ellip-
tic solutions to the whole 2D Toda lattice hierarchy [Prokofev, Zabrodin, 2021].

Now, we can treat the deformed RS model as a dynamical system for pairs of RS
particles. The restriction of the RS dynamics of 2N particles to the subspace
P in which the particles stick together in N pairs such that

x2i − x2i−1 = η, i = 1, . . . , N

leads to the equations of motion of the deformed RS system for coordinates
of the pairs [Krichever, Zabrodin, 2022]. However, not all flows of the RS
model preserve this configuration: when we have flows with respect to H+

n , this
configuration is completely destroyed. But H−n preserves this. It is natural to
introduce the variables

Xi = x2i−1, i = 1, . . . , N

which are coordinates of the pairs.

We pass from the initial 4N -dimensional phase space F with coordinates ({xi}, {pi})
to the 2N -dimensional subspace P ⊂ F of pairs defined by the constraints

x2i − x2i−1 = η, x2i−1 = Xip2i−1 + p2i = 2 log σ(η) +
∑
j ̸=i

log
σ(Xij − 2η)

σ(Xij + 2η)
.
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The coordinates in P are ({Xi}, {Pi}). The subspace P is preserved by the H−1 -
flow ∂t = ∂t1−∂t1 , but is destroyed by theH+

1 -flow ∂t1+∂t1 . Therefore, to define

the dynamical system, we should fix T+
1 = 1

2 (t1 + t1) to be 0, ie. put t1 = −t1,
and consider the evolution with respect to the time t = T−1 = 1

2 (t1 − t1).

Moreover, the subspace P is invariant not only with respect to the H−1 -flow but
also with respect to all higher H−k -flows. This gives the possibility to obtain
integrals of motion Jn of the deformed RS model by restriction of the RS inte-
grals of motion Jn, J−n to the subspace P. We denote the restriction of Jk by
Jk:

Jk(({Xi}N0 , {Pi}N0)) = Jk({xℓ}N , {pℓ}N )|P

7.2 Main Results

The main result is as follows:

Proposition 7.8. The explicit expressions for integrals of motion of the de-
forms RS system are given by

Jn =
1

2

⌊n/2⌋∑
m=0

σ(nη)σ2m−n(η)

m!(n− 2m)!

∑
[i1,...,in−m]

ẋim+1
· · · ẋin−m

∏
α,β=m+1
α<β

V (xiαiβ )

×

 m∏
γ=1

∏
ℓ ̸=i1,...,in−m

U+(xiγℓ) +

m∏
γ=1

∏
ℓ̸=i1,...,in−m

U−(xiγℓ)

 ,
where

V (xij) =
σ2(xij)

σ(xij + η)σ(xij − η)
,

U±(xij) =
σ(xij ± 2η)σ(xij ∓ η)
σ(xij ± η)σ(xij)

.

Example 7.9. Here are some examples:
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J1 =

N∑
i=1

xi,

J2 =
σ(2η)

2σ2(η)

∑
i ̸=j

xixjV (xij) + σ2(η)
∑
i

Ñ∏
ℓ ̸=i

U+(xiℓ) +
∏
ℓ̸=i

U−(xiℓ)

é ,
J3 =

σ(3η)

6σ3(η)

 ∑
i ̸=j,k;j ̸=k

xixjxkV (xij)V (xik)V (xjk)

+3σ2(η)
∑
i̸=j

xj

Ñ∏
ℓ̸=i,j

U+(xiℓ) +
∏
ℓ̸=i,j

U−(xiℓ)

é .
The generating function of the integrals of motion is

R(z, λ) = det
1≤i,j≤N

(
zδij − ẋiϕ(xij − η, λ)− σ(2η)z−1U−i ϕ(xij − 2η, λ)

)
where

ϕ(x, λ) :=
σ(x+ λ)

σ(λ)σ(x)
.

The equation R(z, λ) = 0 defines the spectral curve which is an integral of
motion.

It is quite hard to expand this determinant because for a RS model we only
have to use the formula for determinant of a Cauchy elliptic matrix which is
well known, but here we need to use a formula for a determinant of a sum of two
matrices, which is possible but much harder: the generating function R(z, u) is
given by

R(z, u) = zN + z−N
σ(u− 2Nη)

σ(u)

+

N∑
k=1

zN−k
σ(u− kη)
σ(u)σ(kη)

Jk

+

N−1∑
k=1

zk−N
σ(u− 2Nη + kη)

σ(u)σ(kη)
J−k.

Note that this is not polynomial but Laurent polynomial, and it can be proved
that J−k = Jk.

Here are some properties of the spectral curve. The characteristic equation
R(z, u) = 0 defines a Riemann surface Γ̃ which is a 2N -sheet covering of the
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λ-plane. Any point of it is P = (z, u), where z, u are connected by equation
R(z, u) = 0. There are 2N points above each point u. The Riemann surface Γ̃
is invariant under the simultaneous transformations

u 7→ u+ 2ω, z 7→ e−2ζ(ω)ηz

u 7→ u+ 2ω′, z 7→ e−2ζ(w
′)ηz .

The factor of Γ̃ over these transformations is an algebraic curve Γ which covers
the elliptic curve with periods 2ω, 2ω′. It is the spectral curve of the deformed
RS model.

The spectral curve Γ admits a holomorphic involution ι with two fixed points,
which can be seen from the explicit form of the Laurent polynomial. Indeed,
the equation R(z, u) = 0 is invariant under the involution

ι : (z, u) 7→
(
z−1, 2Nη − u

)
.

The fixed points lie above the points u∗ such that u∗ = 2Nη − u∗ modulo the
lattice with periods 2ω, 2ω′, ie. u∗ = Nη − ωα, where ωα is either 0 or one
of the three half periods ω1 = ω, ω2 = ω′, ω3 = ω + ω′. Substituting this into
the equation of the spectral curve and taking into account that J−k = Jk, we
conclude that the fixed points are (±1, Nη) and there are no fixed points above
u∗ = Nη − ωα with α ̸= 0.

What about the commutation representation ? There is no Lax representation
for the deformed RS system. Instead, it admits the commutation representation
in the form of the Manakov’s triple.

Definition 7.10. The Lame-Hermite function is given by

Φ(x, λ) =
σ(x+ λ)

σ(x)σ(λ)
e−ζ(λ)x.

Recall that

U±i =
∏
j ̸=i

σ(xij ± 2η)σ(xjj ∓ η)
σ(xijh ± η)σ(xij)

and introduce N ×N matrices L,M,R:

Lij(z, λ) = ẋiΦ(xij − η, λ) + z−1σ(2η)U−i Φ(xij − 2η, λ)

Mij(z, λ) = ẋi(1− δij)Φ(xij , λ) + z−1σ(2η)U+
i Φ(xij − η, λ)− δij

Ñ∑
k

ẋkζ(xij + η)−
∑
k ̸=i

ζ(xij)

é
Rij(z, λ) = σ(2η)z−1Φ(xij − η, λ).
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L is an analog of the Lax matrix, and removing the second term gives the Lax
matrix for the RS model. M gives a Lax pair with L, it generates the flow, and
removing the second term gives the M matrix from the RS model.

The equations of motion of the deformed RS model are equivalent to the Man-
akov’s triple representation:

Definition 7.11. The Manakov’s triple representation is

L̇+ [L,M ] = R(L− zI).

From TrR = 0 (which can be proved from elliptic function identities) it follows
that

det(zI − L(z, λ))

is conserved in time. It is the generating function of integrals of motion.

Now, let’s discuss the Backlund transformation. It is known that the inte-
grable many-body systems of CM and RS type are dynamical systems for poles
of singular solutions to nonlinear integrable differential and difference equations.
The nonlinear integrable equations are known to serve as compatibility condi-
tions for linear differential or difference equations for the ”wave function” ψ.
Poles of solutions to the nonlinear equations (zeroes of the tau-function) are
simultaneously poles of the ψ-function, so the latter are subject to equations of
motion of the CM or RS type. In fact zeroes of the ψ function are subject to the
same equations, and this leads to the idea to obtain the Backlund transforma-
tion of the CM or RS system as passage from poles to zeroes. This idea works
for many integrable many body systems, and we will apply it to the deformed
RS model.

The first linear problem for the Toda lattice with constraint of type B was done
by [Krichever, Zabrodin, 2022].

∂tψ(x) = v(x) (ψ(x+ η)− ψ(x− η))

where v(x) is expressed through the tau-function τ(x) as

v(x) =
τ(x+ η)τ(x− η)

τ2(x)
.

For elliptic solutions,

τ(x) =

N∑
i=1

σ(x− xi)

and the xi’s become the poles of the solutions and the ψ-function.

We can represent solutions for ψ in the form

ψ(x) = µ
x
η e(µ−µ

−1)t τ̂(x)

τ(x)
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where µ is a parameter and

τ̂(x) =

N∏
i=1

σ(x− yi)

with some yi’s, assuming there are no zero factors in the product.

The zeroes yi and poles xi of the ψ-function obey the system of equations

ẋi = µσ(−η)
∏
j ̸=i

σ(xi − xj − η)
σ(xi − xj)

∏
k

σ(xi − yk + η)

σ(xi − yk)

+ µ−1σ(−η)
∏
j ̸=i

σ(xi − xj + η)

σ(xi − xj)
∏
k

σ(xi − yk − η)
σ(xi − yk)

,

ẏi = µσ(−η)
∏
j ̸=i

σ(yi − yj + η)

σ(yi − yj)
∏
k

σ(yi − xk − η)
σ(yi − xk)

+ µ−1σ(−η)
∏
j ̸=i

σ(yi − yj − η)
σ(yi − yj)

∏
k

σ(yi − xk + η)

σ(yi − xk)
.

where xi → yj is the Backlund transformation. This can be obtained by di-
rect substitution of the ψ-function into the Toda lattice linear problem with
constraint of type B. These equations are symmetric with respect to the per-
mutation between x, y, −η.

Let’s discuss discrete time dynamics. The Backlund transformation xj → yj
can be regarded as a time evolution by one step of the discrete time. Denoting
the discrete time variable by n, we then write

xi = xni , yi = xn+1
i .

Then the Backlund transformations can be read as the equations of motion in
discrete time:
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µ

N∏
k=1

σ(xni − xn+1
k )σ(xni − xnk + η)σ(xni − xn−1k − η)

+µ

N∏
k=1

σ(xni − xn+1
k + η)σ(xni − xnk − η)σ(xni − xn−1k )

=µ−1
N∏
k=1

σ(xni − xn+1
k − η)σ(xni − xnk + η)σ(xni − xn−1k )

+µ−1
N∏
k=1

σ(xni − xn+1
k )σ(xni − xnk − η)σ(xni − xn−1k + η)

Let’s move on to continuous time limits. These equations admit different con-
tinuum limits. For one of them, we introduce the variables

Xn
j = xnj − nη

and assume that these variables behave smoothly when the time changes, ie.
Xn+1
j = Xn

j + O(ϵ) as ϵ → 0, where we introduce the lattice spacing ϵ in the
time lattice, so that the continuous time variable is t = nϵ. We should expand
in powers of ϵ taking into account that

Xn±1
j = Xj + ϵẊj +

1

2
ϵ2Ẍj +O(ϵ3)

as ϵ→ 0. It is enough to expand up to the order ϵ. For consistency, one should
require that µ−1 is of order ϵ. Putting µ−1 = ϵ, one obtains (in the leading
order ϵ), the equations of motion of the deformed RS system.

Another possibility is to assume that the original variables xnj are smooth when
the time changes, ie.

xn±1j = xj ± ϵẋj +
1

2
ϵ2ẍj +O(ϵ3).

In the general position, ie if µ−2− 1 = O(1) as ϵ→ 0, the leading order is ϵ adn
the expansion gives the RS equations. However, if µ−2 = 1 + αϵ, then the first
roder gives the identity 0 = 0, and one should expand up to the second order
in ϵ. In this case, one obtains the equations for dynamics of poles of elliptic
solutions to the semi-discrete BKP equation, due to [Rudneva, Zabrodin, 2020].
These equations are very complicated so we do not show them - they require a
lot of

∑
ẋi type of expressions.

7.3 Conclusion

We proved integrability of the deformed RS system by presenting all integrals
of motion in explicit form. We also obtained the discrete time version of the
deformed RS system by consider the Backlund transformations.
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The connection between the standard RS system and the deformed one is not
trivial. On one hand, the latter is an extension of the former and includes it
as a particular case. However, on the other hand, the deformed RS system is
contained in the RS system since it can be regarded as its reduction in the sense
that its equations of motion are obtained by restriction of the RS dynamics to
the subspace P of pairs.

195



8 Henry Liu: Invariance of Elliptic Genus Un-
der Wall Crossing

Abstract

Elliptic genus, and its various generalizations, is one of the simplest
numerical invariants of a scheme that one can consider in elliptic coho-
mology. I will present a topological condition which implies that elliptic
genus is invariant under wall-crossing. It is related to Krichever—Höhn’s
elliptic rigidity. Many applications are possible; I will focus on elliptic
Donaldson—Thomas theory for this talk.
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8.1 Set Up

Let X be a smooth proper scheme over C, with a torus T = (C×)r acting on X.
Associated to this data, we can think of three equivariant cohomology theories:

1. The T -equivariant cohomology: SpecHT (X). These are modules for SpecHT (pt)⊗
C. This is identified with Cr = LieT .

2. The T -equivariant K-theory KT (X). These are modules for SpecKT (pt)⊗
C. This is identified with T = (C×)r.

3. The T -equivariant elliptic cohomology EllT (X). These are modules for
EllT (pt). This is already a proper scheme (as opposed to an affine scheme)
so we do not need the Spec. This is identified with Er.

To go between them, ie.

Lie(T ) = Cr ∗−→ T = (C×)r ∗∗−→ Er

where ∗ is the exp map and ∗∗ is via modding by qcochar T , where cochar T is
the cocharacter lattice of T . So we can think of E as

E =
C×

qZ

where q = eiπτ with |q| << 1 and τ is the elliptic modulus.

T -equivariant cohomology studies equivariant differential forms and their pull-
backs/pushforwards, and T -equivariant K-theory is studying T -equivariant co-
herent sheaves and their pullbacks/pushforwards. In particular, in T -equivariant
cohomology, push forward to a point is just integral, where in T -equivariant K-
theory, push forward to a point is Euler characteristic of sheaves.

The elements of these cohomology theories are sections of line bundles on these
schemes. In particular, we have some quantity which we should think of as some
quantity in equivariant elliptical cohomology of a point - it will be a subsection
of some line bundle on some number of copies of the elliptic curve. In particular,
there is one very special subsection which we are interested in:

Definition 8.1. The odd Jacobi-Theta function ϑ(x) ∈ C× is given by

ϑ(x) =
(
1− x−1

) ∏
n>0

(1− qnx)(1− qnx−1),

where
ϕ :=

∏
n>0

(1− qnx)

is the q-Pochhammer symbol.

We can treat this formally as an element in Z[x±1]JqK. We can check that ϑ
is a subsection of a line bundle of degree 1; equivalently, we can check that it
satisfies the difference equation

ϑ(qx) = −(qx)−1ϑ(x).
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Extend to vector bundles E. By the splitting principle, we can think E =
⊕
Li.

Define the functions

Θ(E) :=
∏
i

ϑ(Li)

Φ(E) :=
∏
i

ϕ(Li)

Again, these will be formal power series in q but now valued in objects such as
the equivariant K-loop, so the coefficients of our series will be coherent sheaves
or vector bundles.

Definition 8.2. The elliptic genus of X, E−y(X) ∈ KT (pt)[y
−1]JqK is

E−y(X) := χ

Å
X,

Θ(yTX)

Φ(TX)Φ(T∨X)

ã
where χ =

∑
(−1)kHk is the Euler characteristic.

The simplest situation is when the T action on X has isolated fixed points: if
XT = {p1, . . . , pn}, by T -equivariant localization, we have

n∑
i=1

∏
ω∈Tpi

X

ϑ(yω)

ϑ(ω)

which gives a meromorphic function on the torus T .

Is this really an elliptic quantity? Let T have coordinates ti. Then we can check
that

E−y(X)|t 7→qσt =
n∑
i=1

Y
−

∑
m∈Tpi

X⟨σ,ωi⟩∏ ...

The simple case is when ⟨σ,
∑
ω∈Tpi

x ω⟩ ∈ N · Z and y is an N -th root of unity.

This condition is equivalent to KX admitting an Nth root. Later on, we’ll see
some specializations on y and the Nth roots of unity, as well as some conditions
on whether or not roots of the canonical bundle exist. Morally, these conditions
come from the requirement that something behaves elliptically.

8.2 The Wall Crossing Procedure

Start with M , a proper smooth scheme with the action T × C×, which we call
the master space. The master space looks like MC×

= Z− ⊔ Z+ ⊔ Z0, where
Z− = {ζ− = 0} (where ζ− is a C× weight −1 action), Z+ = {ζ+ = 0}, and Z0,
which is a slightly more complicated locus with many components, not be pure
dimensional, etc.
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We can obtain a relation between integrals on Z− and Z+, with correction terms
coming from Z. This is a Wall crossing formula because in practice, Z− and
Z+ are somehow stable loci for some variation of the stability condition, ie. we
have some kind of locally constant behavior as we vary the stability condition,
and at opposite ends the stable locus are at opposite signs.

Let’s think about χ(M,F), where F is a coherent sheaf. By C× equivariant
localization, this is equivalent to

χ(M,F) = χ

Å
Z−,

F|Z−

euler(N−)

ã
+ χ

Å
Z+,

F|Z+

euler(N+)

ã
+ χ

Å
Z0,

F|Z0

euler(N0)

ã
.

N− and N+ are line bundles because we assumed that they are divisors in
the master space. Now, we want to extract a relation between the first and
second terms on the right hand side, which we do by applying a ”residue.” We
assume M is proper, and proper pushforwards preserve coherence so χ(M,F) ∈
KT×C×(pt). But every term on the right hand side becomes a nontrivial rational
functions of the coordinates on T and C×, so we can be very precise about where
the poles of the rational functions will be. Call the coordinates on T, t, and on
C×, S. We get the third term on the right hand side: rational functions, with
poles at sktµ = 1 for k ∈ Z, µ T -weights. On the left hand size, we only have
poles around 0 and ∞.

We apply f 7→ 1
2πi

∫
γ
f ds
s where γ encloses every pole except the ones at 0 and

at ∞. After applying this map, the equation simplifies drastically:

0 = χ

Å
Z−,F|Z−

∣∣∣
s=N−

ã
+ χ

Å
Z+,F|Z+

∣∣∣
s=N∨

+

ã
+Resχ(Z0, ...)

One key insight in wall-crossing is to try to control the last term as much as
possible to get nice formulas.

For elliptic genus, we have

F =
Θ(y ⊗ TM )

Φ(Tm)Φ(T∨M )
.

Executing the wall-crossing algorithm from earlier, we obtain an equation of the
form

0 = (...)(E−y(Z−)− E−y(Z+)) + χ

Å
Z0, ...⊗ Res

yN0

N0

ã
.

We want to know: when does Res
yN0

N0
vanish, ie. nothing happens when we

cross the wall?

Theorem 8.3. Write N0 =
∑
k∈Z\{0} s

k(N0)k. If
∑
k k · rank(N0)k ≡ 0

(mod N), then E−ζN (Z−) = E−ζN (Z+), where ζN ̸= 1 is an N -th root of unity.

In literature, there are many different constructions of master spaces. His-
torically, the first is due to Thaddeus, who was studying a variation of GIT
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quotients. A more general setting comes from thinking about how to remove
the assumption that things are smooth, which is a very restrictive assumption
in modern enumerative geometry where the moduli spaces we consider are often
not smooth, ie. Hilbert scheme of points on C3, which contains basically every
possible singularity known to man.

In modern enumerative geometry, we replace schemes with derived schemes,
rings with dg-rings, and smooth with quasismooth. The derived version is
roughly equivalent to a (very singular) scheme with perfect obstruction theory
(POT). We want to studyX, but it’s singular, so we embed itX = {S = 0} ⊂M
which is smooth, where s is a subsection of the vector bundle E. Let’s call the
inclusion i. POT is roughly a sufficiently functional way to record this data. In
this situation, when the local picture is global, we can replace the fundamental
cycle [x] with the virtual fundamental cycle i∗[x]

vir = [M ]∩ euler(E), the struc-
ture sheafOX with the virtual structure sheaf i∗Ovir

X = OM⊗eulerK(E), and the
tangent bundle Tx is replaced by the virtual tangle bundle T vir

X = i∗(TM − E).

Definition 8.4. Suppose X is a scheme with POT such that

T vir
X = F − y−1 ⊗ F∨

where y is a T -weight. Then we say the POT is equivariantly symmetric.

In this setting, we can introduce the virtual chiral elliptic genus, which is a
upgrade of the elliptic genus:

Definition 8.5. The virtual chiral elliptic genus is

E
vir/2
−y (X) := χ

(
X,
Ovir
X ⊗

(
Kvir
X

) 1
2

Φ(T vir
X )Φ(T vir

X )∨

)

where Kvir
X = det(T vir

X )∨

Let’s compare our the virtual chiral elliptic genus to the original elliptic genus.
Observe that:

1

Θ(T vir
X )

=
Θ(y−1F∨)

Θ(F )
.

After twisting by (Kvir
X )

1
2 , this becomes

factor
Θ(yF )

Θ(F )
.

Theorem 8.6. Write Nvir
0 = F0 − y−1F∨0 . If∑
k

rank(F0)k ≡ 0 (mod N),

then
E

vir/2
−ζN (Z−) = E

vir/2
−ζN (Z+).
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8.3 Elliptic Donaldson Theory

Let’s explain the primary use case to care about, the elliptic Donaldson-Thomas
theory. Let’s start off with explaining what a Donaldson-Thomas theory is. Let
Y be a smooth quasi-projective CY3 with a torus action T such that the CY3
form has T -weight y. ConsiderMα, the moduli stack of coherent sheaves E on
Y with Chern character α. For whatever notion of stability we have, we can
think of the semi-stable locus

Msst
α (σ) = {σ − semistable E}

where σ is the stability condition. A subset of this is the stable locus,

Mst
α (σ) = {σ − stable E}

Under the assumption that the semistable locus is the same as the stable locus,
thenMsst

α (σ) has a POT with

T vir
[E] = −ExtY (E , E)

where Ext =
∑

(−1)kExtKY .

Definition 8.7. The elliptic DT invariant is DT
Ell/2
−Y (α;σ) = E

vir/2
−Y (Msst

α (σ)).

What is the wall crossing behavior for elliptic DT invariants as the stability
condition is varied? This problem has been studied in ordinary cohomology and
in K-theory, but not much with elliptic stuff. In particular, there are master
spaces contributed by Mochizuki and Joyce, or in simple case, we can use the
original methods.

Suppose the wall is ”simple”: we’re thinking about a family of 1-parameter
stability conditions with σ− at one end and σ+, with the only points where we
have strictly semistable objects are between σ− and σ+, which we call σ0. At
σ−, σ+ we have sst=st, but everywhere else we have sst ⊋ st. The condition that
the wall is simple if a-priori the sheaf could split into a sum of many semistable
pieces, and it is semisimple if the wall can only be split into two pieces and
not more, ie. E = E1 ⊕ E2. Under this construction, we can construct a master
space, and we can execute the procedure from earlier.

In particular, the locus which provides the wall crossing term is

Z0 = {[E ] ∈Msst
α (σ0) : E = E1 ⊕ E2, σ(E2) = σ(E2)}.

The virtual normal bundle looks like

Nvir
0 = −Ext(E1, E2) + Ext(E2, E1),

where E1 has C×-weight 1. If we let s ∈ C×, then we can rewrite it as

−s−1Ext(E1, E2) + sExt(E2, E1),

where by Serre duality the last term looks like sy−1Ext(E1, E2)∨. So we’ve
rewritten the virtual normal bundle in the form that’s required by the theorem.
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Theorem 8.8. At a simple wall, if ∀[E ] ∈ Z0, then

dimExtY (E1, E2) ≡ 0 mod N

then
DT

Ell/2
−ζN (α, σ−) = DT

Ell/2
−ζN (α, σ+).

Usually, walls are not simple. When we have a non-simple wall, there’s extra
machinery that we can do that resolves the non-simple wall into a bunch of
simple walls, and we cross those simple walls one by one. The cost of this is we
replace the moduli stack/space of sheaves with moduli stack/space of sheaves
with some extra data, and we have to play a combinatorial game with the extra
data to make sure that it satisfies the topological criteria.

In some cases it’s easy to do this, whereas in other cases it’s not so easy. One
easy case is when the CY3 is the total space of the canonical of some smooth
projective surface, which is called a local surface. In this case, it’s easy to
control Ext. However, in general, it’s not so easy, and more tools need to be
introduced.

202



9 Alexei Borodin: Geometry of Dimer Models

Abstract

Random dimer coverings of large planar graphs are known to exhibit
unusual and visually apparent asymptotic phenomena that include for-
mation of frozen regions and various phases in the unfrozen ones. For a
specific family of subgraphs of the (periodically weighted) square lattice
known as the Aztec diamonds, the asymptotic behavior of dimers admits a
precise description in terms of geometry of underlying Riemann surfaces.
The goal of the talk is to explain how the surface structure manifests itself
through the statistics of dimers. Based on joint works with T. Berggren
and M. Duits.
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9.1 The Simplest Example

Dimer models study random dimer coverings (math terminology) or perfect
matchings (physics terminology) on a given graph, which are a choice of subset
of edges of the graph so that every vertex gets covered exactly once. In general,
these graphs can be arbitrary, but all of the graphs in this talk are planar.

For some brief history:

• Introduced in 1937 by Fowler and Rushbrooke for chemistry in the context
of ”statistical theory of perfect solutions” in liquid mixtures.

• For planar graphs, the models were ”solved” via Pfaffians/determinants
in the early 1960s by Kasteleyn and Temperly-Fisher. This work con-
nected these models to the Ising model of ferromagnetism, a significant
breakthrough in statistical mechanics at the time.

• In the mid-1980s, Nienhuis, Hilhorst, and Blöte related these models to
roughening transitions observed in equilibrium crystals. Their studies pro-
vided insights into how these models could describe physical phenomena
such as the roughening of crystal surfaces at specific temperature thresh-
olds.

• Since early 1990’s, studied by mathematicians.

Now that we have explained what a dimer cover is, what is a dimer model? A
dimer model is a way to choose a dimer cover with some probability. The
simplest situation is when the graph is finite and all dimer covers are of equal
probability. Now, the typical type of question a probabilist would ask is: ”What
does a random dimer look like?”

We will only one type of graph (subset of a square lattice) and only two possible
subsets of the square: The image on the right is called an Aztec diamond,

named by Jim Propp about 35 years ago.

It’s very hard to see anything from these diagrams, so let’s introduce a way to
draw them in a more useful way.

Notice that the graph is bipartite, which means that we can split the vertices
into black and white so that the edges always go between a black and a white
vertex. Furthermore, if a horizontal edges is chosen as a DI, they come in two

204



types: they can either go from white to black or from black to white as we move
left to right. Similarly, vertical edges also come in two types: they can be either
go from black to white or white to black as we move up to down.

Now, we can see that each edge of the graph can be covered by a 2×1 rectangle
that looks like a domino:

Then we’ll paint those dominoes in four different colors according to the four
different types of of of edges. This gives the following picture:

Now, it is clear that these two pictures are drastically different: there is chaos
everywhere in the left image, but there is a very clear color separation in the
corner in the right image.

The curve on the left that separates the mixed and unmixed colors is called
a arctic curve (because everything outside the curve is frozen), which was
introduced in [Elkies, Kuperberg, Larden, Propp, 1992]. In the right image, the
arctic curve is a circle.

Now, we can see some difference between the two graphs. However, we can make
things better by lifting the pictures up into 3d via the height function. We
turn each domino into a 3d shape based on it’s color, which gives us a graph of
a continuous function.

The point of this is that now we have a more suitable language to talk about
dimers. It is now easier to guess that almost all dimer covers will life in the tiny
neighborhood of a surface once we lift them to 3d - this is known as the limit
shape phenomenon.
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The Aztec model with uniform weights has been already been studied to death
- mathematicians have studied it for 35 years and pretty much everything is
known. So what is there left to do?

9.2 Dimers with Nonuniform Probability

Let’s assign weights to edges of the lattice, and then when we have a particular
domino cover, we will multiply the weights of the edges that are part of the
domino. If we allow all of the edges to have different weights, but that’s too
much freedom and we need to restrict it for the model to be possible to analyze
at a large scale, so we will only choose finitely many parameters. We will choose
a piece of the square lattice of size k × ℓ, pick some positive numbers on the
edges of that piece, and then duplicate them in all directions.

What we get is the following

So there is still the phenomenon of frozen corners, but there are also strange
regions in the chaos. If we look at the height function near the star-like region
(as indicated with arrows below), the height function is relatively flat, which is
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the relation to the roughening phenomenon in chemistry - there is a appearance
of a crystal phase in the flat region of the star-like subsection. It seems strange
that we can achieve a new phase by just modifying weights, which is a key
feature of the model that makes it interesting.

Here are more examples for different sizes of k × l with different weights.

We can see that the images are very different. The main goal of the talk is to
explain that we finally know why these pictures look like this.

9.3 The Main Result

Consider the following image:
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The main message of the talk is that this is a Riemann surface in disguise,
particularly a compact Riemann surface of genus (k − 1) · (ℓ − 1) (or a sphere
with (k − 1)(ℓ− 1) handles).

The image is of 3×3 periodicity so it is an algebraic curve of genus 4. This lives
in the 4d real space or the 2d complex space as zeroes of some polynomials.

To go between this image and the previous one, we need to go through an
intermediary called an amoeba, which was introduced in [Gelfand, Kapranov,
Zelevinsky, 1994].

In particular, we can go from the sphere with holes to the amoeba via the 2-to-1
map:

{(z, w) ∈ C2 : P (z, w) = 0} → R2(z, w) 7→ (log |z|, log |w|)

Then, these amoebas are in 1-to-1 correspondence the with the colorful pictures.
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The four holes in the sphere with 4 holes corresponds to the four holes in the
amoeba, and the tentacles of the amoeba go off to infinity and correspond to
the tangency points of the Arctic curve.

The goal of the rest of the talk is to explain why this connection arises. This is
not a very simple thing as it’s a recent result but it’s not too hard either and
has to do with integrable systems.

Before we move on, one more cool fact: There is a diffeomorphism between
these two images, and the restriction of the map to the boundaries, of the facets
and of the amoeba, preserves the tangent lines, ie. the diffeomorphism will map
points to points with the same slope of the tangent line.

The reason why the smooth ovals on the amoeba become star-like regions with
four cusps is because of there is an orientation change that introduces 4 =
(2π + 2π)/π cusps on inner components in the Aztec.

There is a diffeomorphism between these two images. Furthermore, the slope
of the tangent line under this diffeomorphism for the boundaries is the same.
However, the orientation changes.

9.4 Dimers to Riemann Surfaces

How do we go from dimers to Riemann surfaces?

One well established path in statistical physics is through a variational problem.
This path proves there must exist a limit shape: no matter what boundary
conditions we choose there will always be this limiting surface. This surface is
a solution to a variational problem.

We know that in the neighborhood of the limit shape there are lots of different
possibilities for the height function, more than anywhere else. This is exactly
the shape that maximizes the number of possibilities in a small neighborhood,
so let’s try to count how many possibilities we have in the neighborhood of some
surface.
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Let’s take the surface and cut it into little pieces so that each piece is approx-
imately flat. Let’s assume that it’s smooth and it’s going to be smooth almost
everywhere. Then, in each piece, we freeze the height function on the boundary
of the piece and count how many possibilities I have inside that piece, fixing the
boundary. Because each piece is approximately flat, we can solve this explicitly.
It turns out there are

m∏
k=1

n∏
ℓ=1

∣∣∣∣2 cos πk

m+ 1
+ 2i cos

πℓ

m+ 1

∣∣∣∣ 12
ways to fill them with dominoes. It might seem that this is not an integer, but
it is, which can be shown via a discrete Fourier analysis computation.

So the height function on the boundary of the square is 0, and we are computing
the number of possibilities with the frozen flat boundary conditions. In general,
we can freeze boundary conditions with different slopes and we can still do the
Fourier analysis computation.

The product over flat pieces leads to the exponential of the integral of ”surface
tension” or ”free energy” - the logarithm of the count of almost flat tilings with
a given slope.

Let’s explain how to go from the weights of a dimer model to an algebraic curve.
Start with a fundamental domain and place it on a torus. Then, introduce
additional variables w, z on the edges that intersect two particular cycles on the
torus. Afterwards, compute all possible dimer covers of that graph on a torus
and add them up, which gives a polynomial in w, z. Equating this to zero gives
an algebraic curve that is responsible for the asymptotic behavior of the dimer
model.

It turns out we can compute the functional/free energy as follows:

Theorem 9.1 (Kenyon, Okounkov, Sheffield, 2003). The free energy (aka sur-
face tension) is the Legendre transform of the Ronkin function

F (x,w) =
1

(2πi)2

∫
|z|=ex

∫
|z|=ey

log |P (z, w)| dz
z

dw

w
.
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It is convex on the amoeba and linear on each connected component of the com-
plement.

The high level overview is as follows: we compute how many things we have
on each small piece, multiply them all together, and then take the limit, which
gives a variational problem. Although we are multiplying things, when we take
the log we add them up, which means we have a sum and eventually an integral.
This creates a variational problem which is an integral of a certain functional
on the surface, and that functional wants to be maximized in order to find the
limit shape.

But it turns out that maximizing this functional is very nontrivial: we know the
variational problem but we don’t know how to find a solution nor whether an
explicit solution exists. But once the solution is known, there is an upcoming
work by verifying the solution is easy.

9.5 Relation to Integrable Systems

We are going to skip the relation of the dimer model to a matrix refactor prob-
lem, which was done by [Duits, Kuijlaars, 2017] and [Berggren, Duits, 2019].
There is a path that allows us to map random dimer problems, in particular
domains, into the Riemann-Hilbert problem. We will skip straight to this part,
where we want to solve the Riemann-Hilbert problem: we want to move poles of
a matrix valued function, splitting a matrix depending on the complex param-
eter into two pieces, where one piece will have a zero of the determinant inside
the circle and the other one will have it outside.

Let’s briefly forget about all these words. Here is a question that one can ask
an undergrad in their first algebra course: take two arbitrary matrices with z
a variable and α, β, γ, δ, a, b, c, d complex numbers. When we take these two
matrices and multiply them. We want to write this matrix product as a matrix
product of two other matrices so that the zero of the determinant goes from left
to right okay, ie. swap the zero of the determinant. For the 2× 2 case, we have
an explicit equation:Å

α γz
β σ

ãÅ
a c
b
z d

ã
=

Å
d xc
b
zx a

ãÅ
δx γz
β α

x

ã
Note that the first and fourth matrices have the same eigenvalues, and so do
the second and third.

This is a nice birational map, but the issue is that it’s not bilinear. In order
to solve the problem, we need to iterate this map many, many times to get the

211



Wiener-Hopf factorization:

(P0,−P0,+)
N = P0,−P0,+...P0,−P0,+

= P0,−(P0,+P0,−)
N−1P0,+

= P0,−(P1,−P1,+)
N−1P0,+

= P0,−P1,−(P2,−P2,+)
N−2P1,+P1,+

= ...

= (P0,−P1,−...PN−1,−)(PN+1,+...P1,+P0,+)

The beauty of it is that this problem has an explicit solution in terms of theta
functions, done by [Moser, Veslov, 1991]. This is an offshoot of the finite gap
integration method of the integrable partial differential equations, and the finite
gap method has been developed in particular by Igor Krichever in the early part
of his career.

So how does one linearize this integrable system? It is very useful that we can
do this iteration over and over, and we can change the coordinates on the space
in such a way that the map becomes linear: we have the flow

P (z) 7→ P̃ (z)

where

P−(z)P+(z) = P (z) =

Å
a11 a12 + b12z

a21 + b21z
−1 a22

ã
is the equation of our flow,

P̃ (z) = P+(z)P−(z) = P+(z)P (z)P
−1
+ (z),

and + vs − refers to different zeroes of the determinant (inside vs outside the
circle). Notice that this is a conjugation operation, and both the spectrum of
P (z) and det(P (z)−w) (called icospectrality**) are preserved. Hence, {(z, w) ∈
C2 : det(P (z) − w) = 0} is an invariant. It’s natural compactification is the
spectral curve; it has genus 1 (elliptic curve).

This is a very central idea in integrable systems: represent a nonlinear flow as
a compatibility condition of linear problems via Lax pairs.

So we can write that the that characteristic polynomial and its coefficients are
actually all integrals of motion of our system, and by equating the characteristic
polynomial to zero we get the spectral curve. If we’re on our curve, if the
determinant of a matrix vanishes it means that it has a nullvector Ψ dependent
on z, w. In the theory of integrable systems, this is the Baker-Akhiezer function
in the more infinite-dimensional setup, but here it’s just the eigenvector.

The Lax pair in our situation is given by

(P (z)− w)Ψ(z, w) = 0Ψ̃(z, w) = R(z)Ψ(z, w)
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where the solution of detR(z) = 0 is the |z| < 1 part of detP (z) = 0. If Ψ

satisfies
Ä
P̂ (z)− w

ä
Ψ̃ = 0 with similar P̂ (z), then R(z) = P+(z) and P̂ = P̃

*up to conjugations by diagonal matrices.

The trick is that Ψ(z, w) is a 2d meromorphic function on a spectral curve,
with zeroes and poles satisfying some conditions dating back the early 19th
century. Key transformations involve understanding how these zeros and poles
change. Even though they reside on a Riemann surface where straight lines
don’t exist, mapping this surface onto the Jacobian allows for such straight-line
representation. There is a standard operation that turns a Riemann surface
into a torus of dimension equal to the genus of the surface, which aligns the
movement of zeros into a straight line. We end up with a tricky change of
variables, and to get the solution of the original problem we need to rewrite in
terms of multidimensional Theta functions of Jacobians.

In slightly more detail, we normalize Ψ(z, w) =

ï
Ψ1

Ψ2

ò
by Ψ1(z, w)+Ψ(z, w) ≡ 1.

Then, we show that Ψ1(z, w),Ψ(z, w) span the space of meromorphic functions
on the compactification with two fixed simple poles. One zero of Ψ1 is at 0,
one zero of Ψ2 is at ∞. The second zeroes of Ψ1,Ψ2 evolve by linear shifts on
the Jacobian of the compactificaiton. The linearity follows from the singularity
structure of P+ and Abel’s theorem.

This subsection could be three lectures and we do not do it justice, but let’s
show some other examples where the same technology of integrating matrix
refactorization shows up in classical integrable systems because it’s very com-
mon.

• The QR algorithm of numeric linear algebra is very popular, especially for
calculating eigenvalues. Also closely related to the Toda lattices.

• Billiards inside an ellipsoid and geodesics on the ellipsoid. The 3d analog
was one of the motivations for Theta functions.

• Discretization of the Euler equations of free rigid body motion.Dubrovin
was one of the last people to care about this. It has not been studied for
30 years until it appeared now.
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10 Alexander Bobenko: Dimers and M-curves

Abstract

We develop a general approach to dimer models analogous to Krichever’s
scheme in the theory of integrable systems. This leads to dimer models
on doubly periodic bipartite graphs with quasiperiodic positive weights.
Dimer models with periodic weights and Harnack curves are recovered
as a special case. This generalization from Harnack curves to general
M-curves, which are in the focus of our approach, leads to transparent
algebro-geometric structures. In particular, the Ronkin function and sur-
face tension are expressed as integrals of meromorphic differentials on
M-curves. Based on Schottky uniformization of Riemann surfaces, we
compute the weights and dimer configurations. The computational re-
sults are in complete agreement with the theoretical predictions. The
talk is based on joint works with N. Bobenko and Yu. Suris.
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10.1 Background

Borodin explained a lot of background in the previous talk, which we will use
freely: we have dimer models, perfect matchings, and weights. We will go from
Riemann surface theory to statistical mechanics.

Consider the following measure on dimer configurations (perfect matchings):

P(D) =
1

Z

∏
e∈D

ν(e),

with physical weights as face weights

Wf =
ν(e1)ν(e3)...ν(e2n−1)

ν(e2)ν(e4)...ν(e2n)

which we assume are real and positive. However, they can be complexified, and
the sign is given via the Kasteleyn condition

sign(Wf ) = (−1)(n+1)

where n is the number of pairs of edges surrounding the face. If this condition
is satisfied, then the model is physical.

We are considering bipartite graphs with white and black vertices with param-
eters associated to these weights, called train tracks:

We are interested in integrable systems and these are the features of integrable
systems. Here, we have one H with two parameters α and β, and a face of how
these train tracks are arranged.

Let’s discuss the problem we are going to solve. Similar to the previous talk, we
will mostly consider the square lattice because that’s the most interesting and
also provides us with all essential properties of the models. More specifically,
we will consider planar bipartite doubly periodic graph G. In our case, it’s
a square grid with white and black vertices with two sublattices. Then, we
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consider a small piece of such a square and assumes that there are periodic
weights associated to the edges of this graph. Placing these weights into the
entries into a graph gives the Kasteleyn matrix.

Now, we define the spectral curve K(z, w) = 0. Taking a fundamental piece
of the the weights, label the weights on one edge z and the other w, and
then we multiply weights when the intersect. This gives the spectral curve
detK(z, w) = 0.

When we solve the direct problem for dimers, we consider the eigenfunctions of
the modified Kasteleyn matrix:

K(z, w)ψ(P ) = 0

where P = (z, w).

Now, we can turn this spectral curve into a Riemann surface. This is how
we generate Riemann surfaces via spectral curves. This is nice because the
monodromies of ψ(P ) are z, w, and we can analyze the analytic properties of ψ
on the spectral curve.

This is the direct problem for dimer models:

Weights =⇒ Kasteleyn matrix =⇒ Spectral curve =⇒ Eigenfunction ψ(P ).

10.2 The Inverse Problem

Now, we consider the inverse problem: given a spectral curve/Riemann surface
and analytic properties of ψ(P ), how do we get the explicit representation of
ψ(P ), and then the corresponding weights?

In 1977, Krichever posed a slightly more general version of this inverse problem,
where weights are not quasiperiodic weights (includes all periodic weights). This
is now known as Krichever’s scheme.

The original paper was about the KP equation

3uyy = ∂x(4ut − 6uux − uxxx).
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Starting with a Riemann surface and some analytic data on it, we can construct
the Baker-Akhiezer (BA) function:

ψ(x, y, t;P ) =
θ(A(P ) + U1x+ U2y + U3t+D)θ(D)

θ(A(P ) +D)θ(U1x+ U2y + U3t+D)
exp (ξ1(P )x+ ξ2(P )y + ξ3(P )t) .

This function is meromorphic on R− P0 with essential singularity at P0

ψ(P ) = (1 + o(1/k)) exp
(
kx+ k2y + k3t

)
, k →∞, P → P0

and pole divisor of degree genus of R. It turns out that the BA function can be
constructed explicitly, and once we have this, we have an explicit formula for
the solution of the KP equation:

u(x, y, z) = 2∂2x log θ(U1x+ U2y + U3t+D).

This is the first case when this approach was applied to a general Riemann
surface. There were several cases which were studied before, but this the pa-
per where Krichever’s scheme appeared became very influential because it was
general.

In a way, we can apply Krichever’s scheme to dimer models.

The data we are given is a compact Riemann surface R and train track param-
eters αi ∈ R.

Then, we construct a meromorphic function ψ on R (BA-function), a function
ψb : R → C on every black vertex b, with the property that ψ picks up a zero
or a pole at α ∈ R whenever crossing a train track.

As soon as we have these analytic properties, we can write a formula for this
function:

ψb(P ) =
θ(A(P ) + η(b) +D)

θ(A(P ) + η(b0) +D)

∏ E(P, α−k )

E(P, α+
k )
η(b)− η(b0) =

∑
(A(α−k − α

+
k )).

This is quite similar to Krichever’s formula in the KP case but now the function
is meromorphic. These type of functions appear in the analysis of discrete
integrable models.
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It turns out that these functions are linearly dependent. If we consider a star
associated to a white vertex, so that all neighboring vertices are black vertices,
then there is a Baker-Akhiezer function sitting at all of these black vertices and
they are linearly dependent. We can see this just by analyzing their analytic
properties.

And exactly as in the KP case, from here, we can compute the corresponding
coefficients, which are now independent of the point of the Riemann surface but
depend on these parameters α. We have the Dirac equation

n∑
k=1

Kwbk(αk−1, αk)ψbk(P ) = 0,

and we can find the coefficients via the following equation:

Kwb(α, β) =
E(α, β)

θ(η(f1) +D)θ(η(f2) +D)
.

These are called Fock weights.

Remark 10.1. If we play this game for a triangle, we obtain a Dirac equation
for 3 Baker-Akhiezer functions, and if we write down the equation explicitly, we
get the famous Fay identity:

θ(A(α2) +A(α3) +D)θ(A(P ) +A(α1) +D)E(α2, α3)E(P, α1)

+θ(A(α1) +A(α3) +D)θ(A(P ) +A(α2) +D)E(α3, α1)E(P, α2)

+θ(A(α1) +A(α2) +D)θ(A(P ) +A(α3) +D)E(α1, α2)E(P, α3)

=0.
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So after starting with a lot of complex analysis, we are now going in the direction
of statistical mechanics.

It is important that the weights are real and positive, so we should take R to
be an M-curve with antiholomorphic involutions τ and fixed ovals X0, . . . , Xg.

It is important that we would like to have these weights real and positive. So
we should specify that we have a real Riemann surface with an antiholomorphic
involutions τ and fixed ovals X0, . . . , Xg. In this case, we want R to be an
M-curve: a Riemann surface of genus g with the maximal possible number of
real ovals g + 1.

In this picture, we can see half of this Riemann surface. It’s simply connected
flat planar domain with two holes here, with all of the boundaries are round.
We can take two copies and glue them together along the boundaries, which
gives a Riemann surface that is an M-curve.

Or you just make an inversion, which is indicated here by τ , with respect to one
of these circles x0, and then we can generate the picture on the whole complex
plane with the holes x1 and x2, and then we have R+ and R− - two halves of
the Riemann surface that are glued together into one compact Riemann surface,
which is an M curve.

It is important that this is a Riemann surface that can be used for computations
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and not just an illustration. In addition, all figures in this talk are not hand
drawn but computed.

Now we’ve learned what is an M curve, how one can uniformize it, how one
can represent it in a way that is numerically treatable, recall of the train track
parameters, which were the points on the Riemann surface, they are now cons,
they should sit just on one of these real ovals. If we choose these α’s this way,
then the weights become real. This is the reality condition.

We have one more condition: the sign of this real number should satisfy the
Kasteleyn condition. We can do this as follows: the ordering condition on αi, βi
gives

sign(Wf ) = (−1)(n+1).

In general, this condition was investigated on minimal graphs by [Buotillier,
Cimasoni, de Tilière, ’20, ’21]. For g = 0, [Kenyon, 02] and [Kenyon, Okounkov,
2003] showed that these were isoradial weights.

Now, let’s come back to our square grid and simplify the picture. In the case
of the square grid, we have train track parameters α+, α−, and train track
parameters β+, β−. If we examine the Kasteleyn condition, we obtain the result
on the right-hand side.

All points on the Riemann surface should lie on one real oval, and moreover,
the parameters should be clustered so that they belong together and are not
separated by any other points. The weights are positive if and only if the
corresponding Riemann surface is an M-curve.

Similarly, this can be applied to the hexagonal grid, where there are three
different types of train tracks: α, β, γ. They should also be clustered similarly
as shown.

What we are studying here is not just complex analysis; this is statistical me-
chanics because all the weights satisfy this positivity property.
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The formula for the weight is

Wf =

n∏
i=1

θ[∆]
Ä∫ βi

αi
ω
ä
θ(η(f2i) +D)

θ[∆]
Ä∫ αi+1

βi
ω
ä
θ(η(f2i−1) +D)

Performing some computations gives pictures for Wf (for g = 1, 2):

In the case of genus 0, we end up with isoradial weights, so all functions become
rational functions.

If we revert to the doubly periodic case, we recover the spectral curve which was
done by [Kenyon, Okounkov, Sheffield, 2007], and the corresponding Riemann
surface is a Harnack curve [Mikhalkin, 2000].

The weights we are considering here, which are solutions for the KP equations,
are not necessarily periodic; they are quasi-periodic. They arise from lineariza-
tion on the Jacobian variety, and this linearization hyperplane/2 plane can cross
the Jacobi variety in a way that avoids rational points and becomes irrational.
Then, we can see that the weights are periodic if and only if

∑
i

(
α−i − α

+
i

)
,
∑
i

(
β−i − β

+
i

)
are principal divisors.

In the case when g > 0, the train track parameters repeating periodically does
not necessarily imply that the weights Kwb,Wf are periodic.
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10.3 Algebra-Geometric Description

Now, let’s delve deeper into the algebraic-geometric description that arises here.

The goal is to describe limiting objects in treatable form so that we can compute
their characteristics.

The data we are given is an M-curve R with antiholomorphic involution τ and
parameters {α±i , β

±
j } ∈ X0 with clustering condition.

Now, we introduce dζ1, ( dζ2) normalized meromorphic differentials with residues
∓1 at α±i , (β

±
i ) and zero a-periods (the a periods are the small circles in the

image)

Now, we can take

ζk(P ) =

∫ P

dζk = xk + iyk

which is an abelian integral that is well define on R+ since the a-periods vanish.

Proposition 10.2 (Krichever, 2014). (x1, x2), (y1, y2) are coordinates on R◦+.

For historical reasons, (s1, s2) = 1
π (y2, y1) was used, which is is basically the

same thing. We have the following image

There is a diffeomorphism from the left to the top right image. On the other
hand, the map from the left to the bottom right image gives a polygon, namely
the Newton polygon in the periodic case.

How can we use this? Using this method, we can introduce new definitions for
the Ronkin function and the surface tension:

Definition 10.3. The Ronkin function is given by

ρ(P ) = ρ(x1, x2) = −
1

π
Im

∫
ℓ

ζ2 dζ1 + x2s2.
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Definition 10.4. The surface tension is given by

σ(P ) = σ(s1, s2) =
1

π
Im

∫
ℓ

ζ2 dζ1 − x1s1

Proposition 10.5. They satisfy the Legendre dual property:

∇σ(s1, s2) = (x1, x2)∇ρ(x1, x2) = (s1, s2).

These definitions agree with the algebraic ones in the doubly periodic case:

F (x1, x2) :=
1

(2πi)2

∫
T2

log |P(ex1z, ex2w)| dz
z

dw

w
.

This case is more general: it is not doubly periodic and there is no spectral
curve, only the Riemann surface. However, if we consider the doubly periodic
case, we can show that it coincides the the previous equation. They coincide
up to an affine function because their Hessians coincide, but fortunately for us
this function is not important for variational principles because if we change ρ
or Σ by an affine function, it doesn’t change my variational principle. There-
fore, we can use both Ronkin functions consider variational problems. For the
purposes of this talk, the first one is much more useful because we can analyze
the convergence and many other things.

Now, we have extended this picture with two more maps.

So there’s a dictionary

Object Doubly Periodic Notation Our Setup Notation
Spectral Curve det(P (z, w)) = 0 R
Monodromies (z, w)

Ä
ψ1,0

ψ0,0
,
ψ0,1

ψ0,0

ä
Main Differentials (dz/z, dw/w) (dζ1, dζ2)
Amoeba Map (log ∥z∥, log ∥w∥) (Re ζ1,Re ζ2)

Now, let’s discuss the height function. The discrete height function h : G× → Z
is in bijection to the dimer configuration. So we can analyze dimer configura-
tions by analyzing the corresponding height function. Additionally, the bound-
ary conditions are purely combinatorial and deterministic. Shown in [Cohn,
Kenyon, Propp, 2001], the limiting height function converges to the minimizer
of
∫
Ω
σ(∇h). In our more general situation with quasiperiodic weights, σ is

slightly different, but this is still true, shown in [Bobenko, Bobenko, Suris].

What does the minimizer look like? [Berggren, Borodin, 2023] gave the answer
for periodic weights for Aztec diamond via a purely variational proof and more
general boundary conditions.

Now, we will extend this general picture to include the Aztec Diamond. The first
definition of complex structure on Diamond was obtained in [Kenyon, Okounkov,
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2005], but the very crucial result is [Berggren, Borodin, 2023] where we define
dζ = dζ(u,v) := −u dζ2 + v dζ1 + dζ3 for the Aztec diamond. The analytic
properties are chosen as follows:

Res α−i β−i α+
i β+

i

dζ1 1 0 -1 0
dζ2 0 1 0 -1
dζ3 1 -1 1 -1

Now, we can compute the number of zeroes and poles:

#zeroes = #poles + 2g − 2

For any (u, v) ∈ (−1, 1)2, we have: 2 zeroes on any inner oval, 1 zero between
α±i , α

±
i+1, 1 zero between β±i , β

±
i+1, and 2 free zeroes.

Definition 10.6. If we have conjugated free zeroes (P, τP ), P ∈ R◦+, then
(u, v) ∈ FS is a liquid region.

Proposition 10.7 (Berggren, Borodin, 2023). F : P ∈ R◦+ 7→ (u, v) ∈ FS is a
diffeomorphism.

So now the picture looks like: This looks very complicated, so let’s see how it
works for the Arctic curve in the isoradial case (g = 0). Let dζi(z) = fi(z) dz.
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Then

f1(z) =
∑
i

1

z − α−i
− 1

z − α+
i

f2(z) =
∑
i

1

z − β−i
− 1

z − β+
i

f3(z) =
∑
i

1

z − α−i
+

1

z − α+
i

− 1

z − β−i
− 1

z − β+
i

imply

u =
W (f1, f3)

W (f1, f2)
, v =

W (f1, f3)

W (f1, f2)

where W is the Wronksian

W (fi, fj) =

∣∣∣∣fi fj
f ′i f ′j

∣∣∣∣
Let’s generalize a bit.

Definition 10.8. Define the height function

H(u, v) =

∫
Ω

dζ(u,v)

where H = 1
π g + ih.

We can now show that the integrals of the divergence free fields are

J∇g = (x1, x2),∇h = (s1, s2),

and h can be extended affinely to holes and frozen regions.
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Theorem 10.9. h is a surface tension minimizer

h = arg minf

∫
[−1,1]2

σ(∇f).

There is also a dual theorem:

Theorem 10.10. g is a magnetic tension minimizer

g = arg minf

∫
[−1,1]2

ρ(∇(f)).

This gives two more arrows in the diagram which makes it complete:

In a more general setup, we can still compute all of the formulas efficiently via
Schottky uniformization.

Definition 10.11. The Schottky group is a free group G generated by inver-
sions in circles Xi, with differentials given by Poincaré theta series:

dζ1(z) =
∑
g∈G

∑
i

Ç
1

z − g(α−i )
− 1

z − g(α+
i )

å
dz

dζ1(z) =
∑
g∈G

∑
i

Ç
1

z − g(β−i )
− 1

z − g(β+
i )

å
dz.

10.4 Proof Idea

The proof idea is to minimize
∫
[−1,1]2 σ(∇h), consider the Euler-Lagrange equa-

tion div(∇σ(∇h)) = 0. In the liquid region, this is just div(x1, x2). But that’s
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not the end of the story: the surface tension is non-differentiable because it has
conical singularities, which makes it challenging to prove that what we obtained
is indeed a minimizer.

We should allow non-differentiabilities in σ, which gives a generalized Euler-
Lagrange in terms of subgradients. The case g = 0 has down by [Astala, Duse,
Prause, Zhong, 2020] and the case g > 0 was done by [Bobenko, Bobenko, Suris],
which follows from the existence of the extension of g to gas bubbles and frozen
regions.

Other problems can also be solved in a similar idea:

This is a picture of a hexagonal Riemann surface, which has a holomorphic
symmetry. This is a genus zero example, and this is an example of genus two.
Here, the Riemann surface we are considering is a ramified covering of a Rie-
mann surface, and the holes are mapped to the gas regions of our Dimer model.
Furthermore, there is a one-to-one map to the liquid domain. The complete
maps looks like this:

So, in the last picture for the hexagonal case, our Riemann surface is a double
cover. The weights live on the factor of this double cover. We have a defined
morphism to the Diamond liquid domain from the double cover and a defined
morphism to the Newton polygon from this factor where the weights live.

We can also investigate how these gas regions behave, how they can come to-
gether, and become hexagonal, which will be presented by Nikolai Bobenko at
RTISART.
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11 Youjin Zhang: Bihamiltonian Integrable Sys-
tems and their Classification

Abstract

Bihamiltonian structure plays an important role in the theory of in-
tegrable systems. For a system of evolutionary PDEs with one spatial
variable which possesses a bihamiltonian structure, one is able to find,
under a certain appropriate condition, infinitely many conservation laws
of the system from the bihamiltonian recursion relation and to arrive at its
integrability. In the case when the bihamiltonian structure of the system
of evolutionary PDEs possesses a hydrodynamic limit, one can further
obtain from it a flat pencil of metrics, and relate it to Frobenius man-
ifold structures or their generalizations under a certain condition, such
a relationship may help one to find applications of the integrable sys-
tem in different research areas of mathematical physics. In this talk, we
will recall the notion of bihamiltonian integrable systems, explain their
relationship with Frobenius manifold structures or their generalizations,
and review the results on the classification of bihamiltonian integrable
hierarchies which possess semisimple hydrodynamic limits.
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11.1 Introduction

Let’s first explain what kind of bihamiltonian integrable systems we will discuss.
The most prototypical version is the integrable nonlinear evolutionary PDE
known as the Korteweg-de Vries (KdV) equation:

Definition 11.1. The KdV equation is

ut + 6uux + uxxx = 0, u = u(x, t).

It was introduced in [Korteweg, de Vries 1895] to model shallow water solitary
waves which were observed by [Russell 1834] in the Union Canal near Edinburgh.

There exists a solitary wave solution of the KdV equation, given by

u(x, t) = 2∂2x log τ = 2k2sech1(kx− 4k3t), τ = cosh(kx− 4k3t).

Two graphs of this solution are graphed below:

Around 70 years later, it was discovered that there is a 2-soliton solution of
KdV given by

u(x, t) = 2∂2x log τ,

where

τ = det

Å
−k1(c1eϕ1 − e−ϕ1) c1e

ϕ1 + e−ϕ1

−k2(c2eϕ2 − e−ϕ2) c2e
ϕ2 + e−ϕ2

ã
and

ϕi = kix− 4k3i t, 0 < k1 < k2.

With the parameters k1 = 1, k2 = 1.2, c1 = 1, c2 = 1, we have the following
diagrams:

Furthermore, there is a phase shift after the interaction: For the 2-soliton solu-
tion, when one moves at the speed v = 4k1, then

u(x, t) ∼ 2k21sech
2(k1x−4k31t+θ), t→ −∞, u(x, t) ∼ 2k21sech

2(k1x−4k31+θ̃), t→ +∞,
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where

θ =
1

2
log

c1(k2 − k1)
k2 + k1

, θ̃ =
1

2
log

c1(k2 + k1)

k2 − k1
,

and we have the phase shift

θ̃ − θ = log
k2 − k1
k2 + k1

.

This observation means that there are some integrability (possesses enough sym-
metry or has many conservation laws) behind these soliton equations. Indeed:

Definition 11.2 (Miura, 1967). The Miura transformation is defined as

u = −v2 − vx

The Miura transformation relates the KdV equation to the modified KdV equa-
tion as follows:

ut + 6uux + uxxx = (−2v − ∂x)(vt − 6v2vx + vxxx).

It’s generalization [Miura, Garner, Kruskal, 1967]

u = w−ϵwx−ϵ2w2, ut+6uux+uxxx = (1−2ϵ2w−ϵ∂x)(wt+t(w−ϵ2w2)wx+wxxx)

leads to the fact that the KdV equation has infinitely many conservation laws.
This was a very important step toward the discovery of the integrability of the
KdV equation.

Then, from the generalized Miura transformation one obtains, after the trans-
formation

w =
1

2ϵ2
+

1

ϵ
∂x logψ,

the Schrödinger equation

ψxx + uψ = λψ, λ =
1

4ϵ2
.

leads to the inverse scattering method for solving the initial value problem of
the KdV equation [Gardner, Greene, Kruskal, Miura 1967]. This is arguably
the most influential result in the early days of studying solitons.

Another important development was the KdV hierarchy and their Lax pair for-
malism: Together with the KdV equation, there are higher order KdV equations
which are also related to the Schrödinger operator

L = ∂2x + u,

they form the KdV hierarchy and can be represented by Lax equations [Lax
1968]

∂L

∂tk
= [Bk, L], k = 0, 1, 2, ...
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Here, ∂
∂t1

= ∂
∂t , B0 = ∂x, B1 = −4∂3x + 12u∂x + 6ux, ...

Now, we introduce the dispersion parameter ϵ by a rescaling, and consider the
KdV equation of the form

ui = uux +
ε2

12
uxx.

An important property of the KdV equation is the bihamiltonian structure:

Proposition 11.3 (Faddeev, Zakharov, 1971; Gardner 1971; Magri 1978). The
KdV equation has bihamiltonian structure

∂u

∂t
= P1

δH1

δu
=

3

2
P2
δH0

δu
.

Here, the Hamiltonian operators are given by

P1 = ∂x, P2 = u(x)∂x +
1

2
ux +

ε2

8
∂3x.

The Hamiltonians Hk =
∫
hkdx, k = 0, 1 of the KdV equation can be obtained

can be obtained by using the bihamiltonian recursion relation

P1
δHk

δu
=

Å
k +

1

2

ã
P2
δHk−1

δu
, k ≥ 0

starting from the Casimir H−1 =
∫
u dx of the first Hamiltonian structure P1.

We have

h0 =
1

2
u2 +

ε2

12
uxx, h1 =

1

6
u3 +

ε2

24

(
u2x + 2uuxx

)
+

ε4

240
u(4), · · ·

Thus from the bihamiltonian recursion relation one arrives at infinitely many
conserved quantities of the KdV equation, and one also obtains the KdV hier-
archy:

Proposition 11.4. The KdV equation satisfies the KdV hierarchy:

∂u

∂tk
= p1

δHk

δu
, k = 0, 1, 2, .. .

The densities of the Hamiltonians Hk =
∫
hk(u, ux, · · ·) dx can be chosen to

satisfy
∂hp−1
∂tq

=
∂hq−1
∂tp

= ∂xΩp,q(u, ux, · · ·),

This leads to the definition of tau function for the KdV hierarchy.

Definition 11.5. The tau function for the KdV hierarchy satisfies

Ωp,q(u, ux, . . .)|u→u(x,t0,t1,...) = ε2
∂2 log τ

∂tp∂tq
, p, q ≥ 0.
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In particular, we have

u = ε2
∂2 log τ

∂t0∂t0
= ε2

∂2 log τ

∂x∂x
.

Here is a timeline with some results related to tau functions:

1. Bilinear equations for soliton equations [Hirota, 1970’s].

2. Solution of KP equation and Grassmannians [Sato, 1980’s].

3. The notion of tau functions for monodromy preserving deformation equa-
tions of linear ODEs, and for finite dimensional Hamiltonian systems
[Jimbo, Miwa, Ueno, 1980’s].

4. Relation of integrable hierarchies with infinite dimensional Lie algebras
[Date, Kashiwara, Jimbo, Miwa; Kac, Wakimoto, 1980’s].

5. Tau structures for infinite dimensional Hamiltonian systems.[Dubrovin,
Zhang, 2001]

One important application of the KdV hierarchy is 2d gravity: The partition
function of the 2d topological gravity is a tau function of the KdV hierarchy.
This was conjectured by Witten in 1991 and proved by Kontsevich 1992. It can
be written as follows:

u = ε2
∂2 log τ(t0, t1, . . . )

∂x2
=
∑
q≥0

ε2g
∂2Fg(t0, t1, . . . )

∂x2
, x = t0,

where τ = e
∑

g≥0 ε
2g−2Fg is the partition function of 2d topological gravity with

Fg =
∑ 1

k!
tp1 · · · tpk

∫
Mg,k

ψp11 ∧ · · · ∧ ψ
pk
k .

Apart from the KdV hierarchy, there are many bihamiltonian integrable systems
with tau functions. We present a few below:

Example 11.6. All these the bihamiltonian structures and the associated inte-
grable hiearrchies possess hydrodynamic limits:

• Drinfeld-Sokolov hierarchies associated to untwisted affine Kac-Moody al-
gebras [Drinfeld-Sokolov 1981].

• The q-deformed N -th KdV hierarchy [Frenkel-Reshetikhin 1996; Frenkel
1996]

• The Toda lattice hierarchy and its generalizations—the bigraded Toda lat-
tice hierarchies [Carlet 2006].

• A class of integrable evolutionary PDEs of hydrdynamic type that arise
and play important roles in the study of 2d topological field theory, and
more generally, the theory of Frobenius manifolds [Dubrovin 1992].
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Now, we present an example of an integrable hierarchy that shares properties
of the KdV hierarchy:

Example 11.7. Consider

∂v

∂tk
=

1

k!
vpvx, k ≥ 0,

and its bihamiltonian structure

∂v

∂tk
= P [0]

1

δH
[0]
k

δv
=

Å
k +

1

2

ã
P [0]
2

δH
[0]
k−1
δv

,

where

P
[0]
1 = ∂x, P

[0]
2 = v(x)∂x +

1

2
vx; H

[0]
k =

1

(k + 1)!

∫
vk+1 dx.

The tau function of the dispersionless KdV hierarchy is

vp+q+1

p!q!(p+ q + 1)
=
∂2 log τ [0]

∂tp∂tq
, p, q ≥ 0.

11.2 Infinite Jet Space and Hamiltonian Structures

Let’s describe the class of bihamiltonian structures and the associated integrable
hierarchies which possess hydrodynamic limit and tau functions. We will start
from the study of a class of so called flat exact bihamiltonian structures of
hydrodynamic type, show the existence of an integrable hierarchy of systems
of hydrodynamic type, and the tau functions. Then we study the classification
of deformations of these bihamiltonian integrable hierarchies.

First, we consider the finite dimensional case of Hamiltonian structures.

11.2.1 The Finite Case

Definition 11.8. Let Mn be a smooth manifold. A Poisson structure (or
Hamiltonian structure) on M is defined by a Poisson bracket

{ , } : C∞(M) × C∞(M) → C∞(M).

Equivalently, it is defined by a Poisson bivector P satisfying the condition [P, P ]
= 0, where [ , ] is the Schouten-Nijenhuis bracket defined on the space of multi-
vector fields Λ∗ = Γ(Λ∗(TM)).

Proposition 11.9. The Poisson bivector defines a complex (Λ⋆ =
⊕

k≥0 Λ
k, d)

with the coboundary operator

d : Ak → Ak+1, a 7→ [P, a].
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Definition 11.10 (Lichnerowicz, 1977). The Poisson cohomology is defined by

Hk(M,P ) :=
Ker d|Λk−1

Im d|Λk−1

, k ≥ 0.

Now, we present the Bihamiltonian cohomology (in the finite dimensional case).Let
M be endowed with a bihamiltonian structure, i.e., a pair of compatible Poisson
structures (P1, P2) satisfying

[P1, P1] = [P1, P2] = [P2, P2] = 0.

Then we have a bicomplexes (Λ∗, d1, d2) such that

d1d2 + d2d1 = 0.

They induce another complex (Λ∗, d1, d2), and its cohomology is called the
bihamiltonian cohomology

BHk(M,P1, P2) =
Ker d2|Λ̃k

Im d2|Λ̃k−1

=
Ker d1|Λk ∩Ker d2|Λk−1

Im d2|Λ̃k−1

(following the definition given in [Dubrovin,Zhang, 2001] for infinite dimensional
bihamiltonian structures).

Furthermore, there exists a super manifold formalism: A convenient way to
present the definition of the Schouten-Nijenhuis bracket is to use the super
manifold M̂ =

∏
(T ∗M) of dimension (n|n) obtained by reversing the parity of

fibers of the cotangent bundle T ∗M .

We have C∞(M̂) = Γ(Λ∗(TM)), and the symplectic structure on M̂ yields the
the definition of Schouten-Nijenhuis bracket

[P,Q] =
∂P

∂θα

∂Q

∂uα
+ (−1)p ∂P

∂uα
∂Q

∂θα
, P ∈ Λp, Q ∈ Λq

on a local trivialization Û = U × R0|n of M̂ with coordinates u1, . . . , un of U
and the dual coordinates θ1, . . . , θn on the fiber R0|n which satisfy the relations

θαθβ + θβθα = 0, α, β = 1, . . . , n.

11.2.2 The Infinite Case

Now, consider the infinite jet space

J∞(M̂) = lim←−
k

where M̂ =
∏
(T ∗M). We have:
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1. Local coordinate system on M̂ :Ä
Û ; uα, θα, α = 1, . . . , n

ä
.

2. Local coordinate system on J∞(M̂):

(Û × R∞; uα,p, θpα, 1 ≤ α ≤ n, p ≥ 0).

3. The ring of differential polynomials

Â = C∞(U)[[uα,s+1, θsα | α = 1, · · · , n; s ≥ 0]].

Proposition 11.11. The ring of differential polynomials Â has the differ-
ential and the super gradations

degx u
α,s = degx θ

s
α = s; degθ u

α,s = 0, degθ θ
s
α = 1.

We denote the space of homogeneous elements by

Âd = {f ∈ Â | degxf = d},
Âp = {f ∈ Â | degθf = p},
Âd = Âp ∩ Âd.

lim←k
Jk(M̂)

The global vector field

∂x =
∑
s≥0

uα,s+1 ∂

∂uα,s
+ θs+1

α

∂

∂θsα

on J∞(M̂) induces a derivation on Â. The space of local functionals F̂ is defined
as follows:

Definition 11.12. The space of local functionals on M̂ is

T̂ := Â/∂xÂ.

Additionally, we denote the image of an element f ∈ Â in F̂ by
∫
f , so we have

0→ Â/R ∂x−→ Â
∫
−→ F̂ → 0.

F̂ also admits differential and super gradations induced from that of Â, and we
denote the spaces of homogeneous elements of differential degree d and super
degree p by F̂d and F̂p respectively.
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Definition 11.13. A graded Lie algebra structure on F̂ is given by the Schouten-
Nijenhuis bracket

[P,Q] =

∫ Å
δP

δθα

δQ

δuα
+ (−1)p δP

δuα
δQ

δθα

ã
, ∀P ∈ F̂p,∀Q ∈ F̂q.

It is preserved under the change of coordinates of the form

uα,s 7→ wα,s =
∑
k≥0 ∂

s
xf

α
k (u), fαk (u) ∈ Â0

k, s ≥ 0

θα 7→ σsα = ∂sx = ∂sx
∑
k≥0(−∂x)k

Ä
∂uβ

∂wα,k θβ
ä
, s ≥ 0,

which is induced from a change of coordinates (called Miura-type transforma-
tion) on J∞(M):

uα 7→ wα = fα(u) =
∑
k≥0

fαk (u), det

Å
∂fα0 (u)

∂uβ

ã
̸= 0.

For any local functional X =
∫
Xαθα ∈ F̂1, we can associate with it an evolu-

tionary PDEs of the form

∂uα

∂t
= Xα, α = 1, . . . , n,

here we need to make the replacement uα,s 7→ ∂sxu
α.

Definition 11.14. We call X ∈ F̂1 a Hamiltonian evolutionary PDE if
there exist P ∈ F̂2 and H ∈ F̂0 such that

X = [H,P ], [P, P ] = 0.

Here P and H are called the Hamiltonian structure and the Hamiltonian of X
respectively.

We can represent P and H in the form

∂uα

∂t
= Pαβ δH

δuβ
, with Pαβ =

∑
s≥0

Pαβs ∂sx.

Definition 11.15. The evolutionary PDE X is called a bihamiltonian system
if there exist P1, P2 ∈ F̂2 and H,G ∈ F̂0 such that

X = [H,P1] = [G,P2], [P1, P1] = [P2, P2] = [P1, P2] = 0.

Example 11.16 (KdV Hierarchy). For example, let M be a smooth manifold
of dimension one with local coordinate u. We consider the local functionals

X0 =

∫
uxθ, Xn =

2n

(2n+ 1)!!

∫
(Rnux) θ, n ≥ 2,
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where

R =
ε2

8
∂2x + u+

1

2
ux∂

−1
x .

These local functionals correspond to the KdV hierarchy

∂u

∂t0
= ux,

∂u

∂t1
= uux +

ε2

12
uxxx, ...

Example 11.17 (Bihamiltonian structure of the KdV hierarchy). The KdV
hierarchy has a bihamiltonian structure given by the following local functionals

P1 =
1

2

∫
θθ1, P2 =

1

2

∫ Å
uθθ1 +

ε2

8
θθ3
ã
.

It can be represented as

∂u

∂tp
= P1

δHp

δu
=

Å
p+

1

2

ã−1
P2
δHp−1

δu
, p ≥ 0,

where the Hamiltonian operators and the Hamiltonians are given by

P1 = ∂x, P2 = u∂x+
1

2
ux+

ε2

8
∂3x, H−1 =

∫
u, H0 =

∫ Å
1

2
u2 +

ε2

12
uxx

ã
, ...

11.3 Flat exact bihamiltonian structures of hydrodynamic
type

Let (P1, P2) be a bihamiltonian structure of hydrodynamic type on the jet space
J∞(Mn). In the local coordinates v1, ..., vn the compatible Hamiltonian opera-
tors have the expressions

P αβ
a ≡ g αβa (v)∂x + Γαβa,γ(v)v

γ
x , a = 1, 2.

Here (gαβ1 ), (gαβ2 ) are symmetric and nondegenerate, and (gαβ1 )−1, (gαβ2 )−1 are
flat metrics on M and

Γαβa,γ = −gαξa Γβξγ , a = 1, 2

are the contravariant components of the Levi-Civita connections of these metrics
respectively [Dubrovin, Novikov, 1983], and (gαβ1 ), (gαβ2 ) form a flat pencil of
metrics [Dubrovin, 1998].

Definition 11.18. The bihamiltonian structure (P1, P2) of hydrodynamic type
is called semisimple if the roots u1(v), ..., un(v) of the characteristic equation

det(gαβ2 (v)− u gαβ1 (v)) = 0

are pairwise distinct for generic point of v and are non-constant. They can
be used as local coordinates, called canonical coordinates of the semisimple
bihamiltonian structure.
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In the canonical coordinates the two flat metrics are diagonal

gij1 = f i(u)δij , gij2 = uif i(u)δij .

The Bihamiltonian structure (P1, P2) is called exact if there exists a vector field
Z on M such that

[Z,P1] = 0, [Z,P2] = P1.

Here [ , ] is the Schouten-Nijenhuis bracket defined on the space of local func-
tionals, and

Z ∈ F̂1, P1, P2 ∈ F̂2.

Definition 11.19. We call Z the unity vector field of the exact bihamiltonian
structure.

The exact bihamiltonian structure (P1, P2;Z) is called flat exact if the unity
vector field Z is flat with respect to the first flat metric g1, i.e.

∇Z = 0

where ∇ is the Levi-Civita connection of g1.

Let (P1, P2) be semisimple, then Z must take the form

Z =

n∑
i=1

∂

∂ui

in canonical coordinates [Falqui, Lorenzoni, 2012].

In the semisimple case, Z is flat if and only if the first diagonal metric ds21 =∑n
i=1 fi(u)(du

i)2 with fi :=
(
f i
)−1

(i = 1, ..., n) satisfy the Egoroff condition

∂fi
∂uj

=
∂fj
∂ui

, ∀1 ≤ ı̇, j ≤ m.

ie. the flat diagonal metric g1 is a Egoroff metric.

11.4 Flat exact bihamiltonian structures and Frobenius
manifolds

Given a semisimple flat exact bihamiltonian structures of hydrodynamic type
(P1, P2;Z) with canonical coordinates u1, . . . , un. Let γij be the rotation coef-
ficients of the first flat metric g1:

γij(u) =
1

2
√
fifj

∂fi
∂uj

, ṫ ̸= j, γii = 0,

then γij = γji and the condition that (P1, P2) is a bihamiltonian structure is
equivalent to the following equations for γij

∂γij
∂uk

= γikγjk, for distinct i, j, k,

n∑
k=1

∂γij
∂uk

= 0,

n∑
k=1

uk
∂γij
∂uk

= −γij .
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Definition 11.20. The semisimple bihamiltonian structure (P1, P2) is called
reducible at u ∈ M if there exists a partition of the set {1, 2, ..., n} into the
union of two nonempty nonintersecting sets I and J such that

γij(u) = 0, ∀i ∈ I, ∀j ∈ J.

(P1, P2) is called irreducible on a certain domain D ⊂M , if it is not reducible
at any point u ∈ D.

We will impose this irreducibility condition on the class of semisimple flat exact
bihamiltonian structures.

We consider the linear system

∂ψj
∂ui

= γjiψi, i ̸= j,
∂ψj
∂ui

= −
∑
k ̸=i

γkiψk,

The above conditions for γij ensure the compatibility of this linear system, so
its solution space has dimension n, and we can find a fundamental system of
solutions

Ψα = (ψ1α(u), . . . , ψnα(u))
T , α = 1, . . . , n,

defined on a domain D.

Here are some properties of a Frobenius manifold structure:

• The symmetric non-degenerate constant matrix

ηαβ =

n∑
i=1

ψiα(u)ψiβ(u), (ηαβ) = (ηαβ)
−1.

• One can define local coordinates v1, . . . , vn by

dvα =

n∑
i=1

ηαγψi1 ψi1 ψiγdu
i, i = 1, . . . , n,

then the flat metric of the Frobenius manifold is given by ds2 = ηαβdv
αdvβ .

• The structure constants of the Frobenius algebra are given by

cαβγ =

n∑
i=1

ψiαψiβψiγ
ψi1

,
∂

∂vα
· ∂

∂vβ
= ηγξcαβξ

∂

∂vγ
.

Proposition 11.21 (Dubrovin-Liu 2018). There exists a smooth function F (v)
defined on D such that

cαβγ =
∂3F

∂vα∂vβ∂vγ
, ηαβ =

∂3F

∂vα∂vβ∂v1
,
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and it gives the potential of a Frobenius manifold structure (without, in general,
the quasi-homogeneity condition) on D with the unit vector field

e =
∂

∂v1
,

i.e. it satisfies the WDVV equations of associativity

∂3F
∂vα∂vξ∂vµ

ηµν
∂3F

∂vν∂vζ∂vβ
=

∂3F
∂vβ∂vξ∂vµ

ηµν
∂3F

∂vν∂vζ∂vα
.

Different choices of the fundamental system of solutions Ψ1, . . . ,Ψn of the above-
mentioned linear system lead to different Frobenius manifold structures which
are related by Legendre transformations.

Since the Euler vector field

E =

n∑
i=1

ui
∂

∂ui

acts on the space of solution of the linear system as a linear transformation, so
we can fix an eigenvector with eigenvalue µ1 and take it to be Ψ1. We choose
other basis Ψ2, . . . ,Ψn such that the matrix of E takes the Jordan normal form.
Then the Frobenius manifold structure corresponding to the above Ψ1 is quasi-
homogeneous with the Euler vector field E and the charge d = −2µ1 [Dubrovin,
Liu, Zhang, 2018].

On the infinite jet space of the Frobenius manifold there is defined a semsimple
bihamiltonian structure of hydrodynamic type, which is given by the flat metrics

⟨dui, duj⟩1 = δijψ
−2
i1 , the flat metric of the Frobenius manifold

⟨dui, duj⟩2 = δiju
iψ−2i1 , the intersection form of the Frobenius manifold

When we take

ψi1 = f

1

2
i = (f i)−

1
2 , i = 1, . . . , n,

then this bihamiltonian structure coincides with the original one (P1, P2;Z).
We call this Frobenius manifold structure the canonical one. In what follows
we will use this canonical Frobenius manifold to construct the bihamiltonian
integrable hierarchy.

11.5 The Principal Hierarchy and its tau structure

Let us given a flat exact semisimple bihamiltonian structure of hydrodynamic
type (P1, P2;Z), and let v1, ..., vn be a system of flat coordinates of the first
metric g1 such that

Z =
∂

∂v1
.
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In the flat coordinates, the first Hamiltonian structure P1 is given by the Hamil-
tonian operator

nαβ
∂

∂x
.

We have the following definitions:

Definition 11.22. A collection of smooth functions

{hα,p|α = 1, . . . , n; p = −1, 0, 1, ...}

is called a calibration of (P1, P2;Z) if

1. Hα,p =
∫
(hα,p) are bihamiltonian conserved quantities, ie.

[P2, [P1, Hα,p]] = 0.

2. The recursion Z(hα,p) = hα,p−1 for p ≥ 0 holds true.

3. Normalization: hα,−1 = vα = ηαγv
γ , and ∂

∂t1,0 = ∂
∂x .

Definition 11.23. The hierarchy of quasi-linear PDEs

∂vα

∂tβ,q
= ηαγ

∂

∂x

Å
∂hβ,q(v)

∂vγ

ã
, 1 ≤ α, β ≤ n, q ≥ 0

is called the Principal Hierarchy of the flat exact bihamiltonian structure
(P1, P2;Z) with the calibration {hα,p}.

Theorem 11.24 (Dubrovin-Liu 2018). Let {hα,p} be a calibration of (P1, P2;Z),
then the associated Principal Hierarchy is a bihamiltonian integrable hierarchy
of hydrodynamic type with

∂vα

∂t1,0
= vαx .

Moreover, for any (α, p), (β, p), we have

∂hα,p−1
∂tβ,q

=
∂hβ,q−1
∂tα,p

,

and there exists differential polynomials Ωα,p;β,q such that

∂hα,p−1
∂tβ,q

=
∂hβ,q−1
∂tα,p

= ∂xΩα,p;β,q.

Definition 11.25. A collection of smooth functions

{Ωα,p;β,q|α, β = 1, . . . , n; p, q = 0, 1, 2, ...}

is called a tau structure of the flat exact bihamiltonian structure (P1, P2;Z) and
the Principal Hierarchy associated to a fixed calibration {hα,p} if the following
conditions are satisfied:
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1. ∂Ωα,p;β,q =
∂hα,p−1

∂uβ,q =
∂hβ,q−1

∂tα,p .

2. Ωα,p,β,q = Ωβ,q;α,p.

3. Ωα,p+1,1,0 = hα,p.

Now let us proceed to construct a calibration for the canonical Frobenius man-
ifold structure F (v) of (P1, P2;Z). We first define the functions

θα,0(v) = vα = ηαγv
γ , θα,1(v) =

∂F (v)

∂vα
, α = 1, . . . , n.

By adding to the function F (v) a certain quadratic term in v1, . . . , vn, if needed,
we can assume that

∂2F (v)

∂v1∂vα
= ηαγv

γ = vα.

We then define the functions θα,p(v) for p ≥ 2 recursively by using the following
relations:

∂2θγ,p+1(v)

∂vα∂vβ
= cαβξη

ξζ ∂θγ,p(v)

∂vξ
, α, β, γ = 1, . . . , n

We can require that the functions θα,p also satisfy the following normalization
conditions

∂θα(v; z)

∂vξ
ηξ
∂θβ(v;−z)

∂vξ
= ηαβ , α, β = 1, . . . , n.

Here
βα(v; z) =

∑
p≥0

θα,p(v)z
p.

Now we define the functions hα,p(v) so that their generating functions

hα(v; z) =
∑
p≥−1

hα,p(w)z
p+1

satisfy the following defining relations

hα(v; z) =
1

z

∂θα(v; z)

∂v1
− 1

z
ηα1.

We proceed by construcing the τ structure: The tau structure

{Ωα,p;β,q(v) | α, β = 1, ...; p, q = 0, 1, 2, ...}

of the calibration {hα,p} is given by

∂hα(v; z1)

∂vξ
ηξζ

∂hβ(v; z2)

∂vζ
− ηαβ = (z1 + z2)

∑
p,q≥0

Ωα,p,β,q(v)z
p
1z
q
2 .

The tau function of the Principal Hierarchy is defined by

∂2 log τ

∂tα,p∂tβ,q
= Ωα,p;β,q(v(t)).
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Theorem 11.26 (Dubrovin-Liu 2018). 1. The set of functions {hα,p} and
{Ωα.p;β,q} give a calibration and a tau structure of the flat exact semisimple
bihamiltonian structure of hydrodynamic type (P1, P2;Z).

2. The Principal Hierarchy also possesses the Galilean symmetry

∂vα

∂s
= δα1 +

∑
β,q

tβ,q+1 ∂v
α

∂tβ,q
.

11.6 Deformations of semisimple bihamiltonian structure
of hydrodynamic type

1. Uniquely parameterized by central invariants c1(u
1), ..., cn(u

n). [Dubrovin,
Liu, Zhang, 2006]

2. Existence of deformation with a given set of central invariants. [Liu,
Zhang, 2012] for KdV case, [Carlet, Posthuma, Shadrin, 2015 ] for general
case.

3. The space of bihamiltonian conserved quantities and bihamiltonian vector
fields of the deformed bihamiltonian structure are isomorphic to those of
the original bihamiltinian structure. [Dubrovin, Liu, Zhang, 2018]

Theorem 11.27 (Falqui, Lorenzoni 2012). A deformation (P̃1, P̃2) of the exact
semisimple bihamiltonian structure of hydrodynamic type (P1, P2;Z) is exact if
and only if its central invariants c1, ..., cn are constant functions. Moreover,
there exists a Miura type transformation g such that

g(P̄1) = P1, g(P̄2) = P2 + ε2Q1 + ε4Q2 + . . . ,

and the unit vector field Z̃ is transformed to the undeformed one

g(C⃗) = Z =

n∑
i=1

∂

∂ui
.

Let (P1, P2;Z) be a flat exact semisimple bihamiltonian structure of hydro-
dynamic type, with a fixed calibration and a tau structure {hα,p}, {Ωα,p;β,q}.
Given a set of constants c1, . . . , cn we have a unique, up to Miura type trans-
formations, deformation (P̃1, P̃2; Z̃) with

P̄1 = P1, P̄2 = P2 + ε2Q1 + ε4Q2 + . . . , Z̃ =

n∑
i=1

∂

∂ui
.

Then we have a unique deformation

H̃α,p = Hα,p + ε2H [1]
α,p + ε4H [2]

α,p + . . .

of the bihamiltonian conserved quantities Hα,p =
∫
(hα,p).
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Theorem 11.28 (Dubrovin-Liu 2018). The deformation (P̃1, P̃2, Z) and the
associated deformed Principal Hierarchy possess a tau structure.

The densities of the Hamiltonians are given by

h̄α,p = δZH̄α,p+1 =

n∑
i=1

δH̄α,p+1

δui
, α = 1, . . . , n, p = −1, 0, 1, 2, . . . .

The differential polynomials Ω̃αr,p;β,q are given by

∂h̃α,p−1
∂tβ,q

= ∂xΩ̃α,p;β,q.

There is still plenty of work to be done in this area. One important goal is
to provide a constructive approach to fix a representative of the deformations
of a flat exact semisimple bihamiltonian structure of hydrodynamic type with
constant central invariants, and to fix the tau structure, so that the deformation
of the Principal Hierarchy can be used as candidate of integrable hierarchies that
control 2D TFT.

When the central invariants c1, ..., cn are chosen to be 1
24 , a representative of

the deformed bihamiltonian integrable hierarchy can be constructed by using
the algorithm of [Dubrovin, Zhang, 2001] via the quasi-Miura transformation
given by the solution of the loop equation of the associated semisimple Frobenius
manifold.
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Part III

Week 2 Talks

There were eleven talks in week 2. There were no talks on Thursday, July 4th,
and Friday, July 5th.

Week 2

Sunday, June 30

• Sergei Lando: Weight Systems Associated to Lie Algebras

V. A. Vassiliev’s theory of finite type knot invariants allows one to asso-
ciate to such an invariant a function on chord diagrams, which are sim-
ple combinatorial objects, consisting of an oriented circle and a tuple of
chords with pairwise distinct ends in it. Such functions are called “weight
systems”. According to a Kontsevich theorem, such a correspondence is
essentially one-to-one: each weight system determines a certain knot in-
variant.

In particular, a weight system can be associated to any semi-simple Lie
algebra. However, already in the simplest nontrivial case, the one for the
Lie algebra sl(2), computation of the values of the corresponding weight
system is a computationally complicated task. This weight system is of
great importance, however, since it corresponds to a famous knot invariant
known as the colored Jones polynomial.

Last few years was a period of significant progress in understanding and
computing Lie algebra weight systems, both for sl(2)- and gl(N)-weight
system, for arbitrary N . These methods are based on an idea, due to
M. Kazarian, which suggests a recurrence for gl(N)-weight system ex-
tended to permutations. The recurrence immediately leads to a construc-
tion of a universal gl-weight system taking values in the ring of polynomials
C[N,C1, C2, C3, . . . ] in infinitely many variables and allowing for a special-
ization to gl(N) and sl(N)-weight systems for any given value of N . A lot
of new explicit formulas were obtained.

Simultaneously, Zhuoke Yang extended the construction to the Lie su-
peralgebras gl(N |M) and, together with M. Kazarian, to other classical
series of Lie algebras. It happened that certain specializations of the uni-
versal gl(N)-weight system lead to well-known combinatorial invariants of
graphs, allowing thus to extend these invariants to permutations.

Certain integrability properties of the Lie algebra weight systems will be
discussed. The talk is based on a joint work of M. Kazarian, the speaker,
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and N. Kodaneva, P. Zakorko, and others.

• Senya Shlosman: Pedestals Matrices: Polynomial Matrices with Polyno-
mial Eigenvalues

I will explain a construction which for every finite poset X (such as a
Young diagram) produces a square matrix MX . Its matrix elements are
indexed by pairs P , Q of linear orders on X (pairs of standard tableaux in
the case of Young diagrams). The entries of MX are monomials in vari-
ables xi. Our main result is that the eigenvalues of MX are polynomials
in xi with integer coefficients. Joint work with Richard Kenyon, Maxim
Kontsevich, Oleg Ogievetsky, Cosmin Pohoata, and Will Sawin.

Monday, July 1

• Ivan Cherednik: Q-zeta Revisited

The fundamental feature of practically all zeta-functions and L-functions
is that their meromorphic continuations to complex s provide a lot of
information about the corresponding objects. However, complex values
of s have generally no direct arithmetic/geometric meaning, and occur
as a powerful technical tool. We will discuss the refined theory, which is
basically the replacement of the terms 1

ns by the invariants of lens space
L(n, 1), certain q, t, a-series. One of their key properties is the superduality
q ↔ t−1, which is related to the functional equation of the Hasse-Weil zetas
for curves, the symmetry ϵ1 ↔ ϵ2 of Nekrasov’s instantons, and to other
refined theories in mathematics and physics. These invariants have various
specializations, including Rogers-Ramanujan identities and the topological
vertex. We will begin the talk with the Riemann q-zeta-hypothesis in type
A1, in full detail.

• Alexander Braverman: Introduction to Symplectic Duality and Coulomb
Branches of 3D Quantum Field Theories

I will give a survey of the series of my joint works with Finkelberg and
Nakajima giving a mathematical construction of the so called Coulomb
branches of 3D N = 4 super-symmetric gauge theories (no knowledge of
any of these words will be needed). I will also explain its connection with
the (purely mathematical subject) of symplectic duality.

Tuesday, July 2

• Paul Wiegmann: Peierls phenomenon via Bethe Ansatz: reflection of
Krichever’s works on Peierls model

In the 1930s Rudolf Peierls argued that the one-dimensional electrons
interacting with phonons undergo an instability, leading to the formation
of a periodic structure known as an electronic crystal. Peierls’s instability
stands in a short list of major phenomena of condensed matter physics.

From a mathematical perspective, a comprehensive solution to the Peierls
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problem was given in papers by Igor Krichever and co-authored by Natasha
Kirova, Sergei Brazovski, and Igor Dzyaloshinsky In the early 80’s. It was
found that electronic crystals are periodic solutions of soliton equations,
falling within the framework of Krichever-Novikov’s theory of finite-gap
potentials.

The Peierls phenomenon also emerges as a limiting case of models of inter-
acting fermions, such as Gross-Neveu models with a large rank symmetry
group when the rank of the group tends to infinity. These models are
solvable by the Bethe Ansatz for finite rank groups. The talk presents the
result of a recent paper co-authored by Konstantin Zarembo, Valdemar
Melin, and Yoko Sekiguchi, where Krichever’s finite-gaps solutions of soli-
ton equations were obtained as a singular large rank limit of the Bethe
Ansatz solution of models with Lie group symmetry.

• Andrei Marshakov: Krichever tau-function: basics and perspectives

I plan to start with the definition of quasiclassical tau-function, introduced
by Igor Krichever in 1992, formulate its main properties with some simple
proofs, and discuss certain particular cases, which include the Seiberg-
Witten prepotentials, matrix models etc. Then I am going to turn to
certain modern developments, related with this object, which include the
relation with instanton partition functions, isomonodromic tau-dunctions
and even some unexpected relations with other famous relations in math-
ematical physics.

• Alexander Veselov: Harmonic locus and Calogero-Moser spaces

The harmonic locus consists of the monodromy-free Schroedinger opera-
tors with rational potential quadratically growing at infinity. It is known
after Duistermaat and Grunbaum that in the multiplicity-free case the
poles z1, ..., zN of such potentials satisfy the following algebraic system

N∑
j ̸=i

2

(zi − zj)3
− zi = 0, i = 1, ..., N,

describing the complex equilibriums of the corresponding Calogero-Moser
system. Oblomkov proved that the harmonic locus can be identified with
the set of all partitions via Wronskian map for Hermite polynomials. We
show that the harmonic locus can also be identified with the subset of the
Calogero-Moser spaces introduced by Wilson, which is invariant under a
natural symplectic action of C× As a corollary, for the multiplicity-free
part of the locus we effectively solve the inverse problem for the Wronskian
map by proving that the spectrum of Moser’s matrix coincides with the
set of contents of the corresponding Young diagram. We also compute
the characters of the C×-action at the fixed points, proving a conjecture
of Conti and Masoero. The talk is based on a joint work with Giovanni
Felder.
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• Stanislav Smirnov: Coulomb gas and lattice models

Even before the introduction of Conformal Field Theory by Belavin, Polyakov
and Zamolodchikov, it appeared indirectly in the work of den Nijs and
Nienhuis using Coulomb gas techniques. The latter postulate (unrigor-
ously) that height functions of lattice models converge to the Gaussian
Free Field, allowing to derive many exponents and dimensions of 2D lat-
tice models.

This convergence is in many ways mysterious, in particular it was never
formulated in the presence of a boundary, but rather pn a torus or a cylin-
der. We will discuss possible formulations on general domains or Riemann
surfaces and their relations to CFT, SLE and conformal invariance of crit-
ical lattice models. Interestingly, new objects in complex geometry and
potential theory seem to arise.

• Grigori Olshanski: Macdonald-level extension of beta ensembles and mul-
tivariate hypergeometric polynomials

A beta ensemble (or log-gas system) on the real line is a random collection
of N point particles x1, ..., xN whose joint probability distribution has a
special form containing the Vandermonde raised to the power β > 0. I will
survey results related to some discrete analogs of beta ensembles, which
live on q-lattices, and large-N limit transitions.

Wednesday, July 3

• Da-jun Zhang: Elliptic solitons related to the Lamé functions

In this talk I will report recent progress on the elliptic solitons related to
the Lamé functions. Apart from the classical solitons that are composed
by usual exponential type plane wave factors, there exist “elliptic solitons”
which are composed by the Lamé-type plane wave factors and expressed
using Weierstrass functions. Recently, we found vertex operators to gener-
ate tau functions for such type of solitons. We also established an elliptic
scheme of direct linearization approach.

• Anton Dzhamay: Geometry and Symmetry of Painlevé Equations

We begin by an overview of how geometric ideas entered the theory of
differential Painlevé equations in the work of of K.Okamoto, which led to
the better understanding of their symmetries (Backlünd transformations)
in terms of affine Weyl groups. These ideas were then extended by H.Sakai
to the discrete (elliptic, multiplicative, and additive) Painlevé equations
and resulted in the beautiful Sakai classification scheme for both differen-
tial and discrete Painlevé equations. In the latter case, it is the symmetry
group that is the source of a discrete dynamics. In the second part of
the talk we discuss the notion of an abstract discrete Painlevé equation
and its various concrete realizations. This leads to the study of a refined
identification problem, which is a classification of different orbits for the
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same abstract discrete Painlevé dynamic, and results in the appearance of
special symmetry groups that are not a part of the general (i.e., generic)
Sakai classification scheme. We illustrate this by an example of a discrete
Painlevé-II equation and its symmetry group. This is based on a joint
work with Yang Shi, Alex Stokes, and Ralph Willox.
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12 Sergei Lando: Weight Systems Associated to
Lie Algebras

Abstract

V. A. Vassiliev’s theory of finite type knot invariants allows one to
associate to such an invariant a function on chord diagrams, which are
simple combinatorial objects, consisting of an oriented circle and a tuple of
chords with pairwise distinct ends in it. Such functions are called “weight
systems”. According to a Kontsevich theorem, such a correspondence
is essentially one-to-one: each weight system determines a certain knot
invariant.

In particular, a weight system can be associated to any semi-simple
Lie algebra. However, already in the simplest nontrivial case, the one
for the Lie algebra sl(2), computation of the values of the corresponding
weight system is a computationally complicated task. This weight system
is of great importance, however, since it corresponds to a famous knot
invariant known as the colored Jones polynomial.

Last few years was a period of significant progress in understanding
and computing Lie algebra weight systems, both for sl(2)- and gl(N)-
weight system, for arbitrary N . These methods are based on an idea,
due to M. Kazarian, which suggests a recurrence for gl(N)-weight sys-
tem extended to permutations. The recurrence immediately leads to a
construction of a universal gl-weight system taking values in the ring of
polynomials C[N,C1, C2, C3, . . . ] in infinitely many variables and allowing
for a specialization to gl(N) and sl(N)-weight systems for any given value
of N . A lot of new explicit formulas were obtained.

Simultaneously, Zhuoke Yang extended the construction to the Lie
superalgebras gl(N |M) and, together with M. Kazarian, to other classical
series of Lie algebras. It happened that certain specializations of the
universal gl(N)-weight system lead to well-known combinatorial invariants
of graphs, allowing thus to extend these invariants to permutations.

Certain integrability properties of the Lie algebra weight systems will
be discussed. The talk is based on a joint work of M. Kazarian, the
speaker, and N. Kodaneva, P. Zakorko, and others.
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12.1 Chord Diagrams and Weight Systems

Any knot invariant v with values in a commutative ring admits an extension to
singular knots according to the following Vassiliev skein relation:

A knot invariant is of order at most n if its extension to singular knots with
more than n double points vanishes.

Each knot invariant of order at most n determines a function on chord diagrams
with n chords; this function satisfies Vassiliev’s 4-term relations:

Definition 12.1. The Vassiliev’s 4-term relations is:

What about the converse? It is also true: According to Kontsevich’s theorem,
each weight system with values in an algebra over a field of characteristic 0 arises
from a finite type knot invariant. So there is more or less a 1-to-1 correspondence

weight systems↔ finite type knot invariant.

It is interesting to construct weight systems in order to construct some functions
on diagrams that satisfy the 4-term relations. There are two main sources of
such constructions: graph invariants and Lie algebras.

• Graph invariants: easy to construct, easy to compute, but not powerful;

• Lie algebras: easy to construct, hard to compute, but very powerful.

We will see how the graph invariants source works but we will mostly focus on
the Lie algebras source.

12.2 Constructing Weight Systems from Lie Algebras

We are given the following initial data: a finite dimensional Lie algebra g with
a nondegenerate invariant scalar product,

(g, (·, ·)); ([x, y], z) = (x, [y, z])∀x, y, z; d = dim g.

Then, we proceed as follows:
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• Pick an orthonormal basis x1, . . . , xd in g, (xi, xj) = δij .

• Cut the circle of a chord diagram D at some point and make it into an
arc diagram A. Pick a numbering ν : V (A)→ {1, . . . , d} of the arcs of A.

• Put letters χν(a) at the ends of each arc a; the result is a word in Ug. Sum
over all the numberings ν : V (A)→ {1, . . . , d}.

D 7→
d∑

i1,i2,i3,i4,i5=1

xi1xi2xi3xi2xi4xi1xi5xi3xi4xi5

Theorem 12.2 (Bar-Natan, Kontsevich). The result is independent of the
choice of the orthonormal basis {xi} and the cut point; it belongs to the center
of Ug and satisfies 4-term relations.

Unfortunately, it is a very difficult task to compute this result because we are
obliged to make computations in a non-commutative algebra (the universal en-
veloping algebra of the Lie algebra). Despite the fact that the result belongs
to the center of this universal enveloping algebra, which is a commutative al-
gebra, all the intermediate computations are to be made in a noncommutative
situation which makes them extremely complicated, with one exception: For
g = sl2, there is a recurrence relation due to Chmutov and Varchenko (1997) so
we can calculate the values of the sl2 weight system directly, and not through
intermediate computations.

We can see that after the initial chord diagram, the next three have fewer
intersections while the last two have fewer chords, so it is indeed a recursive
relation. We can now proceed recursively to compute the value of this sl2 weight
system. However, even this algorithm is rather complicated because we replaced
one chord diagram with five. So we are left with an exponential complicated
algorithm which does not allow us to proceed much further. Until recently, the
explicit values of the sl2 weight system have been known only for fairly simple
chord diagrams and families of chord diagrams.
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12.3 Constructing Weight Systems from Graphs

[Chmutov, Lando, 2007] showed that the value of the sl(2)-weight system on a
chord diagram depends on the intersection graph of the chord diagram rather
than on the diagram itself. The definition of intersection graphs is as follows:

Definition 12.3. The intersection graph of a chord diagram is the graph
whose vertices are the chords of the diagram, and two vertices are connected by
an edge if and only if the corresponding chords intersect one another.

To continue, we need to explain another invariant of graphs which is in fact a
weight system. This is invariant is very well known: the chromatic polynomial,
which counts the number of proper colorings of the vertices of a graph into a
given number of colors.

The chromatic polynomial for complete graphs on n variables looks very simple:

χKn(c) = c(c− 1) · · · (c− n+ 1) = (c)n.

There is a very nice formula for the generating function, which has the continued
fraction form

∞∑
n=0

χKn
(c)tn =

1

1− ct+ ct2

1− (c− 2)t+
(2c− 2)t2

1− (c− 4)t+
(3c− 6)2

1− (c− 6)t+ ...

,

where the kth row is

1− (c− 2(k − 1)) t+

Å
kc− k(k − 1)

2

ã
t2.
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It turns out that for the values of the sl2 weight system on complete graphs,
there is a similar continued fraction for the generating function:

Theorem 12.4 (Lando’s Conjecture, 2014; Proved by Zakorko, 2021). We have

∞∑
n=0

wsl(2)(Kn)t
n = 1 + ct+ c(c− 1)t2 + c(c− 1)

(
c− 2

)
t3

++c(c3 − 6c2 + 13c− 7)t4 + ...

=
1

1− ct+ ct2

1−(c−2)t+ (4c−3)t2

1−(c−6)t+
(9c−18)2

1−(c−12)t+...

where the kth row is

1− (c− k(k − 1)) t+

Å
k2c− k2(k2 − 1)

4

ã
t2.

If we compare with the chromatic continued fraction: the kth row is

1− (c− 2(k − 1))t+

Å
kc− k(k − 1)

2

ã
t2.

In addition to proving this theorem, Zakorko also developed several instruments
for treating sl2 weight systems on objects called shares which led to the following:

Theorem 12.5 (Kazarian, Zinova). For the generating functions

Gm(t) =

∞∑
n=0

wsl(2)(Km,n)t
n,

we have

Gm(t) =
cm + t ·

∑m−1
i=0 si,mGi(t)

1−
Ä
c− m(m+1)

2

ä
t

with the initial condition

G0(t) =
1

1− ct
.

There is an explicit formula for the coefficients si,m. So in the last couple of
years, we have gotten numerous highly nontrivial families of chord diagrams for
which we know the values of the sl2 weight system explicitly.

The last direction we mention is the wsl2 -duality, which generalizes the results
for the complete bipartite graphs in the following form: If one replaces complete
bipartite graphs sequences Km,n, n = 0, 1, 2, ..., with the sequences of joins
(G,n) of a given graph G with discrete graphs on n = 0, 1, 2, ... vertices, the
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form of the previous formula remains the same: the generating function for the
values of the sl2 weight system is

∞∑
n=0

wsl(2)((G,n))t
n =

|V (G)|∑
m=0

PGm(c)

1−
Ä
c− m(m+1)

2

ä
t
,

for some sequence of polynomials PG0 , P
G
1 , ...

Theorem 12.6 (Zakorko, Zinova). If we replace a graph G with its complement

G, then the polynomials PGk remain the same up to a sign: PGk = (−1)V (G)−kP+
kG.

Here the complement graph G has the same set of vertices as G, and the com-
plementary set of edges.

But what about extending gl(N)-weight system to permutations? There is
nothing similar to Chmutov-Varchenko recurrence for other Lie algebras! sl2
is just a single example which corresponds to a very powerful influential knot
polynomial, the colored Jones polynomial, but there are much more powerful
Lie algebras, and for gl(N), Kazarian came up with an extremely fruitful idea:
For the Lie algebra gl(N), a recurrence arises if we extend the weight system
from chord diagrams to arbitrary permutations.

In order to explain this construction, we will modify the construction of the
weight system from the Lie algebra. Pick an arbitrary basis {x1, ..., xd}, not
necessarily orthonormal, and write χν(a) on the left end of an arc a and the
(·, ·)-dual element x∗ν(a) on its right end. In the previous example,

d∑
i1,i2,i3,i4,i5=1

x∗i1x
∗
i2x
∗
i3x
∗
i2x
∗
i4x
∗
i1x
∗
i5x
∗
i3x
∗
i4x
∗
i5

The resulting element of the center of the universal enveloping algebra of g
coincides with the one above.

For g = gl(N), with the scalar product (A,B) := TrAB, choose the basis
consisting of matrix units Eij , i, j = 1, ..., N , with the duality E∗ij = Eji.

Definition 12.7. For σ ∈ Sm, a permutation of m elements, define

Wgl(N) : σ 7→
N∑

i1,i2,...,im=1

Ei1,iσ(1)
Ei2,iσ(2)

· · · Eim,iσ(m)
∈ Ugl(N).

Theorem 12.8. For any permutation σ,wgl(N)(σ) lies in the center ZUgl(N)
of Ugl(N).

In order to explain the recursion, we need to introduce the notion of a digraph
of the permutation:
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Definition 12.9. A permutation can be represented as an oriented graph. The
m vertices of the graph correspond to the permuted elements. They are placed on
the horizontal line, and numbered from left to right in the increasing order. The
arc arrows show the action of the permutation (so that each vertex is incident
with exactly one incoming and one outgoing arc edge). The digraph G(σ) of a
permutation σ ∈ Sm consists of these m vertices and m oriented edges.

Example 12.10.

G((1 n+ 1)(2 n+ 2) · · · ·(n 2n)) =

Now, we can see that chord diagrams are permutations of special kind: invo-
lutions without fixed points. For them, the initial definition coincides with the
one above.

12.4 More on Lie Algebras

Let’s briefly discuss the center ZUgl(N).

Definition 12.11. The Casimir elements Cm ∈ Ugl(N),m = 1, 2...:

Cm = wgl(N)((1, 2, . . . ,m)) =

N∑
i1,i2,...im=1

Ei1,i2Ei2,i3 · · · Eim,i1 ;

associated to the standard cycles 1 7→ 2 7→ 3 7→ ... 7→ m 7→ 1.

Theorem 12.12. The center ZUgl(N) of the universal enveloping algebra
Ugl(N) of gl(N) is identified with the polynomial ring C[C1, . . . , Cn].

Now, we have arrived to the recurrence relation:

Theorem 12.13 (Yang). The wgl(N) invariant of permutations possesses the
following properties:

• For the empty permutation, the value of wgl(N) is equal to 1;

• wgl(N) is multiplicate with respect to concatenation of permutations;

• Recurrence rule: For the graph of an arbitrary permutation σ in Sm, and
for any two neighboring elements l, l+1, of the permuted set {1, 2, ...,m},
we have for the values of the wgl(N) weight system.
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For the special case σ(k + 1) = k, the recurrence looks like follows:

Example 12.14.

wgl(N)((1 3 2)) = wgl(N)((1 2 3)) + C1 · wgl(N)((1))−N · wgl(N)((1 2))

= C3 + C2
1 −NC2

We state an immediate and important corollary of this recurrence relation:

Corollary 12.15. The gl(N)-weight systems, for N = 1, 2, ... are combined into
a universal gl-weight system wmathfrakgl taking values in the ring of polynomials
in infinitely many variables C[N ;C1, C2, ...].

After substituting a given value of N and an expression of high Casimirs CN+1, CN+2, ...
in terms of lower ones C1, C2, . . . , CN , this weight system specifies into the
gl(N)-weight system.

For the chord diagram of order 5 such that any two chords intersect one another,
we have

wgl(K5) = 24C2N
4 + (24C3 − 50C2

2 − 24C1
2 )N

3

− (24C4 + 10C2C3 − 35C3
2 − 70C1

2C2 + 72C1C2 − 32C2)N
2

+ (10C2C4 + 96C1C3 − 10C2
4 − 50C1

2C
2
2 + 30C1C

2
2 − 82C2

2

− 20C1
4 + 48C1

3 − 32C2
1 )N

− 40C1C2C3 + C2
5 + 10C1

2C
2
3 + 30C1

3C2 + 15C1
4C2

− 20C1
3C2 + 10C1

2C2,
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What kind of information does this polynomial contain? One way to make this
question more precise is to ask which graph invariants can be extracted from
these polynomials.

It is easy to show that no substitution for N,C1, C2, ... makes wgl into the
chromatic polynomial of the intersection graph of a chord diagram: the corre-
sponding system of equations for K1,K2,K3,K4,K5 has no solutions.

Theorem 12.16. Under the substitution Ck = xNk−1, k = 1, 2, 3, . . . , the value
of wgl on a chord diagram becomes a polynomial in N whose leading term is the
chromatic polynomial of the intersection graph of the chord diagram.

Theorem 12.17. The assertion remains true if one replaces chord diagram
with an arbitrary positive permutation.

Definition 12.18. A permutation is positive if each of its disjoint cycles is
strictly increasing, with the exception of the last element.

Theorem 12.19. There is a substitution for N and Ck , k = 1, 2, 3, ..., which
makes the value of wgl on a chord diagram into the interlace polynomial of its
intersection graph.

We don’t state the definition of an interlace polynomial, but it’s very interesting
and well investigated.

There is a similar construction of weight systems from Lie superalgebras en-
dowed with nondegenerate invariant scalar product [Vaintrob, 1994].

Theorem 12.20 (Yang). There is an extension of the Lie superalgebra gl(m|n)
weight system to permutations similar to that for the Lie algebra gl(N). The
corresponding universal weight system, which works for all values of m and n
together, coincides with the result of substitution N = m− n into the universal
weight system wgl.

For the other classical series of Lie algebras and Lie superalgebras, the corre-
sponding construction is elaborated by [Kazarian, Yang].

12.5 Krichever’s Works

Krichever, in cooperation with Grushevsky, applied effectively real-normalized
differentials to the study of geometry of moduli spaces of complex curves.

Definition 12.21. A meromorphic differential ω on a complex curve X is said
to be real-normalized if all its periods are real, that is

∫
γ
ω is real, for an

arbitrary closed curve γ : S1 → X not passing through the poles of ω

Any meromorphic differential ω onX determines a line field Vω onX\{ poles ofω}:
at each point q the line Vω(x) looks the direction where the imaginary part of∫
q
ω increases, the real part being constant.

Definition 12.22. Separatirces of the line field Vω are its integral trajectories
passing through the zeroes of ω.
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For a given point A ∈ X not belonging to the separatrices, the function q 7→
∫ q
A
ω

determines a mapping from X cut along the separatrices to C. If ω is real
normalized, with a single pole of order 2, then the image is C cut along several
vertical half-lines.

For (X,ω), ω real normalized, with a single pole of order 2, and ω in general
position, the vertical cut half-lines split into pairs starting at the same height,
and determine thus a chord (or arc) diagram. Such a cut diagram determines
the pair (X,ω) uniquely: X is reconstructed by gluing the opposite sides of the
cuts belonging to the same pair, and ω is the image of dz. Under isoperiodic
deformations, the diagram is subject to second Vassiliev moves. This construc-
tion has been applied to the study of the isoperiodic foliation in the space of
real normalized differentials by [Krichever, Lando; Skripchenko, 2021].

For a more general real normalized differential, the corresponding cut diagram
determines a chord diagram no longer. Instead, it determines a diagram of a
permutation.

12.6 Open Problems

• The sl(2)-weight system depends on the intersection graph of a chord dia-
gram rather than on the diagram itself. Whether the sl(2)-weight system
can be induced from a polynomial graph invariant satisfying 4-term rela-
tions for graphs?

A partial answer [Fomichev, Karev, 2024]. The value of the sl(2)-weight
system at c = 3/4 admits a natural extension to graphs.

• The chromatic polynomial of the intersection graph of a chord diagram is
the leading term in N of the universal gl-weight system under the substi-
tution Ck = xNk−1, k = 1, 2, 3, ... What is the combinatorial meaning of
the coefficient of the next term in N? of the other terms?

• What is the combinatorial meaning of the chromatic substitution for per-
mutations? Same questions about interlace polynomial.

• Chord diagrams are orientable maps with a single vertex. Permutations
are orientable hypermaps with a single vertex. How can one extend the
construction of gl-weight system to arbitrary hypermaps?

• Stratification of the moduli spaces of meromorphic differentials by strata
corresponding to permutations suggests that we must consider permuta-
tions (and chord diagrams as a special case) as metrized rather than just
combinatorial objects. What is the correct way to impose Vassiliev’s 4-
term relations and construct corresponding invariants in continuous case?
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13 Senya Shlosman: Pedestals Matrices: Poly-
nomial Matrices with Polynomial Eigenval-
ues

Abstract

I will explain a construction which for every finite poset X (such as a
Young diagram) produces a square matrix MX . Its matrix elements are
indexed by pairs P , Q of linear orders on X (pairs of standard tableaux in
the case of Young diagrams). The entries of MX are monomials in vari-
ables xi. Our main result is that the eigenvalues of MX are polynomials
in xi with integer coefficients. Joint work with Richard Kenyon, Maxim
Kontsevich, Oleg Ogievetsky, Cosmin Pohoata, and Will Sawin.
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13.1 Introduction

We begin with a brief reminder of Young diagrams:

Definition 13.1. Let us express the integer k as follows:

k = π(1) + π(2) + · · ·+ π(n),

where π(i) ≥ 0 and π(i) ≥ π(i + 1). We call π a partition of k into (at
most) n parts. Let Yn denote the set of all partitions π of arbitrary integers.
These are referred to as Young diagrams with at most n columns. The
integer k is called the volume of the diagram π.

Example 13.2. Consider the following partition:

21 = 7 + 5 + 5 + 3 + 1

Let gk denote the number of partitions π of k. The generating function for the
sequence gk is given by:

Gn(t) =

n∏
i=1

1

1− ti
.

In fact, we have:

n∏
l=1

1

1− tl
= (1+t+t2+t3+· · · )(1+t2+t4+· · · )(1+t3+t6+· · · ) · · · (1+tn+t2n+t3n+· · · )

The 1-to-1 correspondence between the terms in the product and the diagrams
holds because, in the first factor, there are two rows of length 1, and the second
term is t2, and so on.

Next, we turn our attention to plane partitions, which are positioned over a
rectangle of dimensions n×m.

Let gk be the number of plane partitions of volume k placed over a rectangle
of size n × m. The generating function for the sequence gk is given by the
MacMahon formula:

Proposition 13.3 (MacMahon formula). The generating function for plane
partitions is:

Gn×m(t) =

n∏
l=1

m∏
s=1

1

1− tl+s−1
,
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Figure 1: Plane partitions over a rectangle

where l + s− 1 is the hook length of the cell (l, s).

The hook length is represented by the shaded region in the following diagram:

Figure 2: Hook length visualization

There is a natural map from the set ⊓n,m of plane partitions sitting over the
rectangle n × m onto the Young diagrams Ynm. However, the inverse map is
not straightforward, as the preimages of various diagrams do not have the same
number of preimages.

The rectangle n×m has a natural partial order. Let us fix some linear order P
on it, which extends the partial order. This linear order is simply a map from
the rectangle n×m onto the segment [1, nm]. Let Q be any other linear order
on the rectangle.

Definition 13.4. We call the node Q−1(k) a (P,Q)-disagreement node (or
descent) if and only if P (Q−1(k − 1)) > P (Q−1(k)).

In the diagram, there is only one place of conflict, marked by a circle.

Given the pair of orders P,Q, we define the function qPQ on the rectangle n×m
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Figure 3: Disagreement node example

by:

qPQ(Q
−1(k)) = #{I : I ≤ k,Q−1(I) is a (P,Q)-disagreement node}.

Clearly, the function qPQ is non-decreasing on the rectangle. It is called the
pedestal of Q with respect to P . Let EP denote the set of all pedestals qPQ. For
example, for the previous diagram, we obtain the following pedestal diagram:

Why is this useful?

Theorem 13.5. There exists a bijection between the set Pn,m of non-decreasing
functions (i.e., 3D diagrams) and the direct product EP × Ynm, preserving the
volumes.

This bijection is constructed as follows: to each pedestal qPQ and each partition
π (i.e., 2D diagram), we associate the function p on the rectangle n×m:

p
(
Q−1(k)

)
= qPQ

(
Q−1(k)

)
+ π(k), k = 1, . . . , nm.

Clearly, the function thus defined is non-decreasing on the rectangle n×m.
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Therefore, we need to fix some ordering P on the rectangle n×m, consider all
the pedestals qPQ, and take the generating function:

⊓P (t) =
∑
Q

tν(qPQ)

(which is actually a generating polynomial) of the sequence of the number of
pedestals with a given volume. Then, we have the identity:

Gn×m(t) = ⊓P (t)Gnm(t) ≡ ⊓P (t)
nm∏
l=1

1

1− tl
.

This gives another generating function for plane partitions, which is simply
the generating function of Young diagrams times the generating function of
all pedestals. In particular, the polynomial ⊓P (t) does not depend on P , and
can thus be denoted by ⊓n×m(t). This is particularly useful because we can
apply this construction not just to plane partitions, but to any partially ordered
set.This bijection is constructed as follows: to each pedestal qPQ and each
partition π (i.e., 2D diagram), we associate the function p on the rectangle
n×m:

p
(
Q−1(k)

)
= qPQ

(
Q−1(k)

)
+ π(k), k = 1, . . . , nm.

Clearly, the function thus defined is non-decreasing on the rectangle n×m.

Therefore, we need to fix some ordering P on the rectangle n×m, consider all
the pedestals qPQ, and take the generating function:

⊓P (t) =
∑
Q

tν(qPQ)

(which is actually a generating polynomial) of the sequence of the number of
pedestals with a given volume. Then, we have the identity:

Gn×m(t) = ⊓P (t)Gnm(t) ≡ ⊓P (t)
nm∏
l=1

1

1− tl
.

This gives another generating function for plane partitions, which is simply
the generating function of Young diagrams times the generating function of all
pedestals. In particular, the polynomial ⊓P (t) does not depend on P , and can
thus be denoted by ⊓n×m(t). This is particularly useful because we can apply
this construction not just to plane partitions, but to any partially ordered set.

In particular, we can compare two formulas:

⊔n×m(t) =

∏nm
l=1(1− tl)∏n

l=1

∏m
s=1(1− tl+s−1)

,

which reveals fine cancellations. This ratio is actually a polynomial, a fact that
is not immediately obvious.

267



13.2 Example 1

The standard tableaux for the 2× 3 tableaux are shown below:

Definition 13.6. The Pedestal matrix is given byà
1 q3 q q4 q2

q3 1 q4 q q2

q q4 1 q3 q2

q4 q q3 1 q2

q4 q q3 q2 1

í
Now, we attempt to calculate the eigenvalues. The miracle is that these eigen-
values are exactly the polynomials we encountered earlier:

−(−1 + q)(1 + q)

(−1 + q)2(1 + q + q2)

−(−1 + q)(1 + q)(1 + q + q2)

−(−1 + q)(1 + q)(1− q + q2)

The fact that the function ⊓P (t) does not depend on the order P in our rectangle
has the following generalization. Instead of characterizing the pedestal qPQ
solely by its volume, we associate with it the monomial

mPQ(x1, x2, x3, . . . ) = xl1−11 xl2−l12 . . . xlr−lr−1
r xn−lr+1

r+1 ,

where r is the number of (P,Q)-disagreement nodes, and l1, . . . , lr are their
locations. Note that for mPQ(1, t, t

2, . . . ), we have tv(qPQ).

We have shown with Oleg Ogievetsky that the polynomial

h (x1, x2, x3, . . .) =
∑
Q

mPQ (x1, x2, x3, . . .)

is also independent of P , so it can be denoted as hn×m(x1, x2, x3, ...) and in a
sense we have a stochastic matrix.

We now extend to the general case. Instead of considering the partially ordered
set - the rectangle n×m - we take any finite poset X. We denote by TotX the set
of all possible linear orders on X. One way to express the property that hP , P ∈
TotX depends only onX is by stating that the matrixMX , of size |TotX |×|TotX |
with entries (MX)PQ = mPQ(x1, x2, x3, . . . ), is stochastic. Specifically, the
vector (1, 1, . . . , 1) is the right eigenvector, with eigenvalue hX(x1, x2, x3, . . . ).
The matrix MX is the pedestal matrix.
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Theorem 13.7 (Kenyon, Kontsevich, Ogievtsky, Pohoata, Sawin, Shlosman).
For every poset X, all the eigenvalues of the |TotX | × |TotX | matrix MX with
entries (MX)PQ = mPQ(x1, x2, x3, . . . ) are polynomials in x1, x2, x3, . . . with
integer coefficients.

13.3 Example 2

Consider the partition (3, 2, 1):

The 16 standard tableaux (i.e., the orders P , Q on our Young tableau) are given
by:

{1, 4, 6, 2, 5, 3} {1, 3, 6, 2, 5, 4} {1, 2, 6, 3, 5, 4} {1, 3, 6, 2, 4, 5}
{1, 2, 6, 3, 4, 5} {1, 4, 5, 2, 6, 3} {1, 3, 5, 2, 6, 4} {1, 2, 5, 3, 6, 4}
{1, 3, 4, 2, 6, 5} {1, 2, 4, 3, 6, 5} {1, 2, 3, 4, 6, 5} {1, 3, 5, 2, 4, 6}
{1, 2, 5, 3, 4, 6} {1, 3, 4, 2, 5, 6} {1, 2, 4, 3, 5, 6} {1, 2, 3, 4, 5, 6}

To save space, we express the pedestal matrix, where the replacement

(x16, x
1
5x2, x

1
4x

2
2, x

1
4x2x3, x

1
3x

2
3, x

1
3x

2
2x3, x

1
2x

2
4, x

1
2x

2
3x3, x

1
2x

2
2x

3
2, x

1
2x

2
2x3x4)→ (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10)

is made.

We obtain the matrix:



a1 a5 a7 a3 a9 a2 a6 a8 a3 a9 a5 a2 a8 a4 a10 a6
a5 a1 a7 a3 a9 a6 a2 a8 a3 a9 a5 a2 a8 a4 a10 a6
a5 a7 a1 a9 a3 a6 a8 a2 a9 a3 a5 a8 a2 a10 a4 a6
a5 a3 a9 a1 a7 a6 a2 a8 a4 a10 a6 a2 a8 a3 a9 a5
a5 a9 a3 a7 a1 a6 a8 a2 a10 a4 a6 a8 a2 a9 a3 a5
a2 a6 a8 a3 a9 a1 a5 a7 a3 a9 a5 a4 a10 a2 a8 a6
a6 a2 a8 a3 a9 a5 a1 a7 a3 a9 a5 a4 a10 a2 a8 a6
a6 a8 a2 a9 a3 a5 a7 a1 a9 a3 a5 a10 a4 a8 a2 a6
a6 a2 a8 a4 a10 a5 a3 a9 a1 a7 a5 a3 a9 a2 a8 a6
a6 a8 a2 a10 a4 a5 a9 a3 a7 a1 a5 a9 a3 a8 a2 a6
a6 a8 a2 a10 a4 a5 a9 a3 a7 a5 a1 a9 a3 a8 a6 a2
a5 a3 a9 a2 a8 a6 a4 a10 a2 a8 a6 a1 a7 a3 a9 a5
a5 a9 a3 a8 a2 a6 a10 a4 a8 a2 a6 a7 a1 a9 a3 a5
a6 a4 a10 a2 a8 a5 a3 a9 a2 a8 a6 a3 a9 a1 a7 a5
a6 a10 a4 a8 a2 a5 a9 a3 a9 a2 a6 a9 a3 a7 a1 a5
a6 a10 a4 a8 a2 a5 a9 a3 a8 a6 a2 a9 a3 a7 a5 a1


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This matrix has eigenvalues:

(a1 − a4 − a7 + a10)3,

a1 − a4 + a7 − a10,
(a1 + a2 − a5 − a6)2,
(a1 − a2 − a5 + a6),

(a1 − a2 − a3 + a4 + a7 − a8 − a9 + a10)2,

(a1 − a2 − a3 + a4 − a7 + a8 + a9 − a10)2,
(a1 − a4 + a5 − a6 + a7 − a10)2,

a1 + 2a2 + 2a3 + a4 − a7 − 2a8 − 2a9 − a10,
a1 + 2a2 + 2a3 + 2a5 + 2a6 + a7 + 2a8 + 2a9 + a10

This is another instance of the previously mentioned phenomenon.

13.4 The Proof

We present a rough plan of the proof:

1. We introduce the class of matrices MF , such that the matrix MX can be
expressed as a linear combination of MF -s with integer coefficients.

2. We show that allMF -s can be made upper-triangular by conjugating them
with the same matrix. The resulting upper-triangular matrices will have
integer entries on their diagonal.

To clarify these steps, we first introduce some definitions:

Definition 13.8. A filter F is a surjective map F : X → [1, 2, . . . , k] with
k ≤ n, such that if αi ≤ αj, then F (αi) ≤ F (αj). For integers b1, . . . , br
summing to n, we define Fb1,...,br as the set of all filters F : X → [1, 2, . . . , r]
such that |F−1(i)| = bi for all i = 1, . . . , r.

Let P be a linear order on X, and let F be a filter on X. We define a new linear
order Q(P, F ) by the following rules:

1. For αi, αj in the same stratum, i.e., F (αi) = F (αj), we have Q(αi) <
Q(αj) if and only if P (αi) < P (αj).

2. For αi, αj in different strata, we have Q(αi) < Q(αj) if and only if F (αi) <
F (αj).

We define the matrix MF by:

(MF )PQ =

®
1 if Q = Q(P, F )

0 otherwise

In particular, the matrix MF has exactly one non-zero entry in each row.
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It is easier to explain the rest geometrically, for which we introduce the following
definitions:

Definition 13.9. The central real hyperplane arrangement An (braid ar-
rangement) consists of hyperplanes {Hij : 1 ≤ i < j ≤ n} in Rn, where each
hyperplane is defined by Hij = {(x1, . . . , xn) : xi = xj}.

Definition 13.10. A chamber is an open connected component of

Rn \
¶⋃

Hij

©
.

Definition 13.11. A cone is a convex union of the closures of chambers.

Let D(n) denote the set of all distinct cones.

Given a poset X of n elements with a binary relation ≼, we associate with each
pair i, j ∈ X such that i ≤ j a corresponding half-space Kij = {xi ≤ xj} ⊂ Rn.
The cone

A(X,≼) =

 ⋂
i,j;i≼j

Kij

 ∈ D(n)

is formed by the intersection over all pairs i, j such that i ≼ j. The correspon-
dence (X,≼)→ A(X,≼) defines a one-to-one map between the set of all partial
orders on {1, 2, . . . , n} and the set of all (convex) cones in D(n).

In the image above, the central real hyperplane arrangement A4 in R4 is pro-
jected to R3 along the line x = y = z = t, and intersected with the sphere
S2 ⊂ R3.

Example 13.12 (n = 4). We want to know how many partial orders we can
put on this. Each triangle is almost like a platonic solid, except the triangles
have two angles that are 60◦ and one angle that is 90◦. We can partition S2
into 24 equal triangles with angles

(
π
2 ,

π
3 ,

π
3

)
, which leads to convex unions: the

sphere, the hemisphere, the moon, an elementary triangle (e-triangle), a pair of
e-triangles with a common side, a triangle formed by three e-triangles, a square
formed by four e-triangles, a triangle made from a square with an adjacent e-
triangle, and a triangle formed by six e-triangles sharing a common π

3 -vertex.
Their counts are 1, 12, 60, 24, 36, 48, 6, 24, 8, totaling 219. This matches the num-
ber of partial orders on a set of four distinct elements.

Next, consider the semigroup structure on the hyperplanes and all faces of
lower order. Let f ′, f ′′ be two faces in A(X) = A(X,≼). Define the face
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f = f ′′(f ′) ∈ A(X), called the face-product of f ′′ and f ′. Choose points
x′ ∈ f ′, x′′ ∈ f ′′ in general position. Let sx′x′′ : [0, 1]→ Rn be the line segment
joining these points, where sx′x′′(0) = x′ and sx′x′′(1) = x′′. Consider the face
f ∈ A(X) containing all points sx′x′′(1 − ϵ) for small ϵ > 0. By definition,
f ′′(f ′) = f .

The following figure illustrates the projection of the braid arrangement in Re to
the plane orthogonal to the main diagonal:

This face-product has the following properties:

• If f ′′ is a chamber, then f ′′f ′ = f ′′.

• If f ′′ is a chamber, then f ′f ′′ is also a chamber. Therefore, faces act on
chambers.

• The face-product is associative. For all faces f, g, h ∈ A(X,≼), we have:

f(gh) = (fg)h.

Definition 13.13. The semigroup A(X,≼) is a left-regular band, meaning:

ff = f, fgf = fg.

The semigroup A(X,≼) recovers the poset X.

Filters correspond to the same structure. Let F be a filter on X of rank k, i.e.,
a surjective map F : X → {1, . . . , k} that preserves the partial order. Let

{b1, . . . , bj1}, {bj1+1, . . . , bj2}, . . . , {bjk−1+1, . . . , bjk} ⊂ X

be its ”floors”: {
bjr−1+1, . . . , bjr

}
= F−1(r), r = 1, . . . , k.
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Consider the face fF ∈ A(X,≼) defined by the equations:

xbjr−1+1
= · · · = xbjr , r = 1, . . . , k,

and inequalities:
xbj1 ≤ xbj2 ≤ · · · ≤ xbjk .

There is a one-to-one correspondence between faces and filters. Filters of the
highest rank n, i.e., linear extensions of ≼, correspond to the chambers.

The filter-product is defined as follows. For two filters F ′ and F ′′ on X, the
filter F = F ′′F ′ is uniquely determined by the properties:

• If F ′′(u) < F ′′(v), then F (u) < F (v).

• If F ′′(u) = F ′′(v), then F (u) < F (v) if and only if F ′(u) < F ′(v).

Finally, consider the following construction. Let F be a filter on X, and let P
be a filter of rank n (a linear order on X). The filter FP is again a filter of rank

n. Consider the square matrix MF
X =MF ·P,Q

X where P and Q are linear orders
on X:

MF
X [P,Q] =

®
1 if Q = FP

0 if Q ̸= FP.

The operators MF
X play a central role in our proof.

Remark 13.14. These are non-commuting operators.

Let us rewrite our pedestal matrix MX as a sum over all monomials:

MX =
∑
r=1

∑
a1,...,ar≥1, a1+···+ar=n

xa11 . . . xarr Ba1,...,ar ,

where the entries of each matrix Ba1,...,ar are either 0 or 1.

This leads to an inclusion-exclusion formula:

Proposition 13.15. If Ba1,...,ar ̸= 0, then the following inclusion-exclusion
identity holds:

Ba1,...,ar =
∑

F∈Fa1,...,ar

MF−

 ∑
F∈Fa1+a2,...,ar

MF

+
 ∑
F∈Fa1+a2+a3,...,ar

MF

−· · ·
where the sums are taken over all possible mergers of neighboring indices ai,
and the signs are (−1)#mergers.
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To explain this, consider an order Q from the row P on the left-hand side (LHS).
This order agrees with P over the first a1−1 locations, then disagrees once, then
agrees again over the next a2−1 locations, and continues in this pattern. On the
right-hand side, an order Q corresponding to the first sum agrees with P over
the first a1 − 1 locations, then agrees or disagrees once, then agrees again over
the next a2−1 locations, and continues similarly. Therefore, we must eliminate
those Q’s which agree with P over the first a1 − 1 locations, then agree once
more, and so on for each ai.

Now, consider our matrices MF,X , which are of size |TotX | × |TotX |. Let us
now remove all order relations on X, resulting in the poset X with |TotX | = n!.
Note that MF,X is a submatrix of MF,X , specifically an upper-left submatrix.
All elements to the right of this submatrix are zero, so MF,X forms a block of
MF,X . Each row of MF,X contains exactly one 1, with the rest being zeros.
Since each row of MF,X already contains one 1, it suffices to note that the
spectrum of MF,X consists of integers.

Let us briefly introduce tournaments. We will focus solely on the ”totally un-
ordered” poset X. Consider a larger matrix, MF,T , of size 2n(n−1)/2, where T
represents the tournaments between n entries. A tournament is an assignment
of the order ≼ to each pair i ̸= j of the elements of the set {1, . . . , n}, indepen-
dently for each pair. Filters act on tournaments in the same way as they act on
linear orders, so the same matrices hold. Given a tournament ≼ and a filter F ,
we define a new tournament ≼F as follows:

1. If F (i) = F (j), then i ≼F j if i ≼ j.

2. If F (i) < F (j), then i ≼F j.

Any linear order defines a tournament in a straightforward way, so our matrices
MF,X are blocks of MF,T−S . Thus, it suffices to study MF,T−S .

The key observation is that MF,T is a tensor product of n(n−1)
2 two-by-two

matrices, corresponding to all pairs (i, j), since the orders ≼ can be assigned to
the pairs independently. Since the tensor product of upper triangular matrices
is upper triangular, we only need to verify our claim for filters and tournaments
in the case n = 2.

The three possible MF,T−S matrices for this case are:

M1 :=

Å
1 0
1 0

ã
, M2 :=

Å
1 0
0 1

ã
, M3 :=

Å
0 1
0 1

ã
.

Conjugating them by the discrete Fourier transform matrix U = 1√
2

Å
1 1
1 −1

ã
transforms them into a triple of upper triangular matrices: UM1U

−1 =

Å
1 1
0 0

ã
,

UM2U
−1 =

Å
1 0
0 1

ã
, and UM3U

−1 =

Å
1 −1
0 0

ã
. This completes the proof.
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14 Ivan Cherednik: Q-zeta Revisited

Abstract

The fundamental feature of practically all zeta-functions and L-functions
is that their meromorphic continuations to complex s provide a lot of in-
formation about the corresponding objects. However, complex values of
s have generally no direct arithmetic/geometric meaning, and occur as
a powerful technical tool. We will discuss the refined theory, which is
basically the replacement of the terms 1

ns by the invariants of lens space
L(n, 1), certain q, t, a-series. One of their key properties is the superdual-
ity q ↔ t−1, which is related to the functional equation of the Hasse-Weil
zetas for curves, the symmetry ϵ1 ↔ ϵ2 of Nekrasov’s instantons, and
to other refined theories in mathematics and physics. These invariants
have various specializations, including Rogers-Ramanujan identities and
the topological vertex. We will begin the talk with the Riemann q-zeta-
hypothesis in type A1, in full detail.
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14.1 Introduction

The fundamental property of practically all ζ-functions and L-functions is that
their meromorphic continuations to complex s provide a lot of information about
the corresponding objects. However, complex s have generally no direct arith-
metic and geometric meaning, and occur as a powerful technical tool. We will
discuss the refined theory, which is basically the replacement of n−s by the
invariants of lens space L(n, 1), certain q, t, a-series directly related to Elliptic
Hall Polynomials. The superduality q ↔ t−1, a → a is one of their key prop-
erties, corresponding to the functional equation of the Hasse-Weil zetas in the
motivic approach. Their various specializations include topological vertex and
Rogers-Ramanujan identities. We begin with the Riemann q-hypothesis for the
root system A1, when a = t2, t = qk, k = s− 1

2 .

14.2 Are Zeta’s Geometric?

Zeta-functions are an important tool in mathematics almost everywhere. It’s
wide-ranging usefulness is comparable to partition functions in physics. An
essential aspect of zeta-functions are the complex s, which we will use freely
without understanding all of its details.

One reason why we care about them is because Selberg’s zeta function (arising
from closed geodesics) ”almost” satisfies the Riemann Hypothesis for compact
Riemann surfaces X. It is related to ζ∆(s) =

∑∞
i=1

1
λs
i
for Spec(∆X). Further-

more, there are many geometric applications, mostly for s = 0.

These ideas are complementary to the theta-functions of objects found in Krichever’s
works: Riemann surfaces, KP, etc. We will focus on ∆, which has the following
nice property:

Proposition 14.1 (Ray-Singer’s Regularization).

det(∆) = lim
s→0

exp(−ζ ′∆(s))

Now, one of the key conjectures in number theory appears:

Conjecture 14.1 (Selberg’s Conjecture). If X = Γ(N)\H,

λ1 ≥ 1/4

Another reason why we care about them: Ising models with an external mag-
netic field are non-integrable (for D > 1). Furthermore, we have the following
important result:

Theorem 14.2 (Lee-Yang Theorem). The corresponding partition functions
ZN , with complex fugacity s, satisfy the Riemann Hypothesis for any D gives
that limN→∞ log(ZN )/N has only one real phase transition.
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14.3 A Stirling Moak Formula

One way to generalize ns is to take the Ueno-Nishizara transformation:

Definition 14.3 (Ueno, Nishizawa).

ns 7→ [n]qs.

For example, we would have x 7→ sinh(x).

We will do something different. Inspired by Double Affine Hecke Algebras, we
replace x2k by the Macdonald measure:

Definition 14.4. The Macdonald measure is

δk(x; q) :=

∞∏
j=0

(1− qj+2x)(1− qj−2x)
(1− qj+k+2x)(1− qj+k−2x)

.

What is connection to ns? Let q = exp(−1/a) for R ∋ a > 0 and us =
exp(s log u), u /∈ −R+. There are two connections:

Theorem 14.5 (The Stirling Moak Limiting Formula).

lim
a→∞

(a
4

)k
δk(
√
az; q) = (−z)k

if either z /∈ R+ or k ∈ Z;

Theorem 14.6 (The Straight Limit to Gamma-Functions).

lim
a→∞

a2kδk(
√
az; q) =

Γ(k + 2
√
z)Γ(k − 2

√
z)

Γ(2
√
z)Γ(−2

√
z)

.

Setting ζq(s) =
∑∞
n=1 δ−s(

√
ain; q), we can see that it is singular everywhere.

Nevertheless, for generic sequences a = am →∞,

(−i/a)sζq(s)→
∞∑
n=1

n−s,ℜ(s) > 1.

14.4 Q-Zeta As An Integral

Following the classical formula

Z(k) := 2

∫ ∞
0

(ex
2

+ 1)−1x2kdx = (1− 21/2−k)Γ

Å
k +

1

2

ã
ζ

Å
k +

1

2

ã
,

we can define a q-deformed analog:
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Definition 14.7.

Zq(k) := (−i)
∫ −∞i
∞i

(qx
2

+ 1)−1δkdx.

Theorem 14.8.

lim
a→∞

(a
4

)k−1/2
Zq = Z

when q = e−1/a.

Remark 14.9. The proof for ℜ(k) ≤ 1
2 is based on the shift operator.

Remark 14.10. Setting

Z†q(k) :=
1

i

∫ −∞i
∞i

(qx
2

− 1)−1δkdx

gives(a
4

)k−1/2
Z†q(k)→ Γ

Å
k +

1

2

ã
ζ

Å
k +

1

2

ã
,ℜ(k) > 1

2
, a2k−1Z†q(k)→ tan(πk)

Γ(k)

2

for 0 < ℜ(k) < 1
2 . There are some interesting implications in analytic number

theory arising from the appearance of tan(πk)Γ(k)2.

Problem 14.11. Find (numerically) zeros of Zq in the right half-plane ℜ(k) > 0
that are deformations of the classical zeros of ζ(k + 1/2).

For a zero k = z of ζ(k+1/2) at (near) iR, the linear (1/a)-approximation ze(a)
of the corresponding zero z(a) of Zq is given as follows:

ze(a)

z
= 1 +

4(z + 1/2)ζ+(z + 3/2)− (z − 1)ζ+(z − 1/2)

12aζ ′(z + 1/2)(1− 21/2−z)
,

as ζ ′(s) = ∂ζ(s)/∂s, ζ+(s) = (1− 21−s)ζ(s).

The first zero z that might go to the right is 1977.27i; it is exactly the first one
”unusually” close to its neighbor (so the linear approximation cannot be trusted
too much).

The limit t = qk → 0 has many applications, including Rogers-Ramanujan
identities.

Theorem 14.12. As ℜ(k)→ +∞, Zq tends to

1

i

∫ ∞
0

∏∞
j=0(1− qj+2x)(1− qj−2x)

qx2 + 1
dx.
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14.5 Analytic continuation

Definition 14.13. Define the Truncated θ-function as

Φkε(F ) :=
1

i

∫
ε+iR

Fµ(x)dx.

where

µ(x) =

∞∏
i=0

(1− qi+2x)(1− qi+1−2x)

(1− qi+k+2x)(1− qi+k+1−2x)

Example 14.14.

• E0 := qx
2

• F = f(qx)E0

• E− := (qx
2 − 1)−1

• E+ := (qx
2

+ 1)−1

Theorem 14.15. For these F , Φkε(F ) is analytic as Rk > max{−2ε, 2ε− 1}.

Definition 14.16. The Q-Macdonald-Mehta is:

Φ 1
4
(E0) =

Ã
πa

∞∏
j=1

1− qk+j
1− q2k+j

,Rk − 1

2
.

Remark 14.17.

1. For analytic symmetric F ,

Φkε(F ) = 1 + qk/2i
∫
ε+iR

Fδ(x) dx,Rk > 0.

2. Why not for all k? There are bad k, such as {2C − 1 − Z+,−2C − Z+},
C = {ε+ iR}.

3. We have

lim
a→∞

ak−1/2Φ 1
4
(E0) =

√
π
Γ(2k)

Γ(k)
, q = e−

1
a .

14.6 Sharp Q-Zeta Function

Let ε =
√

πa
2 , the integration path be a closed loop between ∞− εi and ∞+ εi

through zero. Then

Z⊏
q (k) :=

1

2i

∫ ∞−εi
∞+εi

δk(x; q)

q−x2+1
dx
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is analytic in the horizontal strip K♯ = {−2ε < I(k) < +2ε} as Rk − 1
2 . Its

meromorphic continuation to all k ∈ C (via Cauchy’s theorem), is called sharp
zeta:

Definition 14.18. The sharp zeta function is

Z♯q(k) := −
aπ

2

∞∏
j=0

(1− qj+k)(1− qj−k)
(1− qj+2k)(1− qj+1)

×
∞∑
j=0

(1− qj+k)q−kj

(1− qk)(q−(k+j)2/4+1)

j∏
l=1

1− ql+2k−1

1− ql

with poles in K♯ at {−1/2− Z+}.

This strip is exactly between the first zeros of q − k2

4 + 1.

Theorem 14.19. For all k apart from the poles,

lim
a→∞

Ç
ak−1/2

4

å
Z♯q(k)

= sin(πk)
Ä
1− 21/2−k

ä
Γ

Å
k +

1

2

ã
ζ

Å
k +

1

2

ã
.

Conjecture 14.2. Given a classical zeta-zero k = z, z♯(a) is its ♯-deformation,
z̃♯(a) = z:

z̃♯(a) = z

Ç
1−

4(z + 1
2 )ζ+(z +

3
2 )− (z − 1)ζ+(z − 1

2 )

12aζ ′(z + 1
2 )(1− 21/2−z)

å
.

We can proceed similarly for q−dx
2

and sharp L-functions.

Taking z = 14.1347i and a = 750, d = 2, z♯ = 0.1304 + 14.1450i, z̃♯ = 0.1302 +
14.1465i. The other zeros in K♯ for a = 750, d = 2 are:

zeta sharp-zeta linear approximation
21.0220i 0.3514 + 21.0702i 0.3504 + 21.0771i
25.0109i 0.5641 + 24.9586i 0.5745 + 24.9643i
30.4249i 0.9046 + 30.4014i 0.9134 + 30.4077i
32.9351i 1.1051 + 33.0341i 1.0998 + 33.0854i
37.5862i 1.6449 + 37.9660i 1.7675 + 38.1895i
40.9187i 1.9080 + 40.8119i 1.9141 + 40.7816i
43.3271i 2.2860 + 43.2485i 2.4497 + 43.3138i
48.0052i 2.9259 + 47.8424i 3.1103 + 47.5578i

14.7 Riemann’s Q-Hypothesis

The simplest sharp Dirichlet L-function is

L♯q(k) :=
1

2

√
πa

∞∏
j=0

1− qj+1

1− qj+k+1
×
∞∑
j=0

1− qj+k

1− qk
q−kj

q(k+j)2/4+1 + q−(k+j)2/4

j∏
l=1

1− ql+2k−1

1− ql
.
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It converges to the analytic continuation of the Dirichlet L-function of conductor
3:

L(k) =

∞∑
j=0

Ä
(3j + 1)−k−1/2 − (3j + 2)−k−1/2

ä
,

where k = s− 1
2 , Rk >

1
2 , and a→∞.

Proposition 14.20. The function L♯q(k) is regular in the horizontal strip

K♯
3 =

ß
−2
…
πa

3
< I(k) < 2

…
πa

3

™
.

The first negative R of the 1
a -linearization occurs at z = 246.4149i; this L-zero

is very close to the previous one 246.3028i. It is realistic to try to calculate the
corresponding q-zero numerically.

Conjecture 14.3 (Q-Hypothesis). Let

L̂♯b(q)(k) := L♯q(k)− L♯q(−k).

All of its zeros in a strip a bit smaller than K♯
3 are deformations of the zeros of

L̂(k) := L(k)− L(−k) and they are all imaginary for R(k) sufficiently small.

The following is the table of all zeros z♯ of L̂♯q(k) corresponding to the classical

zeros of L(k) (z1, z2 etc.) for a = 500 inside K♯
3. The condition |R(z♯)| < 0.3 is

imposed in this computation.

Let us give the first two sharp-zeros z♯1,2 with their linear approximations:

z1 = 8.0397i, z♯1 = 8.0329i, z̃♯1 = 8.0324i

z♯2 = 11.2492i, z♯2 = 11.3048i, z̃♯2 = 11.3062i

The linear approximations are purely imaginary due to the antisymmetrization.

All zeroes in the strip in the following table:
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z z♯

8.0397i 8.0329i
11.2492i 11.3048i
15.7046i 15.6124i
18.2620i 18.2702i
20.4558i 20.7196i
24.0594i 23.9028i
26.5779i 26.3980i
28.2182i 28.6315i
30.7450i 31.0640i
33.8974i 33.5322i
35.6084i 35.7571i
37.5518i 37.9601i
39.4852i 40.1558i
42.6164i 42.3568i
44.1206i 44.4996i

Table 1: Table of z and z♯

14.8 Gauss Integrals and Zetas

Theorem 14.21 (The q-Mehta-Macdonald Formula). We can write the q-
Mehta-Macdonald function as a product in terms of q-Gamma functions for∫
iRn γ(x)µ(qx) dx for the plus-Gaussian γ(x) = q−x

2/2 and the mu-function

µ(qx) =
∏
α,j≥0

(
1− q(x,α)+ναj

) (
1− q−(x,α)+να(j+1)

)(
1− tαq(x,α)+ναj

) (
1− tαq−(x,α)+να(j+1)

) .
Here α are positive roots of a given reduced irreducible root system R ⊆ Rn,
normalized by the condition (αsht, αsht) = 2; we set να = 1 for short α, and
ν = 2, 3 for long. Let tsht = qksht and tlng = qklng ; tα depends only on |α|.
Also, ρk = 1

2

∑
α>0 kαα and µ1 = µ

CT(µ) for the constant term functional CT

for Laurent series in terms of Xb = q(x,b) for b ∈ P . Let 0 < q < 1 and tα > 1.

One of the key Double Affine Hecke Algebras formulas is given by∫
Rn

Pλ(qx)Pλ(t
−ρ)f(x)γ(x)µ(qx) dx ∼ f(x = λ+ ρk).

The integration can be replaced by CT.

Definition 14.22. The Jackson integration is a variant of
∫
Rn defined as

J(f(x)) =
∑
ŵ∈Ŵ

f(ŵ(x)).
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Definition 14.23. Elliptic Hall Polynomials of level ℓ are

J

Å
Pλ

Pλ(t−ρ)
qℓx

2/2µ (qx)

ã
.

Their number is the same as the number of Kac-Moody characters of level ℓ.

Let

Z+
n (q, t) =

∫
ϵ+iRn

γ(x)
1+γ(x)µ(qx) dx∫

ε+iRn γ(x)µ(qx) dx

and we set: s = ksht|Rsht+ |+ klng|Rlng+ |+ n
2 . Then one has:

lim
q→1−

Z+(q, t) = η(s) := (1− 21−s)ζ(s)

for the Riemann’s ζ(s). The translation by of ε combined with the usage of µ
improves the range of kν where Z+

n is analytic. The basic range is Rkν > 0,
which is for ε = 0. If klng = k = ksht and ε = ρ/h for the Coxeter number,
then Z+(q, t) is analytic for Rk > − 1

h , which corresponds to Rs > 0, i.e., our
integral formula works for the whole critical strip 0 < s < 1 in the limit, which
can be potentially useful for ”q-Lindelöf”.

The convergence to η(s) holds for any s ∈ C upon the analytic continuation.
The justification is essentially the procedure of ”picking up residues” due to
[Weyl, Arthur, Heckman, Opdam].

Let’s consider the type An setting. Set v = n+ 1 and v◦ = −kv:

s = k
v(v − 1)

2
+
v − 1

2
= −1

2
(v − 1)(v◦ − 1).

The integral I+(n) =
∫
ε+iRn

γ(x)
1+γ(x)µ(q

x) dx for ε = ρ/ν is an analytic function

for Rk > −1/v and, accordingly, for s > − 1
v
v(v−1)

2 + v−1
2 = 0.

In type A, there exists meromorphic Z(q, t, a) satisfying the superduality, which
is Z(t−1, q−1, a) = Z(q, t, a), and such that η(s) is the limit q → 1− of Z(q, t =
qk, a = tv). A similar stabilization is expected for Elliptic Hall Polynomials.
Also, elliptic triply graded homology of torus knots are expected to be those of
Lens spaces.

In terms of k, ν, the superduality becomes: k 7→ 1/k, ν 7→ −kν = ν◦. The
corresponding s remains fixed under superduality. However, we have a non-
trivial connection between the values of Z at k and 1/k in the q-theory. For
instance, the a-coefficients of Z are (conditionally) bounded as |k| → ∞ and
Rs > 0, or its values for superinvariant a, which is a variant of the Lindelöf
hypothesis.

Algebraically, Z(q, t, a) is a generating function of the simplest elliptic Hall
polynomials, that of invariants of L(n, 1).

Geometrically:
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Problem 14.24. Find a conifold M with L(n, 1) as special fibers (for the lo-
calization in proper cohomology) such that H∗(M) = Z.
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15 Alexander Braverman: Introduction to Sym-
plectic Duality and Coulomb Branches of 3D
Quantum Field Theories

Abstract

I will give a survey of the series of my joint works with Finkelberg and
Nakajima giving a mathematical construction of the so called Coulomb
branches of 3D N = 4 super-symmetric gauge theories (no knowledge of
any of these words will be needed). I will also explain its connection with
the (purely mathematical subject) of symplectic duality.
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15.1 Introduction

We begin by presenting a survey of works on Coulomb branches of 3d gauge
theories, before transitioning to a discussion of 4d gauge theories. The goal is
to eventually address an open problem that connects to the lectures of Etingof
and Nekrasov. This problem is intriguingly related to the geometric construction
of various Hitchin integrable systems.

The motivation stems from physics, where people work with analytic objects,
such as complex Lie groups. However, we will approach the problem alge-
braically, starting with some basic data: let G be a reductive connected alge-
braic group, and N be a finite-dimensional representation of G. Physics suggests
that we should associate a piece of data to this structure, namely the 3d N = 4
quantum gauge theory.

As mathematicians, we may not fully understand the physics, but we can begin
attaching mathematical objects to this structure. One such object is the moduli
space of vacua, which is a complicated structure that we do not yet fully under-
stand. However, it contains special components with well-defined mathematical
structures, specifically the Higgs branch (MH) and the Coulomb branch (MC)
of the moduli space. From here, we will set aside the physical language and
focus on the mathematical properties of these objects.

Physics suggests that these branches should be ”hyper-Kähler manifolds” with
additional structure. The quotation marks are due to the fact that these objects
are often singular. Since it is unclear how to mathematically define a singular
hyper-Kähler manifold, we will not fully address this, but we will fix a specific
complex structure that allows us to work algebraically.

With the chosen complex structure, both the Higgs and Coulomb branches can
be defined as affine algebraic varieties, which may be singular. These varieties
are equipped with a Poisson structure and are generically symplectic, meaning
that the Poisson structure on the smooth locus of the variety is derived from a
symplectic structure.

Many questions arise: What is the mathematical definition of these varieties?
While physics suggests their existence, we need to understand their precise
mathematical nature. We will begin with the Higgs branch:

Problem 15.1. What do we know aboutMH?

Let us start with the simplest case, where the data consists of a group and a
representation. For the Higgs branch, the definition is relatively straightforward,
especially without delving too deeply into technicalities:

MH = T ∗N = N ⊕N∗.

From the physics perspective, this should only depend on N⊕N∗, meaning that
replacing N with N∗ should yield the same result. This is true for the Higgs
branch, but less so for the Coulomb branch.
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Next, we perform the Hamiltonian reduction by the group G. Since T ∗N is a
symplectic vector space, it carries a symplectic or Hamiltonian action of G, and
thus has a moment map. The moment map is given by T ∗N → g∗.

Definition 15.2. The Higgs branch is defined as

MH = µ−1(0)/G = Spec(C[µ−1(0)]G).

This construction includes well-known examples: for instance, Nakajima quiver
varieties are special cases of this construction, arising from quiver gauge theories.

Example 15.3. Consider a graph Q with orientation. Attach to each vertex i
two vector spaces Vi and Wi. Let G =

∏
GL(Vi) and N =

∏
i→j Hom(Vi, Vj)×∏

iHom(Vi,Wi). After performing the Hamiltonian reduction, the Higgs branch
MH is called a Nakajima quiver variety. Nakajima related these varieties
to representations of Kac-Moody algebras, but we will not delve into that topic
here.

Examples of such varieties include:

1. C2/Γ, where Γ ⊂ SL(2,C) is a finite subgroup.

2. sl(n,C) ⊃ N ⊔λ Oλ, where N is the nilpotent cone. For each λ, µ, the
Slodowy slice Sλµ to Oµ inside Oλ provides an important structure.

There are many other examples, and several known symplectic varieties arise in
this way.

Problem 15.4. What do we know aboutMC?

Next, we will define the Coulomb branch and explore its generalizations. Before
doing so, we state some properties that any definition ofMC should satisfy, and
we will then describe how to construct a definition that satisfies these properties.

Proposition 15.5.

1. MC is an affine normal Poisson ”symplectic” variety of dimension 2 rankG.
The quotation marks indicate that we aim for the structure to be as sym-
plectic as possible—if the variety is smooth, we want the entire locus to be
symplectic.

2. MC comes equipped with a canonical integrable system: MC
π→ ≈/W ,

where T ⊂ G is a maximal torus, ≈ = LieT , and W is the Weyl group. In
classical integrable systems, the fibers are often tori in some sense. The
term ”torus” can refer to various concepts depending on context: in real
manifolds, a torus is a product of circles; in affine algebraic geometry, it
refers to (C∗)rankG. The open problem will become more interesting when
considering fibers as generic fibers of abelian varieties.

3. MC has a canonical C∗-action (and a canonical grading) under which the
Poisson structure has degree −2.
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4. There is a canonical quantization of these structures. Let AC = C[MC ],
which is a Poisson algebra, and since there is an integrable system, there
exists a sufficiently large commutative subalgebra. A deformation AC,ℏ of
this algebra exists, and the integrable system also deforms.

5. Assuming GF ↪→ AutG(N), the above structure has a (canonical) defor-
mation over ≈F /WF = gF /Adjoint action.

However, if we take a sufficiently generic group G and representation N , the
result may not make sense, as it could produce varieties we do not wish to de-
scribe. Thus, only in some special cases can we explicitly describe the Coulomb
branches, as ”explicit” means that the varieties correspond to familiar ones.
In most cases, however, we will obtain new varieties that have not been en-
countered before, although some familiar varieties may emerge. Here’s a simple
example:

Example 15.6. Take any G and let N = g, the adjoint representation. In this
case, we can explicitly describe the Coulomb branch:

MC = T∗TV /W,

where T is the maximal torus and T∗ is the tangent bundle. Note that T ∗T∨ =
T∨ × ≈, and we have two canonical maps: T∨ × ≈ → ≈ and (T∨ × ≈)/W →
≈/W . It’s not difficult to verify that the symplectic structure is indeed well-
defined.

Here is a more complex example:

Example 15.7. Take any G with N = 0. This corresponds to pure gauge
theory in physics. The variety we obtain is symplectic, but its symplectic struc-
ture is not immediately evident from the construction we present, as it requires
a different approach.

We obtain the universal centralizer:

{(x ∈ (g∨reg)
∗, g ∈ G∨ such that adg(x) = x)}/conjugation,

where ”reg” indicates that the characteristic polynomial equals the minimal poly-
nomial. In general, ”regular” means the minimal possible dimension of the cen-
tralizer in the group.

Given G, we can attach its Langlands dual group G∨, whose root datum is dual
to that of G.

The map we want is:

π : {(x ∈ (g∨reg)
∗, g ∈ G∨ such that adg(x) = x)}/conjugation→ (g∨reg)

∗/G∨ = ≈/W.

The map π(x, g) = g only remembers the conjugacy class of x, and the moduli
space of regular conjugacy classes is the same as the moduli space of all conjugacy
classes. If G = GLn, then ≈/W represents the spectrum of a matrix, and for
each spectrum, there is a unique conjugacy class of regular matrices.
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Exercise 15.8. Define a canonical symplectic structure on ≈ so that π becomes
an integrable system.

This integrable system is related to the open Toda integrable system, though
we will not discuss it here.

15.2 Construction

We will present the construction for the N = 0 case, and there is a relatively
straightforward way to generalize this.

We aim to construct an algebraic variety, which involves constructing an algebra
of functions on this variety. We define AC = H∗(something). It is natural to
ask: why is this an algebra? Typically, homology does not have an algebra
structure, but in some cases, it does. For example, if we take the homology of a
Lie group, multiplication on the Lie group induces multiplication in homology,
and this is analogous to what happens here.

To be more precise, we need to introduce the Grassmannian. Let K = C((t)) ⊃
O = CJtK. Then the Grassmannian is

GRG := G(K)/G(O).

This is defined as a set, but to define it properly in algebraic geometry, we should
describe its functor of points to specify what it means to map an affine scheme
into it (which we will not do). However, the claim is that this is an ind-scheme,
and in fact, an ind-project, which is the direct limit of projective algebraic
varieties. This is slightly imprecise because it leads to G being semisimple,
while we desire it to be reductive. However, this complication can be ignored
for simplicity.

Another way to write this is

GRG =
⊔
λ

GRλG,

where λ represents the dominant coweights, and GRλG are theG(O)-orbits. Then
GR

λ

G is a projective variety, and AC = HGO
∗ (GRG) = H∗(G(O)\G(K)/G(O)).

This formulation clarifies that AC indeed has an algebra structure. However,
the key result is as follows:

Lemma 15.9. In this case, AC is commutative.

For general N , one can define a similar space RG,N → GRG, where RG,N =
{g ∈ G(K)/G(O), n ∈ N(O) | g−1(n) ∈ N(O)}. Then

AC = H
G(O)
∗,BM(RG,N ),

is a commutative algebra, where BM refers to the Borel-Moore homology. This
space is infinite-dimensional, so we need to modify the construction slightly, but
this is not difficult.
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Physics tells us that the functions on the Coulomb branch are given by monopole
operators, and it is not hard to verify that these monopole operators correspond
exactly to the Borel-Moore homology classes.

Now, let’s discuss the non-commutative deformation. We have

H
G(O)⋊C∗

∗,BM (RG,N ),

where a new loop rotation by C∗ is introduced. For instance, when N = 0, then
RG,N = G(K)/G(O) and C∗ rotates t. We stated that it was a lemma that
the homology algebra is commutative, but the proof no longer holds when this
rotation is added, as everything becomes a module. However, the loop relation
becomes an algebra over H∗C∗(pt) = C[ℏ].

The integrable system is

H
G(O)
∗,BM(RG,N ) ⊃ H∗G(O)(pt) = H∗G(pt) = C[≈/W ].

Exercise 15.10. Show that this Poisson structure commutes.

15.3 Generalization to 4d N = 2 Gauge Theories

Previously, in 3d, we worked over 3-manifolds such as R3. Now, the claim is that
the same data defines a 4d gauge theory. If we look at the physics literature,
we find that in order for a physical theory to exist, there must be some very
strong condition on N . For example, if G is a torus, only the 0 representation
will work. We will ignore this condition here, but the point is that if we wish
to define certain analytic objects—such as the hyperkähler metric—requiring
specific conversions, we need the physical theory to exist. However, if we are
only concerned with the algebra, we do not need the physical theory to exist.

Formally, we will work on R3 × S1, andMC is a ”hyperkähler manifold” (the
quotations are included because it can sometimes be singular). In the 3d story,
we only discussed this in one complex structure because we considered a trivial
hyperkähler manifold where it looks the same in all complex structures.

The hyperkähler manifolds corresponding to 4d gauge theories will differ de-
pending on the complex structure. For example, a generic complex structure
will correspond to an affine algebraic variety, and we have πgen :Mgen

C → T/W .
However, some special complex structures will correspond to projective vari-
eties, and we have πsp :Msp

C → ≈/W , where the distinction lies in the fact that
the second map is a projective morphism. A generic fiber of πgen is isomorphic
to (C∗)rank G, while the generic fiber of πsp is an abelian variety that should
vary when we vary the base point.

The difference between an affine algebraic torus and an algebraic torus in the
sense of abelian varieties is that all affine algebraic tori are isomorphic, but not
all abelian varieties are isomorphic. Therefore, the question is how to properly
define these objects.
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ForMgen
C = SpecKG(O)(RG,N ), we are doing exactly the same thing as before,

but replacing homology with K-theory. ForMsp
C , there is currently no definition.

This space is expected to have a projective homogeneous coordinate ring because
the fibers are supposed to come with a canonical projective embedding, which
leads us to the open problem:

Problem 15.11. The definition for Msp
C should be formulated in the ”same”

way as in 3d, but replacing G by Gaff, the affine Kac-Moody algebra.

This approach should provide a way to define many integrable systems of Hitchin
type.
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16 Paul Wiegmann: Peierls Phenomenon via
Bethe Ansatz

Abstract

In the 1930s Rudolf Peierls argued that the one-dimensional electrons
interacting with phonons undergo an instability, leading to the formation
of a periodic structure known as an electronic crystal. Peierls’s instability
stands in a short list of major phenomena of condensed matter physics.

From a mathematical perspective, a comprehensive solution to the
Peierls problem was given in papers by Igor Krichever and co-authored
by Natasha Kirova, Sergei Brazovski, and Igor Dzyaloshinsky In the early
80’s. It was found that electronic crystals are periodic solutions of soliton
equations, falling within the framework of Krichever-Novikov’s theory of
finite-gap potentials.

The Peierls phenomenon also emerges as a limiting case of models of
interacting fermions, such as Gross-Neveu models with a large rank sym-
metry group when the rank of the group tends to infinity. These models
are solvable by the Bethe Ansatz for finite rank groups. The talk presents
the result of a recent paper co-authored by Konstantin Zarembo, Valde-
mar Melin, and Yoko Sekiguchi, where Krichever’s finite-gaps solutions of
soliton equations were obtained as a singular large rank limit of the Bethe
Ansatz solution of models with Lie group symmetry.
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16.1 Introduction

This talk focuses on Krichever’s works on the Peierls model. He published 3
major works:

• Spin states in the Peierls model, and finite-band potentials

• Discrete Peierls models with exact solutions

• Sound and charge-density wave in the discrete Peierls model

16.2 The Peierls Phenomenon

A one-dimensional crystal can be considered as a chain of ions (or atoms) that
undergo slight vibrations. These vibrations cause the atoms to oscillate back and
forth, but the displacement is much smaller than the distance between adjacent
atoms. This atomic movement gives rise to what we refer to as ”sound” within
the crystal.

Now, let us introduce electrons into this crystal. For simplicity, assume that the
number of electrons is equal to the number of ions. Each ion creates a potential
well, attracting the electrons towards it. This can be described in the context
of Schrödinger’s equation, where the electrons fall into these potential wells but
are also capable of vibrating in sync with the ions.

In an idealized scenario, the ions would form a periodic lattice with minimal
vibrations. When electrons are introduced, they would settle on top of each
ion, resulting in a periodic lattice formed by both the ions and electrons. This
configuration characterizes an insulator.

However, the Peierls phenomenon challenges this idealized picture. It demon-
strates that the above configuration is unstable and possesses higher energy
than an alternative configuration. In the more stable configuration, the ions
rearrange themselves. By labeling the ions as even and odd, the odd-numbered
ions may shift slightly to the right, while the even-numbered ions may shift
slightly to the left. This displacement of ions drags the electrons along, effec-
tively doubling the period of the lattice. This instability is known as Peierls
instability.

The energy in this new configuration, resulting from the interaction between
electrons and the potential wells, is lower because the potential wells can be
distorted or displaced. The configuration with a doubled period is more stable
than the homogeneous, single-period configuration.

To understand this in more detail, consider the shift in position of an electron
at location x. The amount of movement to the right is termed a distortion,
denoted as U(x). This distortion is periodic, alternating between positive and
negative values for different ions, thus creating a periodic wave. This wave-like
distortion is central to the Peierls phenomenon.
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The situation becomes more complex if the number of electrons is not exactly
equal to the number of ions, but instead is a fractional ratio (e.g., 1

3 ,
2
5 ). This

results in a more intricate structure. Nevertheless, the main takeaway is that
the simple, naive configuration where the lattice period matches the ion period
is unstable.

The phenomenon is counterintuitive: why would the electrons cause the ions to
shift and double the period? The explanation lies in the Pauli exclusion principle
and the effects of electronic statistics, which manifest in this macroscopic effect.

In some cases, the period may not merely double; it could result in multiple pe-
riods, leading to a more complex structure. Interestingly, this can be explained
through arithmetic. When dealing with large numbers, such as the number of
electrons and ions (both on the order of 106), dividing one by the other yields a
ratio (a rational number) that determines the periods of the lattice. This pro-
vides a simple way to explain the phenomenon, although the underlying details
can become quite complicated.

16.3 History

The Peierls phenomenon was first introduced in the 1930s, although it was not
formally published until 1954. It explains that a one-dimensional, equally spaced
chain with one electron per ion is inherently unstable. This discovery gave rise
to the field of electronic crystals, in which electrons themselves form periodic
structures.

To illustrate, consider a simple model where black dots represent ions, and the
line represents the distortion of the electron positions. In theory, no distortion
should occur, but in practice, the electrons oscillate back and forth, creating a
periodic wave.

When electrons move within this self-induced periodic potential, the result is a
spectrum with both bands and gaps—regions where certain energies are either
forbidden or allowed. This distortion opens a gap in the electronic spectrum,
which is a characteristic feature of the Peierls phenomenon. If we use opti-
cal techniques such as spectroscopy to observe this gap, it confirms that the
electrons have indeed formed a periodic structure.

Although Peierls predicted this phenomenon in the 1930s, it was not experi-
mentally confirmed until 1946 by W. Little of Stanford University.

This provides a clear demonstration of what we refer to as an electronic crystal
- a striking example of theory meeting experiment.

16.4 Peierls Problem: Discrete Version

Consider the Schrödinger equation: cnψn + cn−1ψn−1 = ϵnψn. Find the spec-
trum as a functional of C = {c1, . . .}: ϵ[C], and then compute the energy by
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summing over all eigenvalues below µ:

E[C] =
∑
ϵ<µ

ϵ[C] +
∑
n

c2n

.

Problem 16.1 (Peierls Problem, Discrete Version). Find C that minimizes the
energy:

min
C

E[C]

Let’s break down the problem in a more mathematical way: Imagine an electron
sitting on a lattice, where each lattice site is labeled by n (n = 1, 2, 3, 4, 5, etc.).

We have the Schrödinger equation:

cnψn + cn−1ψn−1 = ϵnψn

The wave function of these electrons is influenced by a coefficient c, known as the
hopping amplitude. Next, we find the spectrum as a functional of C = {c1, . . .}:
ϵ[C]. The equation is called a discrete Schrödinger equation or a linear difference
equation, where we need to determine how the wave function (ψ) depends on n
and what the spectrum is.

In this equation, the cn tells us where the ions are located, and since they can
move, the central question becomes:

Problem 16.2 (Peierls Problem). Find C that minimizes the energy:

min
C

E[C]

To solve this, we need to sum over all eigenvalues below µ:

E[C] =
∑
ϵ<µ

ϵ[C] +
∑
n

c2n

and then find the value of C that gives the minimum energy.
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In summary, the problem is to assume an arbitrary C, solve the equation, com-
pute the spectrum, find the total energy, and then minimize that energy with
respect to C. The value of C that gives the minimum energy is the solution
we’re looking for. This is the essence of the problem, which is quite simple in
its statement.

Proposition 16.3 (Krichever). The extrema are given by the finite-gap solu-
tions of the Toda chain. The minimum is given by the one-gap solution.

The solution to this problem leads to a finite gap in the spectrum, which is given
by the periodic solutions of the Toda chain. Although the specific equation isn’t
written here, finding a periodic solution for the Toda chain will give you a C
that is periodic in n. This periodic solution corresponds to a local extremum of
the energy function.

The Toda chain has many periodic solutions—one gap, two gaps, three gaps, and
so on. Each of these corresponds to a local extremum, but only one represents
the ground state, which is the solution with the lowest energy. Typically, this
lowest energy solution has one gap.

The electron density will determine the period of this solution. The period is
determined by the ratio of certain factors. If this ratio is 1 over an odd number,
you get a one-gap solution. If the ratio is more complex, like a rational number,
you could have a multi-periodic solution.

The surprising part of this problem is that such a simple problem gives rise to
these periodic solutions of integral equations.

16.4.1 Peierls Problem and the Lax Operator

The key reason is because this Schrödinger equation is actually the Lax operator.
Krichever showed that the Schrödinger equation with a variable hopping

Lψ = cnψn+1 + cn−1ψn−1 = ϵψn

is identified with the Lax operator, and then proved that the extrema of energy
are identified with finite-gap periodic solutions.

So, when you approach problems like solving the Toda chain or the KdV equa-
tion, you might wonder why we focus on finding periodic solutions when there
are many other possible solutions that aren’t periodic. The reason is that these
periodic solutions form the extrema of a functional provided by the electrons
themselves. Essentially, there’s a natural functional whose extrema correspond
to these periodic, finite-gap solutions.

16.5 Peierls Problem: Continuous Version

For the purposes of this talk, it is more convenient to work with a continuous
version of the problem, even though the discrete version can also be solved.
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Consider the (1 + 1) Dirac equation:®
−i(∂x −∆(x))ψ+ = ϵψ−

−i(∂x +∆(x))ψ− = ϵψ+

where ∆(x) is some potential.

We can reformulate this simple differential equation in terms of the Hamiltoni-
ans, specifically the Dirac Hamiltonian:

H = ψσ1(i∂x + σ3∆)ψ +
1

2λ
∆2

E = TrH<µ(H).

The goal is to find ∆ such that the energy, which is the trace (or sum of all
eigenvalues) of the operator, is minimized. The solution depends on the system
parameters, particularly the chemical potential µ, which must be determined
from the ratio of the number of particles in the system to the number of available
states.

I’ll explain how this works. You have two key quantities: the total number
of particles (electrons) and the number of lattice sites. The ratio of these two
numbers, known as the filling factor, plays a crucial role in determining the
solution.

Interestingly, the solution turns out to be a special case of the modified Korteweg
- de Vries (mKdV) equation. The mKdV equation has many periodic solutions,
and in this case, we fix the period based on the system parameters.

Proposition 16.4. The minimum energy is achieved if ∆ is a periodic solution
of the mKdV equation:

∆t − 6∆2∆x +∆xxx = 0, ∆ = function(x− ct).

16.5.1 Cnoidal Wave

Let’s discuss the KdV equation and its periodic solutions. The KdV equation
is closely related to another equation through a transformation. The solution
that minimizes the energy and ”makes the electrons happiest” is a well-known
solution of the KdV equation called the cnoidal wave.

The cnoidal wave is expressed using hyperbolic sine functions. The wave’s period
depends on a parameter k, which is related to the number of particles in the
system or the chemical potential µ. While the relationship between k and the
number of particles might seem complex, it is essential for understanding the
solution.

The cnoidal wave is the most familiar solution of the KdV equation, and its
period is determined by the number of particles in the system. By providing
the number of electrons and the number of lattice sites (referred to as the filling
factor), we can calculate k, which in turn gives us the period of the wave.
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Equation Cnoidal Wave Properties
mKdV: ∆t − 6∆2∆x +∆xxx = 0
Miura: q± = ∆2 +∆x

KdV: qt − 6qqx + qxxx = 0

Cnoidal wave: ∆(x) = ∆0k
1/2 sn(x|k)

Number of Particles = Period: N/N0 = 2k1/2K(k)
Gap: ∆0 = Λe−π/λ

Table 2: Equations and properties of cnoidal waves

16.5.2 Spectral Curve

Let’s use the cnoidal wave:

−i(∂x ±∆(x))ψ± = ϵ(p)ψ±

which makes electrons ”happy.” The energy of this periodic wave depends on
momentum, and momentum determines how many states or eigenstates exist
per unit of energy:

dN(ϵ)

N0
= dp

From this, we can derive a spectral curve.

In this case, the spectral curve is an elliptic curve with the following properties:

dp =
|ϵ2 − S|√

R
dϵ

R(ϵ) = (ϵ2 − E2
+)(ϵ

2 − E2
−)

2S = −∆2
0 + E2

+ + E2
−

The edges of the spectrum are given by:

E± =
∆0

2

Ä
k−1/2 ± k1/2

ä
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16.6 Quantization of the Spectral Curve

Problem 16.5 (Melin, Sekiguchi, Wiegmann, Zarembo). How do we obtain pe-
riodic solutions of classical integrable equations from quantum integrable models?

The KdV equation and its periodic solutions have been widely studied. At the
same time, we know that nonlinear integrable equations can be quantized. In
lucky cases, their solutions can be obtained using methods from quantum field
theory, specifically through Bethe’s ansatz.

The key question is whether the simple periodic solutions of classical equa-
tions can be derived as a limit of the quantum Bethe ansatz solution for the
corresponding quantum problem. The bridge between the quantum and clas-
sical worlds is provided by the semi-classical limit, where Planck’s constant
approaches zero. In this limit, some underlying mathematical structures in
quantum integrable systems should reduce to the periodic solutions of the KdV
equation. This is a specialized but interesting question.

Integrable equations have many solutions, with periodic solutions being just one
type. Solitons are another type of solution that corresponds to particles in the
quantum world. There is a semi-classical procedure where one considers quan-
tum solitons and then lets Planck’s constant approach zero to obtain classical
solitons with periodic solutions. This story is quite complex, and that’s what
we will focus on.

Another way to think about it is in terms of algebraic curves. For the Peierls
problem or the periodic solutions of the KdV equation, we get an algebraic curve
known as a spectral curve, such as an elliptic curve. In quantum problems,
however, we don’t have such curves. Instead, there are structures that are not
yet fully identified, but hints suggest that they might be related to algebraic
curves in the limit.

These structures are not the same as Riemann surfaces, but they appear to
become Riemann surfaces when Planck’s constant approaches zero. These might
be deformations of Riemann surfaces, and in the limit, they become algebraic
curves. There could be interesting structures underlying them, which might
include additional parameters or constants.

We might also explore a correspondence with spin chains, such as the Heisen-
berg spin chain. For spin-1/2 quantum problems, we know quite a bit about
the solutions. If the spin is very large, the problem becomes classical and is
solved by integrable equations that are classically integrable. There is a cor-
respondence between these classical and quantum problems, although it is not
fully understood yet.

16.6.1 Quantum Version: Gross-Neveu Model

What does quantization means in this context? In the Peierls problem, we treat
electrons as quantum objects, meaning they obey the Pauli exclusion principle
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and cannot occupy the same state as each other. We have the equation

H = ψσ2(i∂x + σ3∆)ψ +
1

2λ
∆2.

However, the parameter ∆, which describes how far the ions move left and right,
is treated classically. Specifically, we fix ∆ at some value, solve the problem to
find the energy, and then minimize the energy with respect to ∆. In this setup,
∆ acts as a parameter, and once it is fixed, we can find the energy and solve for
∆, leading to a periodic solution of the KdV equation.

Now, imagine if ∆ were not fixed but could also vary dynamically - it would then
be considered a quantum field with its own dynamics. This is a more complex
scenario compared to the adiabatic approximation, where ∆ is determined by
the extremum of Tr(H). ∆ was assumed to be nearly constant while electrons
moved very quickly. In this simpler case, we can find ∆ by minimizing the trace
of the Hamiltonian, but if ∆ is fluctuating, things become more complicated.

To handle this, we can integrate over ∆ to account for its fluctuations. This
leads to interacting fields and results in a more complex quantum problem. This
model is known as the Gross-Neveu model, which has been studied in quantum
field theory since the 1970s. It describes interacting fermions in one dimension
and is a challenging problem that bridges the gap between classical and quantum
theories.

In the quantum version, ∆ itself is a quantum field, and we have the Gross-Neveu
model

H = ψσ2(i∂x∆)ψ +
λ

2

(
ψψ
)2
.

We consider large N as a semiclassical parameter: ψ → (ψ1, . . . , ψN ) with

H =
∑

1≤k≤N

ψkσ2(i∂x + σ3∆)ψk +
λ

2

Ñ ∑
1≤k≤N

ψkψk

é2

.

We aim to recover the Peierls model in the limit large of a large N .

To make the transition between the classical and quantum descriptions, a useful
trick is to introduce multiple species of electrons. Instead of just one electron,
consider many electrons, labeled by n. In the limit as n→∞, this large n acts
as a semi-classical parameter, and the problem becomes easier to handle. In this
large n limit, the quantum problem simplifies to resemble a classical problem.

We solve this problem with many species (large n), which allows us to approx-
imate the problem in the semi-classical limit. By expanding in terms of 1

n ,
we can recover the Peierls problem in this limit. Eventually, this leads us to
periodic solutions of the KdV equation, which are related to elliptic curves or
tori in classical systems. Although quantum problems don’t have tori, they can
exhibit structures that approach tori in the semi-classical limit.
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16.6.2 Lie Group

We have

H =
∑

1≤k≤N

ψkσ2(i∂x + σ3∆)ψk +
λ

2

Ñ ∑
1≤k≤N

ψkψk

é2

.

Before solving the problem, we need to identify its symmetry. The problem
is invariant under the O(2N) Lie group, where N represents the number of
species, and the 2 refers to the plus/minus symmetry. So, the relevant symmetry
group here is O(2N), which governs the interactions and overall structure of the
problem. Thus, we can say that the integrable model is controlled by its global
symmetry O(2N).

In fact, we don’t necessarily need to write down the Hamiltonian explicitly. We
can simply state that the fermions interact according to a global O(2N) sym-
metry. Once we declare that the problem is governed by this global symmetry,
the rest will follow from that declaration.

16.6.3 Mass Spectrum

These fermions form particles that, due to their interactions, bind together to
form mesons, which then bind together to form baryons, which bind to form
nuclei. There are many states, and these states are remarkably organized ac-
cording to the representations of the corresponding Lie algebra. For example,
with O(2N), we obtain the Dynkin diagram Dn for n > 3. The particle content
is all of the fundamental representations.

The mass spectrum of the model governed by this symmetry group has

• n-th tensor:

mn = m sin
πn

2n− 2

• spinors:

ms = ms =
m

2 sin π
2n−2

In this framework, there are vector particles, antisymmetric tensor particles,
and others, each corresponding to a fundamental representation. Every circle
on the Dynkin diagram represents a new particle. Among these particles, there
are two types of spinors: spinor and anti-spinor (or conjugate spinors). Their
masses differ, and in the large N limit, how these masses depend on N becomes
very important.

Proposition 16.6 (Ogiovetski, Reshetikhin, Wiegmann). The scattering ma-
trices, the mass spectrum, and the Bethe Ansatz are known for all simple Lie
groups.
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16.6.4 Quantum Integrable Systems: Scattering Matrices and TBA

When we talk about a quantum integrable system, we mean that the scattering
process is factorized. Specifically, the scattering matrix for multiple particles
can be reduced to the scattering matrices of pairs of particles. If we know how
two particles scatter, we can construct the scattering matrix for any number of
particles. This is known as the factorized theory of scattering.

The scattering matrix depends on a parameter called rapidity, which is related
to the difference in the rapidity between two particles, say particle A and particle
B. For example, particle A could be a vector particle, and particle B could be
a spinor. Rapidity is defined in terms of momentum, parameterized by θ. As θ
approaches infinity, the formula for rapidity emerges.

Once we have the S-matrix, we can define an object called the scattering phase
or scattering phase shift. This is an operator, essentially a matrix that describes
how particle A scatters with particle B as a function of θ.

From the S-matrix, we can derive integral equations—one for momentum and
another for energy. While we won’t go into the details of where these equations
come from, they form the foundation of an integrable quantum system. If you
provide me with the scattering matrix, we can use these integral equations to
determine the momentum and energy of a system with many particles in a field
theory.

The scattering matrix is factorized into a product of two-particle scattering

Sab(θ), θ = θa − θb, pa(θ →∞) ∼ ma sinh θ.

Once we know this, we can can write the thermodynamic Bethe-Ansatz equa-

tions for the ”spectral curve” Kab =
1

2πi

d

dθ
logSab:∫

Kab(θa − θb) dpb = ma sinh θa

∫
Kab(θa − θb)ϵb = µa −ma cosh θa

where we sum over the particle content (along the Dynkin diagram). In fact, K
and S are made out of Cartan matrices. Given a Lie algebra, we can look up
the Cartan matrix, use it to form the S-matrix, derive K, and then use K to
construct these integral equations.

Solving these equations gives us the momentum and energy of the system. By
summing them up, we get the total momentum and energy of the state. The
energy depends on the momentum, and this relationship gives us the spectral
curve, which tells us how the energy depends on the momentum for elementary
particles. This process ultimately allows us to determine the spectrum of the
system.

16.6.5 Scattering Matrix DN (In Momentum Space)

For system D, we have the following:
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K̂ab =



δab +
1
2e

|k|
2N−2

sinh( |a−b|−N+1
2N−2 k)−sinh( a+b−N+1

2N−2 k)
sinh( k

2N−2 ) cosh(
k
2 )

, a, b ≤ N − 2

δab +
1
4e

|k|
2N−2

sinh( |N−1−b|−N+1
2N−2 k)−sinh( b|k|

2N−2 )
sinh( k

2N−2 ) cosh(
k
2 )

, a > N − 2, b ≤ N − 2

δab +
1
4e

|k|
2N−2

sinh( |N−1−a|−N+1
2N−2 k)−sinh( a|k|

2N−2 )
sinh( k

2N−2 ) cosh(
k
2 )

, a ≤ N − 2, b > N − 2

δab − 1
4e

|k|
2N−2

sinh( k
2 )

sinh( k
2N−2 ) cosh(

k
2 )
− 1

4
(−1)a+be|k|/2N−2

cosh( k
2N−2 )

, a, b > N − 2

We don’t need to analyze this in depth, and we presented it only to show how
concrete and precise everything is. There’s a shorter way to write this complex
formula using the Cartan matrix, which would simplify it to one line. The key
point is that everything is well-established and known.

16.6.6 Ground State

Now, to find the energy and momentum of a particular state, we first need to
identify the state. We’ll focus on the ground state, which is the state with the
lowest energy. This ground state is primarily made up of spinors, while other
particles are formed from bound states of these spinors. This isn’t a trivial result
- it may not be immediately obvious, but spinors are like elementary building
blocks, similar to quarks, from which we can build all other particles through
tensor products.

When focusing on the ground state, the complex equations simplify. we only
need to consider how spinors scatter with other spinors, how they scatter with
anti-spinors, and how tensors interact with spinors. The TBA are reduced to∫ B

−B
(Kss+Kss̄)(θ−θ′) dps = ms sinh θ, 2

∫ B

−B
Kas(θ−θ′) dps = ma cosh θ,

N

N0
=

∫ B

−B
dps

Given this, we assume there is one periodic solution, meaning the momentum
spectrum is confined to a single interval, from some unknown value −B to B.
This single interval is reminiscent of what you might find in a hyperelliptic curve,
where there would be multiple intervals or cuts, but here, we assume only one
cut.

To solve these equations, we know K, but we don’t know B. We find B by
imposing a condition that the system contains a certain number of electrons.
Once we determine B, we can find the momentum as a function of B and then
integrate to get the relationship between momentum and energy. It turns out
that K are not monstrous at all, and are given by:

Kss +Kss̄ =
tanh |k|2

2
(
1− e−

|k|
N−1

) , Kas = −
e

π|k|
2N−2

2 cosh πk
2
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16.6.7 Singular Large N Limit

The K operators and kernels are not as complex as they might seem at first
glance. They are familiar kernels, often referred to as singular kernels. In
the large N limit (where N is the rank of the Lie algebra), some terms can be
ignored, simplifying the Fourier transform and the resulting kernels. This reduc-
tion allows the complex equations to simplify into singular integral equations,
which are easier to manage:

Kss+Kss̄ =
tanh k

2

2
(
1− e−

|k|
N−1

) −→
N→∞

−N
π2

log coth
θ

2
, Kas = −

e
π|k|

2N−2

2 cosh πk
2

−→
N→∞

1

2π cosh θ

Analyzing these simplified equations, Wiegmann discovered that they are closely
related to the same problem that gives rise to the spectral curve of the KdV
equation, which describes periodic solutions. Although the connection appears
when solving the equations and taking limits, it’s important to note that these
monstrous equations reduce to something much simpler in the large N limit.
Specifically, they become a Riemann-Hilbert problem for an elliptic curve, which
is also the solution to KdV. More specifically, they degenerate to the Riemann-
Hilbert problem∫ B

−B
ln coth

θ − θ′

2

dps
π

= m cosh θ,

∫ B

−B
ln coth

θ − θ′

2
ϵ(θ′)

dθ′

π
= m cosh θ − µ

2

This elliptic spectral curve, associated with soliton waves, is expressed in terms
of elliptic functions, which define the edges of the spectrum:

dp =
ϵ2 +∆

2 − E2
+ − E2

−»
(ϵ2 − E2

+)(ϵ
2 − E2

−)
dϵ,

N

N0
= 2k1/2K(k), E± =

∆0

2
(k−1/2 ± k1/2)

These equations can also be reformulated as a boundary value problem for an
analytic function in the upper and lower half-planes, connected by specific jump
conditions on the real axis. These jump conditions link the real and imaginary
parts of a holomorphic function, which can be expressed as integral equations.

However, if N is not infinite, we cannot do this. But as N approaches infinity,
the problem simplifies, reducing to classical integral equations, transitioning
from a quantum to a classical context as certain terms become negligible.

16.6.8 Comments

We conclude with two comments. First, we explained earlier that if we are
given a series Dn algebra (such as O(2n)), then as we send the rank → ∞,
we obtain a classical KdV hierarchy. Similarly, if we do this for An, where
we also send the rank to infinity, and this leads to the nonlinear Schrödinger
equation (NLS). However, for Bn and Cn, we don’t know what the result will
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be. There’s an interesting relationship between different algebras and various
integrable hierarchies. For some reason, KdV corresponds to series D - we
don’t know why. Similarly, the nonlinear Schrödinger equation corresponds
to An, again at large ranks. We don’t fully understand what underpins this
correspondence, and we also don’t know what happens for Bn and Cn.

Another question that we don’t have the answer to, involves the algebraic-
geometric construct of the curve, which we use to solve classical integrable equa-
tions. This structure is important from both algebraic-geometric and topological
perspectives. Apparently, there is also a quantum version of this construction,
and it’s quite explicit. We don’t fully understand what we’re doing with it, but
we know how to work with it. What this construction actually means concep-
tually, we aren’t sure. But from a practical or engineering standpoint, we can
take the large N limit and see what happens.
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17 Andrei Marshakov: Krichever Tau-Function:
Basics and Perspectives

Abstract

I plan to start with the definition of quasiclassical tau-function, in-
troduced by Igor Krichever in 1992, formulate its main properties with
some simple proofs, and discuss certain particular cases, which include
the Seiberg-Witten prepotentials, matrix models etc. Then I am going
to turn to certain modern developments, related with this object, which
include the relation with instanton partition functions, isomonodromic
tau-dunctions and even some unexpected relations with other famous re-
lations in mathematical physics.
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17.1 Plan

We present two stories: the old story and the new story. Let’s start with the
old story.

This story originates from a paper by Krichever: The τ -function of the universal
Whitham hierarchy, matrix models, and topological field theories from 1994.
There are two main ”issues” from this paper: the paper defines everything
though F = log τ instead of τ , and the terminology has changed since 2007 and
since has been standarized.

We will state the definition of the Krichever τ -function and then look at some
applications:

• Matrix models and Topological strings;

• Seiberg-Witten theory and integrable systems;

From this second bullet point, we will reach some beautiful and essential for-
mulas, such as:

• Residue formula;

• WDVV equations.

Finally, we will discuss the ”new story”, which deals with topics such as:

• Nekrasov functions, 2d conformal theories, and isomonodromic deforma-
tions;

• 2d gravity and Verlinde formula.

17.2 Notation

Consider the topology of a compact oriented Riemann surface with genus g.
Then dimH1(Σg) = 2g, with the (symplectic) intersection form given by Aα ◦
Bβ = δαβ .

The dual basis in H1(Σg) consists of holomorphic first-kind Abelian differentials
∂(dωα) = 0, normalized to the A-cycles:∮

Aβ

dωα = δαβ .

The period matrix is defined as:∮
Bα

dωβ = Tαβ .
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17.3 Riemann Bilinear Relations

The period matrix is symmetric, as shown by the following calculation:

0 =

∮
Σ

dωβ ∧ dωγ

=

∮
∂Σ

ωβdωγ

=
∑
α

Å∮
Aα

dωβ

∮
Bα

dωγ −
∮
Aα

dωγ

∮
Bα

dωβ

ã
= Tβγ − Tγβ .

Proof. We present a proof sketch via Stokes’ theorem on the cut Riemann sur-
face.

...

Al

A−1l

Bl
v−j

v+j

∂Σ

Cut a Riemann surface (4g-gon) with boundary ∂Σ. The boundary values of
Abelian integrals v±α = ω±α on the two boundaries of the cut differ by the period
integral of the corresponding differential dωα over the dual cycle.

Similarly, we can write identies for other abelian differentials. In the meromor-
phic case, for second-kind Abelian differentials,

dΩk
P→P0∼ dζ

ζk+1
+ . . . ,

∮
A

dΩk = 0, k ≥ 1.

For third-kind Abelian differentials dΩ±:

dΩ0 = d log
E(P, P+)

E(P, P−)
∼ dζ±

ζ±
+ . . . ,

∮
A

dΩ0 = 0.
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For the first and third-kind Abelian differentials:

0 =

∮
Σ

dωβ ∧ dΩ0

=
∑
α

Å∮
Aα

dωβ

∮
Bα

dΩ0 −
∮
Aα

dΩ0

∮
Bα

dωβ

ã
+ 2πi

∑
P±

resP±ωβdΩ0 =

∮
Bβ

dΩ0 − 2πi

∮ P+

P−
dωβ .

17.4 Krichever Data and Prepotentials

Consider a complex curve Σg with a pair of meromorphic differentials (dx, dy),
and fixed periods.

The subfamily of curves {Σg} has dimension:

(3g − 3)− (2g − 3) = g.

Intuitively, the Krichever data should be an integrable system (back to the Liou-
ville theorem) on the g-dimensional family of Σg. One can choose g independent
functions (Hamiltonians), while the coordinates on the Jacobian of Σg serve as
complexified angle variables.

More rigorously,

Definition 17.1. The Krichever data is a g-parametric family of Riemann
surfaces Σ, endowed with a generating differential and connection ∇mod on mod-
uli space:

dS ∝ y dx, ∇moddS = holomorphic,

where y(P ) =
∮
P
dy, and P ∈ Σ.

Now, we define the prepotential, which is a particular case of the Krichever-tau
function.

Definition 17.2. The prepotential is given by

a =
1

2πi

∮
A

dS, aD =

∮
B

dS :=
∂F
∂a

,

where A and B are dual cycles in H1(Σ).

The prepotential is defined locally on the moduli space of Σ.

By the integrability from the Riemann Bilinear relations:

Proposition 17.3.

∂aαD
∂aβ

= Tαβ = Tβα =
∂aβD
∂aα

.
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Proof. Let ∇mod be the connection via covariantly constant coordinates on Σ,
e.g., x = 0 (with potential problems at dx = 0). Then:

∇moddS = (∇mody) dx,

where ∇mody is defined from the equation of Σ ⊂ C2.

Using this and the fact that

δαβ =
∂aα

∂aβ
=

1

2πi

∮
Aα

∂dS

∂aβ
,

one finds that
∂dS

∂aβ
= dωβ ,

which is a normalized holomorphic differential.

Then,
∂aαD
∂aβ

=

∮
Bα

∂dS

∂aβ
=

∮
Bα

dωβ = Tαβ .

Remark 17.4. For the second derivatives:

∂2F
∂aα∂aβ

= Tαβ .

Let’s consider an example of prepotential from Seiberg-Witten theory:

Example 17.5. Consider the curve (Σ, dx, dy), defined by:

w + Λ2N

w
= PN (z) = zN +

N−2∑
k=0

ukz
k, dx =

dw

w
, dy = dz,

since obviously: ∮
(A,B)

dz = 0,

∮
(A,B)

dw

w
∈ 2πiZ.

From ∇modw = 0 and ∇modzPN (z) =
∑N−2
k=0 δukz

k, we have:

∇moddS = ∇modz
dw

w
=

N−2∑
k=0

δukz
kP0N(z)

dw

w
,

which is holomorphic on Σ.
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Now we can finally define the Krichever τ -function.

To complete the definition using the time variables associated with the second-
kind Abelian differentials with singularities at a point P0, we define

tk =
1

k
resP0ξ

−kdS, k > 0,

and
∂F
∂tk

:= resP0ξ
kdS, k > 0,

where ξ is an inverse local coordinate at P0, with ξ(P0) =∞.

The consistency condition for the above is ensured by

∂2F
∂tn∂tk

= resP0
(ξkdΩn),

which is symmetric due to (Ωn)
+ = ξn for the main singular part at P0.

Additionally,
∂2F

∂tn∂aα
=

∫
Bα

dΩn = resP0
ξndωα,

which again follows from the Riemann bilinear relations.

Remark 17.6.

• Definition from RBI;

• Can be defined for any set of Abelian differentials {dHI} = {dωα, dΩn, dΩ0, . . . }
and corresponding flat coordinates {TI} = {aα, tn, t0, . . . };

• pq-duality: dx↔ dy is generally a nontrivial subtle point;

• Prepotentials: ∇mod
x ↔ ∇mod

y ;

• dKP: A nontrivial relation (e.g., a Fourier transform for a matrix inte-
gral);

• A nontrivial relation for residue formulas;

• Starting point for the “topological recursion”.

17.5 Residue Formula

Theorem 17.7.

∂3F
∂TI∂TJ∂TK

= resdx=0

Å
dHIdHJdHK

dx dy

ã
The proof idea is to take one mode derivative of a second-derivative formula.
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In the prepotential case,

∂Tαβ
∂aγ

≡ ∂γTαβ =

∫
Bβ

∂γdωα = −
∫
∂Σ

ωβ∂γdωα.

Further,

∂γTαβ = −
∫
∂Σ

ωβ∂γdωα =

∫
∂Σ

∂γωβdωα =
∑

resdx=0 (∂γωβdωα)

since the expression acquires poles at dx = 0.

Now we prove it:

Proof. Use expansions where dx = 0:

ωβ(x)
x→xα∼ ωβa + cβa

√
x− xα + · · · , dωβ

x→xα∼ cβa
2
√
x− xα

+ · · ·

For the moduli connection ∇mod, we have:

∂γωβ ≡ ∂γωβ |x=const =

Å
−

caβ
2
√
x− xa

∂γxa + regular terms

ã
.

Then,

res (∂γωβdωα) =
∑
a

res

Å
caβ∂γxa

2
√
x− xa

dωα

ã
=
∑
a

res

Å
dωβ
dx

dωα∂γxa

ã
=
∑
a

res

Å
dωαdωβdωγ

dx dy

ã
,

where the last equality similarly follows from the expansions for y(x):

y(x) =

®
ya
√
x− xa + . . . , as x→ xa,

dy =
¶

ya
2
√
x−xa

dx+ . . . , as x→ xa.

Also, for dωγ = ∂γdS, we have:

dωγ =
¶
− ya∂γxa

2
√
x−xa

dx+ regular terms, as x→ xa.
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17.6 Landau-Ginzburg Topological Theories to WDVV

The topological theories defined by a polynomial superpotential (generally of
several complex variables) are given by:

W (λ) = λN +

N−2∑
k=0

ukλ
k.

The primaries are given by the dKP equation:

φk(λ) :=
∂W

∂tk
=

Å
d

dλ
W k/N

ã
+

where the flat times are given by:

tk =
1

k
resP0ξ

−kdS = − N

k(N − k)
res∞

Ä
W 1−k/Ndλ

ä
for (Σ, dx, dy) = (Σ0, dW, dλ) with ξ =W (λ)1/N .

The derivatives of the Krichever tau-function are given by:

∂F
∂tk

= resP0
ξkdS =

N

N + k
res∞

Ä
W 1+k/Ndλ

ä
.

Together with:

Fik =
∂2F
∂ti∂tk

= res∞

Å
W k/N ∂W

∂ti

ã
= res∞

Ä
W k/N∂λW+i/N

ä
.

And (the Grothendieck residue):

Fijk = −res∞
∂λW

i/N
+ ∂λW

j/N
+ ∂λW

k/N
+

W ′
= resW ′=0

ϕi(λ)ϕj(λ)ϕk(λ)

W ′

The Landau-Ginzburg (LG) primaries satisfy the associative algebra (a polyno-
mial ring modulo W0(λ)):

φi(λ)φj(λ) =

N−1∑
k=1

Ckijφk(λ) +Rij(λ)W0(λ),

and therefore, we have:

[Ci, Cj ] = 0 for the matrices Ckij := Ckij .

for the matrices ∥Ci∥kj := Ckij . In terms of matrices,

∥Fi∥jk := Fijk =
∂3F

∂ti∂tj∂tk
,
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which leads to the overdetermined system of differential equations:

FiF
−1
j Fk = FkF

−1
j Fi for all i, j, k,

for the Krichever tau-function.

Theorem 17.8. Let F = F (T ) be the Krichever tau-function, i.e., the residue
formula

∂3F
∂TI∂TJ∂TK

= resdx=0

Å
dHIdHJdHK

dxdy

ã
holds. Then it satisfies the WDVV equations once the matching relation

#{T} = #{dx = 0}

is fulfilled.

Remark 17.9.

• The number of critical points #{dx = 0} is counted modulo possible invo-
lution.

• Under non-degeneracy conditions, the proof is straightforward.

• The constant ”metric” η = F1 is not necessary.

We present the proof idea for the theorem:

Proof. Proof idea: Consider the finite-dimensional ring at dx = 0:

ϕi(λα)ϕj(λα) =
∑
k

Ckijϕk(λα), ∀λα.

This equation is solved for

Ckij =
∑
α

ϕi(λα)ϕj(λα)(ϕk(λα))
−1

upon #{i} = #{α} and detiα ∥ϕi(λα)∥ ̸= 0. The modification (assuming
ξ(λα) ̸= 0) gives

ϕi(λα)ϕj(λα) =
∑
k

Ckij(ξ)ϕk(λα) · ξ(λα), ∀λα.

which leads to a redefinition

ηkn = Fkn1 −→ ηkn(ξ) =
∑
a

ξaFkna,

with ξa =
∑
α ξ(λα) (ϕa(λα))

−1
.
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17.7 2d Minimal Gravity

For each (p, q)-th point, take a pair of polynomials:

X = λp + . . . , Y = λq + . . .

of degrees p and q, respectively. For the Landau-Ginzburg case, (p, q) = (N, 1).

A dispersionless version of the Lax and Orlov-Shulman operators from KP the-
ory is given by:

⟨X̂, Ŷ ⟩ = ℏ, X̂ =
∂

∂λp
+ . . . , Ŷ =

∂

∂λq
+ . . . .

An invariant way to express this is through an algebraic equation:

Y p −Xq −XfijXiY j = 0,

with some constants {fij}.

Generally, this defines a smooth curve of genus:

g =
(p− 1)(q − 1)

2
= #primaries.

For example, the degenerate curves of Yang-Lee and Ising models of g = 2 and
g = 3 can be pictured as:

17.8 Solution to dKP

On a rational curve, the solution is given by:

S =

p+q∑
k=1

tkHk =

p+q∑
k=1

tkXk/p(λ)
+, k mod p,

and the differential is:

dS
ξ→∞
=

∑
k

Å
tkξ

k−1dξ +
∂F
∂tk

dξ

ξk+1

ã
.
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The dependence of X(λ) = λp +
∑p−2
k=0Xkλ

k on {t} is given by dS.

For dX = 0, the system of equations known as the ”hodograph” equations is
given by:

dS

dλ
= 0 at the p− 1 roots of X ′(λ) = 0.

Any Hamiltonian Hk(λ) = ∂S
∂tk

= ξk(λ)+ is a polynomial in the variable λ.
In particular, H1 corresponds to the dispersionless Hirota equations, where all
second derivatives are expressed in terms of the first derivatives, such as:

∂2F
∂t3∂t3

= 3

Å
∂2F
∂t21

ã3

.

17.9 Singularities and Series Expansions for (p, q) Reduc-
tions

17.9.1 Singularity for (p, q) = (3, 4)

Let:
X = λ3 +X1λ+X0, Y = λ4 + Y2λ

2 + Y1λ+ Y0.

For the flat times {t1, t2, 0, 0, t5, 0, t7 = const}, we have the following relations:

t1 = −2

3
X2

0 +
4

27
X3

1 +
5

9
t5X

2
1 ,

t2 = −2

3
X0X1 −

5

3
t5X0.

Solving for X0:

t1 = −6 t22
(2X1 + 5t5)2

+
4

27
X3

1 +
5

9
t5X

2
1
t2=0
=

4

27
X3

1 +
5

9
t5X

2
1

which gives the Boulatov-Kazakov equation.

17.9.2 Series for (p, q) = (2, 2K + 1)

For p = 2 KdV reduction, the relations are given by:

X = λ2 + 2u, ξ =
√
X =

√
λ2 + 2u.

The action S is:

S =

K+1∑
k=0

t2k+1X
k+ 1

2 (λ).
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The dependence of u = u(t) from dS|dX=0 = 0 gives:

P (u) ≡ 1

2

dS

dλ

∣∣∣
λ=0

=

K+1∑
k=0

(2k + 1)!!
t2k+1

k!
uk = 0.

The explicit formula for the tau-function F is:

F =
1

2

K+1∑
k,l=0

t2k+1t2l+1
(2k + 1)!!(2l + 1)!!

k!l!(k + l + 1)
uk+l+1.

Alternatively, this can be written as:

F =
1

2

∫ u

0

P2(v) dv.

17.9.3 Further Series for (p, q) = (2, 2K + 1)

In order to compare with world-sheet gravity, we need to consider resonances
and analytic terms.

• Resonances: Absent for (2K + 1)-reduction.

• Residue Formula: Contributions from infinity? The residue formula is
crucial for understanding the contributions at infinity.

• p − q or X − Y Duality: Considerations of duality relations between p
and q, or equivalently between X and Y , provide insights into the model’s
structure.

• Verlinde Formula: This formula, developed with A. Artemev and P.
Gavrylenko, plays an important role in understanding the relation between
certain algebraic structures in the theory.

When µ ̸= 0, we encounter the Chebyshev background.

17.10 Chebyshev Curves, Ground Rings, and Tachyons

For the case when the cosmological constant µ ̸= 0, the Chebyshev curves are
defined as follows:

Tp(Y ) = Tq(X),

parameterized by z ∈ C.

The corresponding values of Xn and Yn are:

Xn = T2(z
±
n ) = cos

Å
π(2n− 1)

2K + 1

ã
,
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Yn = T2K+1(z
±
n ) = ± cos

Ç
π
(
n− 1

2

)
2K + 1

å
= 0.

For example, here is the Chebyshev curve for (2, 2K+1)-series, with (degenerate)
cuts {z±n } marked in red, critical points {ζ±m} where dY = 0 - in green, and the
point z = 0 where dX = 0.

The ground ring of minimal (2, 2K + 1) gravity is isomorphic to:

Uk(x)Ul(x) = Uk+l(x) + Uk+l−2(x) + · · ·+ U|k−l|(x), k, l = 0, 1, . . .

modulo U2K(x) = 0.

The KP Hamiltonians are given by:

H2n+1(z) = T2n+1(z) ∼ Y (z)
2n+1
2K+1 + · · ·

For the non-faithful ”tachyonic” module, we have:

Tn =
dH2K+1−2n

dz
= U2(K−n)(z), n = 1, . . . ,K.

The ground ring acts as:

Tn(z) = Un−1(X)T1(z) = Un−1(T2(z)), n = 1, . . . , 2K.

The tachyonic operators Tn ∼ T2K−n are identified up to a sign, due to the
”reflection relations”:

U2K+l(x) + U2K−l(x) = 0.

318



Proof. Indeed, we have the following relations:

T1 ∼ U2K−2(z)

and

Tn ∼ Un−1(T2(z))U2K−2(z) =
1

z
U2n−1(z)U2K−2(z)

ring U
=

1

z
(U2K+2n−3(z) + U2K+2n−1(z) + · · ·+ U2K−2n+1(z) + U2K−2n−1(z))

reflection
=

1

z
(U2K−2n+1(z) + U2K−2n−1(z))

ring U

U 2(K−n) (z).

The identification Tn ∼ T2K−n is due to:

U2K−n(X) = U2K−n(T2(z))

=
1

z
U4K−2n−1(z)

reflection
= −1

z
U2n−1(z)

= −Un−1(T2(z))
= −Un−1(X).

The residue formula for the third derivative of the tau-function on a Chebyshev
curve is given by:

∂3F
∂ti ∂tj ∂tk

= −resdY=0
dHi dHj dHk

dX dY

= − 1

2K + 1
resU2K(z)=0

U2iU2jU2k(z)

2zU2K(z)
dz

= − 1

2K + 1

K∑
m=1

U2iU2jU2k(ζm)

ζmU2K
0 (ζm)

,

where ζm = ± cos
Ä

πm
2K+1

ä
, for m = 1, 2, . . . ,K.

We have:

Xm = T2(ζm) = cos

Å
2πm

2K + 1

ã
,

Y ±m = ±T2K+1(ζm) = ± cos
(πm

2

)
= ∓(−1)m.
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Using the relation Tn+1(x) = xUn(x)− Un−1(x) and

ζ±mU2K−1(ζ
±
m) = (−1)m cos

Å
πm

2K + 1

ã
, m = 1, 2, . . . ,K,

at U2K(z) = 0, the third derivative of the tau-function is given by:

∂3F
∂ti ∂tj ∂tk

= − 1

2K + 1

K∑
m=1

U2iU2jU2k(ζm)

ζmU2K
0 (ζm)

= − 1

(2K + 1)2

K∑
m=1

U2iU2jU2k(ζm)(1− ζ2m)

ζmU2K−1(ζm)

=
2

(2K + 1)2

K∑
m=1

sin
Ä

2πmi
2K+1

ä
sin
Ä

2πmj
2K+1

ä
sin
Ä
2πmk
2K+1

ä
sin
Ä

2πm
2K+1

ä
=

1

2(2K + 1)
(−1)1+i+j+kNijk,

where Nijk is the Verlinde expression on the right-hand side.

17.11 Verlinde Formula: Basics

The S-matrix satisfies the following transformation property:

χa

Å
−1

τ

ã
=
∑
b

Sbaχb(τ),

where unitarity is required:
S†S = 1.

The Verlinde formula is related to the fusion algebra through the following
expression for the fusion coefficients N c

ab:

N c
ab =

∑
m

SmaSmb(S
†)mcSm1.

For the minimal (p, q)-model, the S-matrix for S2 = 1 is given by:

Srs,ρσ = 2

 
2

pq
(−1)1+sρ+rσ sinπp

q
rρ sinπ

q

p
sσ,

where p, q denote the parameters of the model. For the specific case of (p, q) =
(2K + 1, 2), the formula simplifies to:

Sr,ρ =
2√

2K + 1
(−1)1+ρ+r+K sin

Å
2πrρ

2K + 1

ã
.
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This represents the fusion coefficients for the case s = σ = 1.

Theorem 17.10. For the specific case (p, q) = (2K+1, 2), the Verlinde formula
is given by:

4

2K + 1
(−1)1+i+j+k

K∑
m=1

sin
Ä

2πmi
2K+1

ä
sin
Ä

2πmj
2K+1

ä
sin
Ä
2πmk
2K+1

ä
sin
Ä

2πm
2K+1

ä = Nijk,

where Nijk ∈ {0, 1}.

Proof. A nontrivial proof of this formula is:

Nijk = (−1)1+i+j+k 4

2K + 1

K∑
m=1

sin
Ä

2πmi
2K+1

ä
sin
Ä

2πmj
2K+1

ä
sin
Ä
2πmk
2K+1

ä
sin
Ä

2πm
2K+1

ä
= (−1)i+j+k resz=0

Å
U2iU2jU2k(z) dz

zU2K(z)

ã
= (−1)1+i+j+k (resz=0 + resz=∞)

Å
U2iU2jU2k(z) dz

zU2K(z)

ã
= (−1)1+i+j+kNijk = (resz=0 + resz=∞)

U2iU2jU2k(z) dz

zU2K(z)
.

Substituting z = 1
2

(
w + 1

w

)
, we have:

(−1)1+i+j+kNijk = (resw=i + resw=0)
w2i+1 − w−(2i+1)

(w2 − w−2)(w2K+1 − w−(2K+1))
dw

= (−1)1+i+j+k + resw=0
w2i+1 − w−(2i+1)

(w2 − w−2)(w2K+1 − w−(2K+1))
dw

= 1−
K−2∑
l=0

δi+j+k+2l,2K −
⌊K−3

2 ⌋∑
l=0

(δi+j+2l+1,k + δi+k+2l+1,j + δk+j+2l+1,i)

=

min(i,j)−1∑
l=0

δ|i−j|+2l+1,k +

⌊K−2
2 ⌋∑
l=0

δi+j+k,2(K+l+1).

17.12 Non-Algebraic Generalization

The ”continuous” theory, as studied by Collier, Eberhardt, Mühlmann, and
Rodriguez, is generalized by the expression:

N(p1, p2, p3) = 2b

∞∑
m=1

(−1)m sin 2πmbp1 sin 2πmbp2 sin 2πmbp3
sinπmb2

,
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where b2 = p
q in the minimal theory. Here, we have the identity:

(−1)m sinπmb2 = sin(πmb2 + πm) = sin 2πmbp0 = S0
m,

with p0 =
1
b+b

2 , corresponding to the h0 = 0 or ”unity” operator.

Zamolodchikov’s formula comes from the residue formula for a non-algebraic
curve defined by:

x(z) = cos(πb−1z), y(z) = cos(πbz),

with the relation b2 ∈ R.

Indeed, we have

N(p1, p2, p3) =
∑
dx=0

dHp1dHp2dHp3

dx dy
=

∑
x0(z)=0

ϕ(p1z)ϕ(p2z)ϕ(p3z)
x′′(z)y′(z)

x′(z)y′′(z)

since
x′(z) ∼ sinπb−1z = 0 at zm = bm, m ∈ Z,

and

y′(zm) ∼ b sinπbzm = b sinπb (2m) , x′′(zm) ∼ b−2 cosπb−1zm = b−2(−1)m.

Finally, the rest of the derivation follows from the identification ϕ(pz) = sin 2πpz.

Here is an image of a non-algebraic curve giving rise to an infinite sum over
dx = 0:
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17.13 Many Other Developments

In addition to the topics discussed above, there have been numerous other de-
velopments in the field, including:

• Instanton Partition Functions: These functions arise in the study of
gauge theories and are particularly important in the context of supersym-
metric gauge theories and topological field theories. They capture the
contributions of instantons (non-perturbative solutions) to the partition
function of the system.

• 2D Conformal Field Theories: Two-dimensional conformal field the-
ories (CFTs) are central in string theory, statistical mechanics, and con-
densed matter physics. The study of their correlation functions, symme-
tries, and representation theory provides deep insights into quantum field
theory and critical phenomena.

• “Relativistic” (qt)-deformations: These deformations generalize the
quantum groups and affine Lie algebras, which are crucial in the study
of integrable systems. In the relativistic limit, these deformations lead
to new symmetries and deformed versions of CFTs and topological field
theories.

• “Topological Vertices”, Cluster Algebras, and Double-loop Al-
gebras: The study of topological string theory has led to the development
of ”topological vertices” which are used to compute partition functions of
3D manifolds. Cluster algebras and double-loop algebras provide mathe-
matical structures that help in understanding the combinatorics and rep-
resentation theory of such systems, further linking mathematical physics
with algebraic geometry.

• Isomonodromic Deformations: These deformations are used in the
study of integrable systems, particularly in the context of singular solu-
tions of differential equations. The theory of isomonodromic deformations
has applications in mathematical physics, including the study of quantum
groups and exactly solvable models.

• And more...
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18 Alexander Veslov: Harmonic Locus and Calogero-
Moser Spaces

Abstract

The harmonic locus consists of the monodromy-free Schroedinger oper-
ators with rational potential quadratically growing at infinity. It is known
after Duistermaat and Grunbaum that in the multiplicity-free case the
poles z1, ..., zN of such potentials satisfy the following algebraic system

N∑
j ̸=i

2

(zi − zj)3
− zi = 0, i = 1, ..., N,

describing the complex equilibriums of the corresponding Calogero-Moser
system. Oblomkov proved that the harmonic locus can be identified with
the set of all partitions via Wronskian map for Hermite polynomials. We
show that the harmonic locus can also be identified with the subset of the
Calogero-Moser spaces introduced by Wilson, which is invariant under a
natural symplectic action of C× As a corollary, for the multiplicity-free
part of the locus we effectively solve the inverse problem for the Wronskian
map by proving that the spectrum of Moser’s matrix coincides with the
set of contents of the corresponding Young diagram. We also compute
the characters of the C×-action at the fixed points, proving a conjecture
of Conti and Masoero. The talk is based on a joint work with Giovanni
Felder.
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18.1 Monodromy-free Operators and Locus Problem in
1D

Let V (z), where z ∈ Z, be a meromorphic potential and L = −D2 + V (z) be
the corresponding Schrödinger operator.

Problem 18.1 (Locus Problem). Describe the potentials V (z) such that the
corresponding equation

(−D2 + V (z))ψ = λψ, D =
d

dz

has all solutions ψ, which are meromorphic in z ∈ C for all λ.

Example 18.2 (Novikov 1974, Its and Matveev 1975, Krichever 1976). All
finite-gap operators are monodromy-free.

There is a long history in the 1870 and 1880’s on differential equations in the
complex domain with ”uniform” solutions (Hermite, Picard, Halphen, Darboux,
...).

Theorem 18.3 (Duistermaat and Grünbaum, 1986). The operator L = −D2+
V (z) is monodromy-free if and only if the Laurent series expansion of its poten-
tial near every pole z0

V =

∞∑
i=−2

ci(z − z0)i

satisfies the locus (quasi-invariance) conditions:

c−2 = m(m+ 1), m ∈ N, c2k−1 = 0, k = 0, . . . ,m.

18.2 Terminology and Modern Motivation

Proposition 18.4 (Airault, McKean, Moser, 1977). Poles of the rational solu-
tions

V (z) =

N∑
i=1

2

(z − zi)2

of the KdV equation
ut = 6uux − uxxx

belong to the locus given by the algebraic system∑
j ̸=i

1

(zi − zj)3
= 0, i = 1, . . . , N,

describing the (complex) equilibriums of the Calogero-Moser system with Hamil-
tonian

H =

N∑
i=1

p2i +
∑
j ̸=i

2

(zi − zj)2
.

Additionally,
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• If N ̸= m(m+1)
2 is not a triangular number, the locus is empty.

• If N = m(m+1)
2 , it has dimension m and consists of zeros of the Burchnall-

Chaundy (Adler-Moser) polynomials:

P1 = z, P2 =
1

3
(z3 + τ2), P3 =

1

45
(z6 + 5τ2z

3 + τ3z − 5τ22 ),

P4 =
1

4725
(z10+15τ2z

7+7τ3z
5−35τ2τ3z2+175τ23 z−

7

3
τ23 +τ4z

3+τ4τ2), ...

18.3 Harmonic Locus

Definition 18.5. The harmonic locus HL consists of monodromy-free poten-
tials of the form

V = z2 +

N∑
i=1

mi(mi + 1)

(z − zi)2
.

Proposition 18.6. When all multiplicities mi = 1 (simple part), the poles
satisfy the algebraic system∑

j ̸=i

2

(zi − zj)3
− zi = 0, i = 1, . . . , N,

describing the (complex) equilibria of the Calogero-Moser system with Hamilto-
nian

H =
1

2

N∑
i=1

p2i + U(q), U(q) =
1

2

N∑
i=1

q2i +
∑

1≤i<j≤N

1

(qi − qj)2
.

Proposition 18.7 (Oblomkov, 1999). All such potentials can be explicitly de-
scribed via the Wronskians of the Hermite polynomials

V (z) = z2 − 2D2 logW (Hk1(z), . . . ,Hkn(z)) , k1 > k2 > · · · > kn > 0,

where Hk(z) is the k-th Hermite polynomial.

18.4 Hermite Polynomials

Hermite polynomials Hn(z) are the classical orthogonal polynomials with Gaus-

sian weight w(z) = e−z
2

:

Hk(z) = (−1)kez
2 dk

dzk
e−z

2

,

with specific values:

H0(z) = 1, H1(z) = 2z, H2(z) = 4z2 − 2, H3(z) = 8z3 − 12z,
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H4(z) = 16z4 − 48z2 + 12, H5(z) = 32z5 − 160z3 + 120z, . . .

These polynomials satisfy the recurrence relation:

Hn+1(z) = 2zHn(z)− 2nHn−1(z).

The operators L̃ = −D2 + x2 − 2D2 logW (Hk1(x), . . . ,Hkn(x)) are the in-
tegrable (Darboux) transformations of the harmonic oscillator operator L =

−D2 + x2 with the eigenfunctions ψn = Hn(x)e
−x2/2:

Lψn =

Å
n+

1

2

ã
ψn, n = 0, 1, . . .

Proposition 18.8 (Felder, Hemery, Veselov, 2012). Label these Wronskians by
the partitions λ = (λ1, . . . , λl) as

Wλ(z) :=W (Hλ1+l−1, Hλ2+l−2, . . . ,Hλl
) ,

then the following properties hold:

1. Wλ(z) is a polynomial in z of degree |λ| = λ1 + λ2 + · · ·+ λl,

2. Wλ(−z) = (−1)|λ|Wλ(z),

3. Wλ∗(z) = (−i)|λ|Wλ(iz), where λ
∗ is the conjugate of λ.

For the doubled partitions (λ1, λ1, . . . , λl, λl), there is a surprising (empirical)
relation between the Young (Ferrers) diagram and the zero set of Wλ(z):

However, in general, this relation is not so clear. For example, for λ = (28, 16, 10, 6, 4, 4, 3, 1),
we have the following:
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18.5 Inverse Problem for Harmonic Locus

Problem 18.9. Given the zero set of Wλ, how can we recover the partition λ?

For the simple zeros case withmi = 1, we have the following answer (conjectured
in 2012).

Recall that the content c(□) of the box □ = (i, j) from the Young diagram λ
is defined as c(□) = j − i. The multiset C(λ) := {c(□),□ ∈ λ} determines λ
uniquely:

0 1 2 3

−1 0 1

−2

Proposition 18.10 (Felder and Veselov, 2024). For a simple locus configura-
tion (z1, . . . , zn), the corresponding partition λ is uniquely determined by the
property that the contents of λ coincide with the eigenvalues of Moser’s matrix
M :

C(λ) = Spec(M), Mij =

{
− 1

(zi−zj)2 , for i ̸= j,∑
k ̸=j

1
(zk−zj)2 , for i = j.

The proof uses the theory of Calogero-Moser systems and Calogero-Moser spaces.

18.6 Calogero-Moser Systems

We present a brief history of Calogero-Moser Systems.

Proposition 18.11 (Moser 1975). Lax form L̇ = [L,M ] for the (now called
CM) system with

HCM =
1

2

N∑
i=1

p2i +
∑

1≤i<j≤n

γ2

(qi − qj)2
,

where

Lij = piδij +
iγ

qi − qj
(1− δij), Mij =

∑
k ̸=i

iγ

(qk − qi)2
δij +

iγ

(qi − qj)2
(1− δij).

Proposition 18.12 (Kazhdan, Kostant, and Sternberg 1978). The CM system
as a symplectic reduction of free motion on the Lie algebra of U(n), with the
moment map

µ : (P,Q) 7→ [P,Q] = iγ(1− δij), (P,Q) ∈ T ∗u(n),

Q = qiδij , P = L, HCM =
1

2
tr(P 2) =

1

2
tr(L2).
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Proposition 18.13 (Perelomov 1978). Harmonic version L̇± = [L±,M ]±L±,
with

L± = L±Q, HCM =
1

2
tr(L2) +

1

2
tr(Q2) =

1

2
p2 +

1

2
q2 +

∑
1≤i<j≤n

γ2

(qi − qj)2
.

Proposition 18.14 (Wilson 1998). The Calogero-Moser space Cn is the quo-
tient space

Cn = {(X,Z, v, w) : [X,Z] + I = vw}/GLn(C),
where X and Z are n×n complex matrices, and v and w are an n-dimensional
vector and covector (considered as n × 1 and 1 × n matrices, respectively). An
element g ∈ GLn(C) acts on (X,Z, v, w) as

(X,Z, v, w) 7→ (gXg−1, gZg−1, gv, wg−1).

Proposition 18.15 (Wilson). Cn is a smooth irreducible affine algebraic variety
of dimension 2n, which can be viewed as a quantisation of the Hilbert scheme
of n points in C2.

There is a natural symplectic action of C× = C \ {0} on Cn defined by

X 7→ µX, Z 7→ µ−1Z, v 7→ v, w 7→ w, µ ∈ C×.

Let CC×

n be the fixed point subset of Cn under this action. Wilson identified it
with the set Pn of all partitions of n.

18.7 Modified Calogero-Moser Spaces

Proposition 18.16 (Felder and Veselov, 2024). The modified Calogero-Moser
space CMn is the quotient

CMn = {Π = (L,Q,M, v, w)}/GLn(C),

where L, Q, and M are n× n complex matrices, and v and w are a vector and
covector, as before, which satisfy the following relations:

1. [L,Q] = I − vw,

2. [M,Q] = L,

3. [M,L] = Q,

4. Mv = 0, wM = 0.

The group GLn acts by conjugation on L, Q, and M , and on v, w as before.

Proposition 18.17 (Felder and Veselov, 2024). The modified Calogero-Moser
space CMn can be identified with the harmonic locus and with the set of parti-
tions of n via the map

χ : CMn → HLn, χ(Π) = z2 − 2D2 log det(zI −Q).
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Proof. We present a proof sketch:

Step 1. The modified CM space CMn can be identified with the fixed set CC×

n :

X =
1

2
(L+Q), Z = L−Q.

Step 2. M is the generator of the C×-action:

[M,X] = X, [M,Z] = −Z.

Step 3. Use Wilson’s identification of CC×

n with the set of partitions Pn and
his formula

det(Xλ −
∑
i≥1

pi(−Zλ)i−1) = B(λ)sλ,

where pi and sλ are power sums and Schur symmetric functions, respectively.

Step 4. Use the theory of Appell polynomials and the generating function of
Hermite polynomials to derive that, up to a constant multiple,

Wλ(z) = det(Xλ − zI −
1

2
Zλ) = det(Qλ − zI).

Step 5. Use Oblomkov’s theorem to link with the harmonic locus.

18.8 Inversion of the Wronskian Map

Proposition 18.18 (Felder and Veselov, 2024). The subset of CMn with di-
agonalisable Q with simple spectrum can be identified with the simple part of
the harmonic locus HLn. The spectrum of the corresponding Moser’s matrix
M is integer and coincides with the content multiset C(λ) of the corresponding
partition λ.

Indeed, Moser’s matrices obviously satisfy the relations (1), (2), and (4) (with
w = (1, 1, . . . , 1) = vT ), while (3) is equivalent to the locus conditions:

1. [L,Q] = I − vw,

2. [M,Q] = L,

3. [M,L] = Q,

4. Mv = 0, wM = 0.

The proof of the formula Spec(Mλ) = C(λ) follows from an explicit description
of Xλ, Zλ from Wilson (1998), who used the Frobenius parametrisation of λ.
This agrees with

Proposition 18.19 (Calogero et al, 1970s). The matrix M defined by the zeros
of the Hermite polynomial Hn(z) has eigenvalues 0, . . . , n − 1 (which are the
contents of λ = (n)).
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18.9 Application: Proof of Conti-Masoero Conjecture

Consider now the matrix

Kij(λ) = δij

Ñ
1 +

∑
l ̸=j

6

(zl − zj)4

é
− (1− δij)

6

(zi − zj)4
,

where zi = zi(λ) are the roots of the corresponding Hermite Wronskian Wλ(z),
which are assumed to be simple. This is the Hessian matrix of

U(q) =
1

2

n∑
i=1

q2i +
∑

1≤i<j≤n

1

(qi − qj)2

at the equilibrium points qi = zi.

Proposition 18.20 (Felder and Veselov, 2024).

Spec(K(λ)) =
¶
(λl(□) + 1− c(□))2 , □ ∈ λ

©
,

This is equivalent to a conjecture of Conti and Masoero, 2021.

Proposition 18.21 (Perelomov, 1978). The frequencies of small oscillations of
the CM system near the equilibrium given by the zeros of the Hermite polynomial
Hn(z) are 1, 2, . . . , n (which are also the exponents of the Lie algebra u(n)).

18.10 Concluding Remarks

There are many related questions still open. Here are some of them:

• Inverse problem for the non-simple part of the harmonic locus and for the
trigonometric locus for

V (z) =

N∑
i=1

mi(mi + 1) sin−2(z − zi).

• Description of the elliptic locus for

V (z) =

N∑
i=1

mi(mi + 1)℘(z − zi),

where ℘(z) is the Weierstrass elliptic function.

• Description of the monster potentials

V (z) = Lz2 + z2α − 2D2
n∑
k=1

log(z2α+2 − zk),

introduced by Bazhanov, Lukyanov, and Zamolodchikov (2003).

• Multidimensional case in relation to the Hadamard problem and Huygens’
principle (Chalykh, Feigin, Veselov 1999).
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19 Stanislav Smirnov: Coulomb Gas and Lat-
tice Models

Abstract

Even before the introduction of Conformal Field Theory by Belavin,
Polyakov and Zamolodchikov, it appeared indirectly in the work of den
Nijs and Nienhuis using Coulomb gas techniques. The latter postulate
(unrigorously) that height functions of lattice models converge to the
Gaussian Free Field, allowing to derive many exponents and dimensions
of 2D lattice models.

This convergence is in many ways mysterious, in particular it was
never formulated in the presence of a boundary, but rather pn a torus
or a cylinder. We will discuss possible formulations on general domains
or Riemann surfaces and their relations to CFT, SLE and conformal in-
variance of critical lattice models. Interestingly, new objects in complex
geometry and potential theory seem to arise.
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19.1 Introduction

Based on joint work with Hongler, Kemppainen, Khristoforov, Glazman, Chelkak,
Izyurov, and more.

We start by discussing the famous 40 year old paper Infinite Dimensional Con-
formal Symmetry in Two-Dimensional Quantum Field Theories by Belavin,
Polyakov, and Zamolodchikov. From complex analysis, there are a lot of ob-
jects which have infinite conformal symmetry. The exciting part of this paper is
that the authors came up with natural objects from other areas which exhibit
infinite-dimensional conformal symmetry.

In the context of a 2D quantum field theory (QFT) at criticality, it was already
established prior to this paper (by Stueckelberg, Wilson, Kapranov, Fisher,
and others) that we have renormalization group theory. Field theories and
critical points, in this sense, can be viewed as fixed points of the renormalization
group flow. Therefore, we expect them to be invariant under rotations and
translations, and is supported by mathematics. If the theory is not invariant
under rotation, scaling, or translation, then we can simply rotate it, and it will
map to another fixed point.

At this point, the authors of the paper made a significant leap of faith. They
proposed that, in 2D, the theory should also be invariant under inversion. This
idea was not previously considered: unlike in 3D, where Brownian motion is
not invariant under inversion. Smirnov had to independently discover this idea
multiple times, always finding himself surprised by the distinction between di-
mensions two and three.

They also suggested that the theory should be invariant under conformal maps.
From a complex analysis perspective, this introduces some challenges. The
paper claims that there are infinite-dimensional semi-groups of conformal maps
that can be applied to domains. By extending this group to the whole plane,
one can obtain interesting results. However, while this approach may work
for physicists, it is not acceptable within a mathematics department without
rigorous justification. Cardy, in the same year (1984), was the first to formalize
how to handle boundaries properly in this context. Nevertheless, Cardy also
provided a counterexample where a 2D field theory, invariant under rotation,
scaling, and translation, does not lead to a conformal field theory. This example
has logical and physical implications, particularly in the context of elasticity
theory.

The specific issue that puzzles complex analysts lies in the application of these
concepts. As Smirnov ventured into probabilistic methods, Smirnov realized
that the correct question is not ”What is the model?” but rather ”What phe-
nomenon is the model describing?” At criticality, we assume that as the lattice
spacing tends to zero, the system becomes conformally invariant. This leads to
the surprising conclusion that the lattice model, in the continuum limit, exhibits
conformal invariance, a key feature of conformal field theory. The question, how-
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ever, remains: why should this occur? While Cardy’s counterexample provides
some insight, the rigorous proof of this phenomenon had eluded us until recently.
A related result shows that random walks converge to Brownian motion, which
is conformally invariant in 2D up to time scaling. But the central question
remains: how can we prove this rigorously?

Before proceeding further, we should clarify what we mean by the lattice model
with criticality. To illustrate this concept, we have drawn a few lattice models,
though the square lattice is much simpler to depict compared to the more com-
plex hexagonal lattice. We will briefly discuss two or three canonical models
that cover many of the most classical models in statistical physics.

19.2 The O(n) Model

One such model is the loop representation of the O(n) model. The O(n) model
is essentially a generalization of the Ising model, where, instead of using binary
spins (±1), one assigns vectors on an n-dimensional sphere. A well-known exam-
ple is the XY model, which was introduced by Heisenberg, who was motivated
by the Ising model in his thesis. Ising himself had conjectured that no phase
transition occurred in the Ising model, so Heisenberg devised a new model to
explore this idea further. Both the Ising and XY models fall under this broader
framework. In the loop representation, one can draw loops on a hexagonal
lattice, and the partition function is written as a sum over all configurations,
weighted by n raised to the power of the number of loops:

Z =
∑
w

n#loopsxlength.

There are two primary ways to derive this model from the Ising model:

• Start with spins on a hexagonal lattice and then introduce domain walls.
For n = 1 (Ising model), we do not count the number of clusters, and x
functions as the inverse temperature, with T = − 1

log x .

• Alternatively, one can place spins at the vertices of the hexagonal lattice
and apply a high-temperature expansion. In this case, loops do not sepa-
rate into distinct classes and tend to remain within the same class. This
approach also leads to several conjectural bijections in the field.

Key observations include:

• For n = 1, we do not count the loops, recovering the Ising model. The
critical value of xc is 1√

3
, as shown in a paper by one of the researchers.

This corresponds to percolation at x̃c = 1.

• For n = 0, we get a self-avoiding walk. Here, there are no loops, but
boundary conditions can enforce the existence of a source and a sink, with
a curve running between them. A small value of x minimizes the curve’s
length, making it a straight line, while a large x results in a space-filling
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curve. Two critical values of xc emerge, with the most interesting being
xc =

1√
2+
√
2
.

• For n = 2, we obtain the XY Heisenberg model, with the critical value
xc =

1√
2
.

Although there is a general formula for the critical behavior in terms of n, we
will not state it here.

An interesting aspect of this reformulation is that while the original O(n) model
requires n to be an integer (since n represents the dimension of the sphere on
which the spin vectors reside), the reformulation allows for non-integer values
of n, thus broadening the scope of the model.

That said, there are challenges with this model. In particular, when n ̸= 1,
consider covering half of the model and encountering five half-loops. It becomes
unclear how these half-loops contribute to the overall weight. Some may be parts
of the same loop, while others might belong to different cycles. This introduces
a form of nonlocality, which poses a significant challenge. The question then
becomes: How should we handle this nonlocality?

A second model worth mentioning is the Fortuin-Kasteleyn model, or the ran-
dom cluster model. There’s a bit of humor in the naming of models in statis-
tical physics, as many are named after the researchers’ students. For instance,
Lenz invented the Ising model and named it after his student, while Domb
invented the Potts model and named it after his student, and so on. The
Fortuin-Kasteleyn model is very similar to the O(n) model but uses dense loops
on a square lattice. The partition function is typically written as

√
q, and for

n =
√
q, it becomes:

Z =
∑

n#loops.

Here, there is no x term because the loops are dense, so the perimeter is always
constant.

This model is related to the random cluster model on a lattice rotated by 45◦,
essentially the dual of the original lattice. Notable cases include:

• For n = 1, the model corresponds to percolation, as n = 1 simply equates
the loop collection probabilities with the bond collection probabilities on
the rotated lattice.

• The random cluster model can be viewed as a loop FK model. In this
model, there is an x term, but it vanishes when applying the bijection
because x would count clusters, which is unnecessary for critical models.
When working with loops, it counts the number of loops, raised to the
power of the number of loops. This leads to an interesting simplification.

• For n =
√
2, the model corresponds to FK-Ising, a version of the Ising

model in which the clusters represent the Ising spins.

335



• For n = 0, the model describes a uniform spanning tree, and similarly, we
can apply the FK-Ising framework to describe this case.

19.3 The Six Vertex models

Now, the question remains: How should we address the nonlocality inherent in
these models? One solution, introduced by Baxter (unrelated to the well-known
Yang-Baxter equations), is to randomly orient the loops.

µ µ

In this formulation, loops are considered to be oriented either clockwise or coun-
terclockwise. This necessitates a new partition function, and a natural tempta-
tion arises to assign the factors n/2 to clockwise loops and n/2 to counterclock-
wise loops. However, a more effective approach is to introduce a unit vector µ,
which satisfies 2µ = n+ im and lies on the unit circle. In this case, |µ| = 1 and
µ = µ−1.

Thus, the partition function is modified as follows:

ZC =
∑

µ#loopszlength =
∑

x#turnsxlength.

For instance, in the center of the previous diagram, the number of oriented loops
is zero because there is one clockwise loop and one counterclockwise loop. The
weight of each of these loops is µ and µ−1, respectively. Each loop is counted
according to the power of its length.

Therefore, the weight for each loop depends on whether it is oriented clockwise
or counterclockwise. This approach allows the loops to be counted based on
their orientations, providing a clear method to handle the nonlocality issue.

The term λ raised to the power of the number of turns corresponds to x raised
to the power of the length. Essentially, in the left-hand diagram, whenever a
left turn occurs, the weight λ is assigned, and for a right turn, the weight λ is
assigned.
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Now, consider the effect of completing a cycle. The total turn of the cycle is
360◦. In steps of 60◦, the total turn is either +6 or −6, as left and right turns
cancel out λ and λ. If it is chosen that λ6 = µ, then this weight is the same,
but it locally counts the number of left turns and right turns.

Thus, half of the diagram can be covered and the result fully observed. The
same process can be applied to the right-hand diagram. The only difference is
that on the right, we now consider the left turn λ, the right turn λ, and λ4 = µ.

This leads to what can be termed a complex loop model. The partition function
is then given by:

ZC =
∑

u#oriented loops.

What is gained in this formulation is a partition function that is locally defined,
which is a more convenient structure. However, as is often the case, something
is lost in the process. Specifically, instead of a probability measure, a complex
partition function is obtained. Nevertheless, by neglecting the orientation, we
project to the previous case. Thus, while the total mass of the complex measure
remains the same, its variation grows exponentially with the volume. As a result,
the measure has infinite total variation but unit total mass. Due to significant
cancellations, it becomes challenging to make accurate estimates.

There are additional challenges as well. For example, Ef ̸= Ef . Instead, the
expectation of f is given by Eµf = Eµf .

The expectation of f no longer equals the expectation of f , which is typically
true for integrals with respect to this measure. The integral of f is not equal to
the complex conjugate of the integral due to the complex nature of the measure.
Consequently, the expectation with respect to the measure f must be written
explicitly, which introduces additional complexity. This is a subtle point that
can lead to repeated errors, especially in the early stages of understanding the
formalism.

On the right side of the previous image, another projection is presented where
the loops are forgotten, but the arrows are preserved. In this case, the structure
of the loops is ignored, leaving only the arrows. This projection results in a
diagram that can be analyzed further.

Interestingly, there are eight distinct ways in which the loops connect at a point.
One of these configurations, repeated four times, is oriented northeast.

This is one of the four ways to do it in southwest, southeast, northwest, or
northeast directions.
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What is the weight of this? There is one left turn and one right turn, λ and λ,
which cancel out, so λ×λ = 1. Therefore, the weight of this vertex is 1 because
there is one right and one left, and no other way to split the turns.

But then, there are also two other configurations where the turns come from
sideways and go vertically. When we forget the turns, it becomes the same
picture. In the left picture, there are two left turns, so the weight is λ2. In the

right picture, there are two right turns, so the weight is λ
2
.

So, while both weights are complex, the total weight is given by λ2 +λ
2
= c6M ,

which is real because λ is a unitary number, where c6M is the 6-model constant.

Typically, we denote
λλ = 1 = a, b

and
λ2 + λ

2
= c,

which corresponds to the well-known six-vertex model.

In the particular case of the square lattice, there is a projection that ensures the
weights remain real, resulting in a probability measure. However, there is an
important caveat: we lose some information. Specifically, the boundary values
no longer match. In the model on the right, for instance, the interior values are
real, but the boundary values are complex. The corner on the left represents
a left turn, indicating a complex boundary value, which introduces a potential
issue. This is one of the reasons why this model has posed challenges in the
past.

As mentioned earlier, we should clarify this issue. We encountered significant
difficulties with it, but there is an interesting earlier piece of work that indi-
rectly touches on Conformal Field Theory. This work, by two Dutch scientists,
Nienhuis and den Nijs, from 1982, is commonly referred to as the Coulomb-gas
model.

Their approach began with the following reasoning: suppose we have this model
and apply a bijection. Now, we have a set of lines with a real measure. When
we place arrows on these lines, we can interpret them as a geographical map.
Consider a map where every 10 meters or 100 meters we have Lebesgue curves.
To determine whether we are climbing or descending, we need to orient them.
If the arrows point counterclockwise, we are climbing; if they point clockwise,
we are descending.

This orientation allows us to define a height function. A key property of the
height function, H, for instance:
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We move from 0 to 1 if we cross on the right and from 0 to −1 if we cross on
the left. With that in mind, we can make a few arguments. Everything we’ve
said so far is not a proof; these are insightful physics arguments from brilliant
minds. They posited that there should be a scaling limit when we take the
mesh of the lattice to zero. Thus, we have a random height function with some
measure applied to it. Even though the measure is real, there should still be a
limit. The authors argued that when we take the height function Hmesh as the
mesh approaches zero, Hmesh → h, we obtain a random height function. The
partition function can then be written as:

Zh = exp

Å
−
∫
dx dy

g

4π
|∇h|2 + |∇h|4

ã
We expect everything to be rotationally invariant because we are working with
a renormalization group. It’s clear that it’s rotationally invariant with respect
to 90◦. However, if we perform a diffusion-limited aggregation, we still observe
the structure, even though it’s a physical model like this one. The system
is rotationally invariant, so everything depends on this principle, with some
coefficients, one of which we denote as g

4π .

We’ll return later to explain why there’s a π here, but first, there is an argument
suggesting that we should not include any of these terms. The argument is that
we should first examine the simplest possible case. On the other hand, if we
compare four nearby points, we can recover the bar or a by making a strong
effort. This might lead to higher-order operators, which somewhat makes sense.

Now, what happens is that the parameter g
4π changes things. When we rescale,

it’s no longer a scale-free model. As we’ve already stated, with each lattice
step, we jump by +1. In their paper, they actually use +π, employing a slightly
different normalization. Thus, g should differ accordingly.

What is remarkable in their paper is that they write this form and make this
ansatz. This object is called the Gaussian free field (or free boson) in the physics
literature. It is conformally invariant, well-studied, and is the two-dimensional
analog of the Brownian graph on a line. Unfortunately, it’s a random distribu-
tion, and mathematicians usually avoid taking exponents of random distribu-
tions.

At its core, this boils down to calculating the dimension of critical exponents.
This calculation involves the Gaussian free field, an object that mathematicians
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know how to handle. The only remaining question is determining g. Once we
calculate one quantity, which we already know from other methods, we can then
deduce g and calculate other quantities. This approach predates BPZ.

19.4 Conformal Invariance

Smirnov’s primary interest lies in the foundational aspects of conformal field
theory, where the simplest theories are situated. This field is particularly excit-
ing to him due to his background in complex analysis and the way it connects
to elegant discrete structures.

Naturally, one may pose the same questions: why and how? Specifically, in
their papers, they consistently focus on cylinders or tori. The reason for this
lies in the complexity of handling intricate boundary conditions. A few years
ago, two weeks were spent with Cardy in an attempt to solve this problem, but
the challenge remained unresolved. Today, however, an attempt will be made
to explain a potential approach to addressing it. It is hoped that, with time,
greater insight has been gained. This approach is applicable to any Riemann
surface.

An intriguing claim follows: the same logic is applied when a complex measure
is involved. It is asserted that this measure is a complex-valued field, which, in
the limiting case, becomes real-valued, taking values on the real line. However,
even when this is executed correctly, the imaginary component persists.

So, let’s ask: How do we achieve conformality? Suppose we want to show that
a discrete object has a conformally invariant limit. How do we proceed?

There are many approaches to conformal invariance: extremal lengths, harmonic
functions, and others. Most of them can be discretized, but the problem lies in
the fact that they are defined by global conditions, making it difficult to verify
that certain properties hold for a model.

The central charge C, which differs from the constant c in our 6-vertex model,
ranges from −2 to 1. Specifically, −2 corresponds to a uniform spinning tree.
Let me show you the uniform spinning tree. Here’s the uniform spinning tree.
Meanwhile, 1 corresponds to the double dimer model, or the model where XY =
1 and Ising is 1

2 .

We have:

g = 1 +
ϵ0
π

=
4

κ
.

From this, we can deduce a quadratic relationship with c. Interestingly, the two
occurrences of c coincide, but this raises an important question: why does c
map to the GFF (Gaussian Free Field)? This is not how it is typically expected
to behave.

In many cases, people introduce the concept of screening charges. Some have
even argued that if you consider a loop wrapping around a donut, the total
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rotation is not 360° but 0°. Therefore, its weight should be 1 rather than µ.
This argument resembles the idea of a screening charge that modifies the central
charge. However, this interpretation is not entirely accurate. It’s more of a
contribution to the system, rather than a straightforward replacement. After
15 years of searching for an answer, Smirnov presents a potential explanation.

The easiest starting point is to focus on conformal invariance, which applies
to holomorphic or harmonic functions subject to given boundary conditions.
The Dirichlet problem for the Laplace equation is conformally invariant. In two
dimensions, we can map the domain to a disk or a half-plane, where there is an
exact formula for the Poisson kernel. We can solve the problem in this domain
and then map the solution back to the original geometry.

This method works for other domains as well, and we can either prescribe the
real part of the solution or use more sophisticated techniques. The beauty of
this approach is its ease of discretization, especially for harmonic functions.

A function is harmonic if, at every point on a graph, its value is the average of
its neighboring values. Discretizing harmonic functions is straightforward, but
unfortunately, it is not canonical. For example, if we define a harmonic function
as the average of all first-order neighbors or all second-order neighbors, these
are different definitions that lead to distinct function spaces. However, in the
limit, both definitions converge to the same operator, denoted by ∆, which is
often referred to as the Laplacian. This is an example of universality: when
we take the limit of a random walk, it behaves like Brownian motion in two
dimensions.

There are only four parameters involved in this description: the speed (which is
a metric for correlations) and whether there is drift. In two dimensions, we focus
on this scenario, but Smirnov plan to extend the discussion to three dimensions
when he publishes this work.

Typically, when we express the Cauchy-Riemann equations, we use complex
derivatives. In simpler cases, we might write something like ux = −vy and
uy = vx. There could be a sign mistake here, but this formulation is equivalent
to stating that we have a flow that is both divergence-free and curl-free. We have
seen these differential forms before: one-forms, two-forms—and their relations
to the operators we are working with.

The beauty of two dimensions lies in its special properties when dealing with
analytic functions. However, we can approach these problems in different ways.
For instance, in the Ising model, we used a method where we summed the func-
tion values at four points with coefficients 1, i, −1, and −i to construct an
operator. This is one of the two types of operators we commonly use. Upon
closer inspection, we find that if a function is defined on edges and has one rela-
tion per vertex, we end up with twice as many unknowns as there are relations.
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The second setup is nicely adapted to the Ising model, and this approach also
appears in contexts such as random surfaces and dimers. Morally speaking,
if we find something that satisfies the CR1 properties, we would assume that
it’s holomorphic. This assumption hinges on the belief that the renormalization
group flow exists and that a well-defined limit of the system can be found. While
the relation alone doesn’t constitute a proof, it serves as a strong indication.

Let me add one more important point: boundary value problems. There’s a key
insight here: covariance is equivalent to the boundary value problem.

The boundary values of a function are closely tied to its behavior at the edges of
a domain. For example, consider the relation M(z) = N(φ(z)). Here, we have
two domains connected by a map φ, and we’re interested in how the fields or
observables transform from one domain to the other. The crucial step in solving
this is the preservation of boundary values. Once boundary values are preserved,
we can map everything onto a well-behaved model—such as a disk—and this
ensures invariance.

These relations can also be manipulated further. For instance, we might con-
sider:

M(z) = N(φ(z))φ′(z),

where σ is a parameter, and examine how this alters boundary behavior. In the
Ising model, this is directly related to analytic functions. Specifically, the trans-
formation of boundary values follows a particular rule under such mappings.
In one instance, Smirnov observed that a certain analytic function in the Ising
model behaves like

√
dz, which naturally leads to a boundary value problem in

which the boundary values transform according to a square root relation. In
this case, M ∥ dz6.

But there are additional covariances to consider:

M(z) = N(φ(z)) + α logφ′(z).

This expression suggests the existence of an invariant quantity with a small
complex twist. For example, starting with a real boundary value on a disk, the
mapping introduces a complex component. You begin with a real Gaussian Free
Field (GFF), but then, oops, you’re compelled to incorporate complex elements.
From there, one can differentiate, leading to further structure, again connected
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to the GFF. Consider the form:

M(z) = N(φ(z)) cotφ′(z) + β
φ′′(z)

φ′(z)
.

This essentially introduces a metric element and related geometric considera-
tions.

If you’re interested in working with the GFF, this expression captures the gra-
dient of the field. Another important formulation is:

M(z) = N(φ(z))φ′(z)2 + γSφ(z),

where

Sφ(z) =
φ′′′

φ′
− 3

2

Å
φ′′

φ′

ã2

is the Schwarzian derivative.

This is a particularly interesting exercise because these constructions are essen-
tially the only ones that satisfy the chain rule. If you want to express something
that respects the chain rule, it must be in this form. Once you begin apply-
ing the chain rule, other related structures begin to emerge—but within this
framework, this is essentially the only way it works.

Now, let’s return to what we had achieved earlier. We were able to formulate
observables for the Ising model, percolation, and other systems. These observ-
ables fall within this general class and are distinguished by their spins: for
percolation, we had spin 1

2 , while in quantum field theory, logarithmic terms
appeared.

Turning now to the six-vertex model, we encounter something remarkable: by
using the same parameters for two different models, we observe different out-
comes when applying the same observations. The reason is subtle—complex
terms play a hidden role in one case. As a result, part of the ”spin” is concealed
within those complex contributions.

19.5 Parafermions

We consider the six-vertex model, characterized by the parameter

c =
√
u+

√
µ = λ2 + λ

2
.

Our approach is as follows: we begin with our six-vertex model subject to certain
boundary conditions. Suppose we introduce a disorder operator. Intuitively, this
corresponds to identifying an edge in the six-vertex model where there is a “hole
in the floor”: the plumbing is faulty, and everything is draining through this
point.

Next, we introduce two sources on the boundary:
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• Two half-sources, each pumping 1 gallon per minute from the boundary;

• One double sink, which extracts 2 gallons of water per minute.

We then examine whether this setup satisfies the Cauchy–Riemann relations via
the partition function:

F (z) = Z ⊕ νwinding.

The motivation behind this construction lies in the special nature of these curves
— they determine how the “water” flows into the system. The horizontal curves,
in particular, are easier to control as we vary the position of the point. Moreover,
this curve is uniquely defined: for any given configuration, one can uniquely
trace this specific curve.

The remaining curves, by contrast, are not uniquely traceable — they may
follow different paths depending on the configuration. However, regardless of
how they are traced, they all share the same winding number.

Exercise 19.1. Show that F (z) is well defined.

We may now proceed to sketch possible configurations in a neighborhood of a
given point. Suppose we fix such a point. Then, figures might look like:

If we want to satisfy the Cauchy-Riemann equations, we must solve

−1 · 1 + i · c · ν2 + 1 · 1 · ν4 = 0.

The following lemma tells us that there exists a solution.

Lemma 19.2. If c =
√
µ+
√
µ, then

(ν2 + i
√
µ)(ν2 + i

√
µ) = 0

so ν2 = i
√
µ gives holomorphicity.

If we take the two pictures:
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h = 0

h = 0

1

2

They have weights 1 and v8. However, the height functions are:

1 = ρh(z)

and
v8 = ρh(z).

We should check that:

ρ2 = v8.

Of course, the situation is slightly more complicated because we must also ac-
count for cases where things are rotated by 90 degrees. So, strictly speaking:

Lemma 19.3.
f(z) =

∑
⊕ · ρh(z) · c(type z)

where c = 1 or c =
√
ρ.

Now, what’s the advantage of this approach?

• First, we can handle any boundary conditions because earlier, we refer-
enced a diagram with two sources and a unique connection. This allows
for local reconstructions without any issues.

• Additionally, we should be able to manage the operations ⊖ρh and ⊕ρ−h.

• h(z) is defined up to monodromy.

For instance, if we have an operator with both a plus and minus sign, when
we traverse around the minus operator, two curves end up at it. As we move
around, my height increases by +2. Thus, my height in this domain is not well-
defined. This is analogous to a geographic map where two contour lines meet
at a pole. Walking around the pole, you might be 2 meters higher on one side,
but 2 meters lower on the other side.
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⊕

⊖h = −2

h = 2

So, what’s the trick here? The trick is that the height function is situated in
the ground, so that when we walk around it, we experience a height change of
+2 meters on one side and -2 meters on the other. This occurs because the
height function moves in the opposite direction on the other side. To make this
situation valid, there’s an easy way to handle it.

One way to make this legal is to introduce cross-cuts, which is a common tech-
nique when studying Riemann surfaces. When you think about it, you can
define the function independently of the cross-cuts. You can move them later,
but during calculations, it’s important to fix the cross-cuts in place. However,
keep in mind that walking around them causes the height function to change.
This is actually a good thing because every complex analyst loves monodromy.

So, what does this mean? Let’s clarify with an example. Suppose we have a
plus operator, and we rotate it by 360◦. What will happen is that it will become
tangled with its own cross-cut. When we rotate it, it will cross its own cut.

⊕

The result of rotating by 360◦ is that we multiply by ρ2. Similarly, if you rotate
by −360◦, we also multiply by ρ2. Why? Because we cross a line moving in the
opposite direction, so the height doesn’t decrease: it increases. However, your
weight (or height) is also negative, so the multiplication is the same.

Now, here’s the interesting part. Suppose you move a plus operator around a
minus operator. What happens?
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⊕

⊖

When we move the plus operator around the minus operator, the minus opera-
tor intersects the line of the plus operator. These operators remain horizontal.
Thus, when we move them, the line is intersected, leading to multiplication by
ρ−2. Furthermore, the plus operator crosses the line of the minus operator,
which introduces an additional factor of ρ−2. Consequently, the total multipli-
cation becomes ρ−4.

Now, let us consider two points, u and v, and examine how F (u, v) behaves
given boundary conditions. One assumption is that there exists a model Γ to
which we map ρ. A useful observation here is that since we multiply by ρ, and
since ρ2 = e2πiσ and ρ−4 = e−4πiσ, we can express F (u, v) as:

F (u, v) =
φ′(u)6φ′(v)σ

(φ(u)− φ(v))2σ

Notably, if σ = 1
2 , there is no monodromy.

Finally, consider the following interesting scenario: Suppose we send v to u and
investigate where this expression converges. This is straightforward to calculate.
The expression will indeed converge, so assume v = u+ ϵ. Upon normalizing ϵ,
we observe that it results in 1

ϵ2σ . Typically, we would expect a gradient, leading
to the following form:

1

ϵ2σ

ï
1 +

ϵ2σ

σ
Sφ

ò
Here, σσ = C

12 , where C denotes the central charge.

19.6 Conclusion

There are two main takeaways:

• Covariance and Boundary Value Problems: Covariance is equivalent to the
boundary value problem. Starting with a Gaussian free field on a disk,
when this field is mapped to another domain and different covariances are
imposed, the results can vary significantly.

For different values of the central charge, the Gaussian free field satisfies
the following form:
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M(z) = N(φ(z)) + α logφ′(z)

where α is a function of the central charge. This relationship has already
been observed in the context of random surfaces, as discussed in the work
of Scott Sheffield.

• Monodromies in Potential Theory: Monodromies are a powerful tool for
differentiation. Essentially, they act as the Green’s function for the ∂
operator, but with monodromy. This concept has not been previously
encountered in the context of potential theory.
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20 Grigori Olshanski: Macdonald-Level Exten-
sion of Beta Ensembles and Multivariate Hy-
pergeometric Polynomials

Abstract

A beta ensemble (or log-gas system) on the real line is a random col-
lection of N point particles x1, ..., xN whose joint probability distribution
has a special form containing the Vandermonde raised to the power β > 0.
I will survey results related to some discrete analogs of beta ensembles,
which live on q-lattices, and large-N limit transitions.
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20.1 Introduction

In this section, I will describe several models of random particle systems. These
models originate from the representation theory of infinite-dimensional classical
groups, though my focus will be on the algebraic-combinatorial aspects of the
theory.

To begin, let us define some basic terminology:

A collection X of N points on the real line R is referred to as an N -particle con-
figuration. The space of all N -particle configurations is denoted by ConfN (R).
AnN -particle ensemble on R is specified by a probability measureM on ConfN (R),
which allows us to discuss random configurations.

The central problem to be addressed in the context of concrete models is: how
can we construct ensembles containing infinitely many particles? This is a non-
trivial issue, as dealing with probability measures on ”large” spaces, such as
Conf∞(R), is generally quite challenging. One possible approach is to consider
a large-N limit transition.

20.2 Preliminaries: Discrete beta-ensembles on Z of representation-
theoretic origin

20.2.1 Dyson’s circular beta-ensembles

Let T ⊂ C denote the unit circle centered at 0. We define ConfN (T) as the
set of N -particle configurations (u1, . . . , uN ) on T. Let Prob(·) represent the
set of probability measures on a given space. We are interested in probability
measures MN ∈ Prob(ConfN (T)). Given such a measure, we may refer to an
ensemble of random N -particle configurations on T.

Let β > 0 be a parameter. The N -particle Dyson’s circular beta-ensemble is
given by the probability measure

MN,β(du) :=
1

CN,β

∏
1≤i<j≤N

|ui − uj |β · µTN (du),

where u = (u1, . . . , uN ) ∈ ConfN (T), µTN (du) is the Lebesgue measure on the
torus TN = T× · · · × T, and CN,β is the normalization constant.

This concept originates from Dyson J. Math. Phys. 1962.

The origin. For the three special values β = 1, 2, 4 (corresponding to R,
C, and H), the Dyson ensembles admit a simple matrix/Lie group interpreta-
tion. Specifically, we consider three infinite series of compact symmetric spaces
G(N)/K(N):

U(N)/O(N), U(N)× U(N)/diagU(N), U(2N)/Sp(N).

Consider the double cosets K(N)gK(N), where g ∈ G(N). In the case β = 2,
the double cosets correspond to conjugacy classes in U(N).

350



In all three cases, the double cosets are parametrized by configurations u =
(u1, . . . , uN ) ∈ ConfN (T).

Thus, we have a natural projection

G(N)→ K(N)\G(N)/K(N) = ConfN (T).

It turns out that the pushforward, under this projection, of the normalized
Haar measure is exactly MN,β for β = 1, 2, 4 (a particular case of Élie Cartan’s
formula).

For general β > 0, the situation can be viewed as an extrapolation.

20.2.2 Dual picture: problem of harmonic analysis for∞-dimensional
symmetric spaces

The ”dual picture” refers to the consideration of the Hilbert space L2
Ä
G(N)
K(N)

ä
instead of the compact symmetric space G(N)/K(N), along with the natural
unitary representation TN of the group G(N) on this space.

Its decomposition is well-known: this is an example of a (relatively simple)
problem of spherical noncommutative harmonic analysis.

Problem 20.1 (β = 1, 2, 4).

1. Is it possible to give a sense to the large-N limit

T∞ := lim
N→∞

TN

as a unitary representation of the direct limit group G(∞) :=
⋃
N G(N)?

2. How can we decompose T∞ into irreducibles (harmonic analysis)?

The second part is nontrivial because there is no invariant measure onG(∞)/K(∞),
meaning that one cannot extend the definition of L2(G(N)/K(N)) directly.

Answer:

1. Yes, the limit representation T∞ can be defined. It turns out that its
construction involves additional continuous parameters (which is not a
defect but a bonus!).

2. The decomposition of T∞ into irreducibles is governed by an ensemble
with infinitely many particles on R.

3. This ensemble is obtained as the large-N limit of certain discrete ensembles
on the lattice Z, which resemble a discrete analog of Dyson beta ensembles.

4. Moreover, the entire construction admits a purely combinatorial interpre-
tation, which is valid for all β > 0.

Thus, we can reformulate the problem of harmonic analysis for infinite-dimensional
symmetric spaces as a problem of algebraic combinatorics with a slight proba-
bilistic flavor.

351



20.2.3 Discrete beta-ensembles of the lattice Z

In what follows, we assume

β = 2τ, τ ∈ {1, 2, 3, . . . },

so that β is a positive even integer. This assumption is made for simplicity; the
results hold for any β > 0.

The discrete ensembles in question live on the lattice Z (which is dual to the
circle T!). Thus, instead of the continuous space ConfN (T), we are now dealing
with the countable set ConfN (Z). Its elements are N -particle configurations on
Z:

L = (ℓ1 > · · · > ℓN ) ⊂ Z.

These are, in fact, veiled highest weights λ = (λ1 ≥ · · · ≥ λN ):

λ→ L , ℓi = λi + (N − i)τ, 1 ≤ i ≤ N.

We now introduce a probability measure

Mz,z′,w,w′

N,2τ ∈ Prob(ConfN (Z)), τ ∈ {1, 2, 3, . . . }.

Here, (z, z′, w, w′) is a quadruple of continuous parameters subject to some
constraints. For instance, sufficient conditions are

z, w ∈ C, z′ = z, w′ = w, Re(z + w) > −1

2
.

Definition 20.2 (Probability Measure on ConfN (Z)). We define the weight of
a configuration L = (ℓ1, . . . , ℓN ) ∈ ConfN (Z) as

Mz,z′,w,w′

N,2τ (L ) :=
1

CN,2τ

N∏
i=1

FN (ℓi) · VN,2τ (L ),

where

FN (ℓ) :=
Γ(−z − (N − 1)τ + ℓ)Γ(−z′ − (N − 1)τ + ℓ)

Γ(w + ℓ+ 1)Γ(w′ + ℓ+ 1)
, ℓ ∈ Z

and

VN,2τ (L ) :=
∏

1≤i<j≤N

(ℓi−ℓj)2×

∣∣∣∣∣∣ ∏
1≤i ̸=j≤N

(ℓi − ℓj − 1)(ℓi − ℓj − 2) · · · (ℓi − ℓj − (τ − 1))

∣∣∣∣∣∣ .
Remark 20.3.

1. For τ = 1, the second double product disappears.
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2. If τ > 1, VN,2τ (L ) vanishes whenever ℓi−ℓi+1 < τ−1. Thus, the measure

Mz,z′,w,w′

N,2τ lives on the subset of τ -sparse configurations: any two particles
are separated by at least τ − 1 holes.

3. For large distances between the ℓi’s,

VN,2τ (L ) ≈
∏
i<j

(ℓi − ℓj)2τ .

4. As in Dyson’s context, VN,2τ (L ) is responsible for pair interactions be-
tween the particles, of the log-gas type. Only now, we have a lattice model.

Theorem 20.4. Let the parameters τ and z, z′, w, w′ be fixed. After a scaling

and yet another transformation, the measures Mz,z′,w,w′

N,2τ converge, as N →
∞, to a probability measure Mz,z′,w,w′

∞,2τ that lives on a space of infinite particle
configurations on the real line R.

20.3 Macdonald-level hypergeometric ensembles

20.3.1 Notation

Denote q and t as the two parameters of Macdonald polynomials. We assume:

0 < q < 1, 0 < t < 1, t = qτ , τ = 1, 2, 3, . . .

The last assumption is made for simplicity.

Now, we add two additional parameters, ζ±, satisfying

ζ− < 0 < ζ+.

The two-sided q-lattice L = L− ∪ L+ ⊂ R is defined as:

L− := ζ−q
Z = {ζ−qm : m ∈ Z}, L+ := ζ+q

Z = {ζ+qm;m ∈ Z}.

Since 0 < q < 1, the lattice nodes accumulate near 0 and diverge in the direction
of ±∞:

. . . ζ−q
−1 ζ− ζ−q . . . ζ+q ζ+ ζ+q . . .

Finally, let ConfN (L) is the set of N -particle configurations on L, where the
configurations are τ -sparse (this means that any two particles are separated by
at least τ − 1 holes).

20.3.2 N-particle hypergeometric ensembles

Below we use a standard notation from q-calculus:

(x; q)∞ =

∞∏
n=0

(1− xqn) , x ∈ C.
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It is closely related to the notion of the q-Gamma function:

Γq(A) :=
(q; q)∞
(qA; q)∞

· (1− q)1−A.

We fix a quadruple (α, β, γ, δ) of parameters, subject to the conditions specified
below. The following formula defines a ”hypergeometric” probability measure
Mα,β,γ,δ
N ;q,t on the set ConfN (L).

Definition 20.5. If X = (x1 > · · · > xN ) ∈ ConfN (L), then the measure is
given by:

Mα,β,γ,δ
N ;q,t (X) :=

1

C(N ; q, t;α, β, γ, δ)

N∏
i=1

Fα,β,γ,δN ;q,t (xi) · VN ;q,t(X),

where C(N ; q, t;α, β, γ, δ) is a normalization constant, and

VN ;q,t(X) :=
∏

1≤i ̸=j≤N

τ−1∏
r=0

|xi − xjqr|,

is a (q, t)-analog of
∏
i<j(xi − xj)2τ (or rather its version on Z). Also,

Fα,β,γ,δN ;q,t (x) := (1− q)|x| (αx; q)∞(βx; q)∞
(γt1−Nx; q)∞(δt1−Nx; q)∞

, x ∈ L,

is a (q, t)-analog of the previously defined function:

FN (ℓ) =
Γ(−z − (N − 1)τ + ℓ)Γ(−z′ − (N − 1)τ + ℓ)

Γ(w + ℓ+ 1)Γ(w′ + ℓ+ 1)
, ℓ ∈ Z.

The parameters (α, β, γ, δ) should satisfy the following conditions for each N :

• Fα,β,γ,δN ;q,t (x) ≥ 0 for any x ∈ L,

• the normalization exists.

20.3.3 Conditions on (α, β, γ, δ): principal and degenerate series

There are two variants of sufficient conditions on (α, β, γ, δ) that guarantee the
well-definedness of the hypergeometric measures for all N :

1. Principal series:

α = β ∈ C \ R, γ = δ ∈ C \ R, αβ < γδq.

In this case, Mα,β,γ,δ
N ;q,t (X) > 0 for all X ∈ ConfN (L).
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2. Degenerate series:

β < 0 < α, α−1 ∈ L+, β−1 ∈ L−, γ = δ ∈ C \ R.

Here, Mα,β,γ,δ
N ;q,t (X) > 0 only for configurations X contained in the trun-

cated lattice

L[β−1q, α−1q] := {x ∈ L : β−1q ≤ x ≤ α−1q}.

This occurs because the conditions α−1 ∈ L+ and β−1 ∈ L− imply that
the product (αx; q)∞(βx; q)∞ vanishes for all x ∈ L outside the lattice
interval [β−1q, α−1q].

20.3.4 Large-N limit

Let Conf∞(L) denote the set of particle configurations X ⊂ L such that:

• |X| =∞,

• X is bounded away from ±∞,

• If τ > 1, then X is τ -sparse.

Note that the spaces ConfN (L) are countable, while the space Conf∞(L) has
the cardinality of the continuum. It is a totally disconnected topological space.

Here is our main result:

Theorem 20.6. Let (α, β, γ, δ) be in the principal or degenerate series. We
still assume t = qτ with τ ∈ {1, 2, 3, . . . }. Then there exists a limit:

lim
N→∞

Mα,β,γ,δ
N ;q,t =Mα,β,γ,δ

∞;q,t ∈ Prob(Conf∞(L)).

In other words, there exists a limit probability measure that determines a par-
ticle ensemble on the two-sided q-lattice L, with infinitely many particles accu-
mulating at 0 /∈ L.

A similar claim holds for any t ∈ (0, 1), although the description of the config-
urations becomes more involved.

20.3.5 The Special Case τ = 1 (i.e., q = t)

In this case, more can be said.

Theorem 20.7. If q = t, then the limit ensemble on L defined by the measure
Mα,β,γ,δ
∞;q,q is determinantal, meaning its correlation functions are:

ρn(x1, . . . , xn) = det
[
Kα,β,γ,δ
q (xi, xj)

]
1≤i,j≤n ,

where Kα,β,γ,δ
q (x, y) is a kernel on L× L, independent of n.
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This kernel has the explicit form:

Kα,β,γ,δ,q(x, y) =
A(x)B(y)−A(y)B(x)

x− y
, x, y ∈ L,

where A(x) and B(x) are certain functions on L, expressed through the q-
hypergeometric function 2ϕ1.

Because the correlation functions are explicitly computable, we conclude that
the model with q = t is exactly solvable.

Theorem 20.8. The limit measure Mα,β,γ,δ
∞;q,q is diffuse, meaning it has no

atoms.

This kernel admits an explicit expression of the form

Kα,β,γ,δ
q (x, y) =

A(x)B(y)−A(y)B(x)

x− y
, x, y ∈ L,

where A(x) and B(x) are certain functions on L, expressed through the q-
hypergeometric function 2ϕ1.

20.3.6 Degeneration Mα,β,γ,δ
N ;q;t ⇝Mz,z′,w,w′

N ;2τ

Recall that we started with the lattice Z and proceeded to the two-sided q-lattice
L. The formulas in these two cases are similar. Furthermore, for each fixed N ,
the ensemble on L can be degenerated to the ensemble on Z.

For simplicity, assume ζ± = ±1, so that L = −qZ ∪ qZ. There is a natural
bijection Z↔ qZ : ℓ↔ qℓ = x. Likewise, we have a natural bijection:

ConfN (Z)↔ ConfN (L+), L ↔ X

L = (ℓ1 > · · · > ℓN )↔ (qℓ1 < · · · < qℓN ) = X.

Fix a quadruple (z, z0, w, w0) from the principal series and set

α = qw+1, β = qw0+1, γ = q−z, δ = q−z0 .

We now consider the limit regime as q ↗ 1, where the q-lattice L ⊂ R becomes
increasingly dense.

Theorem 20.9. In this limit, the random configurations on L governed by
Mα,β,γ,δ
N ;q,t tend to concentrate near the point 1. Specifically, they tend to move

away from the negative part L− of the lattice. More precisely, for any fixed small
ϵ > 0,

lim
q↗1

∑
X⊂(1−ϵ,1+ϵ)

Mα,β,γ,δ
N ;q,t (X) = 1.

Moreover, for any L ∈ ConfN (Z), we have:

lim
q↗1

Mα,β,γ,δ
N ;q,t (qL ) =Mz,z0,w,w0

N,2τ (L ).
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Proof. In this limit, the negative part of the q-lattice becomes negligible. How-
ever, within the framework of our approach, one cannot construct a (q, t)-version
of discrete beta-ensembles solely on L+. The two-sided lattice L appears to be
absolutely necessary.

It would be interesting to find a representation-theoretic interpretation of our
construction, at least for the case q = t. A natural suggestion would be to
work with representations of the quantized algebras Uq(gl(N),C). However,
reconciling this algebra with the two-sided lattice L remains unclear.

20.4 Big q-Jacobi symmetric functions

20.4.1 Big q-Jacobi symmetric polynomials

We focus on the degenerate series of parameters (α, β, γ, δ):

β < 0 < α, γ = δ ∈ C \ R,

and consider the truncated q-lattice

Lα,β := L[β−1q, α−1q] = β−1qZ≥1 ∪ α−1qZ≥1.

Let ConfN (Lα,β) denote the set of N -particle configurations of length ≤ N , and
let Pλ|N (X; q, t) denote the N -variate Macdonald polynomial indexed by λ.

There exists a basis {φλ|N (X) : λ ∈ Y(N)} in Sym(N) such that

φλ|N (X) = Pλ|N (X) + lower degree terms

and
(φλ|N , φµ|N ) = 0, λ ̸= µ.

The polynomials φλ|N are called the N -variate symmetric big q-Jacobi polyno-
mials. In the simplest case N = 1, these are the classic univariate big q-Jacobi
polynomials discovered by Andrews and Askey [In: Lecture Notes in Math., vol.
1171, 1984].

As above, for τ > 1 we additionally assume that the configurations are τ -sparse.

Let
Sym(N) := R[x1, . . . , xN ]SN

denote the R-algebra of symmetric polynomials in N variables. There is a
natural embedding

Sym(N)
ι−→ bounded functions on ConfN (Lα,β),

f 7→ f(X), X = (x1, . . . , xN ) ∈ ConfN (Lα,β).
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Recall that for each N , we have defined a hypergeometric probability measure
Mα,β,γ,δ
N ;q,t on ConfN (Lα,β). Using the embedding ι, we can realize Sym(N) as a

dense subspace of the Hilbert space

ℓ2(ConfN (Lα,β),Mα,β,γ,δ
N ;q,t ).

Let (·, ·) denote the induced scalar product in Sym(N).

Theorem 20.10 (Stokman). Let λ range over the set Y(N) of partitions of
length ≤ N and let Pλ|N (X; q, t) denote the N -variate Macdonald polynomial
indexed by λ. There exists a basis {φλ|N (X) : λ ∈ Y(N)} in Sym(N) such that

φλ|N (X) = Pλ|N (X) + lower degree terms,

and
(φλ|N , φµ|N ) = 0, λ ̸= µ.

The polynomials φλ|N are called the N-variate symmetric big q-Jacobi
polynomials. In the simplest case N = 1, these are the classic univariate big
q-Jacobi polynomials discovered by Andrews and Askey in 1984.

20.4.2 ”Almost-stable” expansion on Macdonald polynomials

Theorem 20.11. The expansion of N -variate big q-Jacobi polynomials in the
basis of Macdonald polynomials has the form

φλ|N =
∑
µ:µ⊆λ

(tN ; q, t)λ
(tN ; q, t)µ

π(λ, µ; q, t;α, β, γ, δ)Pµ|N ,

where

(tN ; q, t)λ :=

l(λ)∏
i=1

(tN+1−i; q)λi =
∏

(i,j)∈λ

(
1− qλi+j−1tN+1−i) ,

and

(tN ; q, t)µ :=

l(µ)∏
i=1

(tN+1−i; q)µi
=

∏
(i,j)∈µ

(
1− qµi+j−1tN+1−i)

are certain products of q-Pochhammer factors. The coefficients π(λ, µ; q, t;α, β, γ, δ)
are specific terms that do not depend on N and have an explicit expression.

We call this expansion almost stable, as the dependence on N is localized in
the fraction

(tN ; q, t)λ
(tN ; q, t)µ

.

The proof (Olshanski, Comm. Math. Phys., 2021) relies on results from Rains
[Transf. Groups, 2005] and the theory of interpolation of Macdonald polynomi-
als due to Okounkov, Knop, and Sahi.
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20.4.3 Big q-Jacobi symmetric functions

Let
Y =

⋃
N

Y(N)

denote the set of all partitions (Young diagrams), and let

Sym := lim←− Sym(N)

denote the R-algebra of symmetric functions.

Recall the embedding

Sym(N)
ι−→ bounded functions on ConfN (Lα,β),

where f 7→ f(X) with X = (x1, . . . , xN ) ∈ ConfN (Lα,β).

Likewise, we have a natural embedding

Sym
ι−→ bounded functions on Conf∞(Lα,β),

where F 7→ F (X) with X = {xi} ∈ Conf∞(Lα,β), and where Conf∞(Lα,β) is
the space of ∞-particle τ -sparse configurations on the truncated q-lattice Lα,β .

We can regard Sym as an algebra of bounded functions on the (totally discon-
nected topological) space Conf∞(Lα,β).

Note that for fixed partitions λ, µ ∈ Y ,

lim
N→∞

(tN ; q, t)λ = 1, lim
N→∞

(tN ; q, t)µ = 1.

It follows that, as N →∞, the N -variate big q-Jacobi polynomials converge, in
a natural sense, to certain symmetric functions

Φλ = Φ(−; q, t;α, β, γ, δ) =
∑
µ:µ⊆λ

π(λ, µ; q, t;α, β, γ, δ)Pµ(−; q, t),

where the Pµ(−; q, t), µ ∈ Y , are the Macdonald symmetric functions.

We refer to the functions Φ(−; q, t;α, β, γ, δ) as the big q-Jacobi symmetric
functions. We regard them as bounded functions on Conf∞(Lα,β).

By Stokman’s theorem, the measures Mα,β,γ,δ
N ;q,t are the orthogonality measures

for the N -variate big q-orthogonal polynomials φ
|N
λ .

The next result is its analog in the context of symmetric functions.

Theorem 20.12. The limit measure on infinite configurations in the truncated
lattice,

Mα,β,γ,δ
∞;q,t = lim

N→∞
Mα,β,γ,δ
N ;q,t ∈ Prob(Conf∞(Lα,β))
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is the orthogonality measure for the symmetric functions Φ(−; q, t;α, β, γ, δ).

That is, the big q-Jacobi symmetric functions form an orthogonal basis in the
Hilbert space

L2(Conf∞(Lα,β),Mα,β,γ,δ
∞;q,t ).

This theorem is related to the general idea of constructing analogs of various
systems of classical orthogonal polynomials in the algebra Sym of symmetric
functions.

Other results in this direction: Cuenca-Olshanski [Mosc. Math. J., 2020].
There, we show that part of the q-Askey scheme can be transferred into Sym.

In a different form, the idea of lifting N -variate analogs of orthogonal polyno-
mials to the algebra Sym is present in earlier papers by Rains [Transf. Groups,
2005], Sergeev-Veselov [Adv. Math., 2009], and Desrosiers-Hallnäs [SIGMA,
2012].

20.5 Stochastic links connecting N-particle ensembles with
varying N = 1, 2, 3, ...

20.5.1 Sketch of abstract formalism

A stochastic link Λ : Ω 99K Ω′ between two spaces Ω and Ω′ is defined as a
Markov kernel Λ(x, dy) on Ω×Ω′. This means that for any fixed x ∈ Ω, Λ(x,−)
is a probability measure on Ω′.

In particular, if both spaces are discrete, Λ is simply a stochastic matrix of
size Ω×Ω′, with entries Λ(x, y) that are nonnegative, and the row sums of the
matrix are all equal to 1.

A stochastic link Λ : Ω 99K Ω′ can be viewed as a generalized map. The
difference with conventional maps is that the image of a point is not a single
point, but rather a probability distribution. Like ordinary maps, Λ induces a
map on probability measures:

Prob(Ω)→ Prob(Ω′), M 7→MΛ.

Specifically, for M ∈ Prob(Ω), we have

(MΛ)(dy) =

∫
x∈Ω

M(dx)Λ(x, dy).

In the case of discrete spaces, this operation corresponds to multiplying a row
vector by a matrix.

Let us consider the category whose objects are sufficiently well-behaved spaces,
and whose morphisms are stochastic links. Suppose we are given an infinite
chain of spaces connected by stochastic links:

ΩN
ΛN−1

N
L99 ΩN−1

Λ1
2
L99 Ω2

Λ2
3
L99 · · ·

ΛN−2
N−1

L99 ΩN−1
ΛN−1

N
L99 ΩN

ΛN
N+1

L99 · · ·
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Under suitable conditions, one can prove the existence of a projective limit:

Ω∞ = lim
←

(ΩN ,Λ
N−1
N ).

Definition 20.13. Assume each ΩN is equipped with a probability measure
MN ∈ Prob(ΩN ). We say that the family {MN} is coherent if

MNΛN−1N =MN−1, ∀N ≥ 2.

Theorem 20.14. There exists a one-to-one correspondence between coherent
families {MN} of measures and probability measures M∞ ∈ Prob(Ω∞).

Thus, any coherent family on a chain {ΩN ,ΛN−1N } gives rise to a probability
measure M∞ ∈ Prob(Ω∞). In this way, (Ω∞,M∞) serves as the large-N limit
of the probability spaces (ΩN ,MN ).

20.5.2 Stochastic links ΓNN−1 : ConfN (L) 99K ConfN−1(L)

Returning to our setting, we take ΩN = ConfN (L), the set of τ -sparseN -particle
configurations on L, and define stochastic links between these sets.

Theorem 20.15. For each N ≥ 2, there exists a stochastic matrix ΛN−1N (X,Y )
of size ConfN (L) × ConfN−1(L), which is consistent with the Macdonald poly-
nomials in the sense that∑

Y ∈ConfN−1(L)

ΛN−1N (X,Y )
Pλ|N−1(Y ; q, t)

(tN−1; q, t)λ
=
Pλ|N (X; q, t)

(tN ; q, t)λ

for any X ∈ ConfN (L) and any λ ∈ Y (N − 1).

Furthermore, the entries of ΛN−1N (X,Y ) are nonzero if and only if the configu-
rations X and Y interlace in a certain sense. Such a matrix is unique.

20.5.3 Identification of the projective limit space

Theorem 20.16. The projective limit of the sequence of sets

Conf1(L) L99 Conf2(L) L99 Conf3(L) L99 · · ·

connected by the stochastic links ΛN−1N can be naturally identified with the space
Conf∞(L) of infinite τ -sparse particle configurations on L.

This theorem asserts that Conf∞(L) is the universal object with the property
that there are stochastic links

ΛN∞ : Conf∞(L) −→ ConfN (L), ∀N ≥ 1,

such that
ΛN∞ΛN−1N = ΛN−1∞ , ∀N ≥ 2.

361



20.5.4 The coherency relation

Fix a quadruple (α, β, γ, δ) from the principal or degenerate series and consider

the corresponding hypergeometric measures MN ;q,t
α,β,γ,δ ∈ Prob(ConfN (L)).

Theorem 20.17. These measures satisfy the coherency relation:

MN ;q,t
α,β,γ,δΛ

N−1
N =MN−1;q,t

α,β,γ,δ , N ≥ 2.

Written explicitly, this becomes the following nontrivial combinatorial summa-
tion formula:∑
X∈ConfN (L)

MN ;q,t
α,β,γ,δ(X)ΛN−1N (X,Y ) =MN−1;q,t

α,β,γ,δ (Y ), for each Y ∈ ConfN−1(L).

This formula is first proven for the degenerate series, using the big q-Jacobi
polynomials. The result is then extended to the principal series by analytic
continuation.

This result, in conjunction with the abstract formalism, leads to the main the-
orem: the existence of the large-N limit measure M∞;q,t

α,β,γ,δ.
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21 Da-jun Zhang: Elliptic Solitons Related To
The Lamé Functions

Abstract

In this talk I will report recent progress on the elliptic solitons related
to the Lamé functions. Apart from the classical solitons that are com-
posed by usual exponential type plane wave factors, there exist “elliptic
solitons” which are composed by the Lamé-type plane wave factors and ex-
pressed using Weierstrass functions. Recently, we found vertex operators
to generate tau functions for such type of solitons. We also established
an elliptic scheme of direct linearization approach.
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21.1 Introduction

21.1.1 The Krichever-Novikov Equation

In an attempt to search for a geometric solution of the KP equation, Krichever
discovered the following equation:

Definition 21.1 (Krichever, Novikov, 1981). The Krichever-Novikov equa-
tion is given by

vt = vxxx −
3

2

v2xx
vx

+
3

8
vx − 6℘(2v)v3x.

Although not as famous as the KdV or KP equations, it is interesting because it
is elliptic. There is also a discrete version of this equation, found by considering
the Backlund transformation of the continuous one:

Definition 21.2 (Adler, 1998; Hietarinta, 2003). The discrete Krichever-
Novikov equation is given by:

p(uũ+ û̂̃u)− q(uû+ ũ̂̃u)− r(û̃u+ ũû) + pqr(1 + uũû̂̃u) = 0

where
(p, P ) = (

√
k sn(α; k), sn′(α; k)),

(q,R) = (
√
k sn(β; k), sn′(β; k)),

and
(r,R) = (

√
k sn(γ; k), sn′(γ; k)), γ = α− β.

The points on the elliptic curve are defined by:

Γ = {(x,X) : X2 = x4 + 1− (k + 1/k)x2}

Letting u ≡ un,m, ũ ≡ un+1,m, û ≡ un,m+1, ̂̃u ≡ un+1,m+1, we get:

û ̂̃u

ũu

q

p

One of the reasons why this is so interesting is if we put the same equation on
six sides of the cube
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û

̂̃uũ

u q

r

̂̃u
û

u

ũ

we get the multidimensional consistency property, which in our case is the con-
sistency condition around the cube:

Q(u, ue, ub, ube; p, q) = 0.

Proposition 21.3 (Adler, Bobenko, Suris, 2003). Given

• Linearity with respect to each {u, ũ, û, ̂̃u}
• Symmetry: Q invariant under D4

• Tetrahedon condition: ̂̃u = f(ũ, û, u; p, q, r)

we can classify all quad equations:

(Q4) : p(uũ+ û̂̃u)− q(uû+ ũ̂̃u)− r(û̃u+ ũû) + pqr(1 + uũû̂̃u) = 0

(Q3(δ)) : (q2 − p2)(û̃u+ ũû) + q(p2 − 1)(uũ+ û̂̃u)− p(q2 − 1)(uû+ ũ̂̃u)− δ2(p2 − q2)(p2 − 1)(q2 − 1)/(4pq) = 0

(Q2) : p(u− û)(ũ− ̂̃u)− q(u− ũ)(û− ̂̃u) + pq(p− q)(u+ ũ+ û+ ̂̃u)− pq(p− q)(p2 − pq + q2) = 0

(Q1(δ)) : p(u− û)(ũ− ̂̃u)− q(u− ũ)(û− ̂̃u) + δ2pq(p− q) = 0

(A2) : (q2 − p2)(uũû̂̃u+ 1) + q(p2 − 1)(uû+ ũ̂̃u)− p(q2 − 1)(uũ+ û̂̃u) = 0

(A1(δ)) : p(u+ û)(ũ+ ̂̃u)− q(u+ ũ)(û+ ̂̃u)− δ2pq(p− q) = 0

(H3(δ)) : p(uũ+ û̂̃u)− q(uû+ ũ̂̃u) + δ(p2 − q2) = 0

(H2) : (u− ̂̃u)(ũ− û) + (q − p)(u+ ũ+ û+ ̂̃u) + q2 − p2 = 0

(H1) : (u− ̂̃u)(ũ− û) = p− q

Q4 is precisely the Krichever-Novikov equation, and the other ones have similar
names. The Krichever-Novikov is the most important and interesting one in
this list.

21.1.2 Elliptic Solitons

Some researchers found solutions for all equations except for Q4 - this is now
called an elliptic soliton.
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Definition 21.4. The KdV equation (Korteweg-de Vries (KdV)) is given by

ut = 6uux + uxxx

Definition 21.5. The 1SS equation (1-Soliton Solution) is given by

u = 2(ln f)xx, f = 1 + ekx+k
3t

If we compare the usual soliton vs the elliptic soliton, the plane wave factor
(PWF) is the difference. In the usual soliton, if we replace ekx+k

3t with the

Lamé function σ(x+k)
σ(x)σ(k)e

−ζ(k)x−℘′(k)t, we obtain an image of the elliptic 1-soliton

of the KdV: where

u(x, t) = −2℘(x+ w2) + 2
Ä
ln
Ä
1 + Ψ̃x(k, k)e

−4℘′(k1)t
ää
xx
,

and

Ψ̃x(a, b) =
σ(x+ a+ b+ w2)

σ(x+ w2)σ(a+ b)
e−(ζ(a)+ζ(b))x−ζ(w2)(a+b).

21.1.3 Lamé Function and KdV

Given the KdV equation
ut = 6uux + uxxx

we have an associated Lax pair given by

φxx = (λ− u)φ

φt = 4φxxx + 6uφx + 3uxφ

The solution to the KdV is given by u = −2℘(x), and from the Lax pair we can
solve for the Lamé function

φxx = (℘(k) + 2℘(x))φ

which gives:

φ(x) =
σ(x+ k)

σ(x)σ(k)
e−ζ(k)x
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21.1.4 Weierstrass Functions

Consider the fundamental period parallelogram D with boundary Ω: Then we

obtain the Weierstrass functions: ζ(z) = σ′(z)
σ(z) , ℘(z) = −ζ

′(z) where

℘(z) =
1

z2
+
g2
20
z2 +

g3
28
z4 +O(z6),

ζ(z) =
1

z
− g2

60
z3 − g3

140
z5 +O(z7),

and
σ(z) = z − g2

240
z5 − g3

840
z7 +O(z9).

Using this data, we can define an elliptic curve

y2 = 4x3 − g2x− g3.

There are many useful identities for the Weierstrass function. Here are a couple:

Proposition 21.6.

1.

℘(z)− ℘(u) = −σ(z + u)σ(z − u)
σ2(z)σ2(u)

,

2.

ηu(z) = ζ(z + u)− ζ(z)− ζ(u) = 1

2

℘′(z)− ℘′(u)
℘(z)− ℘(u)

,

3.
℘(z) + ℘(u) + ℘(z + u) = η2u(z)

4.

χu,v(z) = ζ(u) + ζ(v) + ζ(z)− ζ(u+ v + z) =
σ(u+ v)σ(u+ z)σ(z + v)

σ(u)σ(v)σ(z)σ(z + u+ v)
.
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5. Frobenius-Stickelberger determinant (elliptic van der Monde):

|1, ℘(k), ℘′(k), ℘′′(k), · · · , ℘(n−2)(k)|

= (−1)
(n−1)(n−2)

2

(
n−1∏
s=1

s!

)
σ(k1 + · · ·+ kn)

∏
i<j σ(ki − kj)

σn(k1)σn(k2), · · ·σn(kn)
,

where f(k) = (f(k1), f(k2), · · · , f(kn))T .

6.

n∏
j=1

Φx(kj) =
(−1)n−1

(n− 1)!
Φx(k1+· · ·+kn)

|1, ℘(k), ℘′(k), · · · , ℘(n−2)(k)|
|1, ηx(k), ℘(k), ℘′(k), · · · , ℘(n−3)(k)|

,

where Φa(b) =
σ(a+b)
σ(a)σ(b) .

21.1.5 Hirota Bilinear Operator

Now, let’s talk about the Hirota bilinear operator.

Definition 21.7. Hirota’s bilinear operator D is given by:

Dm
t D

n
xf · g = (∂t − ∂t′)m(∂x − ∂x′)nf(t, x)g(t′, x′)|t′=t,x′=x

or equivalently,

eDx+κDyf(x, y) · g(x, y) = f(x+ ϵ, y + κ)g(x− ϵ, y − κ).

Proposition 21.8. Let the plane wave factor (PWF) be eηj , where ηj = ajx+
bjt+ cj. Then, the following properties hold:

1. The action of Hirota’s operator on two plane wave factors is given by:

Dn
xD

m
t e

η1 · eη2 = (a1 − a2)n(b1 − b2)meη1+η2

2. The gauge property for Hirota’s bilinear operator is:

Dn
xD

m
t (eη1f) · (eη1g) = e2η1Dn

xD
m
t f · g

Example 21.9. The (KdV) equation can be expressed in Hirota’s bilinear form
as follows:

ut =
3

2
uux +

1

4
uxxx, u = 2(ln τ)xx (KdV)

The bilinear form of the KdV equation is:

(D4
x −DxDt)τ · τ = 0
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21.1.6 D vs Lamé-type PWF

All results from this section are by Li and Zhang in 2022.

Theorem 21.10. The Lamé-type PWF of the KdV is given by:

ρi(x, t) = Φx(2ki)e
ξi , ξi = −2ζ(ki)x+ ℘′(ki)t+ ξ

(0)
i

where Φx(y) =
σ(x+y)
σ(x)σ(y) . The derivatives of ρi are:

ρi,x = −χki,ki(x)ρi

ρi,xx = 2ηki(x)ρi,x

and
ρi,xxx = (6℘(x) + 2℘(x+ ki) + 4℘(ki))ρi,x

where
ηx(y) = ζ(x+ y)− ζ(x)− ζ(y)

and
χδ,ϵ(γ) = ζ(δ) + ζ(ϵ) + ζ(γ)− ζ(δ + ϵ+ γ)

Theorem 21.11. Property 1 becomes

D2
xρi · ρi = 2(℘(x)− ℘(x+ 2ki))ρ

2
i

D4
xρi · ρi = 12℘(x)D2

xρi · ρi

D2n
x ϱ · ϱ =

℘(2n−1)(x)

℘′(x)
D2
xϱ · ϱ

where ϱ = Φx(a)e
bx+ct for a, b, c ∈ C.

Theorem 21.12. A general formula for the Lamé-type PWF is:

ϱi = Φx(ai)e
bix+cit, ai, bi, ci ∈ C

Then, for two functions ϱ1 and ϱ2, we have the following bilinear operator ac-
tion:

Dn
xD

m
t ϱ1 · ϱ2 = (c1 − c2)m

n∏
i=1

(G1, G2, . . . , Gn)ϱ1ϱ2

where Yn are the Bell polynomials:

Yn(y1, y2, . . . , yn) = e−y∂nx e
y

with y := y(x) and yi := ∂ixy(x). The functions Gm(x) are:

Gm(x) =
∂m−1x α1(x) + (−1)m∂m−1x α2(x)

and
αi(x) = ζ(x+ ai)− ζ(x) + bi.
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Theorem 21.13. The following property 2 (quasi-gauge property) holds:

Dn
xD

m
t (ϱf) · (ϱg) = ϱ2Dn

xD
m
t f · g +

n
2∑
l=1

Ç
n

2l

å
(D2l

x ϱ · ϱ)Dn−2l
x Dm

t f · g

21.1.7 KdV: τ Function and Vertex Operator

This section is due to Lepowsky, Wilson, 1978 and Date, Kashiwara, Miwa,
1981.

Definition 21.14. The bilinear KdV equation can be expressed as:

(4DxDt −D4
x)τ · τ = 0

where τ is a τ -function.

Theorem 21.15. The general form of the τ -function τN is:

τN =
∑
J⊂S

(∏
i∈J

ci

)Ñ ∏
i,j∈J,i<j

Aij

é
exp

(
2
∑
i∈J

ξi

)
where ci are arbitrary constants, and Aij is given by:

Aij =
(ki − kj)2

(ki − kj)2

and
ξi = kix+ k3i t

with S = {1, 2, . . . , N} and J ⊂ S.

Definition 21.16. The vertex operator X(k) is defined as:

X(k) = e2ξ(t,k)e−2ξ(∂,ek
−1)

where ξ(t, k) is given by:

ξ(t, k) =

1∑
j=0

k2j+1t2j+1

where t = (t1 = x), ∂̃ =
(
∂1

∂3
3

)
, and ∂j = ∂tj .

21.2 II Bilinear: τ-Functions, Vertex Operators

21.2.1 KdV and KP

Definition 21.17. The pKdV equation is given by

vt −
3

4
v2x −

1

4
vxxx = 0 (pKdV)
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where the transformation is

v = 2ζ(x) +
1

4
g2t+ 2(ln τ)x

The bilinear form of KdV is:

(D4
x − 4DxDt − 12℘(x)D2

x)τ · τ = 0

Remark 21.18. An alternative form is given by τ0 = σ(x)τ , where:

(D4
x − 4DxDt − g2)τ0 · τ0 = 0

Proposition 21.19. The 1-soliton solution (1SS) is given by:

τ1 = 1 + ρ1(x, t) = 1 + Φx(2k1)e
ξ1

where Φx(y) =
σ(x+y)
σ(x)σ(y) , and ξ1 is defined as:

ξ1 = −2ζ(k1)x+ ℘′(k1)t+ ξ
(0)
1

The 2-soliton solution (2SS) is:

τ2 = 1 + ρ1(x, t) + ρ2(x, t) + f (2)(x, t)

where

f (2)(x, t) =
A12σ(x+ 2k1 + 2k2)

σ(x)σ(2k1)σ(2k2)
eξ1+ξ2

and

A12 =
σ2(k1 − k2)
σ2(k1 + k2)

Here, the individual components ρi(x, t) are:

ρi(x, t) = Φx(2ki)e
ξi , ξi = −2ζ(ki)x+ ℘′(ki)t+ ξ

(0)
i

where i = 1, 2.

Definition 21.20. The Wronskian is defined as:

W =

∣∣∣∣φ, ∂φ∂x , ∂2φ∂x2
, · · · , ∂

N−1φ

∂xN−1

∣∣∣∣ = |0, 1, 2, · · · , N − 1| = |N − 1|

The NSS to the bilinear KdV is given by τ = |÷N − 1|

φj,xx = (℘(kj) + 2℘(x))φj

φj,t = φj,xxx − 3℘(x)φj,x −
3

2
℘′(x)φj

371



for each j = 1, 2, · · · , N and kj ∈ C.

A general solution for φj is given by:

φj = a+j φ
+
j + a−j φ

−
j

where φ±j are Lamé functions:

φ±j = Φx(±kj)e∓γj

and γj is defined as:

γj = ζ(kj)x−
1

2
℘′(kj)t+ γ

(0)
j

Proposition 21.21. Hirota’s form for f is:

f =
∑
µ=0,1

σ
Ä
x+ 2

∑N
i=1 µiki

ä
σ(x)

∏N
j=1 σ

µj (2kj)
exp

Ñ
N∑
j=1

µjθj +
∑

1≤i<j≤N

µiµjaij

é
where

θj = −2ζ(kj)x+ ℘′(kj)t+ θ
(0)
j

and the matrix element eaij is given by:

eaij = Aij =

Å
σ(ki − kj)
σ(ki + kj)

ã2

The bilinear KdV equation and its Hirota form are connected with τ -functions
as follows:

(D4
x − 4DxDt − 12℘(x)D2

x)τ · τ = 0

(D4
x − 4DxDt − 12℘(x)D2

x)f · f = 0

where f = τ̃
g̃ , g̃ = g

Ä
x+

∑N
i=1 ki

ä
, and τ̃ = τ

Ä
x+

∑N
i=1 ki

ä
, where the function

g is given by:

g = (−1)
N(N−1)

2
σ(x−

∑N
i=1 ki)

σ(x)

∏
1≤i<j≤N σ(ki − kj)
σ(k1) · · ·σ(kN )

exp

(
N∑
i=1

γi

)

Proposition 21.22. The vertex operator for τ in Hirota’s form is given by:

f = τN (t)
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where:

τN (t) =
∑
J⊂S

(∏
i∈J

ci

)Ñ ∏
i,j∈J,i<j

Aij

é
σ
(
t1 + 2

∑
i∈J ki

)
σ(t1)

∏
i∈J

σ(2ki) exp

(∑
i∈J

θ[e](t, ki)

)

where ci are arbitrary constants, S = {1, 2, · · · , N}, and J ⊂ S.

Theorem 21.23 (Date, Kashiwara, Miwa, 1981). The vertex operator X(k) is
defined as:

X(k) = Φt1(2k)e
θ[e](t,k)eθ(∂̃,k)

Then we can use the vertex operator to generate τ :

τN (t) = ecNX(kN )τN−1(t), τ0(t) = 1

where the time variables and differential operators are defined as:

t = (t1 = x, t3, · · · , t2n+1, · · · ),

∂̃ =

Å
∂

∂t1
,
1

3

∂

∂t3
, · · · , 1

2n+ 1

∂

∂t2n+1
, · · ·

ã
,

and the functions θ(t, k) and θ[e](t, k) are given by:

θ(t, k) = 2

∞∑
n=0

k2n+1t2n+1,

θ[e](t, k) = −2
∞∑
n=0

ζ(2n)(k)

(2n)!
t2n+1

where ζ(2n)(k) are the values of the zeta function evaluated at even integers.

Proposition 21.24 (Bilinear Identity). The bilinear identity is given by:∮
Ω

dq

2πi
h(t, q)h(t

′
,−q) = 0

where h(t, q) is defined as:

h(t, q) = X(t, q)τ(t)

and

X(t, q) =
σ(t1 + q)

σ(q)
e

1
2 θ[e](t,q)e

1
2 θ(∂̃,q)

Note that h(t, q) is doubly periodic with respect to q; here is the fundamental
period parallelogram D with boundary Ω.

The bilinear identity can also be written in residue form:
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Proposition 21.25 (Bilinear Identity in Residue Form).

Resq=0

î
h(t, q)h(t

′
,−q)

ó
= 0

Redefine τ ′
(
t
)
as:

τ ′
(
t
)
= σ(t1)τ(t)

The bilinear identity becomes:∮
Ω

dq

2πi

1

σ2(q)
e

1
2 θ[e](t−t

′
,q)τ ′(t+ ϵ(q))τ ′(t

′ − ϵ(q)) = 0

Now, introduce t = x + y and t
′
= x − y, where x = (x1, x3, . . .) and y =

(y1, y3, . . .). The identity becomes:∮
Ω

dq

2πi

1

σ2(q)
eθ[e](y,q)e(y+ϵ(q))·Dxτ ′(x) · τ ′(x) = 0

Proposition 21.26 (The Residue Form). Taking the residue at q = 0, we have:

Resq=0

ï
1

σ2(q)
eθ[e](y,q)e(y+ϵ(q))·Dxτ0(x) · τ0(x)

ò
= 0

where Dx = (Dx1
, Dx3

, Dx5
, . . .) and ϵ(q) = (q, q

3

3 , . . . ,
q2n+1

2n+1 , . . .).

The difficulty arises from the form of the θ[e](t, k) function:

θ[e](t, k) = −2
∞∑
n=0

ζ(2n)(k)

(2n)!
t2n+1 =

∞∑
j=−∞

sj(t)k
j .

Proposition 21.27 (Li, Zhang, 2022). The algorithm is given by:

Resq=0

(B+Dx

)β ∣∣∣∣
≤1

Ñ
∞∑
n=0

Xn

n∑
j=0

pj(D̃x)µn−jq
n−2

é
τ ′(x) · τ ′(x)

 = 0

where:

374



• β = (β1, β3, . . . , β2j+1, . . .) and βj ≥ 0,

• |β| =
∑∞
j=0 β2j+1,

• ||β|| =
∑n
j=0(2j + 1)β2j+1,

• eξ(t,k) =
∑∞
n=0 pn(t)k

n,

• 1
σ2(q) =

∑∞
j=0 µjq

j−2,

• B = −2
(
ζ(q), ζ

′′(q)
2! , . . . , ζ

(2n)(q)
(2n)! , . . .

)
,

• D̃x = (Dx1
, 0, 13Dx3

, 0, 15Dx5
, . . .).

Example 21.28. Consider β = (3, 0, 0, . . .). The bilinear identity becomes:

(D4
x1
− 4Dx1

Dx3
− g2)τ ′ · τ ′ = 0

Example 21.29. Consider β = (2, 1, 0, . . .). The bilinear identity becomes:

(D6
x1

+ 4D3
x1
Dx3
− 32D2

x3
+ 3g2D

2
x1
− 24g3)τ

′ · τ ′ = 0

Example 21.30. Consider β = (5, 0, 0, . . .). The bilinear identity becomes:

(D6
x1

+ 40D3
x1
Dx3

+ 40D2
x3
− 216Dx1

Dx5
+ 3g2D

2
x1
− 24g3)τ

′ · τ ′ = 0

Let’s move onto discussing KP.

Proposition 21.31. The bilinear equation for the pKP is given by:

4vt − vxxx − 3(vx)
2 − 3∂−1vyy = 0, (pKP)

where v is expressed as:

v = 2ζ(x) +
g2
4
t+ 2(ln τ)x

Proposition 21.32. The bilinear KP equation is:

(D4
x − 4DxDt − 12℘(x)D2

x + 3D2
y)τ · τ = 0

or equivalently:
(D4

x − 4DxDt + 3D2
y − g2)τ ′ · τ ′ = 0

where τ ′ = σ(x)τ .

Proposition 21.33. To find the τ function, let τ =
∣∣∣÷N − 1

∣∣∣ with f = τ̃ g̃. The

τ -function for N solitons is given by:

τN (t) =
∑
J⊂S

(∏
i∈J

ci

)Ñ ∏
i,j∈J,i<j

Aij

é
σ
(
t1 +

∑
i∈J(ki − li)

)
σ(t1)

∏
i∈J σ(ki − li)

e
∑

i∈J (ξ[e](t,ki)−ξ[e](t,li))
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where Aij is defined as:

Aij =
σ(ki − kj)σ(li − lj)
σ(ki − lj)σ(li − kj)

.

Proposition 21.34. The τ -function for N solitons is:

τN (t) =
∑
J⊂S

∏
i∈J

ci

Ñ ∏
i<j∈J

Aij

é
σ
(
t1 +

∑
i∈J(ki − li)

)
σ(t1)

∏
i∈J

σ(ki−li)e
∑

i∈J (ξ[e](t,ki)−ξ[e](t,li))

where Aij is given by:

Aij =
σ(ki − kj)σ(li − lj)
σ(ki − lj)σ(li − kj)

Proposition 21.35. The vertex operator to generate τ is:

X(k, l) = Φt1(k − l)eξ[e](t,k)−ξ[e](t,l)eξ(∂,ek)−ξ(∂,el)

Then the τ -function is generated as:

τN (t) = ecNX(kN , lN )τN−1(t), τ ′
(
t
)
= 1

We use the following notations:

t = (t1 = x, t2, . . . , tn, . . . )

∂̃ =

Å
∂

∂t1
,
1

2

∂

∂t2
, . . . ,

1

n

∂

∂tn
, . . .

ã
ξ(t, k) =

∞∑
n=1

kntn, ξ[e](t, k) =

∞∑
n=1

(−1)nζ(n−1)(k) tn
(n− 1)!

, ζ(i)(k) = ∂ikζ(k).

Proposition 21.36 (Li, Zhang, 2022). The bilinear identity is:∮
Ω

dq

2πi
h(t, q)h∗(t′, q) = 0

where h(t, q) and h∗(t, q) are defined as:

h(t, q) = X(t, q)τ(t), h∗(t, q) = X∗(t, q)τ(t)

with:

X(t, q) =
σ(t1 + q)

σ(q)
eξ[e](t,q)eξ(∂̃,q), X∗(t, q) =

σ(t1 − q)
σ(−q)

e−ξ[e](t,q)e−ξ(∂̃,q)
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Proposition 21.37.

Resq=0

(B +Dx)
β

Ñ
∞∑
n=0

Ñ
n∑
j=0

pj(Dxe)
µn−jqn−2

éé
τ0(x) · τ0(x)

 = 0

.

Example 21.38.

(D4
x1

+ 3D2
x2
− 4Dx1Dx3 − g2)τ ′ · τ ′ = 0

(D3
x1
Dx2

+ 2Dx2
Dx3
− 3Dx1

Dx4
)τ ′ · τ ′ = 0

(D6
x1
+45D2

x1
D2
x2
+20D3

x1
Dx3+40D2

x3
+90Dx2Dx4−216Dx1Dx5+3g2D

2
x1
−24g3)τ ′·τ ′ = 0

21.2.2 Elliptic N-th Roots of Unity

Following Nijhoff, Sun, Zhang, 2023.

Definition 21.39. There exist distinct ωj(δ), for j = 0, 1, 2, . . . , N − 1, up to
the periodicity of the periodic lattice, such that the following equation holds:

N−1∏
j=0

Φκ(ωj(δ)) =
1

(N − 1)!

Ä
℘(N−2)(−κ)− ℘(N−2)(δ)

ä
where ω0(δ) = δ and all {ωj(δ)} are independent of κ. These values {ωj(δ)}N−1j=0

are called the elliptic N-th roots of unity

.

Proposition 21.40. These roots also satisfy the following identities:

N−1∑
j=0

ωj(δ) = 0

and
N−1∑
j=0

ζ(l)(ωj(δ)) = 0, (l = 0, 1, . . . , N − 2)

The discrete PWF/dispersion relation for usual solitons is given by

GN (p, k) :=

N∏
j=1

αj(pj − kj) =
∏
j

(p− ωj(k)), αN ≡ 1
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with PWF

ρ =

Å
p+ k

p+ ωj(k)

ãn Å q + k

q + ωj(k)

ãm
We consider various elliptic N -th roots of unity:

• For N = 2:
Φκ(δ)Φκ(−δ) = ℘(κ)− ℘(δ)

• For N = 3:

Φκ(δ)Φκ(ω1(δ))Φκ(ω2(δ)) = −
1

2
(℘′(κ) + ℘′(δ))

• For N = 4:

Φκ(δ)Φκ(ω1(δ))Φκ(ω2(δ))Φκ(ω3(δ)) =
1

6
(℘′′(κ)− ℘′′(δ))

Then the elliptic PWF is given by:

ρ =
∏
j

Å
Φp(ωj(k))

Φp(ω0(k))

ãn Å
Φq(ωj(k))

Φq(ω0(k))

ãm
21.2.3 Reduction by Dispersion Relation

Now we discuss reduction by dispersion relation. The τ function of KP is given
by

τN (t) =
∑
J⊂S

(∏
i∈J

ci

)Ñ ∏
i<j∈J

Aij

é
σ
(
t1 +

∑
i∈J(ki − li)

)
σ(t1)

∏
i∈J

σ(ki − li)
σ(2ki)

e
∑

i∈J(ξ[e](t,ki)−ξ[e](t,li))

where

ξ[e](t, k) =

∞∑
n=1

(−1)nζ(n−1)(k) t
n

n!

It is straightforward to reduce to KdV Hierarchy by setting li = −ki.

It is much harder to reduce to Boussinesq. It is okay to reduce from the KP
equation to the Boussinesq equation, but we fail by trying to reduce the KP
hierarchy to the Boussinesq hierarchy (because the elliptic cube root of unity
is not the 6th root of unity). However, this can be resolved by redefining t2 →
t2 +

1
2g2t6. This gives

℘(4)(ω1(δ))−℘(4)(δ) = 30
Ä
℘(0)(ω1(δ))− ℘(0)(δ)

ä Ä
℘(0)(ω1(δ)) + ℘(0)(δ)

ä
+12g2 (℘(ω1(δ))− ℘(δ))
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21.2.4 Degeneration by Period

The elliptic curve is given by:

y2 = R(x) = 4x3 − g2x− g3

The condition for degeneration is:

∆ = g32 − 27g23 = 0

For the trigonometric and hyperbolic degeneration, the relations are:

g2 =
4

3
α4, g3 =

8

27
α6, α =

π

2w

The elliptic functions in this case are given by:

σ(q) =
1

α
e

1
6αq

2

sin(αq), ζ(q) =
1

3
α2q + α cot(αq)℘(q) = −1

3
α2 + α2 csc2(αq)

For the rational case, where g2 = g3 = 0, we have:

σ(q) = q, ζ(q) =
1

q
, ℘(q) =

1

q2

More generally, the residue calculation for the bilinear KP equation becomes:

Resq=0

(B+Dx)
β
∣∣∣
≤1

Ñ
∥β∥−1∑
n=0

n∑
j=0

pj
Ä
D̃xµn−jq

n−2
äé

τ ′(x) · τ(x)

 = 0

• For the trigonometric/hyperbolic case, we express the τ ′ function as:

τ ′ = e
1
6 (αx1)

2

sin(αx1)τN (x)

The τN (x) is given by:

τN (x) =
∑
J⊂S

(∏
i∈J

ci

)Ñ ∏
i<j∈J

Aij

é
sin(α(x1 +

∑
i∈J(ki − li)))

sin(αx1)
∏
i∈J sin(α(ki − li))

×exp

(∑
i∈J

Ä
ξ[t](x, ki)− ξ[t](x, li)

ä)
where

ξ[t](x, k) = α

∞∑
n=1

(−1)n xn

(n− 1)!
∂n−1k cot(αk)

The term A′ij is defined as:

A′ij =
sin(α(ki − kj)) sin(α(li − lj))
sin(α(ki − lj)) sin(α(li − kj))
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• For the rational degeneration, we have:

τ ′ = x1τN (x)

The expression for τN (x) is:

τN (x) =
∑
J⊂S

(∏
i∈J

ci

)Ñ ∏
i<j∈J

Aij

é
x1 +

∑
i∈J(ki − li)

x1
∏
i∈J(ki − li)

exp

(∑
i∈J

(ξ[r](x, ki)− ξ[r](x, li))

)

where:

ξ[r](x, k) = −
∞∑
n=1

1

kn
xn, Aij =

(ki − kj)(li − lj)
(ki − lj)(li − kj)

Following Li and Zhang, 2023, we discuss the discrete KdV and KP equations.
For the bilinearization, the bilinear form is given by:

(u− ̂̃u)(ũ− b̂) = p2 − q2

where:
p2 = ℘(δ)− e0, q2 = ℘(ϵ)− e0

u = ζ(ξ +Nγ)−Nζ(γ)− nζ(δ)−mζ(ϵ)− hζ(γ)− ζ(ξ0) +
g

f

ξ = nδ +mϵ+ hγ.

Then

H1 ≡ χδ,−ϵ(ξ̂ +Nγ)f̃ f̂ + f̃ ĝ − g̃f̂ − Φδ(−ϵ)f “̃f = 0

and

H2 ≡ χδ,ϵ(ξ +Nγ)f “̃f +
“̃
fg − ̂̃gf − Φδ(ϵ)f̃ f̂ = 0

where the function χu,v(z) is given by:

χu,v(z) = ζ(u) + ζ(v) + ζ(z)− ζ(u+ v + z)

The NSS is expressed as follows:

f = σ(ξ)|÷N − 1|, g = σ(ξ)|÷N − 2, N |

where the vector ϕ is given by:

ϕ = (ϕ1, · · · , ϕN )T , ϕi = ρ−n,m,h(ki)Φξ(ki) + ρ−n,m,h(li)Φξ(li)

where ρ±n,m,h(z) is defined as:

ρ±n,m,h(z) =

Å
σ(δ ± z)
σ(δ)σ(±z)

ãn Å
σ(ϵ± z)
σ(ϵ)σ(±z)

ãm Å
σ(γ ± z)
σ(γ)σ(±z)

ãh
ρ±0,0,0
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Now we move on to discuss the lpKdV τ function and vertex operator. The τ
function is given by:

τN =
∑
J⊂S

σ
(
ξ + 2

∑
i∈J ki

)
σ(ξ)

∏
i∈J σ(2ki)

Ñ ∏
i,j∈J,i<j

Aij

é∏
i∈J

ρn,m,h(ki)

where Aij is defined as:

Aij =

Å
σ(ki − kj)
σ(ki + kj)

ã2

and ρn,m,h(ki) is defined as:

ρn,m,h(ki) =

Å
σ(ki − δ)
σ(ki + δ)

ãn Å
σ(ki − ϵ)
σ(ki + ϵ)

ãm Å
σ(ki − γ)
σ(ki + γ)

ãh
ρ0,0,0(ki)

In this case, the vertex operator is the same as for the continuous KdV case.
After redefining the coefficients ci

ci =

Å
σ(ki − γ)
σ(ki + γ)

ãh
ρ0,0,0(ki)

and introducing Miwa’s coordinates

t2j+1 =
δ2j+1n+ ϵ2j+1m

2j + 1

we obtain
ρ = eθ[e](t,k)

where θ[e](t, k) is given by:

θ[e](t, k) = −2
∞∑
n=0

ζ(2n)(k)

(2n)!
t2n+1.

The equation for lpKP is given by:

(ŵ − “̃w)(w − ŵ) = (w̃ − “̃w)(w − w̃)
where

w = ζ(ξ +Nγ)−Nζ(γ)− nζ(δ)−mζ(ϵ)− hζ(γ)− ζ(ξ0) +
g

f
.

The following equations hold for the operators H1 and H2:

H1 ≡ χϵ,−γ(ξ + (N + 1)γ)ff̂ + gf̂ − ĝf − Φϵ(−γ)ff̂ = 0

H2 ≡ χδ,−γ(ξ + (N + 1)γ)f̃f + gf̃ − g̃f − Φδ(−γ)ff̃ = 0

There is also more research on what is known as the Casoratian solution, the
τ function, the vertex operator, and the discrete AKP reduction (due to Wang,
Zhang, Maruno, 2024), but we will not discuss them here.
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21.3 Discrete Linearisation (DL) Approach

We will now move on to discuss the elliptic DL scheme and the Marchenko
equation.

21.3.1 Elliptic Scheme of DL Approach

Proposition 21.41 (Fokas, Ablowitz, 1981). The DL for the KdV equation is
given by

φ(x, t; k) + iei(kx+k
3t)

∫
L

φ(x, t; l)

l + k
dλ(l) = ei(kx+k

3t),

where u = −∂x
∫
L
φ(x, t; l)dλ(l).

In this case, the Lax pair is needed.

Proposition 21.42 (Nijhoff, Qiuspel, Caple, et al, 1980s). The DL+ is an
infinite matrix. Given

uk + ρk

∫ ∫
D

dλ(l, l′)ulσ
0
l Ωk,l′ = ρkck,

where ck = (· · · , k−1, 1, k, · · · )T and Ωk,l′ =
1

k+l′ , the matrix U is defined as:

U =

∫ ∫
D

dλ(k, k′)utkcσk′ .

The Discrete PWF is given by

ρk =

N∏
j=1

(pj + k)nj , σ0
k =

N∏
j=1

(pj − k′)−nj .

and the continuous PWF is given by

ρk = e
∑∞

j=1 kjtj , σk′ = e−
∑∞

j=1 k
′jtj .

In this case, there is no need to check the Lax pair!

Now we move onto some major results on the DLA case.

Proposition 21.43 (Nijhoff, Sun, Zhang, 2023). In the DLA case, the scheme
is given by

uκ + ρκ

∫ ∫
D

dµ(ℓ, ℓ′)σℓ′uℓΦξ(κ+ ℓ′) = ρκΦξ(Λ)cκ,

where Uξ :=
∫ ∫

D
dµ(ℓ, ℓ′)uℓ(ξ)

tcℓ′σℓ′Φξ(tΛ), and Φξ(x) :=
σ(x+ξ)
σ(x)σ(ξ) , Λcκ, ξ =

ξ0 − nδ −mϵ− lν. Additionally,

ρκ(n,m, l) = (Φδ(κ))
n
(Φϵ(κ))

m
(Φν(κ))

l
ρκ(0, 0, 0),

and

σκ′(n,m, l) = (Φδ(−κ′))
−n

(Φϵ(−κ′))
−m

(Φν(−κ′))
−l
σκ0(0, 0, 0).
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Proposition 21.44 (Nijhoff, Sun, Zhang, 2023). In the DLA case, the lattice
KP is given by

[ζ(δ)− ζ(ϵ) + ζ(ξ − δ)− ζ(ξ − ϵ)] ̂̃u(ξ − δ − ϵ)
+ [ζ(ν)− ζ(δ) + ζ(ξ − ϵ− ν)− ζ(ξ − δ − ϵ)] û(ξ − ϵ)

+
î̂̃u(ξ − δ − ϵ)− û(ξ − ϵ− ν)ó û(ξ − ϵ) + cyclical = 0

where u(ξ) := (Uξ)0,0

Define the variables

vα(ξ) = 1−
Ä
[ζ(ξ) + ζ(α) + ζ(Λ)− ζ(ξ + α+Λ)]

−1
Uξ

ä
0,0
,

wα(ξ) = 1−
Ä[
Uξ

(
ζ(ξ) + ζ(α) + ζ(tΛ)− ζ(ξ + α+t Λ)

)]−1ä
0,0
,

sα,β(ξ) =
Ä
[ζ(ξ) + ζ(α) + ζ(Λ)− ζ(ξ + α+Λ)]

−1 ·Uξ

·
[
ζ(ξ) + ζ(β) + ζ(Λt)− ζ(ξ + β +Λt)

]−1ä
0,0
.

Proposition 21.45 (Nijhoff, Sun, Zhang, 2023). For lattice mKP, the equation
is given by:

[ζ(δ)− ζ(ξ − ε)− ζ(α) + ζ(ξ + α− δ − ε)]v̂α(ξ − ε)ˆ̃vα(ξ − δ − ε)
− [ζ(ε)− ζ(ξ − δ)− ζ(α) + ζ(ξ + α− δ − ε)]ṽα(ξ − δ)ˆ̃vα(ξ − δ − ε) + cycl. = 0

The lattice SKP equation is:

1− χ(1)
α,−δ(ξ − ν)sα,β(ξ − ν)− χ

(1)
β,δ(ξ − δ − ν)s̃α,β(ξ − δ − ν)

1− χ(1)
α,−ε(ξ − ν)sα,β(ξ − ν)− χ

(1)
β,ε(ξ − ε− ν)ŝα,β(ξ − ε− ν)

=
1− χ(1)

α,−δ(ξ − ε)ŝα,β(ξ − ε)− χ
(1)
β,δ(ξ − δ − ε)ˆ̃sα,β(ξ − δ − ε)

1− χ(1)
α,−ν(ξ − ε)ŝα,β(ξ − ε)− χ

(1)
β,ν(ξ − ε− ν)ŝα,β(ξ − ε− ν)

×
1− χ(1)

α,−ν(ξ − δ)s̃α,β(ξ − δ)− χ
(1)
β,ν(ξ − δ − ν)s̃α,β(ξ − δ − ν)

1− χ(1)
α,−ε(ξ − δ)s̃α,β(ξ − δ)− χ

(1)
β,ε(ξ − δ − ε)ˆ̃sα,β(ξ − δ − ε)

where:
χ
(1)
δ,ε(γ) = ζ(δ) + ζ(ε) + ζ(γ)− ζ(δ + ε+ γ)

Now we move onto the DBSQ.

Definition 21.46. The DBSQ is given by

pξũ0,0 + ũ0,1 = pξu0,0 − u1,0 − ũ0,0u0,0,
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qξû0,0 + û0,1 = qξu0,0 − u1,0 − û0,0u0,0,
1

2℘′(δ)− ℘′(ε)
(pξ−qξ+û0,0−ũ0,0) =

1

2℘′(δ)− ℘′(ε)
(pξ−qξ)+ˆ̃u1,0+u0,1+u0,0 ˆ̃u0,0+(pξ+qξ)(ˆ̃u0,0−u0,0),

where
u0,0 := (Uξ)0,0, u1,0 := (ΛξUξ)0,0, u0,1 := (Uξ

tΛξ)0,0

Proposition 21.47. The deformation of DBSQ is given by

w̃ − uũ+ v = 0,

ŵ − uû+ v = 0,

1

2℘′(δ)− ℘′(ε)
(û− ũ) = w − uˆ̃u+ ˆ̃v

Proposition 21.48. Given the transformation

u0,0 = x0 − u, u1,0 = y0 − v − x0u0,0, u0,1 = z0 − w − x0u0,0,

where
x0 = ζ(ξ) + nζ(δ) +mζ(ε)− ζ(ξ0), ξ = ξ0 − nδ −mε,

y0 =
1

2
x20 −

1

2
℘(ξ) +

1

2
(n℘(δ) +m℘(ε) + ℘(ξ0)),

z0 =
1

2
x20 −

1

2
℘(ξ)− 1

2
(n℘(δ) +m℘(ε) + ℘(ξ0)),

we obtain the 1-component form (9-point)

1

2
(℘′(δ)−℘′(ε))(ˆ̃u− ˜̃u)− 1

2
(℘′(δ)−℘′(ε))(ˆ̂u− ˆ̃u) = (

ˆ̂
ũ− ˆ̃̃u)(û−

ˆ̂
˜̃u)−(û− ũ)(u− ˆ̃̃u)

There are other DBSQs, but we won’t discuss them.

21.3.2 Marchenko Equation

Proposition 21.49 (Fokas, Ablowitz, 1981). The DLA for the KdV is given
by

ϕ(x, t; k) + iei(kx+k
3t)

∫
L

ϕ(x, t; l)

l + k
dλ(l) = ei(kx+k

3t),

where

u = −∂x
∫
L

ϕ(x, t; l)dλ(l), Lax pair is needed.
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In this case, the Lax pair is needed.

To transform from the DLA to GLM, we can substitute

ψ(x, t; k) = ϕ(x, t; k)e−i(kx+k
3t),

K(x, y, t) = −1

2

∫
L

ψ(x, t; k)ei(ky+k
3t)dλ(k),

F (x, t) =

∫
L

ei(ky+k
3t)dλ(k),

K(x, y, t) + F (x+ y, t) +

∫ x

+∞
K(x, ξ; t)F (y + ξ, t)dξ = 0,

u = 2∂xK(x, x; t).

Let’s move on to the Fokas-Ablowitz’s elliptic DLA. Recall that the KP equation
is given by

ut + uxxx + 6uux + 3∂−1x uyy = 0.

Proposition 21.50. The elliptic DLA for the KP is given by

ψ(x, y, t; k) + ρk(y, t)

∫ ∫
D

ψ(x, y, t; l)σl′(y, t)Ψx(k, l
′)dλ(l, l′) = Ψx(k)ρk(y, t),

where

u(x, y, t) = −2℘(x)− 2∂x

∫ ∫
D

ψ(x, y, t; l)σl′(x, y, t)Φx(l
′)dλ(l, l′).

If we set
ρk(x, y, t) = exp(℘(k)y − 2℘′(k)t+ ρ(0)(k)),

Ψx(k) =
σ(x+ k)

σ(x)σ(k)
e−ζ(k)x = Φx(k)e

−ζ(k)x,

then the Lax pair becomes

Pψ(x, y, t) = 0, P = ∂y − ∂2x − u(x, y, t),

Mψ(x, y, t) = 0, M = ∂t + 4∂3x + 6u∂x + 3ux + 3∂−1x uy.

Proposition 21.51. In the real-valued case where w1 > 0, w2 purely imaginary,
we have

ψ(x, y, t; k) + ρk(y, t)

∫ ∫
D

ψ(x, y, t; l)σl′(y, t)Ψ̃x(k, l
′)dλ(l, l′) = Ψ̃x(k)ρk(y, t),

where

Ψ̃x(a) =
σ(x+ a+ w2)

σ(x+ w2)σ(a)
e−ζ(a)x−ζ(w2)a,

and

Ψ̃x(a, b) =
σ(x+ a+ b+ w2)

σ(x+ w2)σ(a+ b)
e−(ζ(a)+ζ(b))x−ζ(w2)(a+b),
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Proposition 21.52. In the non-singular case, Ψ̃x(k, l) exponentially decays
when x→ +∞: ∫ x

+∞
Ψ̃ξ(k)Ψ̃ξ(l

′)dξ = Ψ̃x(k, l).

Now we finally reach the Marchenko equation.

Proposition 21.53. The Marchenko equation is given by

K(x, s, y, t) + F (x, s, y, t) +

∫ x

+∞
K(x, ξ, y, t)F (ξ, s, y, t)dξ = 0,

K(x, s, y, t) = −
∫ ∫

D

ψ(x, y, t; k)Ψ̃s(k
′)σk′(y, t)dλ(k, k

′),

F (x, s, y, t) =

∫ ∫
D

Ψ̃x(k)ρk(y, t)Ψ̃s(k
′)σk′(y, t)dλ(k, k

′),

and it has the solution

u(x, y, t) = −2℘(x+ w2) + 2
∂

∂x
K(x, x, y, t).

We conclude this section with an image of the elliptic 1-soliton of KP.

21.4 Related Problems

Consider the discrete Krichever-Novikov equation

p(uũ+ ûˆ̃u)− q(uû+ ũˆ̃u)− r(uˆ̃u+ ũû) + pqr(1 + uũûˆ̃u) = 0

where

(p, P ) = (
√
k sn(α; k), sn′(α; k)), (q,R) = (

√
k sn(β; k), sn′(β; k)),

(r,R) = (
√
k sn(γ; k), sn′(γ; k)), γ = α− β.
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Proposition 21.54. What are the algebras associated with the vertex operators
given by:

X(k) = Φt1(2k)e
θ[e](t,k)eθ(∂̃,k)

and
τN (t) = ecNX(kN )τN−1(t), τ0(t) = 1?

Proposition 21.55. Is there a higher order analogue of the Boussinesq equation

℘(4)(ω1(δ))−℘(4)(δ) = 30(℘′(ω1(δ))−℘′(δ))(℘′(ω1(δ))+℘
′(δ))+12g2(℘(ω1(δ))−℘(δ))?

Proposition 21.56. Does there exist a new formulation of KP?

Solution. In [Kakei, 2023] the following was discovered:

L0 = V0∂
−1
x V −10 ,

V0 = 1 +

∞∑
n=0

v0,n(x)∂
−1
x ,

v0,1(x) = −ζ(x), v0,2(x) =
1

2
[ζ2(x)− ℘(x)], . . .

L0 = ∂x − ℘(x)∂−1x +
1

2
℘′(x)∂−2x + . . . ,

L2
0 = ∂2x − 2℘(x)− g2

10
∂−2x − 6℘(x)℘′(x)∂−3x + . . . ,

But there is still plenty more to explore.

This is a good place to stop.
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22 Anton Dzhamay: Geometry and Symmetry
of Painlevé Equations

Abstract

We begin by an overview of how geometric ideas entered the theory of
differential Painlevé equations in the work of of K.Okamoto, which led to
the better understanding of their symmetries (Backlünd transformations)
in terms of affine Weyl groups. These ideas were then extended by H.Sakai
to the discrete (elliptic, multiplicative, and additive) Painlevé equations
and resulted in the beautiful Sakai classification scheme for both differen-
tial and discrete Painlevé equations. In the latter case, it is the symmetry
group that is the source of a discrete dynamics. In the second part of
the talk we discuss the notion of an abstract discrete Painlevé equation
and its various concrete realizations. This leads to the study of a refined
identification problem, which is a classification of different orbits for the
same abstract discrete Painlevé dynamic, and results in the appearance of
special symmetry groups that are not a part of the general (i.e., generic)
Sakai classification scheme. We illustrate this by an example of a discrete
Painlevé-II equation and its symmetry group. This is based on a joint
work with Yang Shi, Alex Stokes, and Ralph Willox.
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22.1 Introduction

Instead of focusing on formulas and equations, we will see the general picture
of the Painlevé equations from a geometric viewpoint. The plan of the talk is
as follows:

• What are the Painlevé equations and why are people interested in them?

• How does geometry appear through the Okamoto space of initial condi-
tions (a family of rational algebraic surfaces called the generalized Halphen
surfaces)?

The big idea is as follows: given some equation, we get a geometric object.
There are symmetries associated with this geometric object called the Cre-
mona isometries. These Cremona isometries are associated with surfaces
and are linked to the group structure. In this case, the group structure
of the Cremona isometries corresponds to an (affine and extended) Weyl
group W̃ (R = D).

• By examining the geometry of this Weyl group, it becomes much more
clear how to compute the symmetries as the symmetries create transfor-
mations in the equations, called Bäcklund transformations.

• Since the Weyl group is affine, we have translations, which we can think
of as defining a discrete dynamical system, where we move along a fixed
vector in affine space. Associated with this fixed vector is a nonlinear
equation, which is commonly referred to as the discrete Painlevé equation.
These discrete Painlevé equations are so named because we can take a
continuous limit and return to a standard Painlevé equation.

A typical process might involve starting with a Painlevé equation, like
Painlevé VI, and finding its associated geometric object. You then exam-
ine the symmetries in this Painlevé VI case, which would correspond to
an affine D4 symmetry, observe the translations, and take the continuous
limit. This process would yield a discrete Painlevé V equation.

Let’s start with something really simple: y′ = y. From this ODE, we get a
(special) function y(t) = Cet = C

∑
tn

n! for t ∈ C.

So ODEs are interested because they often lead to new functions. For instance,
if we go a step beyond simple equations, we encounter something like the Gauss
hypergeometric equation:

E(α, β, γ) :
d2W

dt2
+

Å
γ − (α+ β + 1)t

t(1− t)

ã
dW

dt
− αβ

t(1− t)
W = 0

This is one of the fundamental examples of differential equations that give rise
to special functions through various degenerations. When we allow t ∈ CP1,
this equation has three singular points: one at t = 0, another at t = 1, and the
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third at ∞. These singular points arise because the coefficients of the equation
become singular at these values.

Singularities can occur in two different contexts: within the equations them-
selves or within their solutions. The question is: how are these two types of
singularities connected? If an equation has a singularity, does the solution nec-
essarily have one as well?

For linear ordinary differential equations, the situation is more straightforward.
If the coefficients of the equation stop being analytic at a certain point, then the
solution may also develop a singularity at that point. However, it’s not guaran-
teed. For example, in the case of the generalized hypergeometric equation, with
parameters α, β, and γ, the solutions can exhibit different behaviors: we havet = 0 t = 1 t = v0

0 0 α
z − γ 1− γ − β β


where a fundamental system of solutions might include one solution that remains
regular, while another may exhibit power-law behavior near the singular point.
So, in the linear case, the singularities of the solutions are entirely controlled by
the equation itself.

However, when we transition from linear to nonlinear differential equations,
things become more complicated. Many of the nice properties of linear equa-
tions disappear, making the study of singularities more challenging. If we’re
using differential equations to describe special functions, it makes sense to try
and construct nonlinear special functions from nonlinear equations. But this
introduces new difficulties.

Let’s consider a very simple example: the equation dw
dt = w2 with w(t0) = w0.

This is a first-order separable equation that can be easily solved be rewritting
it as

−dw
w2

= dt

and then substituting in the initial condition gives

w(t) =
w0

1− w0(t− t0)

This solution has a pole because the denominator vanishes when t = 1
w0

+ t0.
The location of this pole is a movable singularity because it depends on the
initial condition w0. In this case, it’s not the equation itself that determines
where the singularity occurs, but rather the initial conditions.

While poles are manageable, if we look at a more complex equation like 3w2 dw
dt =

1, w(0) = w0, the solution involves branch points and branch cuts. The equation
might have a solution like:

w3 = t+ w3
0 =⇒ w = (t+ w3

0)
1
3
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so we have singularities at −w3
0 and ∞, and we might want to introduce a

branch cut. The location of the branch cut depends on the initial condition,
which complicates things further. If we want to construct the Riemann surface
for this solution, we would need to account for these branch points, making the
solution much more difficult to handle.

So, while movable poles can be tolerated, movable branch points pose more
significant issues. Mathematically speaking, equations with only poles are said
to have the Painlevé property, while those with branch points do not. The
Painlevé property refers to differential equations whose general solutions have
no movable singularities other than poles. Specifically, the Painlevé property
ensures that the general solution has no movable branch points.

22.2 The Painlevé Equations

Painlevé, along with his student Gambier and Fuchs, classified second-order
equations that satisfy this property. These are now known as the Painlevé
equations, which take the form:

1. Painlevé I:
d2w

dt2
= 6w2 + t

2. Painlevé II:
d2w

dt2
= 2w3 + tw + α

3. Painlevé III:

d2w

dt2
=

1

w

Å
dw

dt

ã2

− 1

t

dw

dt
+
αw2 + β

t
+ γw3 +

δ

w

4. Painlevé IV:

d2w

dt2
=

1

2w

Å
dw

dt

ã2

+
3

2
w3 + 4tw2 + 2(t2 − α)w +

β

w

5. Painlevé V:

d2w

dt2
=

Å
1

2w
+

1

w − 1

ãÅ
dw

dt

ã2

−1

t

dw

dt
+
(w − 1)2

t2

Å
αw +

β

w

ã
+γ

w

t
+δ

w(w + 1)

w − 1

6. Painlevé VI:

d2w

dt2
=

1

2

Å
1

w
+

1

w − 1
+

1

w − t

ãÅ
dw

dt

ã2

−
Å
1

t
+

1

t− 1
+

1

w − t

ã
dw

dt

+
w(w − 1)(w − t)

t2(t− 1)2

Å
α+ β

t

w2
+ γ

t− 1

(w − 1)2
+ δ

t(t− 1)

(w − t)2

ã
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The Painlevé equations form a cascade, meaning that we can start with a higher-
level equation like Painlevé V1 and degenerate it to lower levels, such as Painlevé
V, Painlevé IV, Painlevé III, and so on down to Painlevé I. Each level has
specific parameters, often denoted as α and β, which can yield special solutions.
For instance, certain values of these parameters can produce hypergeometric
functions as solutions to Painlevé VI.

PIV

PVI PV PII PI

PIII

PV was studied by Kummer, PIII by Bessel, PIV by Hermite, and PII by Airy.
It’s important that there are some values of parameters that are special. But
in general, it is very difficult to keep track of solutions of Painlevé equations: if
the method of Frobenius doesn’t work, how do we represent a solution? How do
we study its properties? There are a large number of techniques. For example,
we can use the Riemann Hilbert analysis. One approach to describe solutions
is due to Okamoto.

22.3 Okamoto’s Approach

Okamoto decided to understand the solutions by parameterizing them using
initial conditions, which a very natural approach: By Cauchy’s theorem, wer
initial condition uniquely determines wer solution in some time interval.

For example, if we start with PIV , it’s better to rewrite it as a Hamiltonian
system,

HIV (f, g; t) = 2fg2 − (f2 + tf + κ0)g + θ∞f.

Notice that even though this function is called a Hamiltonian, it is actually time-
dependent. So, it is not a constant of motion; it evolves with time. Nevertheless,
we can still use the symplectic form. Taking the standard symplectic form
ω = dg ∧ df , we generate the equations:

Ḟ = Hg = 4fg − (f2 + tf + κ0)

ġ = −Hf = −2g2 + 2fg + tg − θ∞

Notice that F is not just a coordinate and G is not just a momentum - it’s a
little more complicated. It turns out that this system, rewritten for F (t), is
equivalent to PIV for ω(t) = f(t). We use parameters α = 1 + 2θ∞ − κ0 and
β = −κ20. The reason why we are showing these parameters is because when
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we have equations coming from a particular applied problem, we need to use
geometry to match the parameters of the problem with the standard parameters.

We can show that this system is equivalent to PIV , and then we can start
thinking about the space of initial conditions:

t ∈ C

C2

(f, g)

If we pick a point, we will have a solution. Remember that the type of singu-
larities we allow for Painlevé equations are poles, so we can let the solution go
to ∞ at some value of t. But on the other hand, some solution can go to ∞ for
all values of t. To handle these infinities, we need to projectivize C2. There are
two ways to do this:

• C2 → P2. This is the better one for Painlevé I (which we are not focusing
on).

• C2 → C1 × C1 → P1 × P1. This is what we will do.

Anyone with knowledge of algebraic geometry will recognize that P2 and P1×P1

are different, but birationally equivalent. This gives us a compact, complex
surface (a two-dimensional complex algebraic variety). Since it’s compact, we
can discuss its homology, cohomology, etc.

For example, by Poincaré duality,

H2(P1 × P1;Z) ≃ H2(P1 × P1;Z) ≃ H1(−,O∗) ≃ Pic(P1 × P1) ≃ Div/ ∼

The divisor classes of curves are irreducible, co-dimension-one submanifolds and
satisfy Pic(P1 × P1) = SpanZ{Hf ,Hg}.

Now, let’s think topologically. P1 × P1 is similar to S2 × S2, similar to how
a torus is a product of two circles. In that case, each sphere is a generator in
homology, and we have something similar here.

We can visualize this as follows:
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(f, g)

(F = 1/f, G = 1/g)

f = 0 f =∞

g = 0

g =∞

The group SpanZ{Hf ,Hg} is equipped with an intersection product:

Hf · Hf = Hg · Hg = 0

Hf · Hf = 1.

The second equation can be interpreted as: if we take a line f = a and g = b,
they intersect at one point. Of course, Hf and Hg are classes, but we can just
allow deformations to make things work. To do this, take two representatives
and use position or transversality. Take two representatives, where one is a shift
of the other, and they do not intersect. The ”right” way to think about this is
that we can shift by pushing the zero section along the normal bundle of the
embedding of this line in the projective plane, and we can do that in this case.

Recall that our symplectic form

ω = dg ∧ df

is completely regular in the image, but if we extend it to the whole of P1 × P1,
it starts picking up poles. So, ω = dg ∧ df in the chart in the image, but it
becomes ω = dG∧dF

F 2G2 in the other chart, leaving us with poles of order 2.

Thus, the canonical class is

KP1×P1 [(ω)] = −2Hf − 2Hg.

In Painlevé theory, this class plays a crucial role, turning into

−K = 2Hf + 2Hg

This is how geometry appears. However, we are not done because we can have
more than one solution going to infinity.
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If we have two solutions going to ∞, given a point, we would have one curve
arrive at the point, followed by another curve, but they have different rates of
growth. To fix this, we can perofrm the blow-up on the point, which introduces
an additional direction of slopes, and then we lift the curve according to the
slope. This separates them so that they don’t intersect anymore.

All possible slopes (up to equivalence) form the projective line P1. But every
time we do the blow-up, we must add the exceptional divisor, E, that corre-
sponds to this line of slopes Ei ≃ S1 = P1. Thus, Pic gets another class Ei = [Ei]
which is the class of this sphere.

This is essentially a kind of surgery where we take a point, remove it, and then

blow up a bubble at that point or #P1
.

After performing this blow-up, the exceptional divisor EI has the interesting
property that it is what is called a minus-one curve:

E2i = −1 = c1(NE in X)

where X is the surface we get after the blow-up. Thus, we must adjust the
geometry, as it is no longer just the projective geometry.

Consider Painlevé-IV. If we start with C2, add lines at infinity, and look at points
where new trajectories can intersect. We start with 4 initial points. From the
initial bad point, we do the surgery, create a bubble, extend the equation to that
bubble, picked up another bad point, and continue this until we have created a
ascade of infinitely close points, or we can think of it as curves touching each
other. Eventually, we get something like this:
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f = 0 f =∞

g = 0

g =∞

p1

p2

p3

p4

p5

p6 p7 p8

This is similar to a gauge transformation: we can always arrange for the points
to be there, which normalizes the way the system looks. Before we proceed,
we need to introduce coordinates to describe these points. Local coordinates

around p3 are given by
Ä
f,G = 1

g

ä
. Additionally, let

f = u3 = U3V3

G = u3v3 = V3

so that v3 = G
f is the slope coordinate. Now, we have two charts: one at the

bottom of P1 and another at the top of P1. We can use either of these charts to
specify the coordinates. If we do the computation, we get p4 = (u3 = κ0mv3 =
0), for example. The important point is that the coordinates of these points
depend on the parameters of the equation, such as α, β, γ, or κ.

Now, we perform the blow-ups at these points and keep track of the intersection
index of your curve. Let’s start with point p1.

Consider the intersection of the zero lines:

0

0

After blowing up the point, we get

Hf − E1

−1

E1

Hg − E1
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The intersection index is −1 for all of the lines.

Then, more points appear:

Hf − E1

−1

E1

Hg − E1
p2

If we blow up p2, we get

Hf − E1

−2

E1 − E2

Hg − E1

E2

where the intersection index of E1 − E2 is −2. If we continue this, we get:

E8

E6 − E7

E1 − E2

E2

E7 − E8E5 − E6
Hf − E1 − E5

E4

E3 − E4

Hg − E3 − E5

Hg − E1

Hf − E3

where the red curves are −1 and the blue curves are −2.

22.4 Towards Affine Dynkin Diagrams

This is where the affine Dynkin diagrams begin to appear. Let’s look at the
configuration of these blue curves. Labelling the blue curves with di:
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E8

E6 − E7 = d4

E1 − E2 = d1

E2

E7 − E8 = d5

E5 − E6 = d3Hf − E1 − E5 = d2

E4

E3 − E4 = d0

Hg − E3 − E5 = d6

Hg − E1

Hf − E3

we obtain the affine Dynkin diagram E
(1)
6 :

d1 d2 d3 d4 d5

d6

d0

This affine Dynkin diagram comes with a generalized Cartan matrix

−2 0 0 0 0 0 1
0 −2 1 0 0 0 0
0 1 −2 1 0 0 0
0 0 1 −2 1 0 0
0 0 0 1 −2 1 0
0 0 0 0 1 −2 0
1 0 0 0 0 0 −2


.

This matrix is degenerate, having a null vector, which is exactly what the affine
part of Dynkin diagram comes from. In fact, we can compute the coordinates
of this vector directly from the diagram:

−2 0 0 0 0 0 1
0 −2 1 0 0 0 0
0 1 −2 1 0 0 0
0 0 1 −2 1 0 0
0 0 0 1 −2 1 0
0 0 0 0 1 −2 0
1 0 0 0 0 0 −2


δ = 0.

If we call the vector δ, it turns out that it is equal to the canonical divisor class,
and then we have a decomposition of the anticanonical divisor classes:

δ = −κX = δ0 + δ1 + 2δ2 + 3δ3 + 2δ4 + δ5 + 2δ6.
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This decomposition corresponds to the geometry because each of these sum-
mands is the equivalence class of some −2 curve that we created.

When we construct a space of initial conditions, we need to add infinities to
allow for points of intersection. When we add infinities, you get points where
some trajectories merge. We separate them by blowing up, which creates a
complicated algebraic surface. This surface encodes the space you created, and

it is known as the E
(1)
6 surface.

From this surface, we can read off the symmetry

t

parameters

X

where the parameter space has parameters α, β or κ0, θ∞. Here,

X = Blp1,...,p8(P1 × P1)

is a generalized Halphen surface, meaning that there is a unique anticanonical
divisor class of canonical type:

(−κX) ∈ Pic(X) = SpanZ{Hf ,Hg, E1, ..., E8}.

We can also look at (−κX)⊥, which has two sublattices

SpanZ{δi}

and
SpanZ{αj}

where αj ·δi = 0. The first sublattice gives the surface, whereas the second gives
the symmetry?

What do we mean by symmetry? First of all, the α’s are generated by the
condition that

αj∆i = 0

These vectors are perpendicular to the ∆-vectors. You can compute what these
α’s are:

α0 = Hf +Hg − E5 − E6 − E7 − E8.
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α1 = Hf − E3 − E4
α2 = Hg − E1 − E2

These form the Dynkin diagram A
(1)
2 :

which is the symmetry group. We call it a symmetry group because it’s an
abstractified Weyl group with generators and relations:

W (A
(1)
2 ) = ⟨w0, ..., w2|w2

i = id, wiwjwi = wjwiwj⟩.

This group can be visualized as follows. If we consider the usual dihedral group
D3

we can forget about the triangle and take parallel shifts of the lines, we get a
infinite triangular lattice which behaves like a kaleidoscope:

Taking a point and mirroring over the edges, we can create translations. Each
translation is discrete Painlevé, so each element of the group induces a Backlünd
transformation and their particular compositions give translational dynamics,
which when written in coordinates, gives discrete Painlevé.

How does one get the elements? We have the representations of W (A
(1)
2 ) on

Pic(X). We can extend this to a vector space by tensoring Pic(X)⊗Z Q, which
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is done by reflections in the roots αi:

wi = rαi
: c→ c− 2

c− αi
αi · αi

.

Finally, one can show

w1 : f 7→ f

g 7→ g − κ0
f

This is an example of a symmetry of your system of equations, specifically a
Backlünd transformation. We no longer fix the surface but move in a family of
surfaces, giving us a symmetry that takes the solution of one Painlevé equation
to the solution of another Painlevé equation for a different value of parameters.
Iterating this with the limiting procedure, we get another Painlevé equation,
and so on.

This is a good place to stop.
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