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1 Motivation: New Functions

The motivation is creating new functions, such as elementary transcendental
functions. What are these? With pure algebra on x, we can construct polyno-
mials (e.g., 527 — 322 4 4) and rational functions (e.g., 45;%";1), but not much
more. If we allow inverse functions, we can also take roots: y = 2" — x =
y/™. What about “other” functions?

One way we can get new functions is through ODEs, allowing our solutions to
be new functions. For example, if we take the ODE y' = y, with y(z¢) = yo,
then the solution is y(z) = el=70)y and now we have exponential functions.

Similarly, for the ODE y’ = y with y(0) = 1, we can assume the existence of an
analytic solution y(z) = Y7 ja,z™. We need convergence, etc., but for now,
we assume everything we want exists. We can differentiate term-by-term:

y(x) = ag + a1z + aga® + -+ + apa”,
Y (x) = a1 + 2a9x + 3azx® + - - + nayz" L.
Setting the equations equal gives a1 = ag, 2a2 = a1, 3as = ag, ..., (n+1)ap+1 =

an, with ag = y(0) = 1. Setting ap = a1 =1 gives a,, = % by induction. Thus,
we obtain:

Indeed, this series converges for —oo < & < oo (using the Ratio test).

From the differential equation, we can deduce some basic properties, e.g., e¢t? =
b
ee’.

Remark 1.1. We can also define new functions as solutions of functional equa-
tions or difference equations.

Example 1.2. (The Gamma Function)

The Gamma function T satisfies the functional equation T'(x +1) = zT'(x), with
I'(1) = 1. In particular:

F(z)z/ t*~ et at.
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2 Picard-Lindelof

Let U be an open subset of R"*! =R x R" (i.e., (x,7)) and let f: U — R" be
a continuous function. Consider the ODE ¢ = f(z,¥), with ¢(xq) = g, where
(wo, ]70) cU.

Picard’s idea is to transform the differential equation into an integral equation
and use the contraction mapping principle:

Thus, we have:

Foa) = o+ [ Fls.gn(s)) ds.
zo
Define an operator K (¢)(z) := go + ffo f(s,7(s)) ds and introduce a norm in
the continuous function space so that K is a contraction with respect to this
norm. Then there exists a fixed point y(z) = K(¥)(x).

This idea is formalized in the following theorem:

Theorem 2.1 (Picard-Lindelof). If f 18 locally Lipschitz continuous in the
second argument (i.e., §) uniformly in the first argument, then there exists a
unique (local) solution §(x) to the initial value problem.

Recall:

— —

‘f(xag) B f(xag*” = T

sup —
(@) 2(,7") 7 — 7]

where L is finite, and (z,¥) € V is compact C U.



3 Ordinary Differential Equations in the Com-
plex Domain

Recall: Suppose we have a function f : C D U — C where U is open and zy € U.

Then L
f/(ZO) :}ILI_% f(Z0+ f)L_f(zO)

Theorem 3.1 (Cauchy-Riemann Equations). If f(z) = u(z,y) + w(x,y) is
differentiable at zg = xo + 1yo, then the first-order partial derivatives of u and
v exist at (xg,yo) and satisfy:

Uy =0y and Uy = —vg at (Zo,Yo).

If U C C is open, then f is differentiable in U (i.e., at every z € U) if and only
if w and v are differentiable, their partial derivatives are continuous, and the
Cauchy-Riemann equations hold.

The Cauchy-Riemann equations imply that % f = 0, which means f(z,y) =
f(2,Z) = f(z) is holomorphic. According to Cauchy’s theorem, holomorphic
functions are analytic, so we can write f(z) = >0 a,(2—2)", which converges

(n)
with a, = fTW for 2y € U open.

Theorem 3.2 (Existence and Uniqueness of Analytic Solutions). If Q) C CxC™
is open, A C C (parameters), and f : Q2 x A — C™ is analytic in all variables,
then for the system

’LUI = f(Z,’lE, )‘)a
W(z0) = wo,
for (20, wo, Ao) € Q X A, there exists a unique (local) solution w(z,we; \) that is
analytic in all variables.

We can look for solutions in the form of convergent power series using the
Method of Frobenius.



4 2nd Order Linear ODE in the Complex Do-
main and the Method of Frobenius

Consider the ODE

w" + p(2)w’ + q(2)w = f(2),

w = w(z).

How do we solve this?

1. Solve the homogeneous equation w” + p(z)w’ + ¢(z)w = 0 and find a basis
in the vector space of solutions.

2. Solve the non-homogeneous equation (e.g., using the method of variation
of parameters).

Assume that p(z) and ¢(z) are analytic at z = % (i.e., in an open set U con-
taining zp):
o0
p(z) = palz—2)",
n=0
oo
q(z) = Z qn(z — 20)".
n=0

Then, look for the analytic solution w(z) = Y77 an(z — z9)™ and find the
recurrence relation for the coefficients a,,:

w” + p(2)w’ + q(z)w

)
)

w

(
(

0,
20 wo,
w1 .

w

20
Setting ag = wg, a1 = wy, and without loss of generality assuming zg = 0,
wiz)=a +az++a 2"+,

w'(2) = a1 +2a22 + 3a32* + -+ na 2"+ (n 4 Dap 2"+,
w//
By brute force substitution, we obtain:

o At 2% 2ay 4+ po- a1 + qo - ap = 0 gives as.

o At 2': 2-3a3 + 2a9pp + a1p1 + qrap + goar = 0 gives as.

and so on.

(2) =2a2 +2-3azz + -+ nn—1Daz" 2 +nn+ Dap 12"+ (n+1)(n+2)ang22™ +--- .



Example 4.1 (Airy Equation). Consider the differential equation w"

Setting w(z) =Y .7 anz", at 2":
n(n —1)apz""?

This gives the recurrence relation

an
pig = ——————.
2T+ 1)(n+2)
Note: ay = 5 = 0 because a_y := 0.
an
a =
"+ 2)(n+ 3)
which implies ay = a5 =ag =--- = agp42 =0 for k=0,1,
If we start with ag, we get
ag ao as ag 4dag
a3 = —— = — ag = — = - —— g =
7923 30 756 356 6
If we start with aq,
aq o 2 a4 _2 5
(14—3.4—4'@17 ar 6-7 71 ay,

Thus, we can write

23 428 4.7-2° 4.7-10-
+

=a,2""" = (n+2)(n+ Dapsz = an.

2,....

w(z):a°(1+§+ﬁ+ 91 121

N (+2z4+2~5-z7+2~5-8-210
“\FT 7! 10!

—ayg, etc..

ZW.



5 The Airy Equation and the Airy Functions

The Airy functions are our first example of special functions determined by an
ODE:
w”(z) = 2w = w(2) = pAi(z) + c1Bi(2),

where
e For AI(Z), ag = AI(O) = W7 a; = AII(O) = _W
e For Bi(z), ap = Bi(0) = —W, a; = Bi'(0) = —W-

The point x = 0 is a "turning point”. To the left of this, we have oscillations,
and to the right, we have exponential growth/decay. In particular, Ai and Bi
are the only functions that satisfy these conditions.

Consider the ODE
w"” + p(2)w’ + q(z)w = 0.

We've seen that the solution w = w(z) is analytic whenever p(z) and ¢(z) are
analytic. What about singularities?
Without loss of generality, suppose zy = 0 is an isolated singular point.

Recall: If f is analytic in U = {z € C | 0 < |z| < r}, then, using the Cauchy
Integral Theorem, we can write

f(z):~'+%+C_71+co+clz+0222+~~
as a convergent Laurent series. Thus:
o f(z)is analyticifc.y =c_g=---=0.
e f(z) hasapoleof order k € ZT ifc_ #0and c_p_ 1 =c_p_o="---=0.
e If infinitely many c; # 0 for k < 0, then f(z) has an essential singularity.

Example 5.1 (Euler (or Equidimensional) Equation). Consider
b
W'+ Lw' + —w = 0.
z z
The coefficients are singular at zp = 0.

Rewrite as z*w"” + azw’ + bw = 0. Define d = ‘L and introduce the Euler

operator 6 := zd—dz. The eigenfunctions are:
_ _ e oy (R2)”
ow=kw = w(z)=e —Z o
and
ow=kw = w(z)=2"= eloe(z)k

Exercise 5.2. Show that [0,2] = 1, [0,6] = 0, and 2*0% = §(6—1)(6—2)--- (6—
kE+1).



6 Methods of Frobenius

We seek solutions to w”(z) + p(z)w'(z) + ¢(z)w(z) = 0 in the form of power
series near singular points zg = 0.

The Euler equation z2w” + pozw’ + gow = 0 can be rewritten as
1 1 / 1
W' + —pow + —qow = 0,
z z

which shows the first and second order poles. Using Euler’s operator § = zd%,

we have:
d

828 = k2F, =

Thus,
220% = 2(20)0 = 2(60) = 2(00 — 0) = 206 — 20 = §* — 6.

By induction, 2*0% = §(6 — 1)(§ —2)--- (6 — k + 1). Therefore, we can rewrite

§(6 — Dw + podw + gow =0 = (6% + (po — 1)d + go)w = 0.

Comparing aw” +bw’+cw = 0 and (ad?+bd+c)w = 0, we see L = ad?*+bd+c =
L1 o Ly. For example, if a =1,

(0—11)(0 —r2)w =0,
which can be rewritten as
82 - (7”1 + 7“2)8 + rire.

This gives the solution
w(z) = c1e® + cpe??.

Example 6.1. For w” +w' — 6w = 0, we rewrite the LHS as
(02 +0 —6)w = (0 + 3)(0 — 2)w,

S0

ow = 2w = w(z) = ce**

and

ow = —3w = w(z) = e,

which gives the general solution

w(z) = c1€%* + cpe™32,



Example 6.2. For 22w + 22w’ — 6w = 0, we rewrite the LHS as
(6(6 —1)+25 —6)w = (62 + 5 — 6)w = (5 + 3)(6 — 2)w,

SO

Sw=2w = w(z) = c2*

and

dw=—3w = w(z) =cz?,

which gives the general solution

w(z) = 122 + cp273.
In both examples, there are two distinct real roots of the characteristic equation.
Example 6.3.

o If we take w"” +w' — 6w =0, trying w(z) = e™* = r2+r—6=0 is the
characteristic equation.

o Ifwe takew” +4w'+5w = 0, the characteristic equation is r*>+4r+5 = (r+
2)2 +1 = 0, which gives general solution w(z) = cie™ 21 4 cpel=279% =
e~ 2%(¢1 cos(z) + ézsin(2)).

o If we take 22w” + 52w’ + 5w =0 = (2 +46+5)w=0 = w(z) =
01272” + 02272’1'.

o If we take w" + 4w’ + 4w = 0 we can rewrite the LHS as (0> + 40+ 4)w =
(0+ 2)%w(z) = ce™%*.

Now try variation of parameters, w(z) = u(z)e™2?.
(u"e™ 2% +2u/ (—2e72%) +u(2)de ) +4(u e 2% +u(z)(—2e %) +4u(2)e ?* = 0

and then cancelling everything gives v/ =0 = u(z) = ¢12 + ¢o, which gives
solution w(2) = (c12 + ca)e™2* = c1ze 2% + ege™2*. We can think of the second
term as the eigenfunction of 0 and the first as the generalized eigenfunction.

Consider the differential operator applied to a function:

(0 + 2)(ze™?%) = %2,

Regarding o:
Example 6.4. Consider the differential equation
220" + 5zw’ + 4w = 0.

The solution is

w(z) = c127  og(2) 4+ caz ™2



Reason: An Euler equation transforms into a linear differential equation with
constant coefficients under a change of the independent variable

¢ = log(2),
where log(z) = In|z| + iarg(z) with the principal branch —7 < Arg(z) < 7.

By the change of variables ¢ = log(z), i.e., z = €S, we have
4 _ded _ d
¢ d¢dz  dz

Let 1(¢) := w(eS). Then the equation

220" + pozw’ 4+ gow = 0

transforms to
v’ + (po — 1)u’ + qou = 0.

The characteristic equation is

(1 —po£4/(po — 1)? *4110) .

DO =

P+ (po—1)r+q=0= ris=
If 71 # ro, then the solution is
u(¢) = 1" + ce”C,
which translates back to
w(z) = c12™ + 2.
If 71 = ro, then the solution is
u(¢) = (a1 + ea)e™,
which translates back to

w(z) = 12" log(2) + co2".

We seek solutions near an isolated singular point zg = 0 of the form
w(z) = 2"h(z),

where h is holomorphic.

Lemma 6.5. A first-order differential equation w'(z) + p(z)w(z) = 0 has a
solution w(z) = 2"h(z) with h(z) = 3" o hyz™ and ho = 1 if and only if p(z)

has at most a simple pole at zo = 0, specifically p(z) = = + po + ... with

z
r=—p; = —lim, 0 2p(2).

10



Proof. Substitute w(z) = 2"h(z) into the differential equation w’ 4+ p(z)w = 0:

oW e h(2) + 2R (2) o W(z)
p(z) = - w 2"h(z) -7 h(z)’

where % is holomorphic with A(0) = hg = 1.

Conversely, if w’ = —p(z)w, then

w(z) = cexp (— /p(z) dz>
w(0) exp (f /OZ p(s) ds)

=-—p_1logz+C+poz+...

= w(0)z~P-* - holomorphic function.

for some constant C. O

Definition 6.6. A point zy is called a regular singular point of the differ-

ential equation w” + p(z)w’ + §(z)w = 0 if p and ¢ are meromorphic at zg and

p(2) = (2 — 20)p(2) and q(2) = (z — 20)?G(2) are holomorphic at zy. If p(z) and

q(2z) are holomorphic at zy, we say that zy is an ordinary point.

Assume zy = 0. Then, for the equation
22w + zp(2)w’ + q(z)w =0

with p(z) = po+p1z+ ... and ¢(2) = go + g1z + . . ., we have solutions of the
form

for a holomorphic function h.

The associated Euler equation is

220" + zpow’ + gow = 0,
with the characteristic equation

r(r—1)+por+¢o =0,

which is called the indicial equation because the solutions are exponential at
the singularity. The solutions are

1
T12 = 5 (1 —pox (po - 1)2 _4%) .

There are two cases: r; —ro ¢ Z and 1 — r9 € Z.

Consider some representative examples.

11



Example 6.7. For 4zw” + 2w’ + w = 0, the associated Fuler’s equation is
4220" + 2zw' = 0, and the indicial equation is

1
dr(r—1)=2r = 4> —2r=2r(2r—1)=0 = r=g,m2=0.

Thus, wy(z) = 22 h(z) and wy(z) = h(z). Substitute w(z) = o 2T

o0

Sl r)(n+r—Dhnz" T 4 (04 )y 2T 4 by 2]

n=0

Shifting the index down by 1 gives the recurrence relation

An+r)(n+r—1)+2(n+7))hp +hp_1=0
2(n+r)2n+2r — Dhy, = —hp_1.

Letting F(n+r) =2(n+r)(2n + 2r — 1), we have at n = 0:
F(r)-(ho=1)=—-h_1=0and F(r)=2r(2r—1)=0
n=0:F@) (ho =1 =—-h_1=0and F(r) = 2r(2r — 1) = 0 is ezxactly
the indicial equation above (the characteristic equation for the approzimating

Euler’s equation). Then for ri = % >1re =0,

-1 (—1)

n

@Gnr2n@nt2r—1) " T @nt2r)@nt+2r—1)..(2r+2)2r+ 1)
Remark 6.8. Products like the one above are sometimes called shifted factori-
als:

e Lower z, :=z(x —1)(xz—2)..(z —n+1) = (2),

o Uppera" :=z(x+1)(z+2)...(z+n—-1)=(z)"

)
Definition 6.9. The Pochhammer symbol (o), = a(a+1)(a+2)...(a+n—1).
Note: (1)n = nl, (a)n = He? since I(z + 1) = T'(2). And ho(r) = 574

T'(a) @r+1)z,

Forr = %

[e’e) n o7} n 2n+1

. _ _
i D" L (D) (V) .
h(z) =22 Z @ 2" = Z Gn+1) =sin (Vz) .

n=0 n=0

Forr =20:

12



Recap: 4zw” + 2w’ +w = 0 has the following general solution:

w(z) = cysin (V/z) + ¢z cos (Vz)

4z (cl (_4,21\/5 cos (V/z) — 4—12 sin (\/2)) + e (4 1[ sin (v/z) — cos >>
)

+2 (cl (2\2 COS > 2 sm >

+ (e1sin (Vz) + ¢z cos (Vz))
=0

Example 6.10. zw” + w’ — w = 0 has the indicial equation r(r — 1) +r =
0 = 72 =0 so it has a repeated root. The power series

oo

Z (n+7)(n+r—=1) k2" 4 (n+ 1) Ry 2" = by 2™TT) =0
n=0

Note that (n+17) (n+7 — 1) hy 2" 7" L4 (n +7) hp2z" ™1 = (n+r)%h, = F(n+
r) and F(r) =r%=0.

n =0 gives r> =0 = F(n) =n? and

1 1 1
i = F(n) o1 = = n2(n—1)2.12 (a2’
o 2" 22 28
wl(z):ZOZn:O (’I’L') (1+Z+7+%+ )

To find wa(z), try wa(z) = wi(z)log(z) + 2"h(z). If wa(z) = wi(z)log(z) +
2"h(z). Let Lw] = 4zw"” 4 2w’ +w = 0 for easier typesetting. Then

Llwa(2)] = Llwi(z) log(2)] + L[z"h()]
Since

Llwy(2)1og(2)] = = (] log (=) + 2uf - T — w5 ) + (wflog (=) w1 - ) — wilog (2

1 1
=log(z)L[w,(z)]+2wi—w1~;+w1~;

=log (2) L [w, ()] + 2w}
and

L[2"h(2)] = —2w]

13



At r =0, this is equal to

2 (2hg +2-3zh3 + 3 - 42°hg + ...) + (k1 + 2hoz + 3h32® 4+ ...) — (ho + haz + ho2® + ...)

1 1,
=21+ -2+ —2"+4+ ...

2 12
We have
hy = —2
2-2hy —hy = —1
1
3:3h3 —hy = ~%
9 n 2
hp —hp_1=-2 =—
" ! nln! (n—1)In!
So

can be solved for h,,.

Furthermore,

_ Loy B M5 >
wa(z) = wq (z)log(z)+< 22+4z T08° T

Example 6.11. Consider zw” +w = 0. Look for w(z) = z"h(z), where h(z) is
analytic (holomorphic) near z =0, ie. h(z) =Y " hpz" with hg # 1.

Then w(z) = > 07 g hnz™T" = 2" = hy2™ + ho2"2 + .. + hy,2"T™. Plugging
this into the equation gives
z [r(r— D" 24+ (r+Drhz" 4+ (r +2)(r 4+ 1)ho2"
+-~-+(r+n)(r+n—l)hnzr+"72+~-~}
+ [z"+ 2T+ b4 ] =0

o At 271, the indicial equation is r(r — 1) = 0. Alternatively, we can get
here through the associated Euler equation: z?w" =0, try w(z) = 2" which
gives r(r — 1)z" = 0. Solving the indicial equation gives r1 = 1,79 = 0.

o At 2", we have r(r + 1)hy +1 = 0. In general, we have wy(z) = 2" h(z)
and wy(z) = 2"2h(z) but this second doesn’t exist because if ro = 0, then
0-hi+ 1 =0, which is impossible, so there is no second solution in this
form. But the first one always exists.

14

)



o At 2"t we have (r+n)(r+n—1)h,+h,—1 =0. Ifri —r2 = m € N>,
then F(ro +m) = F(r1) = 0, and we have 0 - hyy, + hpm—1 = 0 which
s impossible unless h,,_1 happens to be zero. Let’s construct the first

solution wy(z). Take the recurrence relation F(n + r)h, = —hp_1. Use
r1=1:F(n+1)=(n+1) -n. Then

-1 (-1)" (-1)"

h":n(n—i-l)hn_l:m: (n+1)~n~...-3-2~2-1h0: (n+1)(nh)?

This gives

1)n Zn-i—l
|

1(2) ;(nﬂ)(ngz ; CEEESE

How to find we(2)? Look for the solution in the form wq(z) = 2" h(z) +
cw(z) log(z). Substitute L{w] = zw" + w = 0, which gives

Llwy(2)] = L[2"h(2)] + cL[w:(2) log(2)] = 0

so L[z"h(z)] = —cL]wy(z) log(z)], which can be rewritten as

i(F(n)hn +hp)2" = —c (z (w'l’(z) log(z) + w} - % - w12%>) + w1 (2) log(z)

n=1

So ¢ = —1 and we have 2hg + hy = —%,6h3 +ha = %7

The first will give us a solution of the form z°(hy1(z...)) = z(h1(1+...)) =
hy - wi(2), ie. is a multiple of wi(z), nothing new can put hy = 0. Then
= b= (54 ) E = g o or

2n—1

fin = (_1)nF(n)n!(n + 1)

This gives our second solution

1
Example 6.12. Consider the equation z?w” + zw' + <z2 - 1) w = 0. The
indicial equation isr(r—1)4r—%1 =0, and F(r) =r*—1 = r = 1,ro = -1
The recurrence relation is F(n +r)h, + hy,—1 = 0.

N

15



At r = 1. F(n—i—%) = n(n—|—1) Since h,, =

1 Boo, h1 = hy = ... =

1
T n(n+1)
hok+1. Furthermore, hoy = 2k(2k)+1) so we get the solution

i ek _ sin(z)
— 2k+1 N

k 0

Nl

=z

What about the second solution wa(z)? We have

w(z) = 2" Z hnz" 4 cwi (2) log(z),
n=0

which we can rewrite as

Lw(z)] =

P Zhnz

+ cL{wy(2)log(z)] = 0.

Note that

273 Z hnz"] = —cL[w;(z) log(2)]

1 1 1 1
=—c¢ (,22 (w/ll log(z) + 2w} - — w—Q) + 2z (w'l log(z) + wlf) + (22 _ Z) w1y 10g(z)>
z z z

/
. 2w

z

At the same time,

>, 1
Lz 2 Z hnz"] = Z (F (n — 5) hy + hn—2) P
n=0
= (0-ho+h_2)z"% +(0-hy +h_1)27 + (2hg + ho)z? + ...

= —cC <z% — gz% + )

so ¢ = 0. Take hy arbitrary. The recurrence relation gives

(=D*
Qk+1ﬂm

—_1)k
hoy, = ((%;!ho, hok+1 =

SO




Theorem 6.13. Consider the equation w” 4+ p(z)w’ +G(z)w = 0 where p(z) has
at most a simple pole at zo = 0 and §(z) has at most a double pole at zo = 0,
ie. 22w" +wp(2)w’ + q(2)w = 0, where p(z) = 2p(2), q(z) = 22G(2), where p(z)
and q(z) are analytic near 29 = 0, ie. p(z) = > oo 1 Pnz™ q(2) = > 0o qn2"

Then, if r1 and ro are the characteristic exponents (ie. roots of the indicial
equation v(r — 1) 4+ rpg + qo = 0), the following two cases can occur:

o Ifri—re ¢ 7Z, a fundamental system (ie. a basis) of solutions is given by
w;(z) = 2" h;(2) with hj(z) =Y 3oy hjrkz® (convergent near zg = 0) with
thO = ]..

o Ifry —ro =m € N, then a fundamental system of solutions is given by
wy(z) = 2" hy(2),wa(z) = 2"ha(z) + clog(z)wy(z), where the constant
¢ € C might be zero (unless 11 = rs, then ¢ #0).

Proof. We'll provide a sketch.

Let 22w +p(2) 2w’ +q(z)-w = 0, with w(z) = 2" > 00 hp2™ = > 00 [ hp2"t" =
2"+ 3 by 2™ where hg = 1, and

p(z) = i <p0+2pn>

n=0

q(z) = Z (qO-l-an )

n=0
Then

q(z)w(z) = (CIO + i qkz’“> 2" <1 + i hez’v’>

(oo (2]
S,

Z (%hn + Z Qkhn—k) 2T
n=1

k=1
SO

p(z)zw'(2) =po-r2" + Y (Po(n +1)hn + > pr(ntr— k)hn—k> 2
n=1

k=1

If we substitute

(r(r—1)+por+40)2"+Y ([(n +r)(n+r—=1) +po(n+7)+ qolhn + > (pr(n+r—k) + qk)hn_k)> 2T = (
n=1 k=1

17



note that 7(r—1)+por+qo is the indicial equation F(r) = r2+(pg—1)r+qo = 0,
so the coefficients will have the form

F(n+7r)h, + Z(pk(n +7r—k)+ qp)hn—i =0.
k=1

Let’s solve for the exponents r1 and 79 for at the singularity and then solve for
h, in terms of hq, ..., hp_1.

Solve F(r) =12+ (po — 1)r + qo = 0 to get
1
re =g (1 —po £/ (po—1)*— 46]0) :
Furthermore, 11 + 12 = 1 — pg, r172 = qo, SO

n

F(n+r)h, + Z (pk(n+7r—k)+qx) hn—i = 0.
k=1

So F(n+r) = (n+r—ry)(n+r—rz). Additionally, F(n+r1) = n(n+ri—rz) #0
for n > 0, and F(n +r1) = (n+ ro — r1)n can be equal to zero if 11 —ry = m
for m € N.

In the case when 71 — ro = m € N>, use variation of parameters technique:
wa(z) = u(z)wi(z)
which can be rewritten as
Llwa(2)] = u(z)Llw (2)] + 2% (u" (2) + 2u/ (2)wy (2)) + p(2) - 20’ (2)wi (2)
= 22" (2) 2" hy (2) + 2/ (2) 22 (r12™ T ha(2) + 27 R, (2)

=22 2" hy(2) <u”(z) +2u/(2) - % + 24/ (2) h((z)) pz u (z))

which we want to equal zero. So we want

u’(z) + <iﬂ + 2:12 ; + %) u'(2) = 0.

and the term in parenthesis is equal to 2% + 2 4 holomorphic.

Put v(z) := u/(z). Then we get
1 _
v+ (u + holomorphic) v(z) = 0.
z

and

1 _
v(z) = exp (— / # dz + holomorphic)

[e'S)
_ Z'rg—rl—l § :fnzn
n=0

18



with fo # 0. Since v(z) = u/(z),

n+r2 1

/ZfanQ " 1dz_zf"n+r2—r1

if n # ro —r1, and if r; — ro = m then the last term has + f,,, log(z).

Now, we get our final formula
= 2" (Z wnz"> + fmwi(z) log(z).
n=0

Proving the convergence of the resulting series is not difficult - see the textbook.
O
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7 Bessel Differential Equation and the Bessel
Functions

There are several ways in which these arise:

e Vibrations of a circular membrane: separation of variables on the wave
equation gives the Bessel equation.

Definition 7.1. Differential equations of the form
220" + 2w’ + (22 — v?)w =0
with v € C are the Bessel differential equations of over v.

Assume Re(v) > 0. Let’s solve this using the method of Frobenius: Assume
there is a solution of the form

w(z;r) =2"h(z) = 2" Z hpz" = Z B ()2
n=0 n=0

with hg = 1. Now we substitute:

oo

Llw(z;r)] = Z [(nAr) (nAr—1) Ry (1) 2" (1) o (1) 2" =02 By (1) 2" B (1) 2™ T2

n=0

which we want to equal 0. Let’s perform the index shift on the last term to
hp—2(r)2"*" with h_y = h_; = 0. The reccurence relation is

F(n+r)h,(r) + hp—o(r) = 0.

where F(n+r1) = [(n+7)? —v?].

e At n = 0, we get the indicial equation is F(r) -1 = r2 — 0% = 0,7 =
+v,Re(ry = v > ry = —v). If v = 0, the indicial equation has a repeated
root.

e Atn=1,weget F(1+7)=(1+7r—v)(1+7r+v),so

Fl+7r)-hi(r)+h_1(r)=0
which gives at r; = v : F(n+v) = n(n+2v) and at ry = —v, F(n—v) = (n—2v)n.
By assumption Re(r; = v) > 0, so F(n+wv) at r; can never be zero but at rq is

can be zero (when n = 2v). So either F(1+7r) or hi(r) =0 = hag41(r) = 0.
Atrg=—v:F(l—v)=(1-2v).

There are three special cases:
e v = (: repeated roots

1.

o V= odd terms

5
e v =2m for m € N>q: roots differ by an integer.

20



The generic case is when v # 2m or % Here, there are two roots r; = v and

ro = —v. Then

F(n+v)=n(n+2v) and F(n —v) = (n — 2v)n

SO
F(n+v)h, =—hp_2..hop41 =0
where
hoy, = _71h2(k—1)
2k(2k + 2v)
(—1)*
T (2k)(2k — 2)...(2)(2k + 20)(2k + 20 — 2)...(2k + 20)
(=1)*
TR (vt Dy

We always have the solution

_ o (DT +1)
wi(z) =2, 926K (0 + & + 1) &

k=0
o0
(_1)k 2\ 2k+v
—T+1)-2 ) o (5)
(v+1) kz:ok!l“( Tkt \2
Definition 7.2. The Bessel function of the 1st kind is defined as

N (=D* AN
J”_k;k!r( +k+1) (5) '

In the generic case, changing v to —v gives

_ v > (_1)kr(1 _U)
w(2) =z kZ:O 22FKIT (1 + k — v)

T -v) (—1)k 2\ 2k—v
L ;klr( +k—v) (5) '

For special cases, at v = % we considered earlier:

wy(z) =

cos(z)

N

sin(z)
NG

With some additional normalization, we get

and wy(z) =

1(2) = (2)% sin(z) and J_1(2) = (2)(2 cos(z).

TZ 2 TZ
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For repeated roots at v = 0, differentiate wrt the parameter r. Recall

r) = Z B (r)2"F7,
n=0

SO

Liw(z;m)] = F(r)zr—i—z ( n+r) )+ Z (pe(n+r—k)+ qk)hnk> 2"
n=1 k=1

Let’s try to solve the recurrence
(F(n () + S (i1 — k) + qkmnk) (*)
k=1

for hy(r).

If h,,(r) satisfy the recurrence (x): L{w(z;7)] = F(r)z" and if F(r) = (r —r1)?,
ie. the repeate root case, then L[w(z;7)] = (r —r1)?z* which = 0 if r = r; but

also:
0 0
lreri Loz = L | e (i)
0
= E|r=r1 (r— Tl)QZT
=0
So
0
wo(z) = 8—|T:r1w1(z;7") =wi(z;7)

B o)

= log(z2)z" Z hn(r)z" + 2" Z hl (r1)z
n=0

n=0

Applying F(r) = r% on

Llw] = 22w” + 2w’ + 2°w = 0
gives

)2" +Z (r+n)hy + hp2) 2" =0

where hog+1 = 0. Then

-1 (—1)2
mhzk—2 = =

hgk(T’) =

22



The repeated root is r = 0:

(=n* (=¥
har(0) = 55 o (2k)2 ~ 22R(R1)2
and i .
N (-1 2\ 2k
k=0 k=0
Since
wa(2) = Jo(2)log(z) + Z h! (0)2" = Jo(2) log(z) + Z hb,.(0)22F
and ( )
_1)§
ha(r) = 2t T a7 1 2R
we have
by, (r) 1 1 1
hQZ(T)__2<T+2 r+4 r+2k)
and at r =0
=~ <2+4+ +21k)h2k(0)
— (1 + % +..F %) h2(0)
= Hyhor(0)

where Hy, is the k-th harmonic number. This gives

oo

k+1Hk
ws(2) = Jo(z)log(z +Z 252 2w
k=1

Usually, there is a little bit of change in the second solution

Yo = = [wa(2) + (7~ 1n(2))Jo(2)]

~ |0 +los (3))10() + > Ll)kﬂ.Hk (Z)ﬂ

where v is the Euler constant

v = lim (H, —In(n)) ~ 0.5772

n—oo

For bessel equations of order m € Z-~, we have

2w 4 2w’ 4 (22 —mHw =0

23



and
F(r)y=r*—=m?=(r—m)(r +m)

SO

hE

(F(’f' + n)hn + hn72)z7‘+n =0

When r+m : F(ry +n) = F(m+n) =n(n+ 2m) and

b = (-1)* R G Ol
FT2k) 2 2k +2m) .- (2+2m)  22Fkl(m+ 1)k

which has solution

LS ()E

z>_zk! m+ 1) (2)
( 1)k 2k+m
—Tm+12"y
(m +1) Zk'Fm+k+1) (2)

=T(m+1)2"Jn(2).

For the other solution,
wa(2) = 27 ™ha(2) + clog(2)wi(2)
SO
—m 2 " / 1 1 / 1 2 2

L[z7"hs (2)]4c| 2% (w]log (2) —|—2w1; Wi + z | wy log (2) —|—w1; + (2* =m?) log (z) w1 | =0

and then spam cancellation gives

Z [F(n—m)hy +h, 2]2" " =1L [Z_th (z)] = —20%11)’1 (2).

( 1 k 5 2k+1

o0 ( 1)k oo
wl(z)zzzk!() ( ) Zk' (k + 1)122F

=0

Then F(n —m) =n(n—2m) or F(n —1) =n(n —2) and

i (—l)k 4 2k+1
! 192k
Sk (k+1)12

24



SO
0-hoz 4 (=1)-hy+(0-hy +ho)z+ (3-1+hy) 2%+ (4-2+ hy) 2° +
1[N (D)7 (2K + 1) 22F
_ 9.t Z( ) (2k+1)=z
2 k! (k + 1)122k

k=0

To finish our discussion of Bessel functions of order n € N+, take n = 1:

22w + 2w’ + (22 — 1w = 0.

The indicial equation is
Firy=r(r—1)4+r—1=rm-1=(r-1)(r+1)=0

sory =1>ry=—1. We have

oo
= g B2t
- n
n=0

SO
00

Z[F(r +n)hp + hy_1]2" T = 0.
n=0

At n=0:F(r)hg =0, and we get hg =1, F(r) = 0.
Atn=1:Fr+1)hi=0s0 F(r+1)#0 = h; =0 = hoqa =0.
Atry =1, F(n+1) =n(n = 2) so F(2k 4 1)hag + haz—1y = 0. This tells us

1 (=DF

hog = — (1) = . =
T k) (2k +2) 2k 22Kk (k + 1)!

ho

and

e DR N (=Dr2
wy(z) = 2 ];)22kk!(k+1)!z _1;22kk!(k+1)!

What about the second solution? wa(2) = 27137 [ hy,2™ + cwy(2) log(z).
We have

Liws(2)] = —2¢ - zw}(2)
where
- - F(2k +1
wg(z)zz:[F(n—l)h + hp—2)z Z 221%' F ! )z2k+1

n=0
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But note that

Fin—1)=n(n-2)
=(0-h))z "+ (=1)hy + (0-hy + 1)z 4+ (3 - 1hz + hy)2* + ..

3 3
:—20<z—22.1'22 —|—>

Now, we can see that —2¢ = 1,hoqq = 0, hg is "free”, and wy(z) = 271(1 +
hoz? 4 hyz*) so changing hy adds a multiple of w1 (2).

Furthermore, we get

(—D)F(2k +1)

(2k + 2)(2k)hok+2 + hor = F(k + 1)122F

for £ > 1. Let g, = RHS and yj := hog. Then

2%(k)(k + D)yrs1 + Yk = G

with initial condition y; = hs. Notice that this is a 1st order linear non-
homogeneous difference equation, and can be written:

o (=DFEE+1)
Ph(k+ 02k T T R (k1 D)2k

Yk4+1 +

To solve:
Step 1: Solve the homogeneous equation

1

T =0
2k(k+1) "

Tp+1 +

with z1 = x2. We get

-1 (-1}

= T, = ... = —————ho.
T o kG )R (22)kEI(k + 1) 2

Step 2: Solve non-homogeneous recurrence using variation of parameters: set
Yk = UpTg, which gives y; = uyxy = ha, ie. up = 1. So

: ( )
Yk+1t Pk + 1)yk = Uk +1Th+1 — UkTh+1 1 | UkTht1 + Pk + 1)uk$k = Gk-
The parenthesis term is equal to ug(0). Now we have (ugt1 — uk)ZTpr1 = Gk,
which we can solve to get

9k
Tk4+1

9k
Th41

Uk4+1 = Uk + =...=u1+ﬂ+...—|—
T2

26



Is there a closed form? We have
(-D*@k+1) (—1)k oo L (i 2k +1 )
1 2 k(k+1)/"

9k
e 22D (B 1D)N2 -k (22)FE!(k + 1)! ho
We get
=t 1((1+1>+( 2) ot (i)
L T AN S T 2
1 ( 1 1
e (gt )+ (50 g *))
T 2hy U Tt R R
1
It’s convenient to take hy = 72 and let Hy : (1—1— + ...+ > Hiy =
1
(2+3+ +k+ ) which allows us to write:
1
Ukl = o3 (Hy + Hi41) = Hi + Hyq

(71)]671
Yo = ukxk = (Hp—1 + Hi) (22)F—1k(k — 1)!h2

hak = Yk

Z k' (7>2k+1

k 1
T (Hy—y +Hk)22k> + <—1) w1 (z) log(2).

w2(2) (1 * Z 2% 1) 2

Exercise 7.3. Show that for Bessel Equation of ordern € N> 0:
)2k+n

Tu(2) = T+ D (2 Z . k+n (,

¥(Hgin + Hy)

()R X Gt )T

Remark 7.4. For generic v, the basis of solutions of Bessel’s equation is
Ju(2)
and the Hankel functions

Y, (2) = cos(Tru)SJiVn((z;V; J_V(z).

27
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8 The Legendre Equation
Definition 8.1. The Legendre equation of order « is of the form

(1 —25)w” — 220" + a(a + 1)w = 0.

It is clear that zp = 0 is an ordinary point.

Exercise 8.2. Use the method of power series to find the basis (ie. the funda-
mental system) of solutions near zg = 0; find the radius of convergence of the
resulting power series. Show that for some « the series becomes polynomial.

What about singular points? There are three of them. Look at the coefficient
at w”’: 1 — 22 =0 = 2z = +1. We should consider the point at infinity!

At z; =1, we can recenter using t =z — 1,z =t 41, so o a This gives
z

(1= 2t + 1) —2(t+ Dw' + a(a+ 1w =0
tt+2)w” +2(t+ 1w +ala+DHw =0

t41 ta)(a +1)
t2 1 2 t !/
L

w=20

1
sor(r—1)+2- ort 0 =0, so r = 0 with multiplicity 2.
Exercise 8.3. Solve with for z = —1.

1
At z = oo, change variables to Z = —. Then we get
z

(1 — i) (z"a"(Z) +22%0' (Z)) — zl(—z2)ﬁ/(Z) +ala+1)w(Z)=0

22 4
(Z* = ZHa" 4 (2Z = 22)0" + a(a+ 1) =0
_ ala+1)
Z2w”+ 22_1)10:0
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ala+1)

where 72— is holomorphic at Z = 0. So
r(r—1)—ala+1)=0
rP—r—a’—a=0
(r—a—-1)(r+a)=0
which implies 71 = a+ 1,72 = —au.

The Legendre equation has three singular points, each one is regular, and the
exponents at singularity are described as

known as the Riemann scheme.
Definition 8.4. A linear ODE in the complex domain
w0 (2) 4+ pi(2)w" (=) + oo+ pr(2)w(z) = 0
1s called Fuchsian if all of its singular points, including the point at infinity,
are reqular.

Definition 8.5. A 2nd order Fuchsian ODE is called a Riemann equation if it
has exactly three singular points.

Example 8.6. The Legendre equation is an example of a Riemann equation.

Exercise 8.7. Is the Bessel equation Fuchsian, ie. 1is oo a regular singular
point?

Recall 0 = diz, 0= zd%7 [0,0] = 0 and that zy = 0 is an regular singular point
of
Liw] = 0w (2) + p1(2)w" ™ (2) + ... + pr(2)w(z) = 0

if 2p1(2), 22p2(2), ..., 2"p-(2) are holomorphic at zo = 0. Since
L=0"+pi(2)0" "+ ... +p.(2) 1 = 2"L=2"0"+ (2p1(2)2" 0" + ... + 2"p,(2)

50 z89% can be rewritten in terms of 9:

20 =20
2207 = 2(0)0 = 2(06 —9) =200 — 1) =6(6 — 1) =62 - ¢
20% = ... =6 — 36% + 20.
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We can use this to show

Z'L=2" Zpr,k(z) .ok
k=0

oo
Zpr_k(z)zrszkak
k=0

=" pr1(2)2" ) (E)(6 — 1) (6 — K+ 1)
k=0
=04 q(2)0" o F e (2)
where ¢;(z) are holomorphic at zo = 0.

Exercise 8.8. Show that

r(r—1)
5

q1(2) = 2p1(z) —

So regular singularity points occur for equations that can be written in terms
of § with holomorphic coefficients:

20=14 §=26
2202 =626 6% = 2202 + 20
230° = 6% — 362 + 26 63 = 220° + 3(220% + 20) — 2(26)

and so on.
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9 Riemann Equations

Recall that Fuchsian equations are equations such that all singular points, in-
cluding the point at z = oo, including the point at z = oo, are regular. Define
the differential operator

L=0"+a1(2)0" '+ +a,(2)

where 0 = gsz' We have

L] = 0™ +ay (2)w"D 4+ g (2w = 0
SO

2L = 2"0" 4 a1(2)2"0" " - 4 2"a,(2)
=0(0-1)(0-2)...0 =—n+ 1D +a1(2)d(6—1)...(0 —n+2)+ -+ an(z)
=0" 4 by (2)0" 4 b (2)

where § = zZL. We know that L{w] = Y7 a;(2)0" Jw is Fuchsian if and
only if z"L{w] = 377 b; (2)6" 7w and all coefficients b;(z) are holomorphic
(analytic).

Remark 9.1. For by(z) = za1(z) — w:

-1
S(6—1)(0-2)...(6—m+1) = 5m+(1—1_2..._(m_1))5m*1+~-~+%
Lemma 9.2. The equation Liw] = 0 is Fuchsian with regular singular points
21,29, -« s Zms Zma1 = 00 if and only if the coefficients ai(z) have the form

B pi(2)
ak(z) - (Z _ Zl)k(z — 22)"’ e (Z - Zm)k

and pi(z) is a polynomial of degree at most k(m — 1).

Proof. The Fuchsian condition at z = z; is that (z — 2z;)¥a(2) is holomorphic.

At z =o00: put ¢ = % Note that d% = Z—gd% = —z%d% = —CQdi, which gives (5‘:
2L = fgd% = —6 where 6§ = Cd%. The equation 2" L[w] = Z?:o b;i(2)0" T w
gives z = %

We also have > 7_ b; ( ) (—0)"Jw = 0. This gives

1
¢

bi(z) = 2aj(z) + ...
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o ()=3n (2

1 P(<>
s J(**Zl) (g —zm)?
¢ Ip; (3)

T (L= )R = Cz)?

where p; (%) is a polynomial of degree d, p; (%) = ( )dﬁj(o» ¢itm=1-d > q,

and d = degp;(z) < j(m —1).

1
3
O

Definition 9.3. A Riemann scheme for a Fuchsian equation is the following
table

zZ1 22 ... Zm  RAm4l=co
1 1 1
i Ty .. T, Tl
n n n
Ty T Tm Tm+1

where the first row are reqular singlular points and the first column is the expo-
nents at the singularity (ie. roots of the indicial equation).

Lemma 9.4 (Fuchs Relation).

m—+1

LI m—1)-n-(n—1
O PR L)

=1 j=1

where m is the number of finite singular points and n is the order of the equation.
Let
L= Zaj )0 = 0" + a4y (2)0" " +

ot e

z— z1 Z—Zm '

where a1(z) =
At z = z;:

m

: 1
(z—=2z)"L=(2—2)"0"+... =0+ (z—zi)H z%z - n(n2 ) I
R

j=1

where 07" = (z — z;)"0". The associated Euler equation is

-1
r”+(ai—%>r”+l+...20

-1
where 7" = (r —r})..(r —r?) and 7} + ... + 1P = —; + "(nT
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At 241 = 00

=g = e (o (3) 200 ) e )52
i=1 i

We have

n(n —1)
PRIANES UL
j=1 =1
and
m+1 n m m
i n(n —1) n(n—1)
Yo =St
=1 j=1 =1 =1
_ (m—=1)n(n—-1)
N 2

In particular, if we consider n = 2: 32377 = (m — 1) where m is the number
of finite regular singular points.

Let’s restrict to second order equations. If w” +p(z)w’+¢(z)w = 0 has solutions
of the form w(z) = 2"h(r) with h(z) analytic at z—0, h(0) = 1, then the equation
has to be Fuchsian at z = 0, ie, z = 0 is a regular singular point, ie, p(z) has at
most first order pole at z = 0 and ¢(z) has at most second order pole at z = 0.

Suppose w1 (z) = 2™ hy(2) and wa(z) = 2" hy(z) are two solutions

{wll/ + p(z)wy + q(z)wr =0

where

‘w’l’ w1
" ,
(o) = 12 W2l _ 4, fur w
piz) = 7 d 0og W w
wy Wi < 2 2
wh  we
We can check that
!
w]_ wl
= W(wi,w 0
wh W (w1, w2) #
as
/ !
wy w1l oy ;oW1
’ —w1w27w1w2—w2 e
w2 w2 w2
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Let

Then we have

2

p(z) = —dilzlog(ww(z)) = _v’(z) _ wy(2)

v(z) w(z)
Both v(z) and w(z) are of the form f(z) = 2"h(z) where h(0) # 0, so

d G C))

iy = -
where T is at most a first order pole. We can now conclude that p(z) has at
most a first order pole at z = 0 and ¢(z) = 7%’11’ fp(z)% has at most a second

order pole at z = 0.
Let’s move on to discuss Riemann equations.

Definition 9.5. A second order Fuchsian ODE on the Riemann sphere is called
a Riemann equation if it ihas only three reqular singular points (including oo ).

The Riemann scheme for singular points a1, as, as is

aq as as
Qp G2 Qa3

B B2 Bs

The solutions of a Riemann equation (ie, a general solution) are denoted by
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10 Mobius Transformations: The Group of Au-
tomorphisms PSL; on Pg

Define PL = C% — {(0,0)}/ ~ where (z,y) ~ (Az,\y) for A € C*. Denote

[(z,y)] = [z : y] as the homogeneous coordinates of P{.. For @ # 0, we have

[z :y] = [1: %] and similarly for y # 0 we have [y : 2] = [5 : 1].

b

Consider A = [a
c d

} € GLy = Aut(C?). We have
A {x} _ {az + by}
vyl lex+dy

and
Az :y] = [ax + by : cx + dy].

Definition 10.1. For z = % with y # 0,

ar +by az+b

A- e =
i cx+dy cz+d

1s the fractional linear transformation or Mdébius transformation.
Additionally, let’s define PGLy = GLy/ ~.

Proposition 10.2. For any three points ay,as,a3 € C, there exists a unique
Mébius transformation ¢ mapping {a1,as,as) — (0,1,00) given by

(ag —a3) z —ap

wl2) = (ay —a1) z—az’

Using a Mobius transformation, we can always change a Riemann equation with
regular singular point aj,as,as to the one with regular singular point 0,1, 00
and vice versa. Without loss of generality, consider

0 1 o0
0p 01 O
T0 T1 Too

Then there exists a unique Riemann equation with this Riemann scheme (sat-
isfying the Fuchs relation (o9 + 70) + (01 + 71) + (000 + 7o) = 1).

For w"” + a1 (2)w’ + a2(z) = 0, we have

01(2) = linear _@ Aq
R P P |

o quadratic o BO B1 BQ
a2(2) = 2(z—1)2 22 + (z—1)2 * 2(z—1)
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Near z = 0: we have Ay =1—01 — 71,Bs = 0171 and

Ao Al) (Bo By By )
" 40 / Do
w+(z+zfl vt 22+(zfl)2+z(zfl) v

|
o

The indicial equation is
r(r—1)+Aor+Bo=(r—oo)(r—m)=0

so Ag =1 — 09 — 19 and By = 0¢19 with Ag =1 — 09 — 79, Bo = 0970

Near z = 1:

A A ) (B B, By ) )
2 " 40 ’ 20 _
Z(w+(z+z—1 v z2+(z—1)2+z(z—1) 0

2
2282+(A0+A1 : )za+(Bo+Bl(z) +BQ( i )
z—1 z—1 z—1

where 220% = §(§ — 1) = —0(—6 — 1) so

1 1) 1
92+97(A0+A1 )9+<B0+B1(> +BQC)'UJO

1-¢ 1-¢
The indicial equation is

r?+ (1-Ag—A)r+ (Bo+ B+ Ba) = (r — 000) (1 — Too)

Since 1 — Ag— A1 = —0o0 — Too, Ag = 1—09 — 79, A1 = 1— 01 — 71, which gives
the Fuchs relation

l=1-0p—1+1—-01—T1 — 00 — Too-
In addition, By = o171, By = 0gTo so

Bo+Bl +B2 = O0c0Too

and
By = 056Too — 00T0 — 0171+
Finally,
w"+(1 — 09— To n 1—0;— 7'1) ,+(CTQ7'0 o171 OooToo — O0To — 0171
z z—1 22 (z—1)2 z(z—1)

Exercise 10.3.

0 1 o0 0 1 00

2V (1 —2*)P 0p 01 O |52 | =Pl og+v o1+ 4 Ooo—V—U
To T1 Too To+V T1I+H Too—V—U
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We can focus on
0 1 00

0 0 a
-y y—a=8 B
where a = 09+ 01 4+ 0o, 8 =00 + 01 + Too-

Definition 10.4. The Gauss hypergeometric function is

E(mﬁ#)!2(1—2)7w+(’y—(oz—l—ﬁ—&—l)z)i%)—aﬁw:&
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11 Gauss Hypergeometric Equation

Let’s discuss Gauge transformations. We are interested in functions w = (wz),
where z € C C P}, and Aut(P:) = PGLy = Mdébius transformations act on w
by w — (z — a)*w. The Riemann equations have 3 removable singular points:

<a1 (o) 043) — (O 1 oo)
B1 B2 PBs o) oh o
where g € PGLs.

Assume that the removable singular points are zg = 0,21 = 1, and 25, = 0.
We still have the "residual” PGLy action permuting these points.

Exercise 11.1. Describe this group >~ S3 as linear fractional transformations.

We can write
w(z) = 2%z — 1)bu(z)

where w(z) is a solution of the form

0 1 o
0o 01 O
o T1 T

Earlier, we explicitly wrote down the differential equation that w satisfies:

de ( A1> dw ( BO Bl BQ)
— 4+ Ao+ — ) — —= Jw=0.
d22+ 0+z dz+ z(z—1)+(z—1)+z w=0

with coefficients
Ao =1- gp — 70

A1 =1 — 01 —T1
By = o979
By =017

By = 0456Too — 00Tg — 0171+

Additionally, we have

W) (S 2 CO) oy (S 2w )

z z—1  w(2) z z-—1
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and

= (G ) (G y) v +ve)
+ (—% — (z—b1)2) u(z) + (% + z%bl) u'(2) +u”(z))
= 2%z —1)° (u”(z) + (2£ 2 ) u'(2)

z z—1
+ <<Z+zbl>2_:2_ (zbl)Q)u(z)>

d?u (A0+2a+A1+2b) du

dz? z z—1 dz

+(Bo B; n By +a2—a+ b2 —b n 2ab +(ﬁ+ Ay )(g_'_ b ))u
272—'—(2—1)2 2(z—1) 22 (z—1)2  z2(z-1) z  z—1/\z =z-1

SO

=0

which can be simplified into

d2u (AO + 2a + A1 + 2b> du

dz? z z—1 dz
By+Apa+a®—a By+Ab+b2—b By+ Agb+ Aja+ 2ab
+ 2 + 2 u
z (z—1) z(z—1)
=0

This gives the relations
l—ag—By=1—09— 71+ 2a
170(1761:170'177'14*2b
aofo = om0 + (1 — 09 —T9)a +a® —a

= o970 — (00 + T0)a + a®

= (o0 —a)(to —a)
where ag = 09 —a or og = ag+a,79 = fo+a,01 = a1 +b, 7 = 1 +b. We can
now write

oo Boo — B0 —1f1 = OocToo —00T0 — 0171+ (1 =00 —T0)b+ (1 =01 —T1)a+2ab
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S0
Qoo = OooToo + (00 — a)(10 — @) + (01 — b)(11 — b) — ogT0 — 0111 + (1 — 09 — 79)b+ (1 — 01 — 71 )a + 2ab
= OooToo — (oo +70) +a* —b(oy +71) + 02+ (1 — 09 —70)b+ (1 — 01 — 71)a + 2ab
= OooToo + (1 =09 —Tg — 01 — T1)a + (0os + Too )b + (a + b)?
= OooToo + (0oo + Too )@ + (0o0 + Too )b + (a + b)?
=(0ot+a+b)(Tc+a+bd
With 0o = oo —a — b and 7oc = B — a — b.

We can now write

0 1 00 0 1 o
Plog=ag+a o1=a1+b 0o =0Qs —a—b;z :za(z—l)bP Qp 01 Qe 2
To=p+ta T =01+b Tew=Pxc—a—b Bo P11 P

SO
0 1 oo 0 1 00
Ploy 01 0x;z | =2>2—-1)'P 0 0 Ooo + 00+ 0152
O T1 Too To— 09 T101 Too+To+T1
0 1 00
=27%(z—-1)7'P 0 0 a;z

l—y v—a—-p p

The Gauss hypergeometric equation E(q, 3,~) is the Riemann equation with

the Riemann scheme
0 1 00

0 0 o
=y y—a-8 B
We have 2 8 p 8
w v o a4 +1,7> w @
TR (O e A e P
szJr(z z—1 derz(z—l)w
For E(a, 8,7), we have

2(1—2)w"(2) + (v — (a+ B+ 1)2)w’ — afw = 0.

Now, we discuss the regular singular points at z =0,z =1, and z = oo.

At z=0,
(oo} oo
w(z) = 2" Z hp2™ = Z hp2™tT
h=0 n=0

where hg = 1. Using the index shift n ~» n 4+ 1, we have

— [ () (n+r—Dhez"T = (n ) (n+r = Dhp )
EIL( -

n+1r)hp 2" — (@ + B+ 1)(n 4 1)hp 2" T — aBh, 2T

n=0
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is equivalent to showing that

[(n+r)n+r+1D)+on+r+1) et — (n+r)n+r+a+B) +aB)h,] 2"

or
m+r+1)n+r+y)hppr —n+r+a)(n+r+v)h, =0.

The indicial equation at n = =1 is r(r — 1 4+ y)hg = 0 with r; = 0,ro =1 — 7~
We assume the non-resonant case, i.e. v ¢ Z. Then

(n+r+a)n+r+p),

g (r) = (n+r+1)(n+r+7)

n

_ (m+r+a)(n+r+p8)..(r—a)(r+p)

(n+r+1)n+r+v)..r+1)(r+7)

_(r+a)irt+at 1) (r+a+tr)(r+B)n+1
(7 + Dpy1 (7 +9)nt1

0

which gives

At r=0:

where (1),, = n! and
S,
which is analytic if |z| < 1 and analytic when |z| > 1 if Re(y —a — ) > 0.

Definition 11.2. The Gauss Hypergeometric function is

21 (v, B33 2) 1= Z Mzn

n=0

We have ro =1 — 7,

(I=y+a)u(l=7+B)x
(2 =)D

SO

(1— W(1—
_Zlyz 7+ Y+ B)n,

_Z ’YFl Oé+1 76—"_1 772 Yz
7) D 2 A
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Our expression for P is

0 1 00
P 0 0 a | =coFi(a, By 2)+e, 217 o By (at1—7, B+1—7;2—7; 2)
=y y—a-p B
Near z = 1:

2(1—2)w" + (v — (@ + B+ 1)2)w' — afw = 0.

Put

42



	Motivation: New Functions
	Picard-Lindelöf
	Ordinary Differential Equations in the Complex Domain
	2nd Order Linear ODE in the Complex Domain and the Method of Frobenius
	The Airy Equation and the Airy Functions
	Methods of Frobenius
	Bessel Differential Equation and the Bessel Functions
	The Legendre Equation
	Riemann Equations
	Mobius Transformations: The Group of Automorphisms PSL2 on PC1
	Gauss Hypergeometric Equation

