Painlevé Equations and Symmetries

Lectures by Anton Dzhamay, Notes by Gary Hu

Fall 2024

These are my notes for Painlevé Equations and Symmetries, taught by Anton Dzhamay in Spring 2024.

Contents

1	Motivation: New Functions	2
2	Picard-Lindelöf	3
3	Ordinary Differential Equations in the Complex Domain	4
4	$2\mathrm{nd}$ Order Linear ODE in the Complex Domain and the Method of Frobenius	5
5	The Airy Equation and the Airy Functions	7
6	Methods of Frobenius	8
7	Bessel Differential Equation and the Bessel Functions	20
8	The Legendre Equation	28
9	Riemann Equations	31
10	Mobius Transformations: The Group of Automorphisms \mathbf{PSL}_2 on $\mathbb{P}^1_\mathbb{C}$	35
11	Gauss Hypergeometric Equation	38

1 Motivation: New Functions

The motivation is creating new functions, such as elementary transcendental functions. What are these? With pure algebra on x, we can construct polynomials (e.g., $5x^7 - 3x^2 + 4$) and rational functions (e.g., $\frac{4x^2 - 3x + 1}{x^2 + x - 7}$), but not much more. If we allow inverse functions, we can also take roots: $y = x^n \implies x = y^{1/n}$. What about "other" functions?

One way we can get new functions is through ODEs, allowing our solutions to be new functions. For example, if we take the ODE y' = y, with $y(x_0) = y_0$, then the solution is $y(x) = e^{(x-x_0)}y_0$, and now we have exponential functions.

Similarly, for the ODE y' = y with y(0) = 1, we can assume the existence of an analytic solution $y(x) = \sum_{n=0}^{\infty} a_n x^n$. We need convergence, etc., but for now, we assume everything we want exists. We can differentiate term-by-term:

$$y(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n,$$

$$y'(x) = a_1 + 2a_2 x + 3a_3 x^2 + \dots + na_n x^{n-1}.$$

Setting the equations equal gives $a_1 = a_0$, $2a_2 = a_1$, $3a_3 = a_2$, ..., $(n+1)a_{n+1} = a_n$ with $a_0 = y(0) = 1$. Setting $a_0 = a_1 = 1$ gives $a_n = \frac{1}{n!}$ by induction. Thus, we obtain:

$$y(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x.$$

Indeed, this series converges for $-\infty < x < \infty$ (using the Ratio test).

From the differential equation, we can deduce some basic properties, e.g., $e^{a+b} = e^a e^b$.

Remark 1.1. We can also define new functions as solutions of functional equations or difference equations.

Example 1.2. (The Gamma Function)

The Gamma function Γ satisfies the functional equation $\Gamma(x+1) = x\Gamma(x)$, with $\Gamma(1) = 1$. In particular:

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$$

2 Picard-Lindelöf

Let U be an open subset of $\mathbb{R}^{n+1} = \mathbb{R} \times \mathbb{R}^n$ (i.e., (x, \vec{y})) and let $\vec{f}: U \to \mathbb{R}^n$ be a continuous function. Consider the ODE $\vec{y}' = \vec{f}(x, \vec{y})$, with $\vec{y}(x_0) = \vec{y}_0$, where $(x_0, \vec{y}_0) \in U$.

Picard's idea is to transform the differential equation into an integral equation and use the contraction mapping principle:

$$\vec{y}(x) = \vec{y}_0 + \int_{x_0}^x \vec{f}(s, \vec{y}(s)) ds.$$

Thus, we have:

$$\vec{y}_0(x) = \vec{y}_0,$$

$$\vec{y}_1(x) = \vec{y}_0 + \int_{x_0}^x \vec{f}(s, \vec{y}_0) \, ds,$$

$$\vec{y}_2(x) = \vec{y}_0 + \int_{x_0}^x \vec{f}(s, \vec{y}_1(s)) \, ds,$$

$$\vdots$$

$$\vec{y}_{n+1}(x) = \vec{y}_0 + \int_{x_0}^x \vec{f}(s, \vec{y}_n(s)) ds.$$

Define an operator $K(\vec{y})(x) := \vec{y}_0 + \int_{x_0}^x \vec{f}(s, \vec{y}(s)) ds$ and introduce a norm in the continuous function space so that K is a contraction with respect to this norm. Then there exists a fixed point $\vec{y}(x) = K(\vec{y})(x)$.

This idea is formalized in the following theorem:

Theorem 2.1 (Picard-Lindelöf). If \vec{f} is locally Lipschitz continuous in the second argument (i.e., \vec{y}) uniformly in the first argument, then there exists a unique (local) solution $\vec{y}(x)$ to the initial value problem.

Recall:

$$\sup_{(x,\vec{y}) \neq (x,\vec{y}^*)} \frac{|\vec{f}(x,\vec{y}) - \vec{f}(x,\vec{y}^*)|}{|\vec{y} - \vec{y}^*|} := L$$

where L is finite, and $(x, \vec{y}) \in V$ is compact $\subset U$.

3 Ordinary Differential Equations in the Complex Domain

Recall: Suppose we have a function $f: \mathbb{C} \supset U \to \mathbb{C}$ where U is open and $z_0 \in U$. Then

 $f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}.$

Theorem 3.1 (Cauchy-Riemann Equations). If f(z) = u(x,y) + iv(x,y) is differentiable at $z_0 = x_0 + iy_0$, then the first-order partial derivatives of u and v exist at (x_0, y_0) and satisfy:

$$u_x = v_y$$
 and $u_y = -v_x$ at (x_0, y_0) .

If $U \subset \mathbb{C}$ is open, then f is differentiable in U (i.e., at every $z \in U$) if and only if u and v are differentiable, their partial derivatives are continuous, and the Cauchy-Riemann equations hold.

The Cauchy-Riemann equations imply that $\frac{\partial}{\partial \overline{z}}f=0$, which means $f(x,y)=f(z,\overline{z})=f(z)$ is holomorphic. According to Cauchy's theorem, holomorphic functions are analytic, so we can write $f(z)=\sum_{n=0}^{\infty}a_n(z-z_0)^n$, which converges with $a_n=\frac{f^{(n)}(z_0)}{n!}$ for $z_0\in U$ open.

Theorem 3.2 (Existence and Uniqueness of Analytic Solutions). If $\Omega \subset \mathbb{C} \times \mathbb{C}^n$ is open, $\Lambda \subset \mathbb{C}$ (parameters), and $f: \Omega \times \Lambda \to \mathbb{C}^n$ is analytic in all variables, then for the system

$$\vec{w}' = f(z, \vec{w}, \lambda),$$

$$\vec{w}(z_0) = w_0,$$

for $(z_0, w_0, \lambda_0) \in \Omega \times \Lambda$, there exists a unique (local) solution $w(z, w_0; \lambda)$ that is analytic in all variables.

We can look for solutions in the form of convergent power series using the Method of Frobenius.

4 2nd Order Linear ODE in the Complex Domain and the Method of Frobenius

Consider the ODE

$$w'' + p(z)w' + q(z)w = f(z),$$

$$w = w(z).$$

How do we solve this?

- 1. Solve the homogeneous equation w'' + p(z)w' + q(z)w = 0 and find a basis in the vector space of solutions.
- 2. Solve the non-homogeneous equation (e.g., using the method of variation of parameters).

Assume that p(z) and q(z) are analytic at $z=z_0$ (i.e., in an open set U containing z_0):

$$p(z) = \sum_{n=0}^{\infty} p_n (z - z_0)^n,$$
$$q(z) = \sum_{n=0}^{\infty} q_n (z - z_0)^n.$$

Then, look for the analytic solution $w(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ and find the recurrence relation for the coefficients a_n :

$$w'' + p(z)w' + q(z)w = 0,$$

 $w(z_0) = w_0,$
 $w'(z_0) = w_1.$

Setting $a_0 = w_0$, $a_1 = w_1$, and without loss of generality assuming $z_0 = 0$,

$$w(z) = a_0 + a_1 z + \dots + a_n z^n + \dots,$$

$$w'(z) = a_1 + 2a_2 z + 3a_3 z^2 + \dots + na_n z^{n-1} + (n+1)a_{n+1} z^n + \dots,$$

$$w''(z) = 2a_2 + 2 \cdot 3a_3 z + \dots + n(n-1)a_n z^{n-2} + n(n+1)a_{n+1} z^{n-1} + (n+1)(n+2)a_{n+2} z^n + \dots.$$

By brute force substitution, we obtain:

- At z^0 : $2a_2 + p_0 \cdot a_1 + q_0 \cdot a_0 = 0$ gives a_2 .
- At z^1 : $2 \cdot 3a_3 + 2a_2p_0 + a_1p_1 + q_1a_0 + q_0a_1 = 0$ gives a_3 .

and so on.

Example 4.1 (Airy Equation). Consider the differential equation w'' = zw. Setting $w(z) = \sum_{n=0}^{\infty} a_n z^n$, at z^n :

$$n(n-1)a_n z^{n-2} = a_n z^{n+1} \implies (n+2)(n+1)a_{n+2} = a_n.$$

This gives the recurrence relation

$$a_{n+2} = \frac{a_n}{(n+1)(n+2)}.$$

Note: $a_2 = \frac{a_{-1}}{1 \cdot 2} = 0$ because $a_{-1} := 0$.

$$a_{n+3} = \frac{a_n}{(n+2)(n+3)}$$

which implies $a_2 = a_5 = a_8 = \cdots = a_{3k+2} = 0$ for $k = 0, 1, 2, \ldots$

If we start with a_0 , we get

$$a_3 = \frac{a_0}{2 \cdot 3} = \frac{a_0}{3!}, \quad a_6 = \frac{a_3}{5 \cdot 6} = \frac{a_0}{3! \cdot 5 \cdot 6} = \frac{4a_0}{6!}, \quad a_9 = \frac{4 \cdot 7}{9!}a_0, \ etc..$$

If we start with a_1 ,

$$a_4 = \frac{a_1}{3 \cdot 4} = \frac{2}{4!}a_1, \quad a_7 = \frac{a_4}{6 \cdot 7} = \frac{2 \cdot 5}{7!}a_1, \text{ etc.}$$

Thus, we can write

$$w(z) = a_0 \left(1 + \frac{z^3}{3!} + \frac{4z^6}{6!} + \frac{4 \cdot 7 \cdot z^9}{9!} + \frac{4 \cdot 7 \cdot 10 \cdot z^{12}}{12!} + \cdots \right) + a_1 \left(z + \frac{2z^4}{4!} + \frac{2 \cdot 5 \cdot z^7}{7!} + \frac{2 \cdot 5 \cdot 8 \cdot z^{10}}{10!} + \cdots \right).$$

5 The Airy Equation and the Airy Functions

The Airy functions are our first example of special functions determined by an ODE:

$$w''(z) = zw \implies w(z) = c_0 \operatorname{Ai}(z) + c_1 \operatorname{Bi}(z),$$

where

- For Ai(z), $a_0 = \text{Ai}(0) = \frac{1}{3^{2/3}\Gamma(\frac{2}{3})}$, $a_1 = \text{Ai}'(0) = -\frac{1}{3^{1/3}\Gamma(\frac{1}{3})}$.
- For Bi(z), $a_0 = \text{Bi}(0) = -\frac{1}{3^{1/3}\Gamma(\frac{1}{3})}$, $a_1 = \text{Bi}'(0) = -\frac{1}{3^{1/6}\Gamma(\frac{1}{3})}$.

The point x=0 is a "turning point". To the left of this, we have oscillations, and to the right, we have exponential growth/decay. In particular, Ai and Bi are the only functions that satisfy these conditions.

Consider the ODE

$$w'' + p(z)w' + q(z)w = 0.$$

We've seen that the solution w = w(z) is analytic whenever p(z) and q(z) are analytic. What about singularities?

Without loss of generality, suppose $z_0 = 0$ is an isolated singular point.

Recall: If f is analytic in $U = \{z \in \mathbb{C} \mid 0 < |z| < r\}$, then, using the Cauchy Integral Theorem, we can write

$$f(z) = \dots + \frac{c_{-2}}{z^2} + \frac{c_{-1}}{z} + c_0 + c_1 z + c_2 z^2 + \dots$$

as a convergent Laurent series. Thus:

- f(z) is analytic if $c_{-1} = c_{-2} = \cdots = 0$.
- f(z) has a pole of order $k \in \mathbb{Z}^+$ if $c_{-k} \neq 0$ and $c_{-k-1} = c_{-k-2} = \cdots = 0$.
- If infinitely many $c_k \neq 0$ for k < 0, then f(z) has an essential singularity.

Example 5.1 (Euler (or Equidimensional) Equation). Consider

$$w'' + \frac{a}{z}w' + \frac{b}{z^2}w = 0.$$

The coefficients are singular at $z_0 = 0$.

Rewrite as $z^2w'' + azw' + bw = 0$. Define $\partial = \frac{d}{dz}$ and introduce the Euler operator $\delta := z\frac{d}{dz}$. The eigenfunctions are:

$$\partial w = kw \implies w(z) = e^{kz} = \sum \frac{(kz)^n}{n!}$$

and

$$\delta w = kw \implies w(z) = z^k = e^{\log(z) \cdot k}$$

Exercise 5.2. Show that $[\partial, z] = 1$, $[\partial, \delta] = \partial$, and $z^k \partial^k = \delta(\delta - 1)(\delta - 2) \cdots (\delta - k + 1)$.

6 Methods of Frobenius

We seek solutions to w''(z) + p(z)w'(z) + q(z)w(z) = 0 in the form of power series near singular points $z_0 = 0$.

The Euler equation $z^2w'' + p_0zw' + q_0w = 0$ can be rewritten as

$$w'' + \frac{1}{z}p_0w' + \frac{1}{z^2}q_0w = 0,$$

which shows the first and second order poles. Using Euler's operator $\delta=z\frac{d}{dz},$ we have:

$$\delta z^k = kz^k, \quad \partial = \frac{d}{dz}.$$

Thus,

$$z^2 \partial^2 = z(z\partial)\partial = z(\delta\partial) = z(\delta\partial - \partial) = z\partial\delta - z\partial = \delta^2 - \delta.$$

By induction, $z^k \partial^k = \delta(\delta - 1)(\delta - 2) \cdots (\delta - k + 1)$. Therefore, we can rewrite

$$\delta(\delta - 1)w + p_0\delta w + q_0w = 0 \implies (\delta^2 + (p_0 - 1)\delta + q_0)w = 0.$$

Comparing aw'' + bw' + cw = 0 and $(a\partial^2 + b\partial + c)w = 0$, we see $L = a\partial^2 + b\partial + c = L_1 \circ L_2$. For example, if a = 1,

$$(\partial - r_1)(\partial - r_2)w = 0,$$

which can be rewritten as

$$\partial^2 - (r_1 + r_2)\partial + r_1r_2$$
.

This gives the solution

$$w(z) = c_1 e^{r_1 z} + c_2 e^{r_2 z}.$$

Example 6.1. For w'' + w' - 6w = 0, we rewrite the LHS as

$$(\partial^2 + \partial - 6)w = (\partial + 3)(\partial - 2)w$$
,

so

$$\partial w = 2w \implies w(z) = c_1 e^{2z}$$

and

$$\partial w = -3w \implies w(z) = c_2 e^{-3z},$$

which gives the general solution

$$w(z) = c_1 e^{2z} + c_2 e^{-3z}.$$

Example 6.2. For $z^2w'' + 2zw' - 6w = 0$, we rewrite the LHS as

$$(\delta(\delta - 1) + 2\delta - 6)w = (\delta^2 + \delta - 6)w = (\delta + 3)(\delta - 2)w,$$

so

$$\delta w = 2w \implies w(z) = c_1 z^2$$

and

$$\delta w = -3w \implies w(z) = c_2 z^{-3},$$

which gives the general solution

$$w(z) = c_1 z^2 + c_2 z^{-3}.$$

In both examples, there are two distinct real roots of the characteristic equation.

Example 6.3.

- If we take w'' + w' 6w = 0, trying $w(z) = e^{rz} \implies r^2 + r 6 = 0$ is the characteristic equation.
- If we takew" +4w' +5w = 0, the characteristic equation is $r^2 +4r +5 = (r+2)^2 +1 = 0$, which gives general solution $w(z) = c_1 e^{-2+iz} + c_2 e^{(-2-i)z} = e^{-2z} (\tilde{c_1} \cos(z) + \tilde{c_2} \sin(z))$.
- If we take $z^2w'' + 5zw' + 5w = 0 \implies (\delta^2 + 4\delta + 5)w = 0 \implies w(z) = c_1z^{-2+i} + c_2z^{-2-i}$.
- If we take w'' + 4w' + 4w = 0 we can rewrite the LHS as $(\partial^2 + 4\partial + 4)w = (\partial + 2)^2 w(z) = ce^{-2z}$.

Now try variation of parameters, $w(z) = u(z)e^{-2z}$.

$$(u''e^{-2z} + 2u'(-2e^{-2z}) + u(z)4e^{-2z}) + 4(u'e^{-2z} + u(z)(-2e^{-2z}) + 4u(z)e^{-2z} = 0$$

and then cancelling everything gives $u'' = 0 \implies u(z) = c_1 z + c_2$, which gives solution $w(z) = (c_1 z + c_2)e^{-2z} = c_1 z e^{-2z} + c_2 e^{-2z}$. We can think of the second term as the eigenfunction of ∂ and the first as the generalized eigenfunction.

Consider the differential operator applied to a function:

$$(\partial + z)(ze^{-2z}) = e^{-2z}.$$

Regarding δ :

Example 6.4. Consider the differential equation

$$z^2w'' + 5zw' + 4w = 0.$$

The solution is

$$w(z) = c_1 z^{-1} \log(z) + c_2 z^{-2}.$$

Reason: An Euler equation transforms into a linear differential equation with constant coefficients under a change of the independent variable

$$\zeta = \log(z),$$

where $\log(z) = \ln|z| + i\arg(z)$ with the principal branch $-\pi < \operatorname{Arg}(z) < \pi$.

By the change of variables $\zeta = \log(z)$, i.e., $z = e^{\zeta}$, we have

$$\frac{d}{d\zeta} = \frac{dz}{d\zeta} \frac{d}{dz} = z \frac{d}{dz}.$$

Let $\mu(\zeta) := w(e^{\zeta})$. Then the equation

$$z^2w'' + p_0zw' + q_0w = 0$$

transforms to

$$u'' + (p_0 - 1)u' + q_0 u = 0.$$

The characteristic equation is

$$r^{2} + (p_{0} - 1)r + q_{0} = 0 \implies r_{1,2} = \frac{1}{2} \left(1 - p_{0} \pm \sqrt{(p_{0} - 1)^{2} - 4q_{0}} \right).$$

If $r_1 \neq r_2$, then the solution is

$$u(\zeta) = c_1 e^{r_1 \zeta} + c_2 e^{r_2 \zeta},$$

which translates back to

$$w(z) = c_1 z^{r_1} + c_2 z^{r_2}.$$

If $r_1 = r_2$, then the solution is

$$u(\zeta) = (c_1 \zeta + c_2)e^{r\zeta},$$

which translates back to

$$w(z) = c_1 z^r \log(z) + c_2 z^r.$$

We seek solutions near an isolated singular point $z_0 = 0$ of the form

$$w(z) = z^r h(z),$$

where h is holomorphic.

Lemma 6.5. A first-order differential equation w'(z) + p(z)w(z) = 0 has a solution $w(z) = z^r h(z)$ with $h(z) = \sum_{n=0}^{\infty} h_n z^n$ and $h_0 = 1$ if and only if p(z) has at most a simple pole at $z_0 = 0$, specifically $p(z) = \frac{p_{-1}}{z} + p_0 + \ldots$ with $r = -p_1 = -\lim_{z\to 0} zp(z)$.

Proof. Substitute $w(z) = z^{T}h(z)$ into the differential equation w' + p(z)w = 0:

$$p(z) = -\frac{w'}{w} = -\frac{rz^{r-1}h(z) + z^rh'(z)}{z^rh(z)} = -\frac{r}{z} + \frac{h'(z)}{h(z)},$$

where $\frac{h'(z)}{h(z)}$ is holomorphic with $h(0) = h_0 = 1$.

Conversely, if w' = -p(z)w, then

$$w(z) = c \exp\left(-\int p(z) dz\right)$$

$$= w(0) \exp\left(-\int_0^z p(s) ds\right)$$

$$= -p_{-1} \log z + C + p_0 z + \dots$$

$$= w(0) z^{-p_{-1}} \cdot \text{holomorphic function.}$$

for some constant C.

Definition 6.6. A point z_0 is called a **regular singular point** of the differential equation $w'' + \tilde{p}(z)w' + \tilde{q}(z)w = 0$ if \tilde{p} and \tilde{q} are meromorphic at z_0 and $p(z) = (z - z_0)\tilde{p}(z)$ and $q(z) = (z - z_0)^2\tilde{q}(z)$ are holomorphic at z_0 . If p(z) and q(z) are holomorphic at z_0 , we say that z_0 is an **ordinary point**.

Assume $z_0 = 0$. Then, for the equation

$$z^2w'' + zp(z)w' + q(z)w = 0$$

with $p(z) = p_0 + p_1 z + \dots$ and $q(z) = q_0 + q_1 z + \dots$, we have solutions of the form

$$w(z) = z^r h(z)$$

for a holomorphic function h.

The associated Euler equation is

$$z^2w'' + zp_0w' + q_0w = 0,$$

with the characteristic equation

$$r(r-1) + p_0 r + q_0 = 0$$
,

which is called the indicial equation because the solutions are exponential at the singularity. The solutions are

$$r_{1,2} = \frac{1}{2} \left(1 - p_0 \pm \sqrt{(p_0 - 1)^2 - 4q_0} \right).$$

There are two cases: $r_1 - r_2 \notin \mathbb{Z}$ and $r_1 - r_2 \in \mathbb{Z}$.

Consider some representative examples.

Example 6.7. For 4zw'' + 2w' + w = 0, the associated Euler's equation is $4z^2w'' + 2zw' = 0$, and the indicial equation is

$$4r(r-1) = 2r \implies 4r^2 - 2r = 2r(2r-1) = 0 \implies r_1 = \frac{1}{2}, r_2 = 0.$$

Thus, $w_1(z) = z^{\frac{1}{2}}h(z)$ and $w_2(z) = h(z)$. Substitute $w(z) = \sum_{n=0}^{\infty} h_n z^{n+r}$:

$$\sum_{n=0}^{\infty} \left[(n+r)(n+r-1)h_n z^{n+r-1} + (n+r)h_n z^{n+r-1} + h_n z^{n+r} \right].$$

Shifting the index down by 1 gives the recurrence relation

$$(4(n+r)(n+r-1) + 2(n+r))h_n + h_{n-1} = 0$$
$$2(n+r)(2n+2r-1)h_n = -h_{n-1}.$$

Letting F(n+r) = 2(n+r)(2n+2r-1), we have at n = 0:

$$F(r) \cdot (h_0 = 1) = -h_{-1} = 0$$
 and $F(r) = 2r(2r - 1) = 0$

 $n=0: F(r)\cdot (h_0=1)=-h_{-1}=0$ and F(r)=2r(2r-1)=0 is exactly the indicial equation above (the characteristic equation for the approximating Euler's equation). Then for $r_1=\frac{1}{2}>r_2=0$,

$$h_n = \frac{-1}{(2n+2r)(2n+2r-1)}h_{n-1} = \dots = \frac{(-1)^n}{(2n+2r)(2n+2r-1)\dots(2r+2)(2r+1)}$$

Remark 6.8. Products like the one above are sometimes called shifted factorials:

- Lower $x_n := x(x-1)(x-2)...(x-n+1) = (x)_n$
- Upper $x^n := x(x+1)(x+2)...(x+n-1) = (x)^n$

Definition 6.9. The Pochhammer symbol $(\alpha)_n := \alpha(\alpha+1)(\alpha+2)...(\alpha+n-1).$ Note: $(1)_n = n!, (\alpha)_n = \frac{\Gamma(\alpha+n)}{\Gamma(\alpha)}$ since $\Gamma(z+1) = \Gamma(z).$ And $h_n(r) = \frac{(-1)^n}{(2r+1)_{2n}}.$

For $r = \frac{1}{2}$:

$$h(z) = z^{\frac{1}{2}} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2)_{2n}} z^n = \sum_{n=0}^{\infty} \frac{(-1)^n (\sqrt{z})^{2n+1}}{(2n+1)!} = \sin(\sqrt{z}).$$

For r = 0:

$$h(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(1)_{2n}} z^n = \cos(\sqrt{z}).$$

Recap: 4zw'' + 2w' + w = 0 has the following general solution:

$$w(z) = c_1 \sin(\sqrt{z}) + c_2 \cos(\sqrt{z})$$

Check:

$$4z\left(c_1\left(-\frac{1}{4z\sqrt{z}}\cos\left(\sqrt{z}\right) - \frac{1}{4z}\sin\left(\sqrt{z}\right)\right) + c_2\left(\frac{1}{4z\sqrt{z}}\sin\left(\sqrt{z}\right) - \frac{1}{4z}\cos\left(\sqrt{z}\right)\right)\right)$$

$$+2\left(c_1\left(\frac{1}{2\sqrt{z}}\cos\left(\sqrt{z}\right)\right) + c_2\left(-\frac{1}{2\sqrt{z}}\sin\left(\sqrt{z}\right)\right)\right)$$

$$+\left(c_1\sin\left(\sqrt{z}\right) + c_2\cos\left(\sqrt{z}\right)\right)$$

$$= 0$$

Example 6.10. zw'' + w' - w = 0 has the indicial equation $r(r-1) + r = 0 \implies r^2 = 0$ so it has a repeated root. The power series

$$\sum_{n=0}^{\infty} ((n+r)(n+r-1)h_n z^{n+r-1} + (n+r)h_n z^{n+r-1} - h_n z^{n+r}) = 0$$

Note that $(n+r)(n+r-1)h_nz^{n+r-1} + (n+r)h_nz^{n+r-1} = (n+r)^2h_n = F(n+r)$ and $F(r) = r^2 = 0$.

n = 0 gives $r^2 = 0 \implies F(n) = n^2$ and

$$h_n = \frac{1}{F(n)}h_{n-1} = \dots = \frac{1}{n^2(n-1)^2\dots 1^2} = \frac{1}{(n!)^2}.$$

$$w_1(z) = z^0 \sum_{n=0}^{\infty} \frac{z^n}{(n!)^2} = (1 + z + \frac{z^2}{4} + \frac{z^3}{36} + \dots)$$

To find $w_2(z)$, try $w_2(z) = w_1(z)\log(z) + z^rh(z)$. If $w_2(z) = w_1(z)\log(z) + z^rh(z)$. Let L[w] = 4zw'' + 2w' + w = 0 for easier typesetting. Then

$$L[w_2(z)] = L[w_1(z)\log(z)] + L[z^r h(z)]$$

Since

$$L[w_1(z)\log(z)] = z\left(w_1''\log(z) + 2w_1' \cdot \frac{1}{z} - w_1 \frac{1}{z^2}\right) + \left(w_1'\log(z) + w_1 \cdot \frac{1}{z}\right) - w_1\log(z)$$

$$= \log(z) L[w,(z)] + 2w_1' - w_1 \cdot \frac{1}{z} + w_1 \cdot \frac{1}{z}$$

$$= \log(z) L[w,(z)] + 2w_1'$$

and

$$L[z^r h(z)] = -2w_1'$$

At r = 0, this is equal to

$$z \left(2h_2 + 2 \cdot 3zh_3 + 3 \cdot 4z^2h_4 + \ldots\right) + \left(h_1 + 2h_2z + 3h_3z^2 + \ldots\right) - \left(h_0 + h_1z + h_2z^2 + \ldots\right)$$
$$= -2\left(1 + \frac{1}{2}z + \frac{1}{12}z^2 + \ldots\right)$$

We have

$$h_{1} = -2$$

$$2 \cdot 2h_{2} - h_{1} = -1$$

$$3 \cdot 3h_{3} - h_{2} = -\frac{1}{6}$$

$$\vdots$$

$$n^{2}h_{n} - h_{n-1} = -2\frac{n}{n!n!} = -\frac{2}{(n-1)!n!}$$

So

$$h_n = n \frac{1}{n^2} \left(h_{n-1} - \frac{2}{(n-1)!n!} \right)$$

can be solved for h_n .

Furthermore,

$$w_2(z) = w_1(z)\log(z) + \left(-2z + \frac{3}{4}z^2 - \frac{11}{108}z^3 - \dots\right)$$

Example 6.11. Consider zw'' + w = 0. Look for $w(z) = z^r h(z)$, where h(z) is analytic (holomorphic) near z = 0, ie. $h(z) = \sum_{n=0}^{\infty} h_n z^n$ with $h_0 \neq 1$.

Then $w(z) = \sum_{n=0}^{\infty} h_n z^{n+r} = z^r = h_1 z^{r+1} + h_2 z^{r+2} + \dots + h_n z^{r+n}$. Plugging this into the equation gives

$$z \left[r(r-1)z^{r-2} + (r+1)rh_1z^{r-1} + (r+2)(r+1)h_2z^r + \dots + (r+n)(r+n-1)h_nz^{r+n-2} + \dots \right]$$

$$+ \left[z^r + h_1z^{r+1} + h_2z^{r+2} + \dots \right] = 0.$$

- At z^{r-1} , the indicial equation is r(r-1) = 0. Alternatively, we can get here through the associated Euler equation: $z^2w'' = 0$, try $w(z) = z^r$ which gives $r(r-1)z^r = 0$. Solving the indicial equation gives $r_1 = 1, r_2 = 0$.
- At z^r , we have $r(r+1)h_1 + 1 = 0$. In general, we have $w_1(z) = z^{r_1}h(z)$ and $w_2(z) = z^{r_2}h(z)$ but this second doesn't exist because if $r_2 = 0$, then $0 \cdot h_1 + 1 = 0$, which is impossible, so there is no second solution in this form. But the first one always exists.

• At z^{r+n-1} , we have $(r+n)(r+n-1)h_n+h_{n-1}=0$. If $r_1-r_2=m\in\mathbb{N}_{\geq 0}$, then $F(r_2+m)=F(r_1)=0$, and we have $0\cdot h_m+h_{m-1}=0$ which is impossible unless h_{m-1} happens to be zero. Let's construct the first solution $w_1(z)$. Take the recurrence relation $F(n+r)h_n=-h_{n-1}$. Use $r_1=1:F(n+1)=(n+1)\cdot n$. Then

$$h_n = \frac{-1}{n(n+1)}h_{n-1} = \dots = \frac{(-1)^n}{(n+1)\cdot n\cdot \dots \cdot 3\cdot 2\cdot 2\cdot 1}h_0 = \frac{(-1)^n}{(n+1)(n!)^2}.$$

This gives

$$w_1(z) = z^1 \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)(n!)^2} z^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n!)^2} \frac{z^{n+1}}{n+1}.$$

How to find $w_2(z)$? Look for the solution in the form $w_2(z) = z^{r_2}h(z) + cw_1(z)\log(z)$. Substitute L[w] = zw'' + w = 0, which gives

$$L[w_2(z)] = L[z^{r_2}h(z)] + cL[w_1(z)\log(z)] = 0$$

so $L[z^{r_2}h(z)] = -cL[w_1(z)\log(z)]$, which can be rewritten as

$$\sum_{n=1}^{\infty} (F(n)h_n + h_{n-1})z^{n-1} = -c\left(z\left(w_1''(z)\log(z) + w_1' \cdot \frac{1}{z} - w_1\frac{1}{z^2}\right)\right) + w_1(z)\log(z)$$

$$= -c\left(2w_1' - \frac{1}{z}w_1\right)$$

$$= -c\left(-c\left(1 - \frac{3}{z}z + \frac{5}{(2!)^2 \cdot 3}z^2 + \dots\right)\right)$$

So c = -1 and we have $2h_2 + h_1 = -\frac{3}{2}, 6h_3 + h_2 = \frac{5}{12}, ...$

The first will give us a solution of the form $z^0(h_1(z...)) = z(h_1(1+...)) = h_1 \cdot w_1(z)$, ie. is a multiple of $w_1(z)$, nothing new can put $h_1 = 0$. Then $h_2 = -\frac{3}{4}, h_3 = \left(\frac{5}{12} + \frac{3}{4}\right) \frac{1}{6} = \frac{7}{36}, \dots$ or

$$h_n = (-1)^n \frac{2n-1}{F(n)n!(n+1)!}.$$

This gives our second solution

$$w_2(z) = \left(1 - \frac{3}{4}z^2 + \frac{7}{36}z^3 - \dots\right) - w_1(z)\log(z).$$

Example 6.12. Consider the equation $z^2w'' + zw' + \left(z^2 - \frac{1}{4}\right)w = 0$. The indicial equation is $r(r-1) + r - \frac{1}{4} = 0$, and $F(r) = r^2 - \frac{1}{4} \implies r_1 = \frac{1}{2}, r_2 = -\frac{1}{2}$. The recurrence relation is $F(n+r)h_n + h_{n-1} = 0$.

At $r_1 = \frac{1}{2}$: $F\left(n + \frac{1}{2}\right) = n(n+1)$. Since $h_n = -\frac{1}{n(n+1)}h_{n-2}$, $h_1 = h_3 = \dots = h_{2k+1}$. Furthermore, $h_{2k} = \frac{(-1)^k}{2k(2k+1)}$ so we get the solution

$$w_1(z) = z^{\frac{1}{2}} \sum_{k=0}^{\infty} \frac{(-1)^k z^{2k}}{(2k+1)!} = \frac{\sin(z)}{\sqrt{z}}.$$

What about the second solution $w_2(z)$? We have

$$w(z) = z^{r_2} \sum_{n=0}^{\infty} h_n z^n + c w_1(z) \log(z),$$

which we can rewrite as

$$L[w(z)] = L\left[z^{-\frac{1}{2}} \sum_{n=0}^{\infty} h_n z^n\right] + cL[w_1(z)\log(z)] = 0.$$

Note that

$$\begin{split} L\left[z^{-\frac{1}{2}}\sum_{n=0}^{\infty}h_{n}z^{n}\right] &= -cL[w_{1}(z)\log(z)] \\ &= -c\left(z^{2}\left(w_{1}''\log(z) + 2w_{1}'\frac{1}{z} - w\frac{1}{z^{2}}\right) + z\left(w_{1}'\log(z) + w_{1}\frac{1}{z}\right) + \left(z^{2} - \frac{1}{4}\right)w_{1}\log(z)\right) \\ &= -c\cdot\frac{2w_{1}'}{z} \end{split}$$

At the same time,

$$L\left[z^{-\frac{1}{2}}\sum_{n=0}^{\infty}h_nz^n\right] = \sum \left(F\left(n - \frac{1}{2}\right)h_n + h_{n-2}\right)z^{n-\frac{1}{2}}$$

$$= (0 \cdot h_0 + h_{-2})z^{-\frac{1}{2}} + (0 \cdot h_1 + h_{-1})z^{\frac{1}{2}} + (2h_2 + h_0)z^{\frac{3}{2}} + \dots$$

$$= -c\left(z^{\frac{1}{2}} - \frac{5}{6}z^{\frac{5}{2}} + \dots\right)$$

so c = 0. Take h_1 arbitrary. The recurrence relation gives

$$h_{2k} = \frac{(-1)^k}{(2k)!} h_0, \qquad h_{2k+1} = \frac{(-1)^k}{(2k+1)!} h_1$$

so

$$w_2(z) = z^{-\frac{1}{2}} \left(h_0 \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k} + h_1 \sum_{k=1}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1} \right)$$
$$= \frac{1}{\sqrt{z}} \cos(z) + h_1 \frac{\sin(z)}{\sqrt{z}}$$

Finally, our solutions are $w_1(z) = \frac{\sin(z)}{\sqrt{z}}, w_2(z) = \frac{\cos(z)}{\sqrt{z}}.$

Theorem 6.13. Consider the equation $w'' + \tilde{p}(z)w' + \tilde{q}(z)w = 0$ where $\tilde{p}(z)$ has at most a simple pole at $z_0 = 0$ and $\tilde{q}(z)$ has at most a double pole at $z_0 = 0$, ie. $z^2w'' + wp(z)w' + q(z)w = 0$, where $p(z) = z\tilde{p}(z)$, $q(z) = z^2\tilde{q}(z)$, where p(z) and q(z) are analytic near $z_0 = 0$, ie. $p(z) = \sum_{n=0}^{\infty} p_n z^n$, $q(z) = \sum_{n=0}^{\infty} q_n z^n$.

Then, if r_1 and r_2 are the characteristic exponents (ie. roots of the indicial equation $r(r-1) + rp_0 + q_0 = 0$), the following two cases can occur:

- If $r_1 r_2 \notin \mathbb{Z}$, a fundamental system (ie. a basis) of solutions is given by $w_j(z) = z^{r_j} h_j(z)$ with $h_j(z) = \sum_{k=0}^{\infty} h_{j,k} z^k$ (convergent near $z_0 = 0$) with $h_{j,0} = 1$.
- If $r_1 r_2 = m \in \mathbb{N}$, then a fundamental system of solutions is given by $w_1(z) = z^{r_1}h_1(z), w_2(z) = z^{r_2}h_2(z) + c\log(z)w_1(z)$, where the constant $c \in \mathbb{C}$ might be zero (unless $r_1 = r_2$, then $c \neq 0$).

Proof. We'll provide a sketch.

Let $z^2w''+p(z)\cdot zw'+q(z)\cdot w=0$, with $w(z)=z^r\sum_{n=0}^\infty h_nz^n=\sum_{n=0}^\infty h_nz^{n+r}=z^r+\sum_{n=1}^\infty h_nz^{n+r}$ where $h_0=1$, and

$$p(z) = \sum_{n=0}^{\infty} = \left(p_0 + \sum_{n=1}^{\infty} p_n z^n\right)$$
$$q(z) = \sum_{n=0}^{\infty} = \left(q_0 + \sum_{n=1}^{\infty} q_n z^n\right).$$

Then

$$q(z)w(z) = \left(q_0 + \sum_{k=1}^{\infty} q_k z^k\right) z^r \left(1 + \sum_{\ell=1}^{\infty} h_{\ell} z^{\ell}\right)$$

$$= z^r \left(q_0 + \sum_{n=1}^{\infty} \left(\sum_{k+\ell=n} q_k h_{\ell}\right)\right)$$

$$= z^r \left(q_0 + \sum_{n=1}^{\infty} \left(q_0 h_n + \sum_{k=1}^{n} q_k h_{n-k}\right)\right)$$

$$= q_0 z^r + \sum_{n=1}^{\infty} \left(q_0 h_n + \sum_{k=1}^{n} q_k h_{n-k}\right) z^{n+r}$$

so

$$p(z)zw'(z) = p_0 \cdot rz^r + \sum_{n=1}^{\infty} \left(p_0(n+r)h_n + \sum_{k=1}^{n} p_k(n+r-k)h_{n-k} \right) z^{n+r}.$$

If we substitute

$$(r(r-1)+p_0r+q_0)z^r + \sum_{n=1}^{\infty} \left([(n+r)(n+r-1) + p_0(n+r) + q_0]h_n + \sum_{k=1}^{n} ((p_k(n+r-k) + q_k)h_{n-k}) \right) z^{n+r} = 0$$

note that $r(r-1)+p_0r+q_0$ is the indicial equation $F(r)=r^2+(p_0-1)r+q_0=0$, so the coefficients will have the form

$$F(n+r)h_n + \sum_{k=1}^{n} (p_k(n+r-k) + q_k)h_{n-k} = 0.$$

Let's solve for the exponents r_1 and r_2 for at the singularity and then solve for h_n in terms of $h_0, ..., h_{n-1}$.

Solve $F(r) = r^2 + (p_0 - 1)r + q_0 = 0$ to get

$$r_{1,2} = \frac{1}{2} \left(1 - p_0 \pm \sqrt{(p_0 - 1)^2 - 4q_0} \right).$$

Furthermore, $r_1 + r_2 = 1 - p_0, r_1 r_2 = q_0$, so

$$F(n+r)h_n + \sum_{k=1}^{n} (p_k(n+r-k) + q_k) h_{n-k} = 0.$$

So $F(n+r)=(n+r-r_1)(n+r-r_2)$. Additionally, $F(n+r_1)=n(n+r_1-r_2)\neq 0$ for $n\geq 0$, and $F(n+r_1)=(n+r_2-r_1)n$ can be equal to zero if $r_1-r_2=m$ for $m\in\mathbb{N}$.

In the case when $r_1 - r_2 = m \in \mathbb{N}_{\geq 0}$, use variation of parameters technique:

$$w_2(z) = u(z)w_1(z)$$

which can be rewritten as

$$\begin{split} L[w_2(z)] &= u(z) L[w_1(z)] + z^2 (u''(z) + 2u'(z)w_1'(z)) + p(z) \cdot zu'(z)w_1(z) \\ &= z^2 u''(z) z^{r_1} h_1(z) + zu'(z) z^2 (r_1 z^{r_1 - 1} h_1(z) + z^{r_1} h_1'(z)) + p(z) \cdot z \cdot u'(z) z^{r_1} h_1(z) \\ &= z^2 \cdot z^{r_1} h_1(z) \left(u''(z) + 2u'(z) \cdot \frac{r_1}{z} + 2u'(z) \frac{h_1'(z)}{h(z)} + \frac{p(z)}{z} \cdot u'(z) \right) \end{split}$$

which we want to equal zero. So we want

$$u''(z) + \left(\frac{2r_1}{z} + 2\frac{h_1'(z)}{h_1(z)} + \frac{p(z)}{z}\right)u'(z) = 0.$$

and the term in parenthesis is equal to $\frac{2r_1}{z} + \frac{p_0}{z} + \text{holomorphic.}$

Put v(z) := u'(z). Then we get

$$v' + \left(\frac{1+r_1-r_2}{z} + \text{holomorphic}\right)v(z) = 0.$$

and

$$v(z) = \exp\left(-\int \frac{1 + r_1 - r_2}{z} dz + \text{holomorphic}\right)$$
$$= z^{r_2 - r_1 - 1} \sum_{n=0}^{\infty} f_n z^n$$

with $f_0 \neq 0$. Since v(z) = u'(z),

$$u(z) = \int \sum_{n=0}^{\infty} f_n z^{n+r_2-r_1-1} dz = \sum_{n=0}^{\infty} f_n \frac{z^{n+r_2-r_1}}{n+r_2-r_1}$$

if $n \neq r_2 - r_1$, and if $r_1 - r_2 = m$ then the last term has $+f_m \log(z)$.

Now, we get our final formula

$$w_2(z) = z^{r_2} \left(\sum_{n=0}^{\infty} w_n z^n \right) + f_m w_1(z) \log(z).$$

Proving the convergence of the resulting series is not difficult - see the textbook.

7 Bessel Differential Equation and the Bessel Functions

There are several ways in which these arise:

• Vibrations of a circular membrane: separation of variables on the wave equation gives the Bessel equation.

Definition 7.1. Differential equations of the form

$$z^2w'' + zw' + (z^2 - v^2)w = 0$$

with $v \in \mathbb{C}$ are the Bessel differential equations of over v.

Assume $\text{Re}(v) \geq 0$. Let's solve this using the method of Frobenius: Assume there is a solution of the form

$$w(z;r) = z^r h(z) = z^r \sum_{n=0}^{\infty} h_n z^n = \sum_{n=0}^{\infty} h_n(r) z^{n+r}$$

with $h_0 = 1$. Now we substitute:

$$L[w(z;r)] = \sum_{n=0}^{\infty} [(n+r)(n+r-1)h_n(r)z^{n+r} + (n+r)h_n(r)z^{n+r} - v^2h_n(r)z^{n+r} + h_n(r)z^{n+r+2}]$$

which we want to equal 0. Let's perform the index shift on the last term to $h_{n-2}(r)z^{n+r}$, with $h_{-2}=h_{-1}=0$. The recourence relation is

$$F(n+r)h_n(r) + h_{n-2}(r) = 0.$$

where $F(n+r) = [(n+r)^2 - v^2].$

- At n = 0, we get the indicial equation is $F(r) \cdot 1 = r^2 v^2 = 0, r = \pm v, \text{Re}(r_1 = v \ge r_2 = -v)$. If v = 0, the indicial equation has a repeated root.
- At n = 1, we get F(1+r) = (1+r-v)(1+r+v), so

$$F(1+r) \cdot h_1(r) + h_{-1}(r) = 0$$

which gives at $r_1 = v : F(n+v) = n(n+2v)$ and at $r_2 = -v$, F(n-v) = (n-2v)n. By assumption $\text{Re}(r_1 = v) \ge 0$, so F(n+v) at r_1 can never be zero but at r_2 is can be zero (when n = 2v). So either F(1+r) or $h_1(r) = 0 \implies h_{2k+1}(r) = 0$. At $r_2 = -v : F(1-v) = (1-2v)$.

There are three special cases:

- v = 0: repeated roots
- $v = \frac{1}{2}$: odd terms
- v = 2m for $m \in \mathbb{N}_{\geq 0}$: roots differ by an integer.

The generic case is when $v \neq 2m$ or $\frac{1}{2}$. Here, there are two roots $r_1 = v$ and $r_2 = -v$. Then

$$F(n+v) = n(n+2v)$$
 and $F(n-v) = (n-2v)n$

so

$$F(n+v)h_n = -h_{n-2}...h_{2k+1} = 0$$

where

$$\begin{split} h_{2k} &= \frac{-1}{2k(2k+2v)} h_{2(k-1)} \\ &= \dots \\ &= \frac{(-1)^k}{(2k)(2k-2)\dots(2)(2k+2v)(2k+2v-2)\dots(2k+2v)} \\ &= \frac{(-1)^k}{2^k \cdot k! \cdot (v+1)_k}. \end{split}$$

We always have the solution

$$w_1(z) = z^v \sum_{k=0}^{\infty} \frac{(-1)^k \Gamma(v+1)}{2^{2k} k! \Gamma(v+k+1)} z^{2k}$$
$$= \Gamma(v+1) \cdot 2^v \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(v+k+1)} \left(\frac{z}{2}\right)^{2k+v}.$$

Definition 7.2. The Bessel function of the 1st kind is defined as

$$J_v = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(v+k+1)} \left(\frac{z}{2}\right)^{2k+v}.$$

In the generic case, changing v to -v gives

$$w_2(z) = z^{-v} \sum_{k=0}^{\infty} \frac{(-1)^k \Gamma(1-v)}{2^{2k} k! \Gamma(1+k-v)}$$
$$= \frac{\Gamma(1-v)}{2^v} \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(1+k-v)} \left(\frac{z}{2}\right)^{2k-v}.$$

For special cases, at $v = \frac{1}{2}$ we considered earlier:

$$w_1(z) = \frac{\sin(z)}{\sqrt{z}}$$
 and $w_2(z) = \frac{\cos(z)}{\sqrt{z}}$.

With some additional normalization, we get

$$J_{\frac{1}{2}}(z) = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}} \sin(z) \text{ and } J_{-\frac{1}{2}}(z) = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}} \cos(z).$$

For repeated roots at v = 0, differentiate wrt the parameter r. Recall

$$w(z;r) = \sum_{n=0}^{\infty} h_n(r) z^{n+r},$$

so

$$L[w(z;r)] = F(r)z^{r} + \sum_{n=1}^{\infty} \left(F(n+r)h_{n}(r) + \sum_{k=1}^{n} (p_{k}(n+r-k) + q_{k})h_{n-k} \right) z^{n+r}.$$

Let's try to solve the recurrence

$$\left(F(n+r)h_n(r) + \sum_{k=1}^n (p_k(n+r-k) + q_k)h_{n-k}\right) \qquad (\star)$$

for $h_n(r)$.

If $h_n(r)$ satisfy the recurrence (\star) : $L[w(z;r)] = F(r)z^r$ and if $F(r) = (r-r_1)^2$, ie. the repeate root case, then $L[w(z;r)] = (r-r_1)^2 z^4$ which = 0 if $r = r_1$ but also:

$$\begin{split} \frac{\partial}{\partial r}|_{r=r_1} L[w(z;r)] &= L\left[\frac{\partial}{\partial r}|_{r=r_1} w(z;r)\right] \\ &= \frac{\partial}{\partial r}|_{r=r_1} (r-r_1)^2 z^r \\ &= 0 \end{split}$$

So

$$w_2(z) = \frac{\partial}{\partial r}|_{r=r_1} w_1(z;r) = w_1(z;r)$$

$$= \frac{\partial}{\partial r}|_{r=r_1} \left(z^r \sum_{n=0}^{\infty} h_n(r) z^n \right)$$

$$= \log(z) z^{r_1} \sum_{n=0}^{\infty} h_n(r_1) z^n + z^r \sum_{n=0}^{\infty} h'_n(r_1) z^n.$$

Applying $F(r) = r^2$ on

$$L[w] = z^2w'' + zw' + z^2w = 0$$

gives

$$F(r)z^{r} + \sum_{n=1}^{\infty} (F(r+n)h_{n} + h_{n-2})z^{r+n} = 0$$

where $h_{2k+1} = 0$. Then

$$h_{2k}(r) = \frac{-1}{(r+2k)^2} h_{2k-2} = \dots = \frac{(-1)^{\frac{1}{2}}}{(r+2)^2 (r+4)^2 \dots (r+2k)^2}.$$

The repeated root is r = 0:

$$h_{2k}(0) = \frac{(-1)^k}{2^2 \cdot 4^2 \cdot \dots \cdot (2k)^2} = \frac{(-1)^k}{2^{2k} (k!)^2}$$

and

$$w_1(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{2^{2k} (k!)^2} z^{2k} = \sum_{k=0}^{\infty} \frac{(-1)^k}{(k!)^2} \left(\frac{z}{2}\right)^{2k} = J_0(z).$$

Since

$$w_2(z) = J_0(z)\log(z) + \sum_{n=0}^{\infty} h'_n(0)z^n = J_0(z)\log(z) + \sum_{k=1}^{\infty} h'_{2k}(0)z^{2k}$$

and

$$h_{2k}(r) = \frac{(-1)^{\frac{1}{2}}}{(r+2)^2(r+4)^2...(r+2k)^2},$$

we have

$$\frac{h'_{2k}(r)}{h_{2k}(r)} = -2\left(\frac{1}{r+2} + \frac{1}{r+4} + \dots \frac{1}{r+2k}\right)$$

and at r = 0

$$h'_{2k} = -2\left(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2k}\right) h_{2k}(0)$$
$$= -\left(1 + \frac{1}{2} + \dots + \frac{1}{k}\right) h_{2k}(0)$$
$$= H_k h_{2k}(0)$$

where H_k is the k-th harmonic number. This gives

$$w_2(z) = J_0(z)\log(z) + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}H_k}{2^{2k}(2k)!}z^{2k}.$$

Usually, there is a little bit of change in the second solution

$$Y_0 = \frac{2}{\pi} \left[w_2(z) + (\gamma - \ln(2)) J_0(z) \right]$$
$$= \frac{2}{\pi} \left[(\gamma + \log\left(\frac{z}{2}\right)) J_0(z) + \sum_{k=1}^{\infty} \frac{(-1)^{k+1} H_k}{(2k)!} \left(\frac{z}{2}\right)^{2k} \right]$$

where γ is the Euler constant

$$\gamma = \lim_{n \to \infty} (H_n - \ln(n)) \approx 0.5772$$

For bessel equations of order $m \in \mathbb{Z}_{>0}$, we have

$$z^2w'' + zw' + (z^2 - m^2)w = 0$$

and

$$F(r) = r^2 - m^2 = (r - m)(r + m)$$

so

$$\sum_{n=0}^{\infty} (F(r+n)h_n + h_{n-2})z^{r+n} = 0$$

When $r + m : F(r_1 + n) = F(m + n) = n(n + 2m)$ and

$$h_{2k} = \frac{(-1)^k}{(2k) \cdot \dots \cdot 2 \cdot (2k+2m) \cdot \dots \cdot (2+2m)} = \frac{(-1)^k}{2^{2k} k! (m+1)_k}$$

which has solution

$$w_1(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(m+1)_k} \left(\frac{z}{2}\right)^{2k}$$

$$= \Gamma(m+1)2^m \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(m+k+1)} \left(\frac{z}{2}\right)^{2k+m}$$

$$= \Gamma(m+1)2^m J_m(z).$$

For the other solution,

$$w_2(z) = z^{-m}h_2(z) + c\log(z)w_1(z)$$

SO

$$L\left[z^{-m}h_{2}\left(z\right)\right] + c\left(z^{2}\left(w_{1}''\log\left(z\right) + 2w_{1}'\frac{1}{z} - w_{1}\frac{1}{z^{2}}\right) + z\left(w_{1}'\log\left(z\right) + w_{1}\frac{1}{z}\right) + \left(z^{2} - m^{2}\right)\log\left(z\right)w_{1}\right) = 0$$

and then spam cancellation gives

$$\sum_{n=0}^{\infty} \left[F(n-m) h_n + h_{n-2} \right] z^{n-m} = L\left[z^{-m} h_2(z) \right] = -2c \frac{1}{z} w_1'(z).$$

For simplicity, take m = 1:

$$w_1(z) = z \sum_{k=0}^{\infty} \frac{(-1)^k}{k! (2)_k} \left(\frac{z}{2}\right)^{2k} = \sum_{k=0}^{\infty} \frac{(-1)^k z^{2k+1}}{k! (k+1)! 2^{2k}}$$

Then F(n-m) = n(n-2m) or F(n-1) = n(n-2) and

$$\sum_{k=0}^{\infty} \frac{(-1)^k z^{2k+1}}{k! (k+1)! 2^{2k}}$$

SC

$$0 \cdot h_0 z^{-1} + (-1) \cdot h_1 + (0 \cdot h_2 + h_0) z + (3 \cdot 1 + h_1) z^2 + (4 \cdot 2 + h_2) z^3 + \dots$$
$$= -2c \frac{1}{2} \left(\sum_{k=0}^{\infty} \frac{(-1)^k (2k+1) z^{2k}}{k! (k+1)! 2^{2k}} \right)$$

To finish our discussion of Bessel functions of order $n \in \mathbb{N}_{>0}$, take n = 1:

$$z^2w'' + zw' + (z^2 - 1)w = 0.$$

The indicial equation is

$$F(r) = r(r-1) + r - 1 = r^2 - 1 = (r-1)(r+1) = 0$$

so $r_1 = 1 > r_2 = -1$. We have

$$w(z) = \sum_{n=0}^{\infty} h_n z^{n+r}$$

so

$$\sum_{n=0}^{\infty} [F(r+n)h_n + h_{n-1}]z^{n+r} = 0.$$

At n = 0: $F(r)h_0 = 0$, and we get $h_0 = 1$, F(r) = 0.

At
$$n = 1 : F(r+1)h_1 = 0$$
 so $F(r+1) \neq 0 \implies h_1 = 0 \implies h_{\text{odd}} = 0$.

At $r_1 = 1$, F(n+1) = n(n=2) so $F(2k+1)h_{2k} + h_{2(k-1)} = 0$. This tells us

$$h_{2k} = -\frac{1}{(2k)(2k+2)}h_{2(k-1)} = \dots = \frac{(-1)^k}{2^{2k}k!(k+1)!}h_0$$

and

$$w_1(z) = z^1 \sum_{k=0}^{\infty} \frac{(-1)^k}{2^{2k} k! (k+1)!} z^{2k} = \sum_{k=0}^{\infty} \frac{(-1)^k z^{2k+1}}{2^{2k} k! (k+1)!}$$

What about the second solution? $w_2(z) = z^{-1} \sum_{n=0}^{\infty} h_n z^n + c w_1(z) \log(z)$.

We have

$$L[w_2(z)] = -2c \cdot zw_1'(z)$$

where

$$w_2(z) = \sum_{n=0}^{\infty} [F(n-1)h_n + h_{n-2}]z^{n-1} = -2c\sum_{k=0}^{\infty} \frac{(-1)^k (2k+1)}{2^{2k} k! (k+1)!} z^{2k+1}.$$

But note that

$$F(n-1) = n(n-2)$$

$$= (0 \cdot h_1)z^{-1} + (-1)h_1 + (0 \cdot h_2 + 1)z + (3 \cdot 1h_3 + h_1)z^2 + \dots$$

$$= -2c\left(z - \frac{3}{2^2 \cdot 1 \cdot 2}z^3 + \dots\right)$$

Now, we can see that -2c = 1, $h_{\text{odd}} = 0$, h_2 is "free", and $w_2(z) = z^{-1}(1 + h_2z^2 + h_4z^4)$ so changing h_2 adds a multiple of $w_1(z)$.

Furthermore, we get

$$(2k+2)(2k)h_{2k+2} + h_{2k} = \frac{(-1)^k(2k+1)}{k!(k+1)!2^{2k}}$$

for $k \geq 1$. Let $\tilde{g}_k = \text{RHS}$ and $y_k := h_{2k}$. Then

$$2^{2}(k)(k+1)y_{k+1} + y_{k} = \tilde{g}_{k}$$

with initial condition $y_1 = h_2$. Notice that this is a 1st order linear non-homogeneous difference equation, and can be written:

$$y_{k+1} + \frac{1}{2^2 k(k+1)} y_k = g_k = \frac{(-1)^k (2k+1)}{2^{2(k+1)} ((k+1)!)^2 \cdot k}$$

To solve:

Step 1: Solve the homogeneous equation

$$x_{k+1} + \frac{1}{2^2 k(k+1)} x_k = 0$$

with $x_1 = x_2$. We get

$$x_{k+1} = \frac{-1}{2^2 \cdot k(k+1)} x_k = \dots = \frac{(-1)^k}{(2^2)^k k! (k+1)!} h_2.$$

Step 2: Solve non-homogeneous recurrence using variation of parameters: set $y_k = u_k x_k$, which gives $y_1 = u_1 x_1 = h_2$, ie. $u_1 = 1$. So

$$y_{k+1} + \frac{1}{2^2 k(k+1)} y_k = u_{k+1} x_{k+1} - u_k x_{k+1} + \left(u_k x_{k+1} + \frac{1}{2^2 k(k+1)} u_k x_k \right) = g_k.$$

The parenthesis term is equal to $u_k(0)$. Now we have $(u_{k+1} - u_k)x_{k+1} = g_k$, which we can solve to get

$$u_{k+1} = u_k + \frac{g_k}{x_{k+1}} = \dots = u_1 + \frac{g_1}{x_2} + \dots + \frac{g_k}{x_{k+1}}.$$

Is there a closed form? We have

$$\frac{g_k}{x_{k+1}} = \frac{(-1)^k (2k+1)}{2^{2(k+1)} ((k+1)!)^2 \cdot k} : \frac{(-1)^k}{(2^2)^k k! (k+1)!} h_2 = \frac{1}{h_2} \left(\frac{1}{2^2} \cdot \frac{2k+1}{k(k+1)} \right).$$

We get

$$\begin{aligned} u_{k+1} &= u_1 + \frac{1}{h_2} \cdot \frac{1}{2^2} \left(\left(\frac{1}{1} + \frac{1}{2} \right) + \left(\frac{1}{2} + \frac{1}{3} \right) + \dots + \left(\frac{1}{k} + \frac{1}{k+1} \right) \right) \\ &= \frac{1}{2^2 h_2} \left(h_2 \cdot 2^2 + \left(1 + \frac{1}{2} + \dots + \frac{1}{k} \right) + \left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k+1} \right) \right) \end{aligned}$$

It's convenient to take $h_2 = \frac{1}{2^2}$, and let $H_k := \left(1 + \frac{1}{2} + \dots + \frac{1}{k}\right)$, $H_{k+1} = \left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k+1}\right)$, which allows us to write:

$$u_{k+1} = \frac{1}{2^2 h_2} (H_k + H_{k+1}) = H_k + H_{k+1}$$
$$y_k = u_k x_k = (H_{k-1} + H_k) \frac{(-1)^{k-1}}{(2^2)^{k-1} k! (k-1)!} h_2$$

$$h_{2k} = y_k$$

$$w_1(z) = \sum_{n=0}^{\infty} \frac{(-1)^k}{k!(k+1)!} \left(\frac{z}{2}\right)^{2k+1}$$

$$w_2(z) = z^{-1} \left(1 + \sum_{k=1}^{\infty} \frac{(-1)^{k+1} (H_{k-1} + H_k)}{2^{2k} (k-1)! k!} z^{2k} \right) + \left(-\frac{1}{2} \right) w_1(z) \log(z).$$

Exercise 7.3. Show that for Bessel Equation of order $n \in \mathbb{N} > 0$:

$$J_n(z) := \frac{1}{2^n} \Gamma(n+1) w_1(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(k+n)!} \left(\frac{z}{2}\right)^{2k+n}$$

ana

$$Y_n(z) := -\frac{2^n (n-1)!}{\pi} w_2(z) + \frac{\gamma - \ln(2)}{2^{n-1} \pi n!} w_1(z)$$

$$= \frac{2}{\pi} \left(\gamma + \ln\left(\frac{z}{2}\right) \right) J_n(z) - \frac{1}{\pi} \sum_{k=0}^{n-1} \frac{(-1)^k (k-1)!}{k! (1-n)_k} \left(\frac{z}{2}\right)^{2k-n} - \frac{1}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^k (H_{k+n} + H_k)}{k! (k+n)!} \left(\frac{z}{2}\right)^{2k-n}.$$

Remark 7.4. For generic ν , the basis of solutions of Bessel's equation is

$$J_{\nu}(z)$$

and the Hankel functions

$$Y_{\nu}(z) = \frac{\cos(\pi\nu)J_{\nu}(z) - J_{-\nu}(z)}{\sin(\pi\nu)}.$$

8 The Legendre Equation

Definition 8.1. The **Legendre equation** of order α is of the form

$$(1 - z^2)w'' - 2zw' + \alpha(\alpha + 1)w = 0.$$

It is clear that $z_0 = 0$ is an ordinary point.

Exercise 8.2. Use the method of power series to find the basis (ie. the fundamental system) of solutions near $z_0 = 0$; find the radius of convergence of the resulting power series. Show that for some α the series becomes polynomial.

What about singular points? There are three of them. Look at the coefficient at w'': $1-z^2=0 \implies z=\pm 1$. We should consider the point at infinity!

At $z_1 = 1$, we can recenter using t = z - 1, z = t + 1, so $\frac{d}{dz} = \frac{d}{dt}$. This gives

$$-(1 - (t^2 + 2t + 1))w'' - 2(t + 1)w' + \alpha(\alpha + 1)w = 0$$
$$t(t + 2)w'' + 2(t + 1)w' + \alpha(\alpha + 1)w = 0$$
$$t^2w'' + 2\frac{t + 1}{t + 2}tw' + \frac{t(\alpha)(\alpha + 1)}{t + 2}w = 0$$

so $r(r-1) + 2 \cdot \frac{1}{2}r + 0 = 0$, so r = 0 with multiplicity 2.

Exercise 8.3. Solve with for z = -1.

At $z = \infty$, change variables to $Z = \frac{1}{z}$. Then we get

$$\begin{split} w(z) &= w\left(\frac{1}{z}\right) = \tilde{w}(z) \\ \frac{dw}{dz} &= w'\left(\frac{1}{Z}\right)\frac{d}{dz}Z = \tilde{w}'(Z) \cdot -\frac{1}{Z^2} = \tilde{w}'(Z)(-Z^2) \\ \frac{d}{dz^2}w &= \tilde{w}''(Z)\left(-\frac{1}{Z^2}\right)^2 + \tilde{w}'(Z)\frac{2}{Z^3} = \tilde{w}''(Z)(Z'') + 2\tilde{w}'(Z)Z^3 \end{split}$$

$$\left(1 - \frac{1}{z^2}\right) \left(z''\tilde{w}''(Z) + 2Z^3\tilde{w}'(Z)\right) - 2\frac{1}{Z}(-Z^2)\tilde{w}'(Z) + \alpha(\alpha + 1)\tilde{w}(Z) = 0$$

$$(Z^4 - Z^2)\tilde{w}'' + (2Z - 2Z)\tilde{w}' + \alpha(\alpha + 1)\tilde{w} = 0$$

$$Z^2\tilde{w}'' + \frac{\alpha(\alpha + 1)}{Z^2 - 1}\tilde{w} = 0$$

where $\frac{\alpha(\alpha+1)}{Z^2-1}$ is holomorphic at Z=0. So

$$r(r-1) - \alpha(\alpha+1) = 0$$
$$r^2 - r - \alpha^2 - \alpha = 0$$
$$(r - \alpha - 1)(r + \alpha) = 0$$

which implies $r_1 = \alpha + 1, r_2 = -\alpha$.

The Legendre equation has three singular points, each one is regular, and the exponents at singularity are described as

$$\left\{
 \begin{array}{lll}
 z_1 = 1 & z_2 = -1 & z_3 = \infty \\
 0 & 0 & \alpha + 1 \\
 0 & 0 & \alpha
 \end{array}
\right\}$$

known as the Riemann scheme.

Definition 8.4. A linear ODE in the complex domain

$$w^{(r)}(z) + p_1(z)w^{r-1}(z) + \dots + p_r(z)w(z) = 0$$

is called **Fuchsian** if all of its singular points, including the point at infinity, are regular.

Definition 8.5. A 2nd order Fuchsian ODE is called a Riemann equation if it has exactly three singular points.

Example 8.6. The Legendre equation is an example of a Riemann equation.

Exercise 8.7. Is the Bessel equation Fuchsian, ie. is ∞ a regular singular point?

Recall $\partial=\frac{d}{dz}, \delta=z\frac{d}{dz}, [\partial,\delta]=\partial$ and that $z_0=0$ is an regular singular point of

$$L[w] = w^{(r)}(z) + p_1(z)w^{r-1}(z) + \dots + p_r(z)w(z) = 0$$

if $zp_1(z), z^2p_2(z), ..., z^rp_r(z)$ are holomorphic at $z_0 = 0$. Since

$$L = \partial^r + p_1(z)\partial^{r-1} + \ldots + p_r(z) \cdot 1 \implies z^r L = z^r \partial^r + (zp_1(z))z^{r-1}\partial^{r-1} + \ldots + z^r p_r(z)$$

so $z^k \partial^k$ can be rewritten in terms of ∂ :

$$z\partial = \partial$$

$$z^2 \partial^2 = z(\delta)\partial = z(\partial \delta - \partial) = z\partial(\delta - 1) = \delta(\delta - 1) = \delta^2 - \delta$$

$$z^3 \partial^3 = \dots = \delta^3 - 3\delta^2 + 2\delta.$$

We can use this to show

$$z^{r}L = z^{r} \sum_{k=0}^{r} p_{r-k}(z) \cdot \partial^{k}$$

$$= \sum_{k=0}^{\infty} p_{r-k}(z) z^{r-k} z^{k} \partial^{k}$$

$$= \sum_{k=0}^{\infty} (p_{r-k}(z) z^{r-k}) (\delta) (\delta - 1) \dots (\delta - k + 1)$$

$$= \delta^{r} + q_{1}(z) \delta^{r-1} + \dots + q_{r}(z)$$

where $q_j(z)$ are holomorphic at $z_0 = 0$.

Exercise 8.8. Show that

$$q_1(z) = zp_1(z) - \frac{r(r-1)}{2}.$$

So regular singularity points occur for equations that can be written in terms of δ with holomorphic coefficients:

$$z\partial = \delta \qquad \qquad \delta = z\delta$$

$$z^2\partial^2 = \delta^2 - \delta \qquad \qquad \delta^2 = z^2\partial^2 + z\partial$$

$$z^3\partial^3 = \delta^3 - 3\delta^2 + 2\delta \qquad \qquad \delta^3 = z^3\partial^3 + 3(z^2\partial^2 + z\partial) - 2(z\delta)$$

and so on.

9 Riemann Equations

Recall that Fuchsian equations are equations such that all singular points, including the point at $z=\infty$, including the point at $z=\infty$, are regular. Define the differential operator

$$L = \partial^n + a_1(z)\partial^{n-1} + \dots + a_n(z)$$

where $\partial = \frac{d}{dz}$. We have

$$L[w] = w^{(n)} + a_1(z)w^{(n-1)} + \dots + a_n(z)w = 0$$

SC

$$z^{n}L = z^{n}\partial^{n} + a_{1}(z)z^{n}\partial^{n-1} + \dots + z^{n}a_{n}(z)$$

$$= \delta(\delta - 1)(\delta - 2)\dots(\delta - n + 1) + a_{1}(z)\delta(\delta - 1)\dots(\delta - n + 2) + \dots + a_{n}(z)$$

$$= \delta^{n} + b_{1}(z)\delta^{n-1} + \dots + b_{n}(z)$$

where $\delta = z \frac{d}{dz}$. We know that $L[w] = \sum_{j=0}^{n} a_j(z) \partial^{n-j} w$ is Fuchsian if and only if $z^n L[w] = \sum_{j=0}^{n} b_j(z) \delta^{n-j} w$ and all coefficients $b_j(z)$ are holomorphic (analytic).

Remark 9.1. For $b_1(z) = za_1(z) - \frac{n(n+1)}{2}$,

$$\delta(\delta-1)(\delta-2)\dots(\delta-m+1) = \delta^m + (1-1-2\dots - (m-1))\delta^{m-1} + \dots + \frac{m(m-1)}{2}$$

Lemma 9.2. The equation L[w] = 0 is Fuchsian with regular singular points $z_1, z_2, \ldots, z_m, z_{m+1} = \infty$ if and only if the coefficients $a_k(z)$ have the form

$$a_k(z) = \frac{p_k(z)}{(z - z_1)^k (z - z_2)^k \dots (z - z_m)^k}$$

and $p_k(z)$ is a polynomial of degree at most k(m-1).

Proof. The Fuchsian condition at $z=z_i$ is that $(z-z_i)^k a_k(z)$ is holomorphic.

At $z = \infty$: put $\zeta = \frac{1}{z}$. Note that $\frac{d}{dz} = \frac{d\zeta}{dz} \frac{d}{d\zeta} = -\frac{1}{z^2} \frac{d}{d\zeta} = -\zeta^2 \frac{d}{d\zeta}$, which gives $\delta = z \frac{d}{dz} = -\zeta \frac{d}{d\zeta} = -\theta$ where $\theta = \zeta \frac{d}{d\zeta}$. The equation $z^n L[w] = \sum_{j=0}^n b_j(z) \delta^{n-j} w$ gives $z = \frac{1}{\zeta}$.

We also have $\sum_{j=0}^{n} b_j \left(\frac{1}{\zeta}\right) (-\theta)^{n-j} w = 0$. This gives

$$b_j(z) = z^j a_j(z) + \dots$$

$$b_{j}\left(\frac{1}{3}\right) = \frac{1}{\zeta^{j}} a_{j}\left(\frac{1}{\zeta}\right)$$

$$= \frac{1}{\zeta^{j}} a_{j} \frac{P_{j}\left(\frac{1}{\zeta}\right)}{\left(\frac{1}{\zeta} - z_{1}\right)^{k} \dots \left(\frac{1}{\zeta} - z_{m}\right)^{j}}$$

$$= \frac{\zeta^{jm-j} p_{j}\left(\frac{1}{3}\right)}{(1 - \zeta z_{1})^{k} \dots (1 - \zeta z_{m})^{j}}$$

where $p_j\left(\frac{1}{3}\right)$ is a polynomial of degree d, $p_j\left(\frac{1}{3}\right) = \left(\frac{1}{3}\right)^d \tilde{p}_j(\zeta)$, $\zeta^{j(m-1)-d} \geq 0$, and $d = \deg p_j(z) \leq j(m-1)$.

Definition 9.3. A Riemann scheme for a Fuchsian equation is the following table

 $\begin{pmatrix} z_1 & z_2 & \dots & z_m & z_{m+1=\infty} \\ r_1^1 & r_2^1 & \dots & r_m^1 & r_{m+1}^1 \\ \vdots & \vdots & & \vdots & \vdots \\ r_1^n & r_2^n & \dots & r_m^n & r_{m+1}^n \end{pmatrix}$

where the first row are regular singlular points and the first column is the exponents at the singularity (ie. roots of the indicial equation).

Lemma 9.4 (Fuchs Relation).

$$\sum_{i=1}^{m+1} \sum_{j=1}^{n} r_i^j = \frac{(m-1) \cdot n \cdot (n-1)}{2}$$

where m is the number of finite singular points and n is the order of the equation.

Let

$$L = \sum_{j=0}^{n} a_j(z)\partial^{n-j} = \partial^n + a_1(z)\partial^{n-1} + \dots$$

where $a_1(z) = \frac{\alpha_1}{z - z_1} + ... + \frac{\alpha_n}{z - z_m}$.

At $z = z_i$:

$$(z-z_i)^n L = (z-z_i)^n \partial^n + \dots = \delta_i^n + \left((z-z_i) \prod_{j=1}^m \frac{\alpha_j}{z-z_j} - \frac{n(n-1)}{2} \right) \delta_i^{n-1} + \dots$$

where $\delta_i^n = (z - z_i)^n \partial^n$. The associated Euler equation is

$$r^{n} + \left(\alpha_{i} - \frac{n(n-1)}{2}\right)r^{n+1} + \dots = 0$$

where $r^n = (r - r_i^1)...(r - r_i^n)$ and $r_i^1 + ... + r_i^n = -\alpha_i + \frac{n(n-1)}{2}$.

At $z_{m+1} = \infty$:

$$z^{n}L(z) = \zeta^{n}L(\zeta) = (-1)^{n} \left(\theta^{n} + \left(-\frac{1}{3}a_{1}\left(\frac{1}{3}\right) + \frac{n(n-1)}{2}\right)\theta^{n-1} + \dots\right) - \left(\sum_{i=1}^{m} \frac{\alpha_{i}}{1 - \zeta z_{i}}\right)$$

We have

$$\sum_{i=1}^{n} r_{m+1}^{j} = \sum_{i=1}^{m} \alpha_{i} - \frac{n(n-1)}{2}$$

and

$$\sum_{i=1}^{m+1} \sum_{j=1}^{n} r_i^j = -\sum_{i=1}^{m} \alpha_i + m \frac{n(n-1)}{2} + \sum_{i=1}^{m} \alpha_i - \frac{n(n-1)}{2}$$
$$= \frac{(m-1)n(n-1)}{2}$$

In particular, if we consider n=2: $\sum \sum r_i^j = (m-1)$ where m is the number of finite regular singular points.

Let's restrict to second order equations. If w'' + p(z)w' + q(z)w = 0 has solutions of the form $w(z) = z^r h(r)$ with h(z) analytic at z - 0, h(0) = 1, then the equation has to be Fuchsian at z = 0, ie, z = 0 is a regular singular point, ie, p(z) has at most first order pole at z = 0 and q(z) has at most second order pole at z = 0.

Suppose $w_1(z) = z^{r_1}h_1(z)$ and $w_2(z) = z^{r_2}h_2(z)$ are two solutions

$$\begin{cases} w_1'' + p(z)w_1' + q(z)w_1 = 0\\ w_2'' + p(z)w_2' + q(z)w_2 = 0 \end{cases}$$

where

$$\begin{bmatrix} w_1' & w_1 \\ w_2'w_2 & \end{bmatrix} \begin{bmatrix} p \\ q \end{bmatrix} = - \begin{bmatrix} w_1'' \\ w_2'' \end{bmatrix}$$

Then, using Cramer's Rule,

$$p(z) = \frac{\begin{vmatrix} w_1'' & w_1 \\ w_2'' & w_2 \end{vmatrix}}{\begin{vmatrix} w_1' & w_1 \\ w_2' & w_2 \end{vmatrix}} = -\frac{d}{dz} \log \begin{vmatrix} w_1' & w_1 \\ w_2' & w_2 \end{vmatrix}.$$

We can check that

$$\begin{vmatrix} w_1' & w_1 \\ w_2' & w_2 \end{vmatrix} = W(w_1, w_2) \neq 0$$

as

$$\begin{vmatrix} w_1' & w_1 \\ w_2' & w_2 \end{vmatrix} = w_1' w_2 - w_1 w_2' = w_2^2 \left(\frac{w_1}{w_2}\right)'.$$

Let

$$v(z) = \left(\frac{w_1(z)}{w_2(z)}\right)'.$$

Then we have

$$p(z) = -\frac{d}{dz} \log \left(w_2^2 v(z) \right) = -\frac{v'(z)}{v(z)} - 2\frac{w_2'(z)}{w(z)}.$$

Both v(z) and w(z) are of the form $f(z) = z^r h(z)$ where $h(0) \neq 0$, so

$$\frac{d}{dz}\log(f(z)) = \frac{f'(z)}{f(z)} = \frac{r}{z} + \frac{h'(z)}{h(z)}$$

where $\frac{r}{z}$ is at most a first order pole. We can now conclude that p(z) has at most a first order pole at z=0 and $q(z)=-\frac{w_1''}{w_1}-p(z)\frac{w_1'}{w_1}$ has at most a second order pole at z=0.

Let's move on to discuss Riemann equations.

Definition 9.5. A second order Fuchsian ODE on the Riemann sphere is called a **Riemann equation** if it ihas only three regular singular points (including ∞).

The Riemann scheme for singular points a_1, a_2, a_3 is

$$\begin{pmatrix} a_1 & a_2 & a_3 \\ \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \end{pmatrix}.$$

The solutions of a Riemann equation (ie, a general solution) are denoted by

$$P\left(\begin{pmatrix} a_1 & a_2 & a_3 \\ \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \end{pmatrix}; z\right)$$

10 Mobius Transformations: The Group of Automorphisms PSL_2 on $\mathbb{P}^1_{\mathbb{C}}$

Define $\mathbb{P}^1_{\mathbb{C}} = \mathbb{C}^2 - \{(0,0)\}/\sim$ where $(x,y) \sim (\lambda x, \lambda y)$ for $\lambda \in \mathbb{C}^{\times}$. Denote [(x,y)] = [x:y] as the homogeneous coordinates of $\mathbb{P}^1_{\mathbb{C}}$. For $x \neq 0$, we have $[x:y] = \left[1:\frac{y}{x}\right]$ and similarly for $y \neq 0$ we have $[y:x] = \left[\frac{x}{y}:1\right]$.

Consider $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{GL}_2 = \mathrm{Aut}(\mathbb{C}^2)$. We have

$$A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

and

$$A \cdot [x : y] = [ax + by : cx + dy].$$

Definition 10.1. For $z = \frac{x}{y}$ with $y \neq 0$,

$$A \cdot z = \frac{ax + by}{cx + dy} = \frac{az + b}{cz + d}$$

is the fractional linear transformation or Möbius transformation.

Additionally, let's define $PGL_2 = GL_2 / \sim$.

Proposition 10.2. For any three points $a_1, a_2, a_3 \in \mathbb{C}$, there exists a unique Möbius transformation φ mapping $\langle a_1, a_2, a_3 \rangle \mapsto \langle 0, 1, \infty \rangle$ given by

$$\varphi(z) = \frac{(a_2 - a_3)}{(a_2 - a_1)} \frac{z - a_1}{z - a_3}.$$

Using a Möbius transformation, we can always change a Riemann equation with regular singular point a_1, a_2, a_3 to the one with regular singular point $0, 1, \infty$ and vice versa. Without loss of generality, consider

$$\begin{pmatrix} 0 & 1 & \infty \\ \sigma_0 & \sigma_1 & \sigma_\infty \\ \tau_0 & \tau_1 & \tau_\infty \end{pmatrix}.$$

Then there exists a unique Riemann equation with this Riemann scheme (satisfying the Fuchs relation $(\sigma_0 + \tau_0) + (\sigma_1 + \tau_1) + (\sigma_\infty + \tau_\infty) = 1$).

For $w'' + a_1(z)w' + a_2(z) = 0$, we have

$$a_1(z) = \frac{\text{linear}}{z(z-1)} = \frac{A_0}{z} + \frac{A_1}{z-1}$$

$$a_2(z) = \frac{\text{quadratic}}{z^2(z-1)^2} = \frac{B_0}{z^2} + \frac{B_1}{(z-1)^2} + \frac{B_2}{z(z-1)}.$$

Near z = 0: we have $A_1 = 1 - \sigma_1 - \tau_1, B_2 = \sigma_1 \tau_1$ and

$$w'' + \left(\frac{A_0}{z} + \frac{A_1}{z - 1}\right)w' + \left(\frac{B_0}{z^2} + \frac{B_1}{(z - 1)^2} + \frac{B_2}{z(z - 1)}\right)w = 0.$$

The indicial equation is

$$r(r-1) + A_0r + B_0 = (r - \sigma_0)(r - \tau_0) = 0$$

so $A_0 = 1 - \sigma_0 - \tau_0$ and $B_0 = \sigma_0 \tau_0$ with $A_0 = 1 - \sigma_0 - \tau_0$, $B_0 = \sigma_0 \tau_0$

Near z = 1:

$$z^{2} \left(w'' + \left(\frac{A_{0}}{z} + \frac{A}{z - 1} \right) w' + \left(\frac{B_{0}}{z^{2}} + \frac{B_{1}}{(z - 1)^{2}} + \frac{B_{2}}{z(z - 1)} \right) w = 0 \right)$$

$$z^{2} \partial^{2} + \left(A_{0} + A_{1} \frac{z}{z - 1} \right) z \partial + \left(B_{0} + B_{1} \left(\frac{z}{z - 1} \right)^{2} + B_{2} \left(\frac{z}{z - 1} \right) \right) w = 0$$

where $z^2 \partial^2 = \delta(\delta - 1) = -\theta(-\theta - 1)$ so

$$\theta^2 + \theta - \left(A_0 + A_1 \frac{1}{1 - \zeta}\right)\theta + \left(B_0 + B_1 \left(\frac{1}{1 - \zeta}\right)^2 + B_2 \frac{1}{1 - \zeta}\right)w = 0.$$

The indicial equation is

$$r^2 + (1 - A_0 - A_1)r + (B_0 + B_1 + B_2) = (r - \sigma_{\infty})(r - \tau_{\infty})$$

Since $1 - A_0 - A_1 = -\sigma_{\infty} - \tau_{\infty}$, $A_0 = 1 - \sigma_0 - \tau_0$, $A_1 = 1 - \sigma_1 - \tau_1$, which gives the Fuchs relation

$$1 = 1 - \sigma_0 - \tau_0 + 1 - \sigma_1 - \tau_1 - \sigma_\infty - \tau_\infty$$
.

In addition, $B_1 = \sigma_1 \tau_1, B_0 = \sigma_0 \tau_0$ so

$$B_0 + B_1 + B_2 = \sigma_\infty \tau_\infty$$

and

$$B_2 = \sigma_\infty \tau_\infty - \sigma_0 \tau_0 - \sigma_1 \tau_1.$$

Finally,

$$w'' + \left(\frac{1 - \sigma_0 - \tau_0}{z} + \frac{1 - \sigma_1 - \tau_1}{z - 1}\right)w' + \left(\frac{\sigma_0 \tau_0}{z^2} + \frac{\sigma_1 \tau_1}{(z - 1)^2} + \frac{\sigma_\infty \tau_\infty - \sigma_0 \tau_0 - \sigma_1 \tau_1}{z(z - 1)}\right)w = 0$$

Exercise 10.3.

$$z^{\nu}(1-z^{\mu})P\left(\begin{pmatrix}0&1&\infty\\\sigma_{0}&\sigma_{1}&\sigma_{\infty}\\\tau_{0}&\tau_{1}&\tau_{\infty}\end{pmatrix};z\right)=P\begin{pmatrix}0&1&\infty\\\sigma_{0}+\nu&\sigma_{1}+\mu&\sigma_{\infty}-\nu-\mu\\\tau_{0}+\nu&\tau_{1}+\mu&\tau_{\infty}-\nu-\mu\end{pmatrix}$$

We can focus on

$$\begin{pmatrix} 0 & 1 & \infty \\ 0 & 0 & \alpha \\ 1 - \gamma & \gamma - \alpha - \beta & \beta \end{pmatrix}$$

where $\alpha = \sigma_0 + \sigma_1 + \sigma_\infty$, $\beta = \sigma_0 + \sigma_1 + \tau_\infty$.

Definition 10.4. The $Gauss\ hypergeometric\ function\ is$

$$E(\alpha, \beta, \gamma) : z(1-z)\frac{d^2\omega}{dz^2} + (\gamma - (\alpha + \beta + 1)z)\frac{dw}{dz} - \alpha\beta w = 0.$$

11 Gauss Hypergeometric Equation

Let's discuss Gauge transformations. We are interested in functions w=(wz), where $z\in\mathbb{C}\subseteq\mathbb{P}^1_{\mathbb{C}}$, and $\operatorname{Aut}(\mathbb{P}^1_{\mathbb{C}})=\operatorname{PGL}_2=\operatorname{M\"obius}$ transformations act on w by $w\to (z-a)^k w$. The Riemann equations have 3 removable singular points:

$$\begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \end{pmatrix} \leadsto \begin{pmatrix} 0 & 1 & \infty \\ \alpha'_1 & \alpha'_2 & \alpha'_3 \end{pmatrix}$$

where $g \in PGL_2$.

Assume that the removable singular points are $z_0=0, z_1=1,$ and $z_\infty=\infty.$ We still have the "residual" PGL₂ action permuting these points.

Exercise 11.1. Describe this group $\simeq S_3$ as linear fractional transformations.

We can write

$$w(z) = z^a (z - 1)^b u(z)$$

where w(z) is a solution of the form

$$\begin{pmatrix}
0 & 1 & \infty \\
\sigma_0 & \sigma_1 & \sigma_\infty \\
\tau_0 & \tau_1 & \tau_\infty
\end{pmatrix}$$

Earlier, we explicitly wrote down the differential equation that w satisfies:

$$\frac{d^2w}{dz^2} + \left(A_0 + \frac{A_1}{z}\right)\frac{dw}{dz} + \left(\frac{B_0}{z(z-1)} + \frac{B_1}{(z-1)} + \frac{B_2}{z}\right)w = 0.$$

with coefficients

$$A_0 = 1 - \sigma_0 - \tau_0$$

$$A_1 = 1 - \sigma_1 - \tau_1$$

$$B_0 = \sigma_0 \tau_0$$

$$B_1 = \sigma_1 \tau_1$$

$$B_2 = \sigma_\infty \tau_\infty - \sigma_0 \tau_0 - \sigma_1 \tau_1.$$

Additionally, we have

$$\frac{dw}{dz} = w(z)\left(\frac{a}{z} + \frac{b}{z-1} + \frac{u'(z)}{u(z)}\right) = z^a(z-1)^b\left(\left(\frac{a}{z} + \frac{b}{z-1}\right)u(z) + u'(z)\right)$$

and

$$\begin{split} \frac{d^2w}{dz^2} &= z^a (z-1)^b \left(\left(\frac{a}{z} + \frac{b}{z-1} \right) \left(\left(\frac{a}{z} + \frac{b}{z-1} \right) u(z) + u'(z) \right) \right. \\ &\quad + \left(-\frac{a}{z^2} - \frac{b}{(z-1)^2} \right) u(z) + \left(\frac{a}{z} + \frac{b}{z-1} \right) u'(z) + u''(z) \right) \\ &= z^a (z-1)^b \left(u''(z) + \left(\frac{2a}{z} + \frac{2b}{z-1} \right) u'(z) \right. \\ &\quad + \left. \left(\left(\frac{a}{z} + \frac{b}{z-1} \right)^2 - \frac{a}{z^2} - \frac{b}{(z-1)^2} \right) u(z) \right) \end{split}$$

SC

$$\begin{split} &\frac{d^2u}{dz^2} + \left(\frac{A_0 + 2a}{z} + \frac{A_1 + 2b}{z - 1}\right)\frac{du}{dz} \\ &+ \left(\frac{B_0}{z^2} + \frac{B_1}{(z - 1)^2} + \frac{B_2}{z(z - 1)} + \frac{a^2 - a}{z^2} + \frac{b^2 - b}{(z - 1)^2} + \frac{2ab}{z(z - 1)} + \left(\frac{A_0}{z} + \frac{A_1}{z - 1}\right)\left(\frac{a}{z} + \frac{b}{z - 1}\right)\right)u \\ = &0 \end{split}$$

which can be simplified into

$$\frac{d^2u}{dz^2} + \left(\frac{A_0 + 2a}{z} + \frac{A_1 + 2b}{z - 1}\right)\frac{du}{dz} + \left(\frac{B_0 + A_0a + a^2 - a}{z^2} + \frac{B_1 + A_1b + b^2 - b}{(z - 1)^2} + \frac{B_2 + A_0b + A_1a + 2ab}{z(z - 1)}\right)u$$

$$=0$$

This gives the relations

$$1 - \alpha_0 - \beta_0 = 1 - \sigma_0 - \tau_0 + 2a$$

$$1 - \alpha_1 - \beta_1 = 1 - \sigma_1 - \tau_1 + 2b$$

$$\alpha_0 \beta_0 = \sigma_0 \tau_0 + (1 - \sigma_0 - \tau_0)a + a^2 - a$$

$$= \sigma_0 \tau_0 - (\sigma_0 + \tau_0)a + a^2$$

$$= (\sigma - a)(\tau_0 - a)$$

where $\alpha_0 = \sigma_0 - a$ or $\sigma_0 = \alpha_0 + a$, $\tau_0 = \beta_0 + a$, $\sigma_1 = \alpha_1 + b$, $\tau_1 = \beta_1 + b$. We can now write

$$\alpha_{\infty}\beta_{\infty} - \alpha_0\beta_0 - \alpha_1\beta_1 = \sigma_{\infty}\tau_{\infty} - \sigma_0\tau_0 - \sigma_1\tau_1 + (1 - \sigma_0 - \tau_0)b + (1 - \sigma_1 - \tau_1)a + 2ab$$

SC

$$\alpha_{\infty}\beta_{\infty} = \sigma_{\infty}\tau_{\infty} + (\sigma_{0} - a)(\tau_{0} - a) + (\sigma_{1} - b)(\tau_{1} - b) - \sigma_{0}\tau_{0} - \sigma_{1}\tau_{1} + (1 - \sigma_{0} - \tau_{0})b + (1 - \sigma_{1} - \tau_{1})a + 2ab$$

$$= \sigma_{\infty}\tau_{\infty} - a(\sigma_{0} + \tau_{0}) + a^{2} - b(\sigma_{1} + \tau_{1}) + b^{2} + (1 - \sigma_{0} - \tau_{0})b + (1 - \sigma_{1} - \tau_{1})a + 2ab$$

$$= \sigma_{\infty}\tau_{\infty} + (1 - \sigma_{0} - \tau_{0} - \sigma_{1} - \tau_{1})a + (\sigma_{\infty} + \tau_{\infty})b + (a + b)^{2}$$

$$= \sigma_{\infty}\tau_{\infty} + (\sigma_{\infty} + \tau_{\infty})a + (\sigma_{\infty} + \tau_{\infty})b + (a + b)^{2}$$

$$= (\sigma_{\infty} + a + b)(\tau_{\infty} + a + b)$$

with $\sigma_{\infty} = \alpha_{\infty} - a - b$ and $\tau_{\infty} = \beta_{\infty} - a - b$.

We can now write

$$P\begin{pmatrix} 0 & 1 & \infty \\ \sigma_0 = \alpha_0 + a & \sigma_1 = \alpha_1 + b & \sigma_\infty = \alpha_\infty - a - b; z \\ \tau_0 = \beta_0 + a & \tau_1 = \beta_1 + b & \tau_\infty = \beta_\infty - a - b \end{pmatrix} = z^a (z - 1)^b P\begin{pmatrix} 0 & 1 & \infty \\ \alpha_0 & \alpha_1 & \alpha_\infty; z \\ \beta_0 & \beta_1 & \beta_\infty \end{pmatrix}$$

SO

$$P\begin{pmatrix} 0 & 1 & \infty \\ \sigma_0 & \sigma_1 & \sigma_\infty; z \\ \tau_0 & \tau_1 & \tau_\infty \end{pmatrix} = z^{\sigma_0} (z - 1)^{\sigma_1} P\begin{pmatrix} 0 & 1 & \infty \\ 0 & 0 & \sigma_\infty + \sigma_0 + \sigma_1; z \\ \tau_0 - \sigma_0 & \tau_1 \sigma_1 & \tau_\infty + \tau_0 + \tau_1 \end{pmatrix}$$
$$= z^{\sigma_0} (z - 1)^{\sigma_1} P\begin{pmatrix} 0 & 1 & \infty \\ 0 & 0 & \alpha; z \\ 1 - \gamma & \gamma - \alpha - \beta & \beta \end{pmatrix}.$$

The Gauss hypergeometric equation $E(\alpha, \beta, \gamma)$ is the Riemann equation with the Riemann scheme

$$\begin{pmatrix}
0 & 1 & \infty \\
0 & 0 & \alpha \\
1 - \gamma & \gamma - \alpha - \beta & \beta
\end{pmatrix}$$

We have

$$\frac{d^2w}{dz^2} + \left(\frac{\gamma}{z} + \frac{\alpha+\beta+1-\gamma}{z-1}\right)\frac{dw}{dz} + \frac{\alpha\beta}{z(z-1)}w = 0.$$

For $E(\alpha, \beta, \gamma)$, we have

$$z(1-z)w''(z) + (\gamma - (\alpha + \beta + 1)z)w' - \alpha\beta w = 0.$$

Now, we discuss the regular singular points at z = 0, z = 1, and $z = \infty$.

At z = 0,

$$w(z) = z^r \sum_{h=0}^{\infty} h_n z^n = \sum_{n=0}^{\infty} h_n z^{n+r}$$

where $h_0 = 1$. Using the index shift $n \rightsquigarrow n+1$, we have

$$\sum_{n=0}^{\infty} \left[\frac{(n+r)(n+r-1)h_n z^{n+r-1} - (n+r)(n+r-1)h_n z^{n+r}}{\gamma(n+r)h_n z^{n+r-1} - (\alpha+\beta+1)(n+r)h_n z^{n+r} - \alpha\beta h_n z^{n+r}} \right] = 0$$

is equivalent to showing that

$$[((n+r)(n+r+1) + \sigma(n+r+1)) h_{n+1} - ((n+r)(n+r+\alpha+\beta) + \alpha\beta) h_n] z^{n+1} = 0$$

or

$$(n+r+1)(n+r+\gamma)h_{n+1} - (n+r+\alpha)(n+r+\gamma)h_n = 0.$$

The indicial equation at n=-1 is $r(r-1+\gamma)h_0=0$ with $r_1=0, r_2=1-\gamma$. We assume the non-resonant case, i.e. $\gamma \notin \mathbb{Z}$. Then

$$h_{n+1}(r) = \frac{(n+r+\alpha)(n+r+\beta)}{(n+r+1)(n+r+\gamma)} h_n$$

$$=$$

$$\vdots$$

$$= \frac{(n+r+\alpha)(n+r+\beta)...(r-\alpha)(r+\beta)}{(n+r+1)(n+r+\gamma)...(r+1)(r+\gamma)} h_0$$

$$= \frac{(r+\alpha)(r+\alpha+1)...(r+\alpha+r)(r+\beta)n+1}{(r+1)_{n+1}(r+\gamma)_{n+1}}$$

which gives

$$h_n(r) = \frac{(r+\alpha)_n(r+\beta)_n}{(r+1)_n(r+\gamma)_n}.$$

At r = 0:

$$h_0 = \frac{(\alpha)_n(\beta)_n}{(1)_n(\gamma)_n}$$

where $(1)_n = n!$ and

$$w_1(z) = \sum_{n=0}^{\infty} \frac{(\alpha)_n(\beta)_n}{(1)_n(\gamma)_n} z^n$$

which is analytic if |z| < 1 and analytic when $|z| \ge 1$ if $\text{Re}(\gamma - \alpha - \beta) > 0$.

Definition 11.2. The Gauss Hypergeometric function is

$$_{2}F_{1}(\alpha,\beta;\gamma;z) := \sum_{n=0}^{\infty} \frac{(\alpha)_{n}(\beta)_{n}}{(1)_{n}(\gamma)_{n}} z^{n}$$

We have $r_2 = 1 - \gamma$,

$$h_n(1-\gamma) = \frac{(1-\gamma+\alpha)_n(1-\gamma+\beta)_n}{(2-\gamma)_n(1)_n}$$

so

$$w_2(z) = z^{1-\gamma} \sum_{n=0}^{\infty} \frac{(1-\gamma+\alpha)_n (1-\gamma+\beta)_n}{(2-\gamma)_n (1)_n} z^n = z_2^{1-\gamma} F_1(\alpha+1-\gamma,\beta+1-\gamma;2-\gamma;z.$$

Our expression for P is

$$P\begin{pmatrix} 0 & 1 & \infty \\ 0 & 0 & \alpha \\ 1 - \gamma & \gamma - \alpha - \beta & \beta \end{pmatrix} = c_{1} {}_{2}F_{1}(\alpha, \beta; \gamma; z) + c_{z} z^{1-\gamma} {}_{2}F_{1}(\alpha + 1 - \gamma, \beta + 1 - \gamma; 2 - \gamma; z)$$

Near z = 1:

$$z(1-z)w'' + (\gamma - (\alpha + \beta + 1)z)w' - \alpha\beta w = 0.$$

Put