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1 Motivation: New Functions

The motivation is creating new functions, such as elementary transcendental
functions. What are these? With pure algebra on x, we can construct polyno-

mials (e.g., 5x7−3x2+4) and rational functions (e.g., 4x2−3x+1
x2+x−7 ), but not much

more. If we allow inverse functions, we can also take roots: y = xn =⇒ x =
y1/n. What about “other” functions?

One way we can get new functions is through ODEs, allowing our solutions to
be new functions. For example, if we take the ODE y′ = y, with y(x0) = y0,
then the solution is y(x) = e(x−x0)y0, and now we have exponential functions.

Similarly, for the ODE y′ = y with y(0) = 1, we can assume the existence of an
analytic solution y(x) =

∑∞
n=0 anx

n. We need convergence, etc., but for now,
we assume everything we want exists. We can differentiate term-by-term:

y(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n,

y′(x) = a1 + 2a2x+ 3a3x
2 + · · ·+ nanx

n−1.

Setting the equations equal gives a1 = a0, 2a2 = a1, 3a3 = a2, . . . , (n+1)an+1 =
an with a0 = y(0) = 1. Setting a0 = a1 = 1 gives an = 1

n! by induction. Thus,
we obtain:

y(x) =

∞∑
n=0

xn

n!
= ex.

Indeed, this series converges for −∞ < x < ∞ (using the Ratio test).

From the differential equation, we can deduce some basic properties, e.g., ea+b =
eaeb.

Remark 1.1. We can also define new functions as solutions of functional equa-
tions or difference equations.

Example 1.2. (The Gamma Function)

The Gamma function Γ satisfies the functional equation Γ(x+1) = xΓ(x), with
Γ(1) = 1. In particular:

Γ(x) =

∫ ∞

0

tx−1e−t dt.
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2 Picard-Lindelöf

Let U be an open subset of Rn+1 = R×Rn (i.e., (x, y⃗)) and let f⃗ : U → Rn be

a continuous function. Consider the ODE y⃗′ = f⃗(x, y⃗), with y⃗(x0) = y⃗0, where
(x0, y⃗0) ∈ U .

Picard’s idea is to transform the differential equation into an integral equation
and use the contraction mapping principle:

y⃗(x) = y⃗0 +

∫ x

x0

f⃗(s, y⃗(s)) ds.

Thus, we have:
y⃗0(x) = y⃗0,

y⃗1(x) = y⃗0 +

∫ x

x0

f⃗(s, y⃗0) ds,

y⃗2(x) = y⃗0 +

∫ x

x0

f⃗(s, y⃗1(s)) ds,

...

y⃗n+1(x) = y⃗0 +

∫ x

x0

f⃗(s, y⃗n(s)) ds.

Define an operator K(y⃗)(x) := y⃗0 +
∫ x

x0
f⃗(s, y⃗(s)) ds and introduce a norm in

the continuous function space so that K is a contraction with respect to this
norm. Then there exists a fixed point y⃗(x) = K(y⃗)(x).

This idea is formalized in the following theorem:

Theorem 2.1 (Picard-Lindelöf). If f⃗ is locally Lipschitz continuous in the
second argument (i.e., y⃗) uniformly in the first argument, then there exists a
unique (local) solution y⃗(x) to the initial value problem.

Recall:

sup
(x,y⃗)̸=(x,y⃗∗)

|f⃗(x, y⃗)− f⃗(x, y⃗∗)|
|y⃗ − y⃗∗|

:= L

where L is finite, and (x, y⃗) ∈ V is compact ⊂ U .
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3 Ordinary Differential Equations in the Com-
plex Domain

Recall: Suppose we have a function f : C ⊃ U → C where U is open and z0 ∈ U .
Then

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)

h
.

Theorem 3.1 (Cauchy-Riemann Equations). If f(z) = u(x, y) + iv(x, y) is
differentiable at z0 = x0 + iy0, then the first-order partial derivatives of u and
v exist at (x0, y0) and satisfy:

ux = vy and uy = −vx at (x0, y0).

If U ⊂ C is open, then f is differentiable in U (i.e., at every z ∈ U) if and only
if u and v are differentiable, their partial derivatives are continuous, and the
Cauchy-Riemann equations hold.

The Cauchy-Riemann equations imply that ∂
∂z f = 0, which means f(x, y) =

f(z, z) = f(z) is holomorphic. According to Cauchy’s theorem, holomorphic
functions are analytic, so we can write f(z) =

∑∞
n=0 an(z−z0)

n, which converges

with an = f(n)(z0)
n! for z0 ∈ U open.

Theorem 3.2 (Existence and Uniqueness of Analytic Solutions). If Ω ⊂ C×Cn

is open, Λ ⊂ C (parameters), and f : Ω × Λ → Cn is analytic in all variables,
then for the system

w⃗′ = f(z, w⃗, λ),

w⃗(z0) = w0,

for (z0, w0, λ0) ∈ Ω×Λ, there exists a unique (local) solution w(z, w0;λ) that is
analytic in all variables.

We can look for solutions in the form of convergent power series using the
Method of Frobenius.
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4 2nd Order Linear ODE in the Complex Do-
main and the Method of Frobenius

Consider the ODE

w′′ + p(z)w′ + q(z)w = f(z),

w = w(z).

How do we solve this?

1. Solve the homogeneous equation w′′+p(z)w′+ q(z)w = 0 and find a basis
in the vector space of solutions.

2. Solve the non-homogeneous equation (e.g., using the method of variation
of parameters).

Assume that p(z) and q(z) are analytic at z = z0 (i.e., in an open set U con-
taining z0):

p(z) =

∞∑
n=0

pn(z − z0)
n,

q(z) =

∞∑
n=0

qn(z − z0)
n.

Then, look for the analytic solution w(z) =
∑∞

n=0 an(z − z0)
n and find the

recurrence relation for the coefficients an:

w′′ + p(z)w′ + q(z)w = 0,

w(z0) = w0,

w′(z0) = w1.

Setting a0 = w0, a1 = w1, and without loss of generality assuming z0 = 0,

w(z) = a0 + a1z + · · ·+ anz
n + · · · ,

w′(z) = a1 + 2a2z + 3a3z
2 + · · ·+ nanz

n−1 + (n+ 1)an+1z
n + · · · ,

w′′(z) = 2a2 + 2 · 3a3z + · · ·+ n(n− 1)anz
n−2 + n(n+ 1)an+1z

n−1 + (n+ 1)(n+ 2)an+2z
n + · · · .

By brute force substitution, we obtain:

• At z0: 2a2 + p0 · a1 + q0 · a0 = 0 gives a2.

• At z1: 2 · 3a3 + 2a2p0 + a1p1 + q1a0 + q0a1 = 0 gives a3.

and so on.
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Example 4.1 (Airy Equation). Consider the differential equation w′′ = zw.
Setting w(z) =

∑∞
n=0 anz

n, at zn:

n(n− 1)anz
n−2 = anz

n+1 =⇒ (n+ 2)(n+ 1)an+2 = an.

This gives the recurrence relation

an+2 =
an

(n+ 1)(n+ 2)
.

Note: a2 = a−1

1·2 = 0 because a−1 := 0.

an+3 =
an

(n+ 2)(n+ 3)

which implies a2 = a5 = a8 = · · · = a3k+2 = 0 for k = 0, 1, 2, . . ..

If we start with a0, we get

a3 =
a0
2 · 3

=
a0
3!
, a6 =

a3
5 · 6

=
a0

3! · 5 · 6
=

4a0
6!

, a9 =
4 · 7
9!

a0, etc..

If we start with a1,

a4 =
a1
3 · 4

=
2

4!
a1, a7 =

a4
6 · 7

=
2 · 5
7!

a1, etc.

Thus, we can write

w(z) = a0

Å
1 +

z3

3!
+

4z6

6!
+

4 · 7 · z9

9!
+

4 · 7 · 10 · z12

12!
+ · · ·

ã
+ a1

Å
z +

2z4

4!
+

2 · 5 · z7

7!
+

2 · 5 · 8 · z10

10!
+ · · ·

ã
.
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5 The Airy Equation and the Airy Functions

The Airy functions are our first example of special functions determined by an
ODE:

w′′(z) = zw =⇒ w(z) = c0Ai(z) + c1Bi(z),

where

• For Ai(z), a0 = Ai(0) = 1

32/3Γ( 2
3 )
, a1 = Ai′(0) = − 1

31/3Γ( 1
3 )
.

• For Bi(z), a0 = Bi(0) = − 1

31/3Γ( 1
3 )
, a1 = Bi′(0) = − 1

31/6Γ( 1
3 )
.

The point x = 0 is a ”turning point”. To the left of this, we have oscillations,
and to the right, we have exponential growth/decay. In particular, Ai and Bi
are the only functions that satisfy these conditions.

Consider the ODE
w′′ + p(z)w′ + q(z)w = 0.

We’ve seen that the solution w = w(z) is analytic whenever p(z) and q(z) are
analytic. What about singularities?

Without loss of generality, suppose z0 = 0 is an isolated singular point.

Recall: If f is analytic in U = {z ∈ C | 0 < |z| < r}, then, using the Cauchy
Integral Theorem, we can write

f(z) = · · ·+ c−2

z2
+

c−1

z
+ c0 + c1z + c2z

2 + · · ·

as a convergent Laurent series. Thus:

• f(z) is analytic if c−1 = c−2 = · · · = 0.

• f(z) has a pole of order k ∈ Z+ if c−k ̸= 0 and c−k−1 = c−k−2 = · · · = 0.

• If infinitely many ck ̸= 0 for k < 0, then f(z) has an essential singularity.

Example 5.1 (Euler (or Equidimensional) Equation). Consider

w′′ +
a

z
w′ +

b

z2
w = 0.

The coefficients are singular at z0 = 0.

Rewrite as z2w′′ + azw′ + bw = 0. Define ∂ = d
dz and introduce the Euler

operator δ := z d
dz . The eigenfunctions are:

∂w = kw =⇒ w(z) = ekz =
∑ (kz)n

n!

and
δw = kw =⇒ w(z) = zk = elog(z)·k.

Exercise 5.2. Show that [∂, z] = 1, [∂, δ] = ∂, and zk∂k = δ(δ−1)(δ−2) · · · (δ−
k + 1).
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6 Methods of Frobenius

We seek solutions to w′′(z) + p(z)w′(z) + q(z)w(z) = 0 in the form of power
series near singular points z0 = 0.

The Euler equation z2w′′ + p0zw
′ + q0w = 0 can be rewritten as

w′′ +
1

z
p0w

′ +
1

z2
q0w = 0,

which shows the first and second order poles. Using Euler’s operator δ = z d
dz ,

we have:

δzk = kzk, ∂ =
d

dz
.

Thus,
z2∂2 = z(z∂)∂ = z(δ∂) = z(δ∂ − ∂) = z∂δ − z∂ = δ2 − δ.

By induction, zk∂k = δ(δ − 1)(δ − 2) · · · (δ − k + 1). Therefore, we can rewrite

δ(δ − 1)w + p0δw + q0w = 0 =⇒ (δ2 + (p0 − 1)δ + q0)w = 0.

Comparing aw′′+bw′+cw = 0 and (a∂2+b∂+c)w = 0, we see L = a∂2+b∂+c =
L1 ◦ L2. For example, if a = 1,

(∂ − r1)(∂ − r2)w = 0,

which can be rewritten as

∂2 − (r1 + r2)∂ + r1r2.

This gives the solution
w(z) = c1e

r1z + c2e
r2z.

Example 6.1. For w′′ + w′ − 6w = 0, we rewrite the LHS as

(∂2 + ∂ − 6)w = (∂ + 3)(∂ − 2)w,

so
∂w = 2w =⇒ w(z) = c1e

2z

and
∂w = −3w =⇒ w(z) = c2e

−3z,

which gives the general solution

w(z) = c1e
2z + c2e

−3z.
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Example 6.2. For z2w′′ + 2zw′ − 6w = 0, we rewrite the LHS as

(δ(δ − 1) + 2δ − 6)w = (δ2 + δ − 6)w = (δ + 3)(δ − 2)w,

so
δw = 2w =⇒ w(z) = c1z

2

and
δw = −3w =⇒ w(z) = c2z

−3,

which gives the general solution

w(z) = c1z
2 + c2z

−3.

In both examples, there are two distinct real roots of the characteristic equation.

Example 6.3.

• If we take w′′ +w′ − 6w = 0, trying w(z) = erz =⇒ r2 + r− 6 = 0 is the
characteristic equation.

• If we takew′′+4w′+5w = 0, the characteristic equation is r2+4r+5 = (r+
2)2 + 1 = 0, which gives general solution w(z) = c1e

−2+iz + c2e
(−2−i)z =

e−2z(c̃1 cos(z) + c̃2 sin(z)).

• If we take z2w′′ + 5zw′ + 5w = 0 =⇒ (δ2 + 4δ + 5)w = 0 =⇒ w(z) =
c1z

−2+i + c2z
−2−i.

• If we take w′′+4w′+4w = 0 we can rewrite the LHS as (∂2+4∂+4)w =
(∂ + 2)2w(z) = ce−2z.

Now try variation of parameters, w(z) = u(z)e−2z.

(u′′e−2z+2u′(−2e−2z)+u(z)4e−2z))+4(u′e−2z+u(z)(−2e−2z)+4u(z)e−2z = 0

and then cancelling everything gives u′′ = 0 =⇒ u(z) = c1z + c2, which gives
solution w(z) = (c1z+ c2)e

−2z = c1ze
−2z + e2e

−2z. We can think of the second
term as the eigenfunction of ∂ and the first as the generalized eigenfunction.

Consider the differential operator applied to a function:

(∂ + z)(ze−2z) = e−2z.

Regarding δ:

Example 6.4. Consider the differential equation

z2w′′ + 5zw′ + 4w = 0.

The solution is
w(z) = c1z

−1 log(z) + c2z
−2.
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Reason: An Euler equation transforms into a linear differential equation with
constant coefficients under a change of the independent variable

ζ = log(z),

where log(z) = ln |z|+ iarg(z) with the principal branch −π < Arg(z) < π.

By the change of variables ζ = log(z), i.e., z = eζ , we have

d

dζ
=

dz

dζ

d

dz
= z

d

dz
.

Let µ(ζ) := w(eζ). Then the equation

z2w′′ + p0zw
′ + q0w = 0

transforms to
u′′ + (p0 − 1)u′ + q0u = 0.

The characteristic equation is

r2 + (p0 − 1)r + q0 = 0 =⇒ r1,2 =
1

2

(
1− p0 ±

»
(p0 − 1)2 − 4q0

)
.

If r1 ̸= r2, then the solution is

u(ζ) = c1e
r1ζ + c2e

r2ζ ,

which translates back to

w(z) = c1z
r1 + c2z

r2 .

If r1 = r2, then the solution is

u(ζ) = (c1ζ + c2)e
rζ ,

which translates back to

w(z) = c1z
r log(z) + c2z

r.

We seek solutions near an isolated singular point z0 = 0 of the form

w(z) = zrh(z),

where h is holomorphic.

Lemma 6.5. A first-order differential equation w′(z) + p(z)w(z) = 0 has a
solution w(z) = zrh(z) with h(z) =

∑∞
n=0 hnz

n and h0 = 1 if and only if p(z)
has at most a simple pole at z0 = 0, specifically p(z) = p−1

z + p0 + . . . with
r = −p1 = − limz→0 zp(z).
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Proof. Substitute w(z) = zrh(z) into the differential equation w′ + p(z)w = 0:

p(z) = −w′

w
= −rzr−1h(z) + zrh′(z)

zrh(z)
= −r

z
+

h′(z)

h(z)
,

where h′(z)
h(z) is holomorphic with h(0) = h0 = 1.

Conversely, if w′ = −p(z)w, then

w(z) = c exp

Å
−
∫

p(z) dz

ã
= w(0) exp

Å
−
∫ z

0

p(s) ds

ã
= −p−1 log z + C + p0z + . . .

= w(0)z−p−1 · holomorphic function.

for some constant C.

Definition 6.6. A point z0 is called a regular singular point of the differ-
ential equation w′′ + p̃(z)w′ + q̃(z)w = 0 if p̃ and q̃ are meromorphic at z0 and
p(z) = (z− z0)p̃(z) and q(z) = (z− z0)

2q̃(z) are holomorphic at z0. If p(z) and
q(z) are holomorphic at z0, we say that z0 is an ordinary point.

Assume z0 = 0. Then, for the equation

z2w′′ + zp(z)w′ + q(z)w = 0

with p(z) = p0 + p1z + . . . and q(z) = q0 + q1z + . . ., we have solutions of the
form

w(z) = zrh(z)

for a holomorphic function h.

The associated Euler equation is

z2w′′ + zp0w
′ + q0w = 0,

with the characteristic equation

r(r − 1) + p0r + q0 = 0,

which is called the indicial equation because the solutions are exponential at
the singularity. The solutions are

r1,2 =
1

2

(
1− p0 ±

»
(p0 − 1)2 − 4q0

)
.

There are two cases: r1 − r2 /∈ Z and r1 − r2 ∈ Z.

Consider some representative examples.
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Example 6.7. For 4zw′′ + 2w′ + w = 0, the associated Euler’s equation is
4z2w′′ + 2zw′ = 0, and the indicial equation is

4r(r − 1) = 2r =⇒ 4r2 − 2r = 2r(2r − 1) = 0 =⇒ r1 =
1

2
, r2 = 0.

Thus, w1(z) = z
1
2h(z) and w2(z) = h(z). Substitute w(z) =

∑∞
n=0 hnz

n+r:

∞∑
n=0

[
(n+ r)(n+ r − 1)hnz

n+r−1 + (n+ r)hnz
n+r−1 + hnz

n+r
]
.

Shifting the index down by 1 gives the recurrence relation

(4(n+ r)(n+ r − 1) + 2(n+ r))hn + hn−1 = 0

2(n+ r)(2n+ 2r − 1)hn = −hn−1.

Letting F (n+ r) = 2(n+ r)(2n+ 2r − 1), we have at n = 0:

F (r) · (h0 = 1) = −h−1 = 0 and F (r) = 2r(2r − 1) = 0

n = 0 : F (r) · (h0 = 1) = −h−1 = 0 and F (r) = 2r(2r − 1) = 0 is exactly
the indicial equation above (the characteristic equation for the approximating
Euler’s equation). Then for r1 = 1

2 > r2 = 0,

hn =
−1

(2n+ 2r)(2n+ 2r − 1)
hn−1 = ... =

(−1)n

(2n+ 2r)(2n+ 2r − 1)...(2r + 2)(2r + 1)

Remark 6.8. Products like the one above are sometimes called shifted factori-
als:

• Lower xn := x(x− 1)(x− 2)...(x− n+ 1) = (x)n

• Upper xn := x(x+ 1)(x+ 2)...(x+ n− 1) = (x)n

Definition 6.9. The Pochhammer symbol (α)n := α(α+1)(α+2)...(α+n−1).

Note: (1)n = n!, (α)n = Γ(α+n)
Γ(α) since Γ(z + 1) = Γ(z). And hn(r) =

(−1)n

(2r+1)2n
.

For r = 1
2 :

h(z) = z
1
2

∞∑
n=0

(−1)n

(2)2n
zn =

∞∑
n=0

(−1)n (
√
z)

2n+1

(2n+ 1)!
= sin

(√
z
)
.

For r = 0:

h(z) =

∞∑
n=0

(−1)n

(1)2n
zn = cos

(√
z
)
.
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Recap: 4zw′′ + 2w′ + w = 0 has the following general solution:

w(z) = c1 sin
(√

z
)
+ c2 cos

(√
z
)

Check:

4z

Å
c1

Å
− 1

4z
√
z
cos
(√

z
)
− 1

4z
sin
(√

z
)ã

+ c2

Å
1

4z
√
z
sin
(√

z
)
− 1

4z
cos
(√

z
)ãã

+2

Å
c1

Å
1

2
√
z
cos
(√

z
)ã

+ c2

Å
− 1

2
√
z
sin
(√

z
)ãã

+
(
c1 sin

(√
z
)
+ c2 cos

(√
z
))

= 0

Example 6.10. zw′′ + w′ − w = 0 has the indicial equation r(r − 1) + r =
0 =⇒ r2 = 0 so it has a repeated root. The power series

∞∑
n=0

(
(n+ r) (n+ r − 1)hnz

n+r−1 + (n+ r)hnz
n+r−1 − hnz

n+r
)
= 0

Note that (n+ r) (n+ r − 1)hnz
n+r−1+(n+ r)hnz

n+r−1 = (n+r)2hn = F (n+
r) and F (r) = r2 = 0.

n = 0 gives r2 = 0 =⇒ F (n) = n2 and

hn =
1

F (n)
hn−1 = ... =

1

n2(n− 1)2...12
=

1

(n!)2
.

w1(z) = z0
∑∞

n=0

zn

(n!)2
= (1 + z +

z2

4
+

z3

36
+ ...)

To find w2(z), try w2(z) = w1(z) log(z) + zrh(z). If w2(z) = w1(z) log(z) +
zrh(z). Let L[w] = 4zw′′ + 2w′ + w = 0 for easier typesetting. Then

L[w2(z)] = L[w1(z) log(z)] + L[zrh(z)]

Since

L[w1(z) log(z)] = z

Å
w′′

1 log (z) + 2w′
1 ·

1

z
− w1

1

z2

ã
+

Å
w′

1 log (z) + w1 ·
1

z

ã
− w1 log (z)

= log (z)L [w, (z)] + 2w′
1 − w1 ·

1

z
+ w1 ·

1

z
= log (z)L [w, (z)] + 2w′

1

and

L[zrh(z)] = −2w′
1
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At r = 0, this is equal to

z
(
2h2 + 2 · 3zh3 + 3 · 4z2h4 + ...

)
+
(
h1 + 2h2z + 3h3z

2 + ...
)
−
(
h0 + h1z + h2z

2 + ...
)

= −2

Å
1 +

1

2
z +

1

12
z2 + ...

ã
We have

h1 = −2

2 · 2h2 − h1 = −1

3 · 3h3 − h2 = −1

6
...

n2hn − hn−1 = −2
n

n!n!
= − 2

(n− 1)!n!

So

hn = n
1

n2

Å
hn−1 −

2

(n− 1)!n!

ã
can be solved for hn.

Furthermore,

w2(z) = w1 (z) log (z) +

Å
−2z +

3

4
z2 − 11

108
z3 − ...

ã
Example 6.11. Consider zw′′ +w = 0. Look for w(z) = zrh(z), where h(z) is
analytic (holomorphic) near z = 0, ie. h(z) =

∑∞
n=0 hnz

n with h0 ̸= 1.

Then w(z) =
∑∞

n=0 hnz
n+r = zr = h1z

r+1 + h2z
r+2 + ... + hnz

r+n. Plugging
this into the equation gives

z
[
r(r − 1)zr−2 + (r + 1)rh1z

r−1 + (r + 2)(r + 1)h2z
r

+ · · ·+ (r + n)(r + n− 1)hnz
r+n−2 + · · ·

ò
+
[
zr + h1z

r+1 + h2z
r+2 + · · ·

]
= 0.

• At zr−1, the indicial equation is r(r − 1) = 0. Alternatively, we can get
here through the associated Euler equation: z2w′′ = 0, try w(z) = zr which
gives r(r − 1)zr = 0. Solving the indicial equation gives r1 = 1, r2 = 0.

• At zr, we have r(r + 1)h1 + 1 = 0. In general, we have w1(z) = zr1h(z)
and w2(z) = zr2h(z) but this second doesn’t exist because if r2 = 0, then
0 · h1 + 1 = 0, which is impossible, so there is no second solution in this
form. But the first one always exists.
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• At zr+n−1, we have (r+n)(r+n−1)hn+hn−1 = 0. If r1−r2 = m ∈ N≥0,
then F (r2 + m) = F (r1) = 0, and we have 0 · hm + hm−1 = 0 which
is impossible unless hm−1 happens to be zero. Let’s construct the first
solution w1(z). Take the recurrence relation F (n + r)hn = −hn−1. Use
r1 = 1 : F (n+ 1) = (n+ 1) · n. Then

hn =
−1

n(n+ 1)
hn−1 = ... =

(−1)n

(n+ 1) · n · ... · 3 · 2 · 2 · 1
h0 =

(−1)n

(n+ 1)(n!)2
.

This gives

w1(z) = z1
∞∑

n=0

(−1)n

(n+ 1)(n!)2
zn =

∞∑
n=0

(−1)n

(n!)2
zn+1

n+ 1
.

How to find w2(z)? Look for the solution in the form w2(z) = zr2h(z) +
cw1(z) log(z). Substitute L[w] = zw′′ + w = 0, which gives

L[w2(z)] = L[zr2h(z)] + cL[w1(z) log(z)] = 0

so L[zr2h(z)] = −cL[w1(z) log(z)], which can be rewritten as

∞∑
n=1

(F (n)hn + hn−1)z
n−1 = −c

Å
z

Å
w′′

1 (z) log(z) + w′
1 ·

1

z
− w1

1

z2

ãã
+ w1(z) log(z)

= −c

Å
2w′

1 −
1

z
w1

ã
= −c

Å
−c

Å
1− 3

z
z +

5

(2!)2 · 3
z2 + ...

ãã
So c = −1 and we have 2h2 + h1 = − 3

2 , 6h3 + h2 = 5
12 , ...

The first will give us a solution of the form z0(h1(z...)) = z(h1(1 + ...)) =
h1 · w1(z), ie. is a multiple of w1(z), nothing new can put h1 = 0. Then
h2 = − 3

4 , h3 =
(

5
12 + 3

4

)
1
6 = 7

36 , ... or

hn = (−1)n
2n− 1

F (n)n!(n+ 1)!
.

This gives our second solution

w2(z) =

Å
1− 3

4
z2 +

7

36
z3 − ...

ã
− w1(z) log(z).

Example 6.12. Consider the equation z2w′′ + zw′ +

Å
z2 − 1

4

ã
w = 0. The

indicial equation is r(r−1)+r− 1
4 = 0, and F (r) = r2− 1

4 =⇒ r1 = 1
2 , r2 = − 1

2 .
The recurrence relation is F (n+ r)hn + hn−1 = 0.
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At r1 = 1
2 : F

(
n+ 1

2

)
= n(n + 1). Since hn = − 1

n(n+1)hn−2, h1 = h3 = ... =

h2k+1. Furthermore, h2k = (−1)k

2k(2k+1) so we get the solution

w1(z) = z
1
2

∞∑
k=0

(−1)kz2k

(2k + 1)!
=

sin(z)√
z

.

What about the second solution w2(z)? We have

w(z) = zr2
∞∑

n=0

hnz
n + cw1(z) log(z),

which we can rewrite as

L[w(z)] = L

[
z−

1
2

∞∑
n=0

hnz
n

]
+ cL[w1(z) log(z)] = 0.

Note that

L

[
z−

1
2

∞∑
n=0

hnz
n

]
= −cL[w1(z) log(z)]

= −c

Å
z2
Å
w′′

1 log(z) + 2w′
1

1

z
− w

1

z2

ã
+ z

Å
w′

1 log(z) + w1
1

z

ã
+

Å
z2 − 1

4

ã
w1 log(z)

ã
= −c · 2w

′
1

z

At the same time,

L

[
z−

1
2

∞∑
n=0

hnz
n

]
=
∑Å

F

Å
n− 1

2

ã
hn + hn−2

ã
zn−

1
2

= (0 · h0 + h−2)z
− 1

2 + (0 · h1 + h−1)z
1
2 + (2h2 + h0)z

3
2 + ...

= −c

Å
z

1
2 − 5

6
z

5
2 + ...

ã
so c = 0. Take h1 arbitrary. The recurrence relation gives

h2k =
(−1)k

(2k)!
h0, h2k+1 =

(−1)k

(2k + 1)!
h1

so

w2(z) = z−
1
2

(
h0

∞∑
k=0

(−1)k

(2k)!
z2k + h1

∞∑
k=1

(−1)k

(2k + 1)!
z2k+1

)

=
1√
z
cos(z) + h1

sin(z)√
z

Finally, our solutions are w1(z) =
sin(z)√

z
, w2(z) =

cos(z)√
z

.
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Theorem 6.13. Consider the equation w′′+ p̃(z)w′+ q̃(z)w = 0 where p̃(z) has
at most a simple pole at z0 = 0 and q̃(z) has at most a double pole at z0 = 0,
ie. z2w′′ +wp(z)w′ + q(z)w = 0, where p(z) = zp̃(z), q(z) = z2q̃(z), where p(z)
and q(z) are analytic near z0 = 0, ie. p(z) =

∑∞
n=0 pnz

n, q(z) =
∑∞

n=0 qnz
n.

Then, if r1 and r2 are the characteristic exponents (ie. roots of the indicial
equation r(r − 1) + rp0 + q0 = 0), the following two cases can occur:

• If r1 − r2 /∈ Z, a fundamental system (ie. a basis) of solutions is given by
wj(z) = zrjhj(z) with hj(z) =

∑∞
k=0 hj,kz

k (convergent near z0 = 0) with
hj,0 = 1.

• If r1 − r2 = m ∈ N, then a fundamental system of solutions is given by
w1(z) = zr1h1(z), w2(z) = zr2h2(z) + c log(z)w1(z), where the constant
c ∈ C might be zero (unless r1 = r2, then c ̸= 0).

Proof. We’ll provide a sketch.

Let z2w′′+p(z)·zw′+q(z)·w = 0, with w(z) = zr
∑∞

n=0 hnz
n =

∑∞
n=0 hnz

n+r =
zr +

∑∞
n=1 hnz

n+r where h0 = 1, and

p(z) =

∞∑
n=0

=

(
p0 +

∞∑
n=1

pnz
n

)

q(z) =

∞∑
n=0

=

(
q0 +

∞∑
n=1

qnz
n

)
.

Then

q(z)w(z) =

(
q0 +

∞∑
k=1

qkz
k

)
zr

(
1 +

∞∑
ℓ=1

hℓz
ℓ

)

= zr

(
q0 +

∞∑
n=1

( ∑
k+ℓ=n

qkhℓ

))

= zr

(
q0 +

∞∑
n=1

(
q0hn +

n∑
k=1

qkhn−k

))

= q0z
r +

∞∑
n=1

(
q0hn +

n∑
k=1

qkhn−k

)
zn+r

so

p(z)zw′(z) = p0 · rzr +
∞∑

n=1

(
p0(n+ r)hn +

n∑
k=1

pk(n+ r − k)hn−k

)
zn+r.

If we substitute

(r(r−1)+p0r+q0)z
r+

∞∑
n=1

(
[(n+ r)(n+ r − 1) + p0(n+ r) + q0]hn +

n∑
k=1

((pk(n+ r − k) + qk)hn−k)

)
zn+r = 0
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note that r(r−1)+p0r+q0 is the indicial equation F (r) = r2+(p0−1)r+q0 = 0,
so the coefficients will have the form

F (n+ r)hn +

n∑
k=1

(pk(n+ r − k) + qk)hn−k = 0.

Let’s solve for the exponents r1 and r2 for at the singularity and then solve for
hn in terms of h0, ..., hn−1.

Solve F (r) = r2 + (p0 − 1)r + q0 = 0 to get

r1,2 =
1

2

(
1− p0 ±

»
(p0 − 1)2 − 4q0

)
.

Furthermore, r1 + r2 = 1− p0, r1r2 = q0, so

F (n+ r)hn +

n∑
k=1

(pk(n+ r − k) + qk)hn−k = 0.

So F (n+r) = (n+r−r1)(n+r−r2). Additionally, F (n+r1) = n(n+r1−r2) ̸= 0
for n ≥ 0, and F (n + r1) = (n + r2 − r1)n can be equal to zero if r1 − r2 = m
for m ∈ N.

In the case when r1 − r2 = m ∈ N≥0, use variation of parameters technique:

w2(z) = u(z)w1(z)

which can be rewritten as

L[w2(z)] = u(z)L[w1(z)] + z2(u′′(z) + 2u′(z)w′
1(z)) + p(z) · zu′(z)w1(z)

= z2u′′(z)zr1h1(z) + zu′(z)z2(r1z
r1−1h1(z) + zr1h′

1(z)) + p(z) · z · u′(z)zr1h1(z)

= z2 · zr1h1(z)

Å
u′′(z) + 2u′(z) · r1

z
+ 2u′(z)

h′
1(z)

h(z)
+

p(z)

z
· u′(z)

ã
which we want to equal zero. So we want

u′′(z) +

Å
2r1
z

+ 2
h′
1(z)

h1(z)
+

p(z)

z

ã
u′(z) = 0.

and the term in parenthesis is equal to 2r1
z + p0

z + holomorphic.

Put v(z) := u′(z). Then we get

v′ +

Å
1 + r1 − r2

z
+ holomorphic

ã
v(z) = 0.

and

v(z) = exp

Å
−
∫

1 + r1 − r2
z

dz + holomorphic

ã
= zr2−r1−1

∞∑
n=0

fnz
n

18



with f0 ̸= 0. Since v(z) = u′(z),

u(z) =

∫ ∞∑
n=0

fnz
n+r2−r1−1 dz =

∞∑
n=0

fn
zn+r2−r1

n+ r2 − r1

if n ̸= r2 − r1, and if r1 − r2 = m then the last term has +fm log(z).

Now, we get our final formula

w2(z) = zr2

( ∞∑
n=0

wnz
n

)
+ fmw1(z) log(z).

Proving the convergence of the resulting series is not difficult - see the textbook.
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7 Bessel Differential Equation and the Bessel
Functions

There are several ways in which these arise:

• Vibrations of a circular membrane: separation of variables on the wave
equation gives the Bessel equation.

Definition 7.1. Differential equations of the form

z2w′′ + zw′ + (z2 − v2)w = 0

with v ∈ C are the Bessel differential equations of over v.

Assume Re(v) ≥ 0. Let’s solve this using the method of Frobenius: Assume
there is a solution of the form

w(z; r) = zrh(z) = zr
∞∑

n=0

hnz
n =

∞∑
n=0

hn(r)z
n+r

with h0 = 1. Now we substitute:

L[w(z; r)] =

∞∑
n=0

[(n+r)(n+r−1)hn(r)z
n+r+(n+r)hn(r)z

n+r−v2hn(r)z
n+r+hn(r)z

n+r+2]

which we want to equal 0. Let’s perform the index shift on the last term to
hn−2(r)z

n+r, with h−2 = h−1 = 0. The reccurence relation is

F (n+ r)hn(r) + hn−2(r) = 0.

where F (n+ r) =
[
(n+ r)2 − v2

]
.

• At n = 0, we get the indicial equation is F (r) · 1 = r2 − v2 = 0, r =
±v,Re(r1 = v ≥ r2 = −v). If v = 0, the indicial equation has a repeated
root.

• At n = 1, we get F (1 + r) = (1 + r − v)(1 + r + v), so

F (1 + r) · h1(r) + h−1(r) = 0

which gives at r1 = v : F (n+v) = n(n+2v) and at r2 = −v, F (n−v) = (n−2v)n.
By assumption Re(r1 = v) ≥ 0, so F (n+ v) at r1 can never be zero but at r2 is
can be zero (when n = 2v). So either F (1 + r) or h1(r) = 0 =⇒ h2k+1(r) = 0.
At r2 = −v : F (1− v) = (1− 2v)·.

There are three special cases:

• v = 0: repeated roots

• v = 1
2 : odd terms

• v = 2m for m ∈ N≥0: roots differ by an integer.

20



The generic case is when v ̸= 2m or 1
2 . Here, there are two roots r1 = v and

r2 = −v. Then

F (n+ v) = n(n+ 2v) and F (n− v) = (n− 2v)n

so
F (n+ v)hn = −hn−2...h2k+1 = 0

where

h2k =
−1

2k(2k + 2v)
h2(k−1)

= ...

=
(−1)k

(2k)(2k − 2)...(2)(2k + 2v)(2k + 2v − 2)...(2k + 2v)

=
(−1)k

2k · k! · (v + 1)k
.

We always have the solution

w1(z) = zv
∞∑
k=0

(−1)kΓ(v + 1)

22kk!Γ(v + k + 1)
z2k

= Γ(v + 1) · 2v
∞∑
k=0

(−1)k

k!Γ(v + k + 1)

(z
2

)2k+v

.

Definition 7.2. The Bessel function of the 1st kind is defined as

Jv =

∞∑
k=0

(−1)k

k!Γ(v + k + 1)

(z
2

)2k+v

.

In the generic case, changing v to −v gives

w2(z) = z−v
∞∑
k=0

(−1)kΓ(1− v)

22kk!Γ(1 + k − v)

=
Γ(1− v)

2v

∞∑
k=0

(−1)k

k!Γ(1 + k − v)

(z
2

)2k−v

.

For special cases, at v = 1
2 we considered earlier:

w1(z) =
sin(z)√

z
and w2(z) =

cos(z)√
z

.

With some additional normalization, we get

J 1
2
(z) =

Å
2

πz

ã 1
2

sin(z) and J− 1
2
(z) =

Å
2

πz

ã 1
2

cos(z).
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For repeated roots at v = 0, differentiate wrt the parameter r. Recall

w(z; r) =

∞∑
n=0

hn(r)z
n+r,

so

L[w(z; r)] = F (r)zr+

∞∑
n=1

(
F (n+ r)hn(r) +

n∑
k=1

(pk(n+ r − k) + qk)hn−k

)
zn+r.

Let’s try to solve the recurrence(
F (n+ r)hn(r) +

n∑
k=1

(pk(n+ r − k) + qk)hn−k

)
(⋆)

for hn(r).

If hn(r) satisfy the recurrence (⋆): L[w(z; r)] = F (r)zr and if F (r) = (r − r1)
2,

ie. the repeate root case, then L[w(z; r)] = (r − r1)
2z4 which = 0 if r = r1 but

also:

∂

∂r
|r=r1L[w(z; r)] = L

ï
∂

∂r
|r=r1w(z; r]

ò
=

∂

∂r
|r=r1(r − r1)

2zr

= 0

So

w2(z) =
∂

∂r
|r=r1w1(z; r) = w1(z; r)

=
∂

∂r
|r=r1

(
zr

∞∑
n=0

hn(r)z
n

)

= log(z)zr1
∞∑

n=0

hn(r1)z
n + zr

∞∑
n=0

h′
n(r1)z

n.

Applying F (r) = r2 on

L[w] = z2w′′ + zw′ + z2w = 0

gives

F (r)zr +

∞∑
n=1

(F (r + n)hn + hn−2) z
r+n = 0

where h2k+1 = 0. Then

h2k(r) =
−1

(r + 2k)2
h2k−2 = ... =

(−1)
1
2

(r + 2)2(r + 4)2...(r + 2k)2
.
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The repeated root is r = 0:

h2k(0) =
(−1)k

22 · 42 · ... · (2k)2
=

(−1)k

22k(k!)2

and

w1(z) =

∞∑
k=0

(−1)k

22k(k!)2
z2k =

∞∑
k=0

(−1)k

(k!)2

(z
2

)2k
= J0(z).

Since

w2(z) = J0(z) log(z) +

∞∑
n=0

h′
n(0)z

n = J0(z) log(z) +

∞∑
k=1

h′
2k(0)z

2k

and

h2k(r) =
(−1)

1
2

(r + 2)2(r + 4)2...(r + 2k)2
,

we have
h′
2k(r)

h2k(r)
= −2

Å
1

r + 2
+

1

r + 4
+ ...

1

r + 2k

ã
and at r = 0

h′
2k = −2

Å
1

2
+

1

4
+ ...+

1

2k

ã
h2k(0)

= −
Å
1 +

1

2
+ ...+

1

k

ã
h2k(0)

= Hkh2k(0)

where Hk is the k-th harmonic number. This gives

w2(z) = J0(z) log(z) +

∞∑
k=1

(−1)k+1Hk

22k(2k)!
z2k.

Usually, there is a little bit of change in the second solution

Y0 =
2

π
[w2(z) + (γ − ln(2))J0(z)]

=
2

π

[
(γ + log

(z
2

)
)J0(z) +

∞∑
k=1

(−1)k+1Hk

(2k)!

(z
2

)2k]
where γ is the Euler constant

γ = lim
n→∞

(Hn − ln(n)) ≈ 0.5772

For bessel equations of order m ∈ Z>0, we have

z2w′′ + zw′ + (z2 −m2)w = 0
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and
F (r) = r2 −m2 = (r −m)(r +m)

so
∞∑

n=0

(F (r + n)hn + hn−2)z
r+n = 0

When r +m : F (r1 + n) = F (m+ n) = n(n+ 2m) and

h2k =
(−1)k

(2k) · ... · 2 · (2k + 2m) · ... · (2 + 2m)
=

(−1)k

22kk!(m+ 1)k

which has solution

w1(z) =

∞∑
k=0

(−1)k

k!(m+ 1)k

(z
2

)2k
= Γ(m+ 1)2m

∞∑
k=0

(−1)k

k!Γ(m+ k + 1)

(z
2

)2k+m

= Γ(m+ 1)2mJm(z).

For the other solution,

w2(z) = z−mh2(z) + c log(z)w1(z)

so

L
[
z−mh2 (z)

]
+c

Å
z2
Å
w′′

1 log (z) + 2w′
1

1

z
− w1

1

z2

ã
+ z

Å
w′

1 log (z) + w1
1

z

ã
+
(
z2 −m2

)
log (z)w1

ã
= 0

and then spam cancellation gives

∞∑
n=0

[F (n−m)hn + hn−2] z
n−m = L

[
z−mh2 (z)

]
= −2c

1

z
w′

1 (z) .

For simplicity, take m = 1:

w1(z) = z

∞∑
k=0

(−1)
k

k! (2)k

(z
2

)2k
=

∞∑
k=0

(−1)
k
z2k+1

k! (k + 1)!22k

Then F (n−m) = n(n− 2m) or F (n− 1) = n(n− 2) and

∞∑
k=0

(−1)
k
z2k+1

k! (k + 1)!22k
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so

0 · h0z
−1 + (−1) · h1 + (0 · h2 + h0) z + (3 · 1 + h1) z

2 + (4 · 2 + h2) z
3 + ...

= −2c
1

2

( ∞∑
k=0

(−1)
k
(2k + 1) z2k

k! (k + 1)!22k

)

To finish our discussion of Bessel functions of order n ∈ N>0, take n = 1:

z2w′′ + zw′ + (z2 − 1)w = 0.

The indicial equation is

F (r) = r(r − 1) + r − 1 = r2 − 1 = (r − 1)(r + 1) = 0

so r1 = 1 > r2 = −1. We have

w(z) =

∞∑
n=0

hnz
n+r

so
∞∑

n=0

[F (r + n)hn + hn−1]z
n+r = 0.

At n = 0 : F (r)h0 = 0, and we get h0 = 1, F (r) = 0.

At n = 1 : F (r + 1)h1 = 0 so F (r + 1) ̸= 0 =⇒ h1 = 0 =⇒ hodd = 0.

At r1 = 1, F (n+ 1) = n(n = 2) so F (2k + 1)h2k + h2(k−1) = 0. This tells us

h2k = − 1

(2k)(2k + 2)
h2(k−1) = ... =

(−1)k

22kk!(k + 1)!
h0

and

w1(z) = z1
∞∑
k=0

(−1)k

22kk!(k + 1)!
z2k =

∞∑
k=0

(−1)kz2k+1

22kk!(k + 1)!

What about the second solution? w2(z) = z−1
∑∞

n=0 hnz
n + cw1(z) log(z).

We have
L[w2(z)] = −2c · zw′

1(z)

where

w2(z) =

∞∑
n=0

[F (n− 1)hn + hn−2]z
n−1 = −2c

∞∑
k=0

(−1)k(2k + 1)

22kk!(k + 1)!
z2k+1.
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But note that

F (n− 1) = n(n− 2)

= (0 · h1)z
−1 + (−1)h1 + (0 · h2 + 1)z + (3 · 1h3 + h1)z

2 + ..

= −2c

Å
z − 3

22 · 1 · 2
z3 + ...

ã
Now, we can see that −2c = 1, hodd = 0, h2 is ”free”, and w2(z) = z−1(1 +
h2z

2 + h4z
4) so changing h2 adds a multiple of w1(z).

Furthermore, we get

(2k + 2)(2k)h2k+2 + h2k =
(−1)k(2k + 1)

k!(k + 1)!22k

for k ≥ 1. Let g̃k = RHS and yk := h2k. Then

22(k)(k + 1)yk+1 + yk = g̃k

with initial condition y1 = h2. Notice that this is a 1st order linear non-
homogeneous difference equation, and can be written:

yk+1 +
1

22k(k + 1)
yk = gk =

(−1)k(2k + 1)

22(k+1)((k + 1)!)2 · k

To solve:

Step 1: Solve the homogeneous equation

xk+1 +
1

22k(k + 1)
xk = 0

with x1 = x2. We get

xk+1 =
−1

22 · k(k + 1)
xk = ... =

(−1)k

(22)kk!(k + 1)!
h2.

Step 2: Solve non-homogeneous recurrence using variation of parameters: set
yk = ukxk, which gives y1 = u1x1 = h2, ie. u1 = 1. So

yk+1+
1

22k(k + 1)
yk = uk+1xk+1−ukxk+1+

Å
ukxk+1 +

1

22k(k + 1)
ukxk

ã
= gk.

The parenthesis term is equal to uk(0). Now we have (uk+1 − uk)xk+1 = gk,
which we can solve to get

uk+1 = uk +
gk

xk+1
= ... = u1 +

g1
x2

+ ...+
gk

xk+1
.
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Is there a closed form? We have

gk
xk+1

=
(−1)k(2k + 1)

22(k+1)((k + 1)!)2 · k
:

(−1)k

(22)kk!(k + 1)!
h2 =

1

h2

Å
1

22
· 2k + 1

k(k + 1)

ã
.

We get

uk+1 = u1 +
1

h2
· 1

22

ÅÅ
1

1
+

1

2

ã
+

Å
1

2
+

1

3

ã
+ ...+

Å
1

k
+

1

k + 1

ãã
=

1

22h2

Å
h2 · 22 +

Å
1 +

1

2
+ ...+

1

k

ã
+

Å
1

2
+

1

3
+ ...+

1

k + 1

ãã
It’s convenient to take h2 =

1

22
, and let Hk :=

Å
1 +

1

2
+ ...+

1

k

ã
, Hk+1 =Å

1

2
+

1

3
+ ...+

1

k + 1

ã
, which allows us to write:

uk+1 =
1

22h2
(Hk +Hk+1) = Hk +Hk+1

yk = ukxk = (Hk−1 +Hk)
(−1)k−1

(22)k−1k!(k − 1)!
h2

h2k = yk

w1(z) =

∞∑
n=0

(−1)k

k!(k + 1)!

(z
2

)2k+1

w2(z) = z−1

(
1 +

∞∑
k=1

(−1)k+1(Hk−1 +Hk)

22k(k − 1)!k!
z2k

)
+

Å
−1

2

ã
w1(z) log(z).

Exercise 7.3. Show that for Bessel Equation of order n ∈ N > 0:

Jn(z) :=
1

2n
Γ(n+ 1)w1(z) =

∞∑
k=0

(−1)k

k!(k + n)!

(z
2

)2k+n

and

Yn(z) : = −2n(n− 1)!

π
w2(z) +

γ − ln(2)

2n−1πn!
w1(z)

=
2

π

(
γ + ln

(z
2

))
Jn(z)−

1

π

n−1∑
k=0

(−1)k(k − 1)!

k!(1− n)k

(z
2

)2k−n

− 1

π

∞∑
k=0

(−1)k(Hk+n +Hk)

k!(k + n)!

(z
2

)2k−n

.

Remark 7.4. For generic ν, the basis of solutions of Bessel’s equation is

Jν(z)

and the Hankel functions

Yν(z) =
cos(πν)Jν(z)− J−ν(z)

sin(πν)
.
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8 The Legendre Equation

Definition 8.1. The Legendre equation of order α is of the form

(1− z2)w′′ − 2zw′ + α(α+ 1)w = 0.

It is clear that z0 = 0 is an ordinary point.

Exercise 8.2. Use the method of power series to find the basis (ie. the funda-
mental system) of solutions near z0 = 0; find the radius of convergence of the
resulting power series. Show that for some α the series becomes polynomial.

What about singular points? There are three of them. Look at the coefficient
at w′′: 1− z2 = 0 =⇒ z = ±1. We should consider the point at infinity!

At z1 = 1, we can recenter using t = z − 1, z = t+ 1, so
d

dz
=

d

dt
. This gives

−(1− (t2 + 2t+ 1))w′′ − 2(t+ 1)w′ + α(α+ 1)w = 0

t(t+ 2)w′′ + 2(t+ 1)w′ + α(α+ 1)w = 0

t2w′′ + 2
t+ 1

t+ 2
tw′ +

t(α)(α+ 1)

t+ 2
w = 0

so r(r − 1) + 2 · 1
2
r + 0 = 0, so r = 0 with multiplicity 2.

Exercise 8.3. Solve with for z = −1.

At z = ∞, change variables to Z =
1

z
. Then we get

w(z) = w

Å
1

z

ã
= w̃(z)

dw

dz
= w′

Å
1

Z

ã
d

dz
Z = w̃′(Z) · − 1

Z2
= w̃′(Z)(−Z2)

d

dz2
w = w̃′′(Z)

Å
− 1

Z2

ã2
+ w̃′(Z)

2

Z3
= w̃′′(Z)(Z ′′) + 2w̃′(Z)Z3

Å
1− 1

z2

ã (
z′′w̃′′(Z) + 2Z3w̃′(Z)

)
− 2

1

Z
(−Z2)w̃′(Z) + α(α+ 1)w̃(Z) = 0

(Z4 − Z2)w̃′′ + (2Z − 2Z)w̃′ + α(α+ 1)w̃ = 0

Z2w̃′′ +
α(α+ 1)

Z2 − 1
w̃ = 0
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where
α(α+ 1)

Z2 − 1
is holomorphic at Z = 0. So

r(r − 1)− α(α+ 1) = 0

r2 − r − α2 − α = 0

(r − α− 1)(r + α) = 0

which implies r1 = α+ 1, r2 = −α.

The Legendre equation has three singular points, each one is regular, and the
exponents at singularity are described asz1 = 1 z2 = −1 z3 = ∞

0 0 α+ 1
0 0 α


known as the Riemann scheme.

Definition 8.4. A linear ODE in the complex domain

w(r)(z) + p1(z)w
r−1(z) + ...+ pr(z)w(z) = 0

is called Fuchsian if all of its singular points, including the point at infinity,
are regular.

Definition 8.5. A 2nd order Fuchsian ODE is called a Riemann equation if it
has exactly three singular points.

Example 8.6. The Legendre equation is an example of a Riemann equation.

Exercise 8.7. Is the Bessel equation Fuchsian, ie. is ∞ a regular singular
point?

Recall ∂ = d
dz , δ = z d

dz , [∂, δ] = ∂ and that z0 = 0 is an regular singular point
of

L[w] = w(r)(z) + p1(z)w
r−1(z) + ...+ pr(z)w(z) = 0

if zp1(z), z
2p2(z), ..., z

rpr(z) are holomorphic at z0 = 0. Since

L = ∂r + p1(z)∂
r−1 + ...+ pr(z) · 1 =⇒ zrL = zr∂r + (zp1(z))z

r−1∂r−1 + ...+ zrpr(z)

so zk∂k can be rewritten in terms of ∂:

z∂ = ∂

z2∂2 = z(δ)∂ = z(∂δ − ∂) = z∂(δ − 1) = δ(δ − 1) = δ2 − δ

z3∂3 = ... = δ3 − 3δ2 + 2δ.
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We can use this to show

zrL = zr
r∑

k=0

pr−k(z) · ∂k

=

∞∑
k=0

pr−k(z)z
r−kzk∂k

=

∞∑
k=0

(pr−k(z)z
r−k)(δ)(δ − 1)...(δ − k + 1)

= δr + q1(z)δ
r−1 + ...+ qr(z)

where qj(z) are holomorphic at z0 = 0.

Exercise 8.8. Show that

q1(z) = zp1(z)−
r(r − 1)

2
.

So regular singularity points occur for equations that can be written in terms
of δ with holomorphic coefficients:

z∂ = δ δ = zδ

z2∂2 = δ2 − δ δ2 = z2∂2 + z∂

z3∂3 = δ3 − 3δ2 + 2δ δ3 = z3∂3 + 3(z2∂2 + z∂)− 2(zδ)

and so on.
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9 Riemann Equations

Recall that Fuchsian equations are equations such that all singular points, in-
cluding the point at z = ∞, including the point at z = ∞, are regular. Define
the differential operator

L = ∂n + a1(z)∂
n−1 + · · ·+ an(z)

where ∂ = d
dz . We have

L[w] = w(n) + a1(z)w
(n−1) + · · ·+ an(z)w = 0

so

znL = zn∂n + a1(z)z
n∂n−1 + · · ·+ znan(z)

= δ(δ − 1)(δ − 2) . . . (δ − n+ 1) + a1(z)δ(δ − 1) . . . (δ − n+ 2) + · · ·+ an(z)

= δn + b1(z)δ
n−1 + · · ·+ bn(z)

where δ = z d
dz . We know that L[w] =

∑n
j=0 aj(z)∂

n−jw is Fuchsian if and

only if znL[w] =
∑n

j=0 bj(z)δ
n−jw and all coefficients bj(z) are holomorphic

(analytic).

Remark 9.1. For b1(z) = za1(z)− n(n+1)
2 ,

δ(δ−1)(δ−2) . . . (δ−m+1) = δm+(1−1−2 · · ·−(m−1))δm−1+· · ·+m(m− 1)

2

Lemma 9.2. The equation L[w] = 0 is Fuchsian with regular singular points
z1, z2, . . . , zm, zm+1 = ∞ if and only if the coefficients ak(z) have the form

ak(z) =
pk(z)

(z − z1)k(z − z2)k . . . (z − zm)k

and pk(z) is a polynomial of degree at most k(m− 1).

Proof. The Fuchsian condition at z = zj is that (z − zj)
kak(z) is holomorphic.

At z = ∞: put ζ = 1
z . Note that d

dz = dζ
dz

d
dζ = − 1

z2
d
dζ = −ζ2 d

dζ , which gives δ =

z d
dz = −ζ d

dζ = −θ where θ = ζ d
dζ . The equation znL[w] =

∑n
j=0 bj(z)δ

n−jw

gives z = 1
ζ .

We also have
∑n

j=0 bj
Ä
1
ζ

ä
(−θ)n−jw = 0. This gives

bj(z) = zjaj(z) + ...
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bj

Å
1

3

ã
=

1

ζj
aj

Å
1

ζ

ã
=

1

ζj
aj

Pj

Ä
1
ζ

ä
( 1ζ − z1)k...(

1
ζ − zm)j

=
ζjm−jpj

(
1
3

)
(1− ζz1)k...(1− ζzm)j

where pj
(
1
3

)
is a polynomial of degree d, pj

(
1
3

)
=
(
1
3

)d
p̃j(ζ), ζ

j(m−1)−d ≥ 0,
and d = deg pj(z) ≤ j(m− 1).

Definition 9.3. A Riemann scheme for a Fuchsian equation is the following
table á

z1 z2 ... zm zm+1=∞
r11 r12 ... r1m r1m+1
...

...
...

...
rn1 rn2 ... rnm rnm+1

ë
where the first row are regular singlular points and the first column is the expo-
nents at the singularity (ie. roots of the indicial equation).

Lemma 9.4 (Fuchs Relation).

m+1∑
i=1

n∑
j=1

rji =
(m− 1) · n · (n− 1)

2

where m is the number of finite singular points and n is the order of the equation.

Let

L =

n∑
j=0

aj(z)∂
n−j = ∂n + a1(z)∂

n−1 + ...

where a1(z) =
α1

z−z1
+ ...+ αn

z−zm
.

At z = zi:

(z−zi)
nL = (z−zi)

n∂n+ ... = δni +

Ñ
(z − zi)

m∏
j=1

αj

z − zj
− n(n− 1)

2

é
δn−1
i + ...

where δni = (z − zi)
n∂n. The associated Euler equation is

rn +

Å
αi −

n(n− 1)

2

ã
rn+1 + ... = 0

where rn = (r − r1i )...(r − rni ) and r1i + ...+ rni = −αi +
n(n−1

2 .
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At zm+1 = ∞:

znL(z) = ζnL(ζ) = (−1)n
Å
θn +

Å
−1

3
a1

Å
1

3

ã
+

n(n− 1)

2

ã
θn−1 + ...

ã
−

(
m∑
i=1

αi

1− ζzi

)

We have
n∑

j=1

rjm+1 =

m∑
i=1

αi −
n(n− 1)

2

and

m+1∑
i=1

n∑
j=1

rji = −
m∑
i=1

αi +m
n(n− 1)

2
+

m∑
i=1

αi −
n(n− 1)

2

=
(m− 1)n(n− 1)

2

In particular, if we consider n = 2:
∑∑

rji = (m − 1) where m is the number
of finite regular singular points.

Let’s restrict to second order equations. If w′′+p(z)w′+q(z)w = 0 has solutions
of the form w(z) = zrh(r) with h(z) analytic at z−0, h(0) = 1, then the equation
has to be Fuchsian at z = 0, ie, z = 0 is a regular singular point, ie, p(z) has at
most first order pole at z = 0 and q(z) has at most second order pole at z = 0.

Suppose w1(z) = zr1h1(z) and w2(z) = zr2h2(z) are two solutions®
w′′

1 + p(z)w′
1 + q(z)w1 = 0

w′′
2 + p(z)w′

2 + q(z)w2 = 0

where ï
w′

1 w1

w′
2w2

ò ï
p
q

ò
= −
ï
w′′

1

w′′
2

ò
Then, using Cramer’s Rule,

p(z) =

∣∣∣∣w′′
1 w1

w′′
2 w2

∣∣∣∣∣∣∣∣w′
1 w1

w′
2 w2

∣∣∣∣ = − d

dz
log

∣∣∣∣w′
1 w1

w′
2 w2

∣∣∣∣ .
We can check that ∣∣∣∣w′

1 w1

w′
2 w2

∣∣∣∣ = W (w1, w2) ̸= 0

as ∣∣∣∣w′
1 w1

w′
2 w2

∣∣∣∣ = w′
1w2 − w1w

′
2 = w2

2

Å
w1

w2

ã′
.
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Let

v(z) =

Å
w1(z)

w2(z)

ã′
.

Then we have

p(z) = − d

dz
log
(
w2

2v(z)
)
= −v′(z)

v(z)
− 2

w′
2(z)

w(z)
.

Both v(z) and w(z) are of the form f(z) = zrh(z) where h(0) ̸= 0, so

d

dz
log(f(z)) =

f ′(z)

f(z)
=

r

z
+

h′(z)

h(z)

where r
z is at most a first order pole. We can now conclude that p(z) has at

most a first order pole at z = 0 and q(z) = −w′′
1

w1
− p(z)

w′
1

w1
has at most a second

order pole at z = 0.

Let’s move on to discuss Riemann equations.

Definition 9.5. A second order Fuchsian ODE on the Riemann sphere is called
a Riemann equation if it ihas only three regular singular points (including ∞).

The Riemann scheme for singular points a1, a2, a3 isÑ
a1 a2 a3
α1 α2 α3

β1 β2 β3

é
.

The solutions of a Riemann equation (ie, a general solution) are denoted by

P

ÑÑ
a1 a2 a3
α1 α2 α3

β1 β2 β3

é
; z

é
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10 Mobius Transformations: The Group of Au-
tomorphisms PSL2 on P1

C

Define P1
C = C2 − {(0, 0)}/ ∼ where (x, y) ∼ (λx, λy) for λ ∈ C×. Denote

[(x, y)] = [x : y] as the homogeneous coordinates of P1
C. For x ̸= 0, we have

[x : y] =
[
1 : y

x

]
and similarly for y ̸= 0 we have [y : x] =

î
x
y : 1
ó
.

Consider A =

ï
a b
c d

ò
∈ GL2 = Aut(C2). We have

A

ï
x
y

ò
=

ï
ax+ by
cx+ dy

ò
and

A · [x : y] = [ax+ by : cx+ dy].

Definition 10.1. For z = x
y with y ̸= 0,

A · z =
ax+ by

cx+ dy
=

az + b

cz + d

is the fractional linear transformation or Möbius transformation.

Additionally, let’s define PGL2 = GL2/ ∼.

Proposition 10.2. For any three points a1, a2, a3 ∈ C, there exists a unique
Möbius transformation φ mapping ⟨a1, a2, a3⟩ 7→ ⟨0, 1,∞⟩ given by

φ(z) =
(a2 − a3)

(a2 − a1)

z − a1
z − a3

.

Using a Möbius transformation, we can always change a Riemann equation with
regular singular point a1, a2, a3 to the one with regular singular point 0, 1,∞
and vice versa. Without loss of generality, considerÑ

0 1 ∞
σ0 σ1 σ∞
τ0 τ1 τ∞

é
.

Then there exists a unique Riemann equation with this Riemann scheme (sat-
isfying the Fuchs relation (σ0 + τ0) + (σ1 + τ1) + (σ∞ + τ∞) = 1).

For w′′ + a1(z)w
′ + a2(z) = 0, we have

a1(z) =
linear

z(z − 1)
=

A0

z
+

A1

z − 1

a2(z) =
quadratic

z2(z − 1)2
=

B0

z2
+

B1

(z − 1)2
+

B2

z(z − 1)
.
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Near z = 0: we have A1 = 1− σ1 − τ1, B2 = σ1τ1 and

w′′ +

Å
A0

z
+

A1

z − 1

ã
w′ +

Å
B0

z2
+

B1

(z − 1)2
+

B2

z(z − 1)

ã
w = 0.

The indicial equation is

r(r − 1) +A0r +B0 = (r − σ0)(r − τ0) = 0

so A0 = 1− σ0 − τ0 and B0 = σ0τ0 with A0 = 1− σ0 − τ0, B0 = σ0τ0

Near z = 1:

z2
Å
w′′ +

Å
A0

z
+

A

z − 1

ã
w′ +

Å
B0

z2
+

B1

(z − 1)2
+

B2

z(z − 1)

ã
w = 0

ã
z2∂2 +

Å
A0 +A1

z

z − 1

ã
z∂ +

Ç
B0 +B1

Å
z

z − 1

ã2
+B2

Å
z

z − 1

ãå
w = 0

where z2∂2 = δ(δ − 1) = −θ(−θ − 1) so

θ2 + θ −
Å
A0 +A1

1

1− ζ

ã
θ +

Ç
B0 +B1

Å
1

1− ζ

ã2
+B2

1

1− ζ

å
w = 0.

The indicial equation is

r2 + (1−A0 −A1)r + (B0 +B1 +B2) = (r − σ∞)(r − τ∞)

Since 1−A0 −A1 = −σ∞ − τ∞, A0 = 1−σ0 − τ0, A1 = 1−σ1 − τ1, which gives
the Fuchs relation

1 = 1− σ0 − τ0 + 1− σ1 − τ1 − σ∞ − τ∞.

In addition, B1 = σ1τ1, B0 = σ0τ0 so

B0 +B1 +B2 = σ∞τ∞

and
B2 = σ∞τ∞ − σ0τ0 − σ1τ1.

Finally,

w′′+

Å
1− σ0 − τ0

z
+

1− σ1 − τ1
z − 1

ã
w′+

Å
σ0τ0
z2

+
σ1τ1

(z − 1)2
+

σ∞τ∞ − σ0τ0 − σ1τ1
z(z − 1)

ã
w = 0

Exercise 10.3.

zν(1− zµ)P

ÑÑ
0 1 ∞
σ0 σ1 σ∞
τ0 τ1 τ∞

é
; z

é
= P

Ñ
0 1 ∞

σ0 + ν σ1 + µ σ∞ − ν − µ
τ0 + ν τ1 + µ τ∞ − ν − µ

é
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We can focus on Ñ
0 1 ∞
0 0 α

1− γ γ − α− β β

é
where α = σ0 + σ1 + σ∞, β = σ0 + σ1 + τ∞.

Definition 10.4. The Gauss hypergeometric function is

E(α, β, γ) : z(1− z)
d2ω

dz2
+ (γ − (α+ β + 1)z)

dw

dz
− αβw = 0.
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11 Gauss Hypergeometric Equation

Let’s discuss Gauge transformations. We are interested in functions w = (wz),
where z ∈ C ⊆ P1

C, and Aut(P1
C) = PGL2 = Möbius transformations act on w

by w → (z − a)kw. The Riemann equations have 3 removable singular points:Å
α1 α2 α3

β1 β2 β3

ã
⇝
Å
0 1 ∞
α′
1 α′

2 α′
3

ã
where g ∈ PGL2.

Assume that the removable singular points are z0 = 0, z1 = 1, and z∞ = ∞.
We still have the ”residual” PGL2 action permuting these points.

Exercise 11.1. Describe this group ≃ S3 as linear fractional transformations.

We can write
w(z) = za(z − 1)bu(z)

where w(z) is a solution of the formÑ
0 1 ∞
σ0 σ1 σ∞
τ0 τ1 τ∞

é
Earlier, we explicitly wrote down the differential equation that w satisfies:

d2w

dz2
+

Å
A0 +

A1

z

ã
dw

dz
+

Å
B0

z(z − 1)
+

B1

(z − 1)
+

B2

z

ã
w = 0.

with coefficients
A0 = 1− σ0 − τ0

A1 = 1− σ1 − τ1

B0 = σ0τ0

B1 = σ1τ1

B2 = σ∞τ∞ − σ0τ0 − σ1τ1.

Additionally, we have

dw

dz
= w(z)

Å
a

z
+

b

z − 1
+

u′(z)

u(z)

ã
= za(z − 1)b

ÅÅ
a

z
+

b

z − 1

ã
u(z) + u′(z)

ã
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and

d2w

dz2
= za(z − 1)b

ÅÅ
a

z
+

b

z − 1

ãÅÅ
a

z
+

b

z − 1

ã
u(z) + u′(z)

ã
+

Å
− a

z2
− b

(z − 1)2

ã
u(z) +

Å
a

z
+

b

z − 1

ã
u′(z) + u′′(z)

ã
= za(z − 1)b

Å
u′′(z) +

Å
2a

z
+

2b

z − 1

ã
u′(z)

+

ÇÅ
a

z
+

b

z − 1

ã2
− a

z2
− b

(z − 1)2

å
u(z)

å
so

d2u

dz2
+

Å
A0 + 2a

z
+

A1 + 2b

z − 1

ã
du

dz

+

Å
B0

z2
+

B1

(z − 1)2
+

B2

z(z − 1)
+

a2 − a

z2
+

b2 − b

(z − 1)2
+

2ab

z(z − 1)
+

Å
A0

z
+

A1

z − 1

ãÅ
a

z
+

b

z − 1

ãã
u

=0

which can be simplified into

d2u

dz2
+

Å
A0 + 2a

z
+

A1 + 2b

z − 1

ã
du

dz

+

Å
B0 +A0a+ a2 − a

z2
+

B1 +A1b+ b2 − b

(z − 1)2
+

B2 +A0b+A1a+ 2ab

z(z − 1)

ã
u

=0

This gives the relations

1− α0 − β0 = 1− σ0 − τ0 + 2a

1− α1 − β1 = 1− σ1 − τ1 + 2b

α0β0 = σ0τ0 + (1− σ0 − τ0)a+ a2 − a

= σ0τ0 − (σ0 + τ0)a+ a2

= (σ − a)(τ0 − a)

where α0 = σ0 − a or σ0 = α0 + a, τ0 = β0 + a, σ1 = α1 + b, τ1 = β1 + b. We can
now write

α∞β∞−α0β0−α1β1 = σ∞τ∞−σ0τ0−σ1τ1+(1−σ0−τ0)b+(1−σ1−τ1)a+2ab
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so

α∞β∞ = σ∞τ∞ + (σ0 − a)(τ0 − a) + (σ1 − b)(τ1 − b)− σ0τ0 − σ1τ1 + (1− σ0 − τ0)b+ (1− σ1 − τ1)a+ 2ab

= σ∞τ∞ − a(σ0 + τ0) + a2 − b(σ1 + τ1) + b2 + (1− σ0 − τ0)b+ (1− σ1 − τ1)a+ 2ab

= σ∞τ∞ + (1− σ0 − τ0 − σ1 − τ1)a+ (σ∞ + τ∞)b+ (a+ b)2

= σ∞τ∞ + (σ∞ + τ∞)a+ (σ∞ + τ∞)b+ (a+ b)2

= (σ∞ + a+ b)(τ∞ + a+ b

with σ∞ = α∞ − a− b and τ∞ = β∞ − a− b.

We can now write

P

Ñ
0 1 ∞

σ0 = α0 + a σ1 = α1 + b σ∞ = α∞ − a− b
τ0 = β0 + a τ1 = β1 + b τ∞ = β∞ − a− b

; z

é
= za(z−1)bP

Ñ
0 1 ∞
α0 α1 α∞
β0 β1 β∞

; z

é
so

P

Ñ
0 1 ∞
σ0 σ1 σ∞
τ0 τ1 τ∞

; z

é
= zσ0(z − 1)σ1P

Ñ
0 1 ∞
0 0 σ∞ + σ0 + σ1

τ0 − σ0 τ1σ1 τ∞ + τ0 + τ1

; z

é
= zσ0(z − 1)σ1P

Ñ
0 1 ∞
0 0 α

1− γ γ − α− β β
; z

é
.

The Gauss hypergeometric equation E(α, β, γ) is the Riemann equation with
the Riemann scheme Ñ

0 1 ∞
0 0 α

1− γ γ − α− β β

é
We have

d2w

dz2
+

Å
γ

z
+

α+ β + 1− γ

z − 1

ã
dw

dz
+

αβ

z(z − 1)
w = 0.

For E(α, β, γ), we have

z(1− z)w′′(z) + (γ − (α+ β + 1)z)w′ − αβw = 0.

Now, we discuss the regular singular points at z = 0, z = 1, and z = ∞.

At z = 0,

w(z) = zr
∞∑
h=0

hnz
n =

∞∑
n=0

hnz
n+r

where h0 = 1. Using the index shift n⇝ n+ 1, we have

∞∑
n=0

ï
(n+ r)(n+ r − 1)hnz

n+r−1 − (n+ r)(n+ r − 1)hnz
n+r

γ(n+ r)hnz
n+r−1 − (α+ β + 1)(n+ r)hnz

n+r − αβhnz
n+r

ò
= 0
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is equivalent to showing that

[((n+ r)(n+ r + 1) + σ(n+ r + 1))hn+1 − ((n+ r)(n+ r + α+ β) + αβ)hn] z
n+1 = 0

or
(n+ r + 1)(n+ r + γ)hn+1 − (n+ r + α)(n+ r + γ)hn = 0.

The indicial equation at n = −1 is r(r − 1 + γ)h0 = 0 with r1 = 0, r2 = 1− γ.
We assume the non-resonant case, i.e. γ /∈ Z. Then

hn+1(r) =
(n+ r + α)(n+ r + β)

(n+ r + 1)(n+ r + γ)
hn

=

...

=
(n+ r + α)(n+ r + β)...(r − α)(r + β)

(n+ r + 1)(n+ r + γ)...(r + 1)(r + γ)
h0

=
(r + α)(r + α+ 1)...(r + α+ r)(r + β)n+ 1

(r + 1)n+1(r + γ)n+1

which gives

hn(r) =
(r + α)n(r + β)n
(r + 1)n(r + γ)n

.

At r = 0:

h0 =
(α)n(β)n
(1)n(γ)n

where (1)n = n! and

w1(z) =

∞∑
n=0

(α)n(β)n
(1)n(γ)n

zn

which is analytic if |z| < 1 and analytic when |z| ≥ 1 if Re(γ − α− β) > 0.

Definition 11.2. The Gauss Hypergeometric function is

2F1(α, β; γ; z) :=

∞∑
n=0

(α)n(β)n
(1)n(γ)n

zn

We have r2 = 1− γ,

hn(1− γ) =
(1− γ + α)n(1− γ + β)n

(2− γ)n(1)n

so

w2(z) = z1−γ
∞∑

n=0

(1− γ + α)n(1− γ + β)n
(2− γ)n(1)n

zn = z1−γ
2 F1(α+1−γ, β+1−γ; 2−γ; z.
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Our expression for P is

P

Ñ
0 1 ∞
0 0 α

1− γ γ − α− β β

é
= c1 2F1(α, β; γ; z)+cz z

1−γ
2F1(α+1−γ, β+1−γ; 2−γ; z)

Near z = 1:

z(1− z)w′′ + (γ − (α+ β + 1)z)w′ − αβw = 0.

Put
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