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1 Introduction

A rough plan: the course is split into two halves

1. Certain infinite-dimensional Lie algebras (affine Lie algebras): basic defi-
nitions and structure theory, representation theory, applications to specific
functions (Macdonald identities).

2. The q-deformations, certain associative algebras called affine quantum
groups introduced since 1980s: basic definitions and strucutre theory, rep-
resentation theory, and applications to quantum integrable systems (con-
struction of solutions to parameter dependent braid relation, aka Yang-
Baxter equation).

We will focus on sl2 case. In general, these ”affine” algebraic structures are re-
lated to special functions, canonical bases/crystal bases, cluster algebras, vertex
operator algebras, string theory, and integrable systems.

The reference material is as follows: [@kac] for part 1 and [@chari] for part 2.

Prerequisites for the course: basic notions of algebra and representation theory;
basic facts about representation theory of simple finite dimensional Lie algebras
(sln, son) over C.

Professor Vlaar hopes that students will gain the following from attending these
lectures:

• Basic working knowledge on these algebraic structures

• Platform for you own research/deeper study

Students should ask questions and do homework if they want to get the most
out of this course.

2 Lie Algebra Basics

Let k be a field.

Definition 2.1. A k-algebra is a k-linear space A with bilinear product: A×
A→ A

Definition 2.2. A Lie algebra (over k) is a k-algebra with a Lie bracket [·, ·]
such that

1. Alternating property: [x, x] = 0

2. Jacobi identity [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0∀x, y, z ∈ g

For x ∈ g, define ad(x) : g → g, y 7→ [x, y], the left adjoint map. The Jacobi
identity ⇐⇒ ∀x ∈ g, ad(x) is a derivation on g if

ad(x)([y, z]) = [ad(x)(y), z] + [y, ad(x)(z)].
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Remark 2.3. A k-algebra g, [·, ·] such that ∀x ∈ g ad(x) is a derivation is called
a Leibniz algebra.

Definition 2.4. A Lie algebra homomorphism if a k-linear map φ : g → h
(g, h are Lie algebras over k) such that φ([x, y]) = [φ(x), φ(y)]∀x, y ∈ g. If φ is
invertible, called isomorphism. If h = g, φ is called *endomorphism of g. If
h = g and φ invertible, φ is called automorphism of g

If h, h′ are two subsets of g, [h, h′] = spank{[x, y]|x ∈ h, y ∈ h′} ⊆ g.

Definition 2.5. A Lie subalgebra h is a k-linear subspace of g such that
[h, h] ⊆ h.

Definition 2.6. An ideal i is a k-linear subspace of g such that [g, i] ⊆ i
(equivalently [i, g] ⊆ i)

Exercise 2.7. Prove the following are ideals:

1. g′ := [g, g] derived subalgebra.

2. Z(g) := {z ∈ g|[x, y] = 0∀y ∈ g} center of g.

3. homφ : g → h, ker(φ) := {x ∈ g|φ(x) = 0} ⊆ g.

Let (g, [·, ·]) be a Lie algebra over k. g is called abelian if [g, g] = 0 (maximal
centre and maximal derived subalgebra). g is called simple if only ideals are 0
and g, and g is not abelian (minimal center and maximal derived subalgebra).

Simple Lie algebras are not assumed to be finite dimensional.

Definition 2.8. A spanning set of g is the same as a spanning set of un-
derlying vector spaces (linear independence spanning set is called a basis). A
generating set of g is a subset S ⊆ g such that the smallest subalgebra of g
contains S is g itself.

Example 2.9. sl2(C) =

ßÅ
a b
c −a

ã
| a, b, c ∈ C

™
have spanning set (also a

basis)

e =

Å
0 1
0 0

ã
, f =

Å
0 0
1 0

ã
, h =

Å
1 0
0 −1

ã
and a generating set {e, f} (since h = [e, f ])

Definition 2.10. The dimension of g is simply the dimension of the under-
lying vector space.

Remark 2.11. If dim g = ∞, arbitrary elements of g are finite k-linear com-
binations of any given basis.
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3 Familiar Examples of Lie Algebras

Example 3.1. Let (A, ·) be any associative k-algebra

(x · y) · z = x · (y · z)∀x, y, z ∈ A

The commutator [x, y] := xy − yx defines a Lie bracket on A, (A, [·, ·]) is a
Lie algebra. (Associativity =⇒ Jacobi identity)

Example 3.2. Let V be any k-linear space. Then Endk(V ) = {k−linear maps :
V → V }. The Lie algebra is often written gl(V ) or gl(V, k).

Example 3.3. Let (Aj) be any k-algebra.

der(A) = {φ ∈ gl(A)|φ(x · y) = φ(x) · y + x · φ(y)}

Suppose φ,ψ ∈ der(A). For x, y ∈ A,

(φ ◦ ψ)(xy) = φ(ψ(x) · y + x · ψ(y))
= φ(ψ(x)) · y + ψ(x) · φ(y) + φ(x) · ψ(y) + x · φ(ψ(y))

Hence

(ψ ◦ φ)(xy) = ψ(φ(x)) · y + ψ(x) · φ(y) + φ(x) · ψ(y) + x · ψ(φ(y))

Note that

[φ,ψ](xy) = φ(ψ(x)) · y + x · φ(ψ(y))− ψ(φ(x)) · y − x · psi(φ(y))
= [φ,ψ](x) · y + x · [φ,ψ](y)

which implies that der(A) is a Lie algebra.

Example 3.4. Let U ⊂ Rn be open. C∞(U) := {smooth functions U → R}. A
(smooth) vector field on U is C∞(U) of the form

X =

n∑
i=1

ai(x)
∂

∂xi

with ai ∈ C∞(U).

Remark 3.5. View ∂
∂xi

as a ”direction vector” in tangent space at x = (x1, x2, ..., xn).

Exercise 3.6. Let X =
∑n

i=1 ai(x)
∂

∂xi
, Y =

∑n
i=1 bi(x)

∂
∂xi

with ai, bi ∈ C∞(U).

Then show [X,Y ] =
∑n

i=1 ci(x)
∂

∂xi
with ci(x) =

∑n
j=1(aj(x)

∂
∂xj

bi(x)−bj(x) ∂
∂xi

ai(x)).

Conclude that V F (U) = {vector fields on U} is a Lie algebra over R.

Remark 3.7. May replace U with any small n-dimensional manifold M . Use
”local” coordinates x1, ..., xn on each
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Example 3.8. In particular, let G be a Lie group (group and n-dimensional real
manifold such that product and inverse are smooth maps). G acts on C∞(G)
by ”lect translation” ∀φ ∈ C∞(G),∀g ∈ G, define φg ∈ C∞(G) by φg(h) :=
φ(gh)∀h ∈ G. Call X ∈ V F (G) left-invariant if ∀φ ∈ C∞(G), Xφ ∈ C∞(G)
satisfies

(Xφ)g = X(φg)∀g ∈ G

The left invariant vector fields on G form a Lie algebra over R Lie(G) ”the Lie
algebra of G”.

Exercise 3.9. Use the notation of the previous exercise to show Lie(G) is really
a Lie algebra.

Remark 3.10. Can view vector fields X ∈ V F (G) as a smoothly varying family
of tangent vectors (Xg)g∈G for g ∈ G. Then the map f : Lie(G) → Te(G), X 7→
Xe is a R-linear isomorphism, with e = id of G.

Example 3.11. gln(k) = gln(k
n) = {n × n matrices over k} is a Lie algebra.

If k = R, gln(k) = Lie(GLn(k)) where

GLn(k) = {n× n invertible matrices over k}

This is not simple: Idn×n ∈ Z(gln(k)). (if n > 1, not abelian). One special case
of this is sln(k) = {X ∈ gln(k)|Tr(X) = 0}. When k = R, this is = Lie(SLn(k)),
where SLn(k) = {n× n matrices over k, det 1}.

Exercise 3.12. Prove sl2(k) is simple if chark ̸= 2.

4 Some Representation Theory Basics

Definition 4.1. A representation of a Lie algebra g (over k) is a Lie algebra
homomorphism π : g → gl(V ), V some k-linear space. Also call (π, V ) a repre-
sentation of g and call V a g-module. The dimension of (π, V ) = dim(V ).

Example 4.2.

• π : g → gl(V ), with V = {0}, the zero representation.

• π : g → gl(V ) is called trivial if π(x) = 0 ∈ gl(V )∀x ∈ g.

• adLg → gl(g), x 7→ ad(x) = [x, ·] is called the adjoint representation.

• g = sl2(k) = k⟨e, f, h|[h, e] = 2e, [h, f ] = −2f, [e, f ] = −h⟩. Take n ∈ Z≥0.
Choose basis v0, v1, ..., vn of kn+1. πn : g → gl

(
kn+1

)
defined by e ·vr+1 =

(r + 1)(n − r)vr, f · vr = vr+1, e · v0 = f · vn = 0, v · vr = (n − 2r)vr for
r ∈ {0, ..., n− 1}.

Exercise 4.3. Verify that the fourth bullet point is indeed a representation of
sl2(k).
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Definition 4.4. (ρ,W ) is a subrepresentation of a given g-rep (π, V ) if W ⊆
V is a subspace and

ρ(x) = π(x)|W∀x ∈ g, preserves W.

Remark 4.5. We also call W a g-submodule of V .

Example 4.6. • The zero representation is a subrepresentation of any rep-
resentation.

• The map (π, V ) itself is a subrepresentation of (π, V ).

Definition 4.7. If (π, V ) is not the zero representation and it has no subrepre-
sentations except the zero representation and itself, call (π, V ) irreducible and
call V simple.

Example 4.8. • If V is a g-module, dim(V ) = 1, then V is simple.

• (ad, g) is irreducible if and only if g is simple or dim(g) = 1.

Definition 4.9. Let V be a g-module. Call v ∈ V cyclic if every g-submodule
containing v ∈ V equals V . Call v ∈ V cocyclic if v is contained in every
nonzero submodule of V .

Lemma 4.10. Let V be a g-module. If ∃v ∈ V cyclic and cocylic, then V is
simple.

Remark 4.11. If V is simple, all nonzero elements are cyclic and cocyclic.

Proof. Let v ∈ V be cyclic and cocylic. Let W be any nonzero submodule
W ⊂ V . Then v ∈W by cocyclicity. By cyclicity, W = V .

Exercise 4.12. Verify πn is irreducible representation of sl2(k) if char(k) = 0.

Lemma 4.13. If dim(g) = ∞ and g is simple, and (π, V ) is a g-representation
with dim(V ) <∞ then (π, V ) is trivial.

Proof. Use Rank-Nullity:

dim(Ker(π)) + dim(im(π)) = dim(g)

Since dim(im(π)) <∞ and dim(g) = ∞, then ker(π) is ∞-dimensional ideal of
g. Hence ker(π) = g.

Lemma 4.14. If g is any Lie algebra, and V is a nonzero g-module with
dim(V ) <∞, then V contains an irreducible submodule.

Proof. By induction on dim(V ).If dim(V ) = 1, then V is simple. Let dim(V ) =
n ∈ Z>1, and assume all g-modules V ′ with dim(V ′) has simple submodules.
If V is simple, we are done. Otherwise, choose any submodule V ′ with 0 <
dim(V ′) < n. V ′ has a simple submodule U . Clearly, U is a submodule of
V .
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Exercise 4.15. Find a g-module V without any simple submodules.

Hint: dim(g) = 1. Canonical solution: V = k[x], action of some nonzero
element of g is multiplication by x.

5 Infinite Dimensional Lie Algebras

We’ll look at a simple example and some general/historical comments.

Now, let’s discuss the Witt algebra

• An important example in its own right

• Not an example of an affine Lie algebra but plays an important role in
representation theory

• Develop some intuition for ∞-dimensional Lie algebras

This is a real/complex Lie algebra that arises naturally in three ways:

1. Derivations of algebra k[x, x−1]

2. Vector fields on circle

3. ”Tangent space of identity” of a group of diffeomorphisms of a circle.

5.1 Derivations of Algebra

Describe der(k[z, z−1]) if char(k) = 0. Let D ∈ der(k[z, z−1]). We have

D(1) = D(1 · 1) = D(1) · 1 + 1 ·D(1) = D(1) +D(1) =⇒ D(1) = 0

and
D(zn) = D(z · zn−1) = D(z)zn−1 + zD(zn−1)

for n ∈ Z>0. Repeatedly add to get D(zn) = nzn−1D(z). Then,

0 = D(1) = D(z · z−1) = D(z)z−1 + zD(z−1) =⇒ D(z−1) = −z−2D(z)

which gives for n ∈ Z>0,

D
(
z−n

)
= ... = −z−n−1D(z) + z−1D

(
z1−n

)
so

D (zn) = nzn−1f(z) (⋆)

for all n ∈ Z, where f(z) = D(z)

Exercise 5.1. Conversely, if D is linear and satisfies (⋆) for some f(z) ∈
k[z, z−1], show it’s a derivation.
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{zn}n∈Z is a basis for k[z, z−1] =⇒

der(k[z, z−1]) = {f(z) d
dz

|f ∈ k[z, z−1]} = k[z, z−1]
d

dz

which gives dim(der(k[z, z−1])) = ∞.

Convenienet basis of k[z, z−1]: {−zn+1}n∈Z. Set Ln := −zn+1 d
dz for n ∈ Z.

Then this is a basis for der(k[z, z−1])!

What is the Lie algebra structure?

For m,n ∈ Z, p ∈ k[z, z−1], then

(Lm ◦ Ln)(p) = zm+1 d

dz

Å
zn+1 d

dz
p(z)

ã
= zm+1

(
(n+ 1)znp′ + zn+1p′′

)
= (n+ 1)zm+n+1p′ + zm+n+2p′′

which gives

[Lm,Ln](p) = (n = 1)zm+n+1p′ − (m+ 1)zm+n+1p′

= (n−m)zm+n+1 d

dz
p

= (m− n)Lm+ n

∀m,n ∈ X.

5.2 Vector Fields On A Circle

Take S1 = {eiθ|θ ∈ R/2πZ} ⊆ C the 1-dimensional real-manifold (smooth).
Then

VF(S1) = {f d

dθ
|f ∈ C∞(S1)}

is the finite R-linear (Fourier) combination of cos(nθ), sin(nθ).

Complexification. Let V be any R-linear space.

VC := V ⊗R C ∼= V ⊕ iV

where i2 = −1. Then

VF(S1)C = {f d

dt
|t is a finite C− linaer combination of einθ}

for n ∈ Z.

The convenient basis over C is iein d
dθ = −zn+1 d

dz = Ln. Same relations for Ln
(n ∈ Z).
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5.3 ”Tangent Space At Identity”

Let G = Diff+(S
1) = {orientation-preserving diffeomorphisms of S1}. γ ∈ G

acts on f ∈ C∞(S1,C) by

(γ · f)(z) = f
(
γ−1z

)
for z ∈ S1. Take γ ”close to identity”:

γ(z) = z(1 + ϵ(z))

where ϵ(z) ∈ C∞(S1,C) is small. Then

ϵ(z) =
∑
n∈Z

ϵnz
n

where ϵn = ϵλn, ϵ small, and only finitely many λn nonzero. This allows us to
write

γ−1(z) = z − ϵ
∑
n

λnz
n+1 +O(ϵ2).

Exercise 5.2. By using Fourier decomposition of f to show (γ·f)(z) =
(
1 + ϵ

∑
n∈Z λnLn

)
f(z)+

O(ϵ2) where Ln = −zn+1 d
dz .

This implies

lim
ϵ→0

(γϵf)(z)− f(z)

ϵ
=

(∑
n∈Z

λnLn

)
f(z)

”element in tangent space of id” = ”general element of same Lie algebra”.

6 Structure Theory

Define Witt = C⟨{Lm}m∈Z|[Lm,Ln] = (m− n)Lm+ n⟩ for m,n ∈ Z. The re-
lations are quadratic to generators, so {Lm}m∈Z is a spanning set. By studying
π : Witt → der(k[z, z−1]) observe this is a basis.

Lemma 6.1. Let i ∈ Witt be an ideal, nonzero. Then ∃n ∈ Z : Ln ∈ i.

Proof. Let 0 ̸= x ∈
∑

m∈M cmLm,M ∈ Z finite nonempty, cm ̸= 0∀m ∈M .

Note: [Lm,Lm′] is nonzero if m ̸= n′.

If |M | = 1, we are done. Otherwise, pick m1 ∈ M . Then [x1, Lm1] =∑
m∈M\{m1} cm(m −m1)Lm+m1 where cm(m −m1) is nonzero. Repeatedly

do this will get a set of the element.

Theorem 6.2. Witt is simple.

Remark 6.3. No nontrivial finite dimensional representations, but ∃ interesting
∞-dimensional representations.
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Proof. It suffices to show Lm ∈ i∀m ∈ Z. By previous lemma, ∃n ∈ Z, Ln ∈ i.
First show L0 ∈ i. If n = 0, done. Otherwise L0 = 1

2n [Ln,L−n] ∈ i. Now
Lm ∈ i (any m). If m = 0, done. Lm = 1

m [Lm,L0] ∈ i for m ̸= 0.

Two fun facts about Witt.

Exercise 6.4. Show Witt is finitely generated (∃ set S ⊂ Witt such that ⟨S⟩ =
Witt, |S| <∞). Find S with |S| minimal.

Exercise 6.5. Show Witt is isomorphic to a proper Lie subalgebra.

Remark 6.6. If k = Fp with p prime, Witt (1930s) studied der(k[z]/(zp)) =⊕p−2
m=−1 kLm where Lm = −zm+1 d

dz .

The Witt algebra appears in the rep theory of loop algebras, especially in cen-
tral extensions (Virasoro, affine Lie algebras, etc.). We’ll give an overview of
important families of ∞-dimensional Lie algebras.

1. ∞-dimensional Lie algebras of vector fields on finite dimensional spaces
(including Witt).

This was originally introduced by Cartan in 1907, but mostly forgotten for a cou-
ple decades. Then in 1960, mathematicians such as Guillemin, Quillen, Singer,
Sternberg, Weisfeiler revived this area of math through algebraic approaches,
with the key concept being filtered/graded Lie algebras.

1. Lie algebras of smooth maps form a manifold to a finite dimensional Lie
algbebra (loop algebras).

2. Lie algebra of operators on Banach spaces (motivated by quantum field
theory)

3. Kac-Moody Algebras, such as (extended) affine Lie algebras.

This was introduced by Kac and Moody independently in ’68 - we’ll follow Kac’s
approach which was done to generalize 1960s work on (1) towards arbitrary Z-
graded Lie algebras g =

⊕
j∈Z gj with dim(gj) < ∞ and [gj , gk] ⊆ gj+k. Kac

realized it would be really nice if dim(gj) < (polynomial in j).

The topic for the first half of the course are these affine Lie algebras ĝ. We’ll
discuss the relationship between Lg ↞ ĝ ↪→ g̃, the loop algebra, affine Lie
algebra, and the Kac-Moody algebra, where the first arrow is a central extension
and the second is a extension by derivation.

7 Loop Algebras

Let g be a Lie algebra over k. Let R be a commutative, associative k-algebra.
Then g⊗k R is naturally a Lie algebra with

[x⊗ r, y ⊗ s]g⊗R := [x, y]g ⊗ rs
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where x, y ∈ g, r, s ∈ R.

Exercise 7.1. Show indeed this defines a Lie algebra structure on g⊗R.

Remark 7.2. 1. If V is a g-module, then V ⊗k R is a module over g⊗k R.

2. If R is unital (commutative ring containing k), then we have the Lie al-
gebra embedding g ↪→ g⊗R, x 7→ x⊗ 1.

Definition 7.3. The loop algebra of g is the Lie algebra

Lg := g⊗k k
[
z, z−1

]
Remark 7.4. If k = C, we can view elements of Lg as Lie-algebra valued small
functions on S1. In fact,

∑
r∈Z

xr ⊗ zr ⇐⇒ map

(
θ →

∑
r∈Z

e2πirθxr

)

with xr ⊗ zr ∈ Lg and θ ∈ S1.

Notation: x(m) := x⊗ zm for x ∈ g,m ∈ Z. Then the defining the relations for
Lg:

[
x(m), y(n)

]
= [x, y](m+n) where x, y ∈ g,m, n ∈ Z.

Example 7.5. For sl2(k),

g = k⟨e, f, h|[h, e] = 2e, [h, f ] = −2f, [e, f ] = h⟩

so the relations areî
h(m), e(n)

ó
= 2em+n,

î
h(m), f (n)

ó
= −2fm+n,

î
e(m), f (m)

ó
= hm+n.

and î
e(m), e(n)

ó
=
î
f (m), f (n)

ó
=
î
h(m), h(n)

ó
= 0

for m,n ∈ Z.

Exercise 7.6. If char ̸= 2, show Lg (g = sl2) is generated by {e(0), f (0), e(−1), f(1)}.

Proposition 7.7. dim(Lg) = ∞.

Proposition 7.8. Lg is not simple.

Proof. Let p(z) ∈ k[z] nonzero monic polynomial with z ∤ p(z) and consider
the ideal (p(z)) ⊂ k[z, z−1]. Then g ⊗k (p(z)) is an ideal of Lg of codimension
(deg(p))× (dim(g)).

Remark 7.9. If g is simple, dim(g) < ∞, all nonzero ideals of Lg are of
this form. See [Kac, Lemma 8.6] =⇒ all proper quotients of Lg are finite-
dimensional. The existence of these ideals in Lg of finite codimension allows
for existence of nontrivial finite dimensional reps.

12



Definition 7.10. Fix a ∈ k×. Then the evaluation map is defined as

eva : Lg → g

x⊗ p(z) 7→ p(a)x

for x ∈ g, p(z) ∈ k
[
z, z−1

]
.

Note: ker(eva) = g ⊗ (z − a). Let π : g → gl(V ) by a g-rep.

Definition 7.11. The evaluation rep is

πa = π ◦ eva : Lg → gl(V )

More generally, for (a1, ..., aℓ) ∈ (k×)
ℓ
, define

ev(a1,...,aℓ) : Lg → g⊕l(= g⊕ g...⊕ g)

x⊗ p(z) 7→ (p (a1)x, p (a2)x, ..., p (aℓ)x)

Remark 7.12. This is surjective if and only if dim(g) = 1 or ℓ = 1.

Proposition 7.13. If (π1, V1), ..., (πell, Vℓ) are g-reps, we can construct a new
rep (π1 ⊗ ...⊗ πℓ, V1 ⊗ ...⊗ Vℓ), where

π1 ⊗ ...⊗ πell : g
⊕ℓ → gl(V1 ⊗ ...⊗ Vℓ)

(x1, ..., xℓ) 7→
ℓ∑

i=1

IdV1 ⊗ ...⊗ IdVi−1 ⊗ πi(xi)⊗ IdVi+1 ⊗ ...⊗ IdVℓ

Now, compose with ev(a1,...,aℓ), we get the evaluation rep Lg → gl(V1 ⊗ ...⊗ Vℓ)

(π1,a1 ⊗ ...⊗ πℓ,aℓ
, V1 ⊗ ...⊗ Vℓ) := (π1 ⊗ ...⊗ πℓ) ◦ eva1,...,aℓ

.

Exercise 7.14. Prove this is a rep of Lg.

Example 7.15. Take g = sl2(k), πi = π(1) : g → gl(k2) and

e =

Å
1 0
0 1

ã
, f =

Å
0 1
0 0

ã
, h =

Å
1 0
0 −1

ã
.

For ℓ = 2,

π(1) ⊗ π(1) : (x1, x2) 7→ π(1)(x1)⊗ IdV + IdV ⊗ π(2)(x2)

for a1, a2 ∈ k×, eg.Ä
π(1)
a1

⊗ π(2)
a2

ä
= am1

Å
0 1
0 0

ã
⊗ IdV + am2 IdV ⊗

Å
0 1
0 0

ã
for m ∈ Z, and similarly for f and h.
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Exercise 7.16. Take char(k) = 0, g = sl2(k), fix a1, a2 ∈ k×. Show that

π
(1)
a1 ⊗ π

(1)
a2 os an irreducible Lg-rep if and only if a1 ̸= a2. Hint: consider the

vector

Å
1
0

ã
⊗
Å
1
0

ã
. If a1 = a2, show this is a 3-dimensional submodule and

1-dimensional submodule.

Now, let’s discuss the connection with Witt as a derivation of Lg. We have

Lm
Ä
x(r)
ä
= −xm+r (⋆)

for x ∈ g, r ∈ Z. This implies the ”semidirect sum” of Lie algebras: Witt⋉ Lg.

8 Variations of Loop Algebras

Now, let’s discuss variations of loop algebras. See [@senesi] for more.

Take k = C, g finite dimensional and simple. Choose outer automorphism σ of
g of order r. Lift σ to a map on Lg:

σ(x⊗ zm) = Z−mσ(x)⊗ zm

where x ⊗ zm ∈ Lg and Z is a dual primitive r-th root of unity. (Lg)σ is
a realization of a twisted loop algebra. See [@senesi], [@kac, chapter 8], or
[@carter, chapter 18] for more information.

Here are some variations

• Multi-loop algebra: g⊗ k[z±1
1 , z±2

2 , ..., z±1
n ]

• Current Lie algebra g ⊗ k[z], see [Makedonskyi’s BIMSA Spring 2023
course](https://bimsa.net/activity/repliealg/)

• Loop group. Roughly, Lg = Lie(LG) for some ∞-dimensional. We can
think of this as smooth maps S1 → G, with g = Lie(G) and G a simple
Lie group.

9 More General Representation Theory

Let (π1, V1), (π2, V2) be g-reps, (π1 ⊕ π2, V1 ⊕ V2) the direct sum of k-linear
spaces. Then (π1 ⊕ π2)(x) = (π1(x), 0) + (0, π2(x))∀x ∈ g and dim(V1 ⊕ V2) =
dim(V1) + dim(V2).

Definition 9.1. A g-rep (π, U) is indecomposable if it is not a direct sum of
nonzero submodules (dim(V ) > 0).

Irreducible (no nonzero submodules) =⇒ indecomposable.

Definition 9.2. If g is a Lie algebra such that all indecomposable finite dimen-
sional g-reps are irreducible, then all its finite dimensional reps are completely
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reducible (or semisimple), ie. can be written as a direct sum of irreducible
g-reps

Exercise 9.3. Prove it (hint: induction)

Example 9.4. • Abelian Lie algebra. Irreducibles are 1-dim, all finite-
dimensional reps are direct sum of irreducibles.

• Finite dimensional semisimple Lie algebras (review for sl2 for later)

Counterexample: the subalgebra f = ⟨h, e⟩ ⊂ sl2(k) has 2-dim sl2-rep that
restricts to a finite f -rep which is reducible bt indecomposable:Å

0
1

ã
e→
Å
1
0

ã
e→
Å
0
0

ã
.

h ⟳
Å
1
0

ã
is a submodule but h ⟳

Å
0
1

ã
is not.

Lemma 9.5. Let φ : h → g be a surjective Lie algebra homomorphism. Let
π : g → gl(V ) be a rep.

1. π ◦ φ is irreducible if and only if π is irreducible.

2. π ◦ φ is indecomposable if and only if π is indecomposable.

Proof. Suppose ∃y ∈ h: π(φ(y))(W ) ⊊ W . Let W ⊂ V be a nonzero h-
submodule. ∀y ∈ h, π(φ(y))(W ) ⊆ W . Suppose ∃x ∈ g with π(x)(W ) ⊆ W for
some y ∈ g. This is a contradiction, and we are done.

Example 9.6. If (π, U) is an irreducible g-module and a ∈ k×, (πa, U) is an
irreducible Lg is an irreducible Lg-module.

Not all finite-dimensional Lg-reps are evaluation reps. ”Canonical counterex-
ample” is reducible and indecomposable: let g be a finite dimensional simple
Lie algebra over C, Lg = g ⊗ Z[z, z−1]. Let R = C[ϵ]/(ϵ2) = C1 ⊕ Cϵ. Then
− : C[ϵ] ↠ R is a surjective map. Note 1+ ϵ is invertible:

(
1 + ϵ

)
+
(
1− ϵ

)
= 1.

Surjective unital alg-homomorphism C[z, z−1] → R, z 7→ 1+ ϵ implies surjective
Lie algebra homomorphism φ : Lg ↠ gR := g⊗C R, x⊗ zm 7→ x⊗

(
1 + ϵ

)m
for

x ∈ g,m ∈ Z. Let V be any irreducible g-module (1 ≤ dim(V ) <∞) (ie. adjoint
rep). Then gR action on VR = V ⊗C R is given by: for x, y ∈ g, v1, v2 ∈ V ,

(x+ yϵ) · (v1 + v2ϵ) = (x · v1) + (x · v2 + y · v1)ϵ.

Clearly, V ϵ is a nonzero proper submodule of VR. We will show that VR is
indecomposable.

Proposition 9.7. Every nonzero submodule W ⊆ VR contains a nonzero ele-
ment of V ϵ.

15



Proof. Let v1+v2ϵ ∈W be arbitrary. WLOG v1 ̸= 0. Suppose ∀y ∈ g, y ·v1 = 0.
Then Cv1 is a 1-dim g-submodule of V (V irreducible, dim(V ) > 1). Hence
∃y ∈ g and y · v1 ̸= 0. Then yϵ ∈ gR sends v1 + v2ϵ to (y · v1)ϵ ∈ V ϵ\{0}.

Proposition 9.8. Every nonzero gR submodule W ⊂ VR contains V ϵ.

Proof. Let vϵ ∈ W for v ̸= 0. Consider g-submodule of V generated by v.
It is equal to V . Inclusion of Lie algebra g ↪→ gR, x 7→ x + 0ϵ. Hence V ϵ =
(g-submodule of V generated by v)ϵ ⊆ (gR-submodule of V generated by v)ϵ ⊆
VR. Suppose VR = U1 ⊕ U2, with U1, U2 nonzero gR-submodules. Both contain
V ϵ, so U1 ∩ U2 ̸= {0}.

Lemma 9.9. Lg has finite dimensional reducible indecomposable modules.

Definition 9.10. A g-intertwiner (or g-module homomorphism, or g-equivariant
map) between two g-reps (π, V ), (ρ,W ) is a k-linear map f : V → W such that
∀x ∈ g,∀v ∈ V ,

f(π(x)v) = ρ(x)(f(v)).

We will write f : (π, V ) → (ρ,W ).

Exercise 9.11. Prove that the k-linear combinations of intertwiners (π, V ) →
(ρ,W ) are again intertwiners. If (π, V ) = (ρ,W ), ten show that the composition
of intertwiners is an intertwiner.

Definition 9.12. (π, V ), (ρ,W ) are isomorphic if ∃ invertible intertwiner f :
(π, V ) → (ρ,W ).

Remark 9.13. It’s easy to see that the inverse is also an intertwiner.

Lemma 9.14 (Schur’s Lemma). Let f : (π, V ) → (ρ,W ) be an intertwiner
between irreducible g-representations. Then f = 0 or f is an isomorphism (in
particular dim(V ),dim(W ) ≥ 1).

Proof. The main claim is that kerf ⊆ V and im(f ⊆W ) are g-submodules.

By irreducibility and rank-nullity, either:

• kerf = {0} and imf =W =⇒ f is an isomorphism

• Kerf = V and imf = {0} =⇒ f = 0.

Now, we’ll add the condition that k = k is algebraically closed and dimV,dimW <
∞.

Remark 9.15. Dixmier’s lemma can weaken this to dimV,dimW < |k|.

Proposition 9.16. Suppose that in addition (π, V ) = (π,W ). Then f = λidV
for λ ∈ k.
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Proof. Because f : V → V is k-linear, ∃ eigenvalue λ ∈ k, eigenvector v ∈
V \{0}. Consider f ′ = f − λidV . The intertwiner satisfies f ′(v) = 0. kerf ′ ⊂ V
submodule is not zero, so f ′ = 0.

Proposition 9.17. Instead, suppose have two intertwiners f, g : (π, V ) →
(ρ,W ). Then f = λg for some λ ∈ k× or one of f, g is 0.

Proof. Assume both f, g are nonzero. By main statement, f, g are isomorphisms,
so g−1 ◦ f is a g-intertwiner from (π, V ) to itself. Use the previous proposition
to deduce g−1 ◦ f = λidV . λ = 0 is impossible.

Corollary 9.18. Assume k = k, dimV < ∞. Let c ∈ Z(g). Let (π, V ) be an
irreducible g-rep. Because [c, y] = 0∀y ∈ g, π(c) is an intertwiner: (π, V ) →
(π, V ), Hence π(c) = λIdV ∀λ ∈ k. In particular, if g is abelian, it follows that
dimV = 1.

10 Universal Enveloping Algebras

See [@carter chapter 9] for proofs.

Fix a field k (typically k = C). Given: Lie algebra g over k. We can constuct ∞-
dimensional unital associative algebra U(g) with the same representation theory
of g.

Define the k-linear space
g⊗ℓ = g⊗ ...⊗ g

with ℓ tensors for ℓ ∈ Z≥0.

Definition 10.1. The direct sum is

T (g) =
⊕
ℓ≥0

g⊗ℓ

where elements are finite linear combinations of tensor products of elements of
g of finite length.

Define the product T (g)× T (g) → T (g) by ⊗:

(x1 ⊗ ...⊗ xm) · (y1 ⊗ ...⊗ yn) = x1 ⊗ ...⊗ xm ⊗ y1 ⊗ ...⊗ yn

and extend bilinearly to get an associative unital algebra with unit 1 ∈ g⊗0 = k.
To get an associative algebra with the correct multiplication (compatible with
[·, ·] : g× g → g), let J(y) be the 2-sided ideal of T (g) generated by elements of
the form

x⊗ y − y ⊗ x− [x, y]∀x, y ∈ g.
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Definition 10.2. The universal enveloping algebra

U(g) := T (g)/J(g)

is a unital associative algebra (note 1 ∈ U(g)).

Example 10.3. g is abelian, dim g = n, and

g = k⟨{x1, ..., xn}|[Xi, Xj ] = 0⟩.

J(g) is generated by all elements of the form xi⊗xj −xj ⊗xi for 1 ≤ i < j ≤ n.
U(g) is commutative and generated (as an unital algebra) by images of x1, ..., xn.
This implies

U(g) ∼= k[X1, ..., Xn].

We have linear maps g → T (g) → U(g). Composition is denoted ι. U(g) is
generated by ι(g) ⊂ U(g). For better notation, the elements of g are x, y, ... and
the elements of U(g) are X,Y, ... with X = ι(x), Y = ι(y).

Theorem 10.4 (Universal Property of UEAs). Let A be any unital associative
k-algebra (Lie algebra with [x, y] = xy − yx). Let φ : g → A be a Lie algebra
homomorphism. Then ∃! Φ : U(g) → A (hom of unital algebras) such that
Φ ◦ ι = φ.

Proof. Here’s a sketch.

1. Extend φ : g → A to a homomorphism of unital algebras φ : T (g) →
A, x1 ⊗ ...⊗ xℓ 7→ φ(x1)φ(x2)...φ(xℓ) for x1, ..., xℓ ∈ g.

2. Check φ(x ⊗ y − y ⊗ x − [x, y]) = 0∀x, y ∈ g so J(g) ⊆ kerφ. Get unital
algebra homomorphism Φ : T (g)/J(g) → A such that

/* WACKY DIAG */

Check, by restricting φ to g that indeed Φ ◦ ι = φ.

1. To show uniqueness, take second homomorphism Φ′ : U(g) → A with same
properties. CAn show it coincides with Φ on ι(g) ⊂ U(g).

Exercise 10.5. Show that U(g) is the unique (up to isomorphism) algebra with
this universal property for g.

Apply universal property to A = End(V ) where V is any linear space. This gives
a Lie algebra rep π : g → gl(V ) that extends uniquely to a rep of associative
algebra Π : U(g) → End(g) and π = Π ◦ ι. This shows

{reps of g} 1:1⇐⇒ {reps of U(g)}
(π, V ) 7→ (Π, V )

The basis of g gives a natural basis of U(g).
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Theorem 10.6 (Poincaré-Birkhoff-Witt). Let {xi|i ∈ I} be a basis for g,
and choose a total order < on I. Let Xi := ι(xi) ∈ U(g). The elements
Xi1 , Xi2 , ..., Xiℓ where ℓ ∈ Z≥0 with i1 ≤ i2 ≤ ... ≤ iℓ form a basis for U(g).

Example 10.7. For sl2(C),

U(sl2(C)) = C⟨E,F,H|HE − EH = 2E,HF − FH = −2F,EF − FE = H⟩.

Choose basis (f, h, e) of sl2(C), ie. f < h < e gives

U(sl2(C)) =
⊕

r,s,t≥0

CF rHsEt.

Proof. Let’s start by proving that these monimials span U(g).

1. Set of products xj1 ⊗ ...⊗xjℓ for ℓ ∈ Z≥0, j1, ..., jℓ ∈ I span T (g). Quotient
out J(g), the images Xj1 ·Xj2 · ... ·Xjℓ span U(g).

2. Show every Xj1 · ... · Xjℓ is a linear combination of Xi1 · ... · Xin with
i1 ≤ ... ≤ in ∈ I. By induction on ℓ1, use XiXj = XjXi + ι([xi, xj ]).

Now let’s show linear independence. The idea is to construct a linear map
θ : T (g) → k[{zi}i∈I ] with

θ(xi1 ⊗ ...⊗ xin) = zi1 ...zin

if i1 ≤ ... ≤ in and θ is such that J(g) ⊂ kerθ. See [@carter lemma 9.5]. Use
linear independence of order monomials k[{zi}i∈I ] to deduce linear independence
of {Xi1 · ... ·Xin |i1 ≤ ... ≤ in} ⊂ U(g).

Corollary 10.8. ι : g → U(g) is injective (because {Xi}i∈I ⊂ U(g) is linearly
independent). Hence ι(g) ⊆ U(g) is isomorphic to g. We will view g ⊂ U(g).

Exercise 10.9. If v is a cyclic vector of a g-module V , then V = U(g) · v =
{X · v|X ∈ U(g)}.

Exercise 10.10. Take g1, g2 Lie algebras over k. g1 ⊕ g2 is a Lie algebra with
[(x1, x2), (y1, y2)] := ([x1, y1], [x2, y2]). Show U(g1 ⊕ g2) ∼= U(g1)⊗ U(g2).

11 sl2 Rep Theory Over C
To describe the finite dimensional irreducible sl2-reps, we will use the approach
of Verma modules.

11.1 Step 1: Highest Weight Modules

Claim: Let (π, V ) be a finite dimensional sl2-rep. Then ∃v ∈ V \{0},∃λ such
that E ·v = 0, H ·v = λv. This is the highest weight vector, denoted vλ with
weight λ. Such a module V is called a highest weight module.
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Theorem 11.1 (Primary Decomposition Theorem). If φ : V → V is a linear
map with dimV <∞ and distinct eigenvalues of φ are µ1, ..., µr for 1 ≤ r <∞,
then

V =

r⊕
i=1

V gen
µi

where V gen
µi

= {v ∈ V |∃m ∈ Z>0(φ− µiId)
m(v) = 0}.

Exercise 11.2. Use HE − EH = 2E to show that E · V gen
µ ⊆ V gen

µ+2.

Since {µ+2i}i∈Z≥0
are distinct elements (char 0) and dimV <∞, ∃λ ∈ C such

that E · V gen
λ = 0 and V gen

λ = {0}, so ∃v ∈ V gen
λ such that H · v = λv.

Remark 11.3. If V is spanned by weight vectors, it is a weight module (as-
suming axiom of choice).

Example 11.4. The reps πn : sl2 → gl(kn+1) because h · vr = (n − 2r)vr and
kn+1 =

⊕n
r=0 kvr.

Exercise 11.5. Show that the map ρ defined by

e 7→ x
∂

∂y
, f 7→ y

∂

∂x
, h 7→ x

∂

∂x
− y

∂

∂y

gives a representation of sl2 on V = {holomorphic functions C×C → C}. Show
that the submodule

Vn = spanC{(x, y) 7→ xkyl | k + l = n, k, l ∈ Z≥0}

is isomorphic to (πn, k
n+1).

Example 11.6. Let W be ∞-dimensional submodule of V of polynomial func-
tions. Spanned by xlym, which are weight vectors of weight l −m.

Example 11.7. Here’s a non-example. Consider the submodule

Wex+y = {(x, y) 7→ p(x, y)ex+y|p(x, y) polynomial}.

h acts as h · (p(x, y)ex+y) = ((h + x − y) · yp(x, y))ex+y. h preserves total
degree of monomial, so the eigenfunction of h-action ⇐⇒ (y − x)p(x, y) =
h · p(x, y) + µp(x, y) for µ ∈ C. This is not a weight module.

Exercise 11.8. Let V be a weight module. Show that any submodule and any
quotient module of V is a weight module.

Hint: Useful to define the support of v as follows: let v =
∑

µ∈C vµ with
vµ ∈ V|mu. Then Supp(v) := {µ ∈ C|vµ ̸= 0}, which is a finite set. Do
induction with respect to |Supp(v)| for v ∈W,W ⊆ V submodule.

Definition 11.9. Let V be an sl2-module. Suppose ∃v ∈ V \{0} such that
E · v = 0 and H · v = λv for some λ ∈ C. Then v is called the highest weight
vector with highest weight λ. And if V is generated by a highest weight vector
v (so V = U(sl2) · v), then V is called a highest weight module.
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Example 11.10. (πn, k
n+1) are highest weight modules, generated by a highest

weight vector v0 with weight n because e · v0 = 0, h · v0 = nv0 for n ∈ Z≥0. All
weights of this module has {n, n− 2, ..., 2− n,−n}.

Lemma 11.11. Let V be a highest weight module. Then V is a weight module.

Proof. Let vλ be a highest weight vector. Then

V = U(sl2) · vλ
=

∑
r,s,t≥0

cr,s,tF
rHsEt · vλ

=
∑
r≥0

c̃rF
r · vλ

for cr,s,t, c̃r ∈ C. F r · vλ is a weight vector of weight λ − 2r, a consequence of
[H,F ] = −2F .

Earlier, we used the generalized eigencomposition of H-action on V (dim(V ) <
∞) to see that V contained a highest weight vector vλ of weight λ. If V is
irreducible, then V = U(sl2) · vλ = U(⟨f⟩) · vλ.

11.2 Step 2: Verma Modules

Let
U = U(sl2) =

⊕
r,s,t∈Z≥0

CF rHsEt =
⊕

r,s,t∈Z≥0

CF r(H − λ)sEt.

Fix λ ∈ C. Let I(λ) ⊂ U be the left ideal generated by H − λ and E.

I(λ) = U · (H − λ) + U · E =
⊕

r,s,t∈Z≥0,s>0 or t>0

CF r(H − λ)sEt.

By definition it is a left U -module.

Definition 11.12. The Verma module is

M(λ) := U/I(λ).

Notice that this is another left U -module with

M(λ) =
⊕

r∈Z≥0

CF r = C[F ]

as vector spaces.

For the module structure, let − : U → M(λ) be the quotient map. Consider
1 ∈ M(λ) where 1 = 1 + I(λ). Then we have E · 1 = 0, H · 1 = λ1, E · 1 ≡ 0
(mod I(λ)), (H − λ) · 1 ≡ 0 (mod I(λ)).
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Proposition 11.13. This is a highest weight module

THe spanning elements of M(λ) are F r = F r · T . We can rewrite as follows:
let U≥0 = U(⟨e, h⟩) where ⟨e, h⟩ is the standard Borel subalgebra of sl2. The
1-dim reps C(λ) : E · 1 = 0, H · 1 = λ.

Then IndUU≥0C(λ) := U ⊗U≥0 C(λ) left-module. As C-linear space,

U ⊗U≥0 C(λ) ∼= C[F ]⊗ C ∼=M(λ).

The U -module structure coincides: both are highest weight moduels and the
highest weight vectors are identified as follows:

1U ⊗ 1C 7→ 1 = 1U + I(λ)

The highest weight vector in M(λ) is denoted 1λ.

11.3 Step 3: Universal Property of M(λ)

LetM(λ) be the Verma module. Take any highest weight module V with highest
weight vector vλ. Then ∃! sl2-intertwiner σ : M(λ) → V such that σ(1λ) = vλ.
Namely:

σ

Ñ∑
r≥0

crF
r · 1λ

é
=
∑
r≥0

crσ(F
r · 1λ)

=
∑
r≥0

crF
rσ(1λ)

an arbitrary element of V .

Suppose V is irreducible. Since Imσ ⊆ V submodule and contains vλ ̸= 0,
Imσ = V =⇒ σ surjective. Every irreducible finite dimensional sl2-module is
a quotient of M(λ) by a ∞-dim maximal proper submodule.

Let’s quickly discuss induced modules: for an algebra A, a subalgebra B, and a
left B-module M , then A⊗B M is a left A module (acts by left multiplication
of first factor).

11.4 Step 4: Description of Maximal Proper Submodule
of M(λ)

Proposition 11.14. 1. If λ ̸= Z≥0, M(λ) is irreducible.

2. If λ = n ∈ Z≥0, then M(λ) has a unique proper nonzero submodule,
isomorphic to M(−n− 2) and of codimension n+ 1.

22



Proof. TO prove, note M(λ) =
⊕

r≥0 Cm(r) where m(r) = F r · 1λ. For λ ∈ C,

F ·m(r) = m(r + 1)

H ·m(r) = (λ− 2r)m(r)

E ·m(r) = r(λ− r + 1)m(r − 1)

with m(−1) := 0. Let S ⊂ M(λ) be a proper submodule. By the previous
exercise, S is a weight module. S = spanC{m(n + 1),m(n + 2), ...} for some
n ∈ Z≥0. Then E ·m(n+ 1) = 0 ⇐⇒ λ = n.

To summarize: M(λ) irreducible ⇐⇒ λ /∈ Z≥0.

We have

H ·m(n = 1) = (n− 2(n+ 1))m(n+ 1) = (−n− 2)m(n+ 1).

The universal property of Verma modules =⇒ ∃σ : M(−n − 2) → S ⊆
M(n), 1−n−2 7→ m(n+1). Note that −n−2 ∈ Z≥0, soM(−n−2) is irreducible.
Hence σ is injective, so M(−n − 2) ∼= S and dimC (M(n)/M(−n− 2)) = n +
1.

Exercise 11.15. Prove the relations in the proof for U(sl2).

11.5 Step 5: Description of Quotient

Let n ∈ Z≥0 and V (n) := M(n)/M(−n− 2). Let v(r) = m(r) +M(−n− 2) ∈
V (n) for 0 ≤ r ≤ n. Since V (n) =

⊕n
r=0 Cv(r), we have

F · v(r) = v(r + 1)

H · v(r) = (n− 2r)v(r)

E · v(r) = r(n− r + 1)v(r − 1)

with v(n + 1) := 0, v(0) := 0. Clearly V (n) ≇ V (n′) if n ̸= n′ by comparing
dimensions.

Remark 11.16.
V (n) ∼= U/(H − n,E, Fn+1)

12 Arbitrary Finite Dimensional Semisimple Lie
Algebras over C

See [@carter, chapter 10]. Recall all finite-dimensional simple Lie algebras have
a Chevalley presentation

g = C⟨{ei, fi, hi}ri=1⟩

with relations described by Cartan matrix A = (aij)1≤i,j≤r:
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• aii = 2

• aij ∈ Z≤0 for i ̸= j

• aij = 0 =⇒ aji = 0.

The sl2 relations: each {ei, fi, hi} satisfy sl2 relations. The cross relations are
in terms of aij for i ̸= j.

Example 12.1. For sl3 with Cartan matrix A =

Å
2 −1
−1 2

ã
, we have

e1 =

Ñ
0 1 0
0 0 0
0 0 0

é
f1 = eT1

h1 =

Ñ
1 0 0
0 −1 0
0 0 0

é
and

e2 =

Ñ
0 0 0
0 0 1
0 0 0

é
f2 = eT2

h2 =

Ñ
0 0 0
0 1 0
0 0 −1

é
with the Serre relation ad(e1)

2(e2) = 0.

The decomposition sl2 = Cf⊕Ch⊕Ce is generalized to g = n−⊕h⊕n+ where h
is abelian, the triangular decomposition. We have n− = ⟨fi⟩, h = ⟨hi⟩, n+ =
⟨ei⟩.

Definition 12.2. A weight is an element of h∗ = {f : h → C|linear}. A
weight module is any module M where

M =
⊕
λ∈h∗

Mλ

where Mλ = {m ∈M |Hi ·m = λ(hi)m} and Hi is the image of hi in U(g).

Generally, let g be a semisimple finite dimensional Lie algebra. We can describe
the finite dimensional irreducible reps using the same approach as earlier.
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Let g = C⟨{ei, fi, hi}ri=1⟩ with relations described by Cartan matrix A =
(aij)1≤i,j≤r, where r is the rank of g. We have

[hi, hj ] = 0 [hi, ej ] = aijej [hi, fj ] = −aijfj .

Exercise 12.3. For g = sl3, recover the presentation (derive these relations)
using explicit matrices for generators and find the triangular decomposition.

Let V be any irreducible finite dimensional rep.

12.1 Step 1: Highest Weight Module

By considering generalized eigenspaces of joint action of h1, ..., hr, we deduce
∃vλ ∈ V \{0} with ei · vλ = 0, hi · vλ = λ(hi)vx,U(n−) · vλ = V for 1 ≤ i ≤ r, λ ∈
h∗. So V is a highest weight module (for g) and λ is called the highest weight,
vλ called the highest weight vector.

V is a weight module: V =
⊕

µ∈h∗ Vµ where Vµ = {v ∈ V |Hi · v = µ(hi)v, 1 ≤
i ≤ r}. Defined SuppV := {µ ∈ h∗|Vµ ̸= {0}}. Using [hi, fj ] = −aijfj , we get
Fj · Vµ ⊆ Vµ−αj

where αj ∈ h∗ defined by αj(hi) = aij . We can show that
SuppV ⊆ λ− spanZ≥0

{α1, α2, ..., αr}.

Exercise 12.4. Show that submodules and quotients of any weight module are
also weight modules.

Hint: Let W ⊆ V be a submodule. Take v ∈ W, v =
∑n

i=1 vµi
where vµi

∈ Vµi
.

We want to show each vµi
∈ W . Consider

∏n
i=1,j ̸=i(H − µj(h)) where 1 ≤ i ≤

r, h ∈ h.

12.2 Step 2: Verma Modules

We have
M(λ) := U(g)/I(λ) ∼= U(g)⊗U(b+) C(λ)

where I(λ) is the left ideal generated by {Hi − λ(hi), Ei}1≤i≤r and b+ =
⟨n+, h⟩ ⊆ g is the standard upper Borel supalgebra. C(λ) is the 1-dim b+-
module defined by Hi · 1 = λ(hi), Ei · 1 = 0 for 1 ≤ i ≤ r. Choose a highest
weight vector 1λ ∈M(λ).

12.3 Step 3: Universal Property of M(λ)

For any highest weight module V (of g) with weight λ ∈ h∗, highest weight
vector vλ, ∃!g-intertwiner σ :M(λ) → V such that σ(1λ) = vλ. So V irreducible
=⇒ σ surjective.

12.4 Step 4: Submodules of M(λ)

∀λ ∈ h∗, M(λ) has unique maximal proper submodule J(λ) [@carter chapter
10]. If M(λ) is irreducible, J(λ) = 0.
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Exercise 12.5. Show this if and only if M(λ) is reducible. Hint: First show
any submodule V ⊊M(λ) satisfies λ /∈ Supp(V ). Now define J(λ) = sum of all
proper submodules of M(λ).

12.5 Step 5: Finite Dimensional Quotients of M(λ)

By step 1 and 3, any irreducible finite dimensional g-module V must be a
quotient of M(λ) for some λ ∈ h∗ by a nonzero proper maximal submodule.
Step 4 says that if it exists, it must be J(λ). We also need J(λ) to be of finite
codimension.

Call λ ∈ h∗ dominant if λ(hi) ∈ R≥0 and integral if λ(hi) ∈ Z∀1 ≤ i ≤ r.
Let P+ = {λ ∈ h∗|dominant and integral}. Set V (λ) = M(λ)/J(λ) and vλ :=
1λ + J(λ) ∈ V (λ).

Theorem 12.6 ([@carter). , Theorem 10.20 and Proposition 10.15] ∀λ ∈ h∗

we have
dimV (λ) <∞ ⇐⇒ λ ∈ P+.

Furthermore, if dimV (λ) <∞ then F
λ(hi)+1
i · vλ = 0.

Proof. Sketch of proof: To show =⇒ , for each 1 ≤ i ≤ r can show span{Fm
i ·

vλ}m∈Z≥0
is a module for subalgebra ⟨ei, fi, hi⟩ and use the sl2-result.

To show ⇐=, note dimV (λ)µ ≤ dimM(λ)µ < ∞. The second inequality is
because root spaces of g (weight spaces for adjoint action) as finite-dimensional.

It removes to show that Supp(V (λ)) = {µ ∈ C×|V (λ)µ ̸= 0} is a finite set.

The standard approach:

1. Show Supp(V (λ)) ⊂ h∗ is preserved by action of Weyl group W < GL(h∗)
generated by simple reflections si (1 ≤ i ≤ r), where si(µ) := µ−µ(hi)αi.
To show Supp(V (λ)) is preserved, requires some study of V (λ) as a module
of C⟨ei, fi, h⟩ and using that support of a finite dimension sl2-module is
symmetric around 0.

2. Each weight in Supp(V (λ)) is in W -orbit of a dominant integral weight
(not necessarily λ).

3. The set (λ− spanZ≥0
{α1, ..., αr}) ∩ P+ is finite.

Exercise 12.7. Show this.

1. W is finite. It is because W permutes roots (weights of adjoint rep) and
simple roots α+i span h∗. Hence |W | ≤ number of permutations of roots <
∞.
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Remark 12.8. 1. If λ ̸= λ′ ∈ P+, then V (λ) ≇ V (λ′) (because an invertible
intertwiner φ : V (λ) → V (λ′) must send highest weight vector to highest
weight vector and hence the highest weights must be the same). This im-

plies bijection P+ 1:1→ {finite dimensional irreducibleg-modules}/isomorphisms.

2. If λ ∈ P+,

V (λ) ∼= U(g)/{Hi − λ(hi), Ei, F
λ(hi)+1
i }1≤i≤r.

3. W is a Coxeter group, ie. W = ⟨s1, ..., sr|s2i = 1, (sisj)
mij = 1⟩ if i < j

for mij ∈ Z≥2. More precisely, mij = π/ cos−1
(
1
2

√
aijaji

)
, which equals

2, 3, 4, 5 if aijaji = 0, 1, 2, 3. See [@carter chapter 5] for more on Coxeter
groups.

4. If g is simple and finite dimensional, ad : g → g is irreducible. It is isomor-
phic to V (θ), where θ is the highest root of g. Here, θ =

∑r
i=1miαi,mi ∈

Z≥0, and
∑r

i=1mi is maximal.

For example, for sl3, we have roots α1, α2, α1+2 = θ,−α1,−α2,−θ with
weights e1, e2, [e1, e2], f1, f2, [f1, f2].

5. Define ωi ∈ P+ by ωi(hj) = δij. The fundamental weights h =
⊕r

i=1 hj =⇒
{wi}ri=1 are the dual basis of h∗. V (ωi) is called a fundamental rep. The
standard N -dim rep of slN , soN , spN is V (ω1) (for a suitable choice of
r ∈ {1, ..., r}.)

13 Complete Reducibility Of Finite Dimensional
g-reps

General result can be found in [@carter chapter 12]. The key ingredient is the
Casimir element in Z(U(g)) ⊂ U(g). Later on, we will consider the generalized
Casimir element (for a large class of Lie algebras). Note: tensor products of
irreducible finite dimensional modules

V (λ)⊗ V (λ′) =
⊕
ν∈P+

c∨λ,λ′V (ν)

where c∨λ,λ′ ∈ Z≥0 is computable using Steinberg’s formula.

For sl2:

V (n)⊗ V (n′) ∼= V (n+ n′)⊕ V (n+ n′ − 2)⊕ ...⊕ V (|n− n′|)

for n, n′ ∈ Z≥0, so V (1)⊗ V (1) ∼= V (2)⊕ V (0).

Exercise 13.1. For sl2, check C = EF + FE + 1
2H

2 lies in Z(U(sl2)). Use
Schur’s lemma to deduce it acts on V (n) ∼= (πn,Cn+1) by multiplication by
n(n+2)

2 .
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14 Irreducible Finite Dimensional Reps of Lg

Consider Lg = g⊗C
[
z, z−1

]
. For any finite dimensional Lg-module M , we can

form a composition series M = M0 ⊃ M1 ⊃ ... ⊃ Mn−1 ⊃ Mn = {0}, where
Mi/Mi+1 is irreducible.

We will argue that finite dimensional evaluation modules are ”generically” ir-
reducible. First, some general facts about tensor product modules: if h, k
are any Lie algebras over C, V irreducible h-module, W irreducible k-module,
1 ≤ dimV,dimW < ∞, then we will show V ⊗W is irreducible as a (h ⊕ k)-
module.

Recall: (x, y) · (v⊗w) = (x ·v)⊗w+v⊗ (y ·w) where x ∈ h, y ∈ k, v ∈ V,w ∈W .

Remark 14.1. if k = h, then V ⊗ W is also a h-module via the diagonal
embedding h ↪→ h⊕ h → gl(V ⊗W ), x 7→ (x, x). We don’t discuss it here.

Exercise 14.2. Show that the embedding h ↪→ h ⊕ k, x 7→ (x, 0) defines an
h-module structure in V ⊗W .

1. Describe it and show it is reducible.

2. Show, if V ⊗W is irreducible as a (h ⊕ k)-module, then V is irreducible
as a h-module.

Recall: U(h⊕ k) ∼ U(h)⊗ U(k). Let A be any unital associative C-algebra.

Exercise 14.3. If S is an irreducible submodule of
⊕n

i=1 Vi, where Vi is an
irreducible A-module with dimVi <∞, show that S ∼= Vi (1 ≤ i ≤ n).

Hint: use embeddings, projections, and Schur’s lemma.

A refinement of this exercise in the case V1 ∼= ... ∼= Vn.

Lemma 14.4. Let V be an irreducible finite dimensional A-module. Let n ∈
Z≥1 andW ⊆ V ⊕n be a nonzero A-submodule. ThenW ∼= V ⊕r where 1 ≤ r ≤ n
and the inclusion map φ :W → V ⊕n is of the form

ϕ(v1, ..., vr) = (v1, ..., vr) ·X

where X is a full-rank r × n matrix.

Proof. By induction with respect to n ∈ Z≥1. If n = 1, r = 1,W = V, ϕ(v) =
xv = v ·X for x ∈ C×, X = (x) which gives a 1× 1-matrix.

For the induction step, choose an irreducible submodule S ⊆ W . By the pre-
vious exercise, S ∼= V, ϕ|S must satisfy ϕ(v) = (x1v, ..., xnv) for v ∈ V ∼=
S, (x1, ..., xn) ∈ Cn not all zero, and xnv = v · X, where X is a 1 × n matrix.
Note that G = GLn(C) acts on V ⊕n as

(v1, ..., vn) 7→ (v1, ..., vn) · g
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where g ∈ G. Note that left A-action commutes with this right G-action.This
implies G acts on a set of A-submodules of V ⊕n, and the G-action preserves the
desired property. Now choose g ∈ G so that (x1, ..., xn) · g = (1, 0, ..., 0) where
(x1, ..., xn) ∈ Cn\{(0, ..., 0)}. Now W · g = V ⊕W ′, where W ′ ⊆ V ⊕(n−1). So
the induction hypothesis implies the desired property.

Recall that if V is an irreducible A-module, ∀v ∈ V \{0},∃a ∈ A such that
a · v = w.

Theorem 14.5 (The Density Theorem). Let V be an irreducible A-module with
dimV <∞. If ρ : A→ EndC(V ) is the representation map, then ρ is surjective.

Proof. Let φ ∈ EndC(V ) be arbitrary. Choose a basis (v1, v2, ..., vdimV ) of
V . It suffices to show ∃a ∈ A such that ρ(a)(vi) = φ(vi) for 1 ≤ i ≤
dimV . Suppose a ∈ A does not exist. THen the image of the map A →
V ⊕n, a 7→ (ρ(a)(v1), ..., ρ(a)(vn)) is a proper nonzero submodule W . Hence
∃r ∈ {1, 2, ..., n − 1} such that inclusion W ↪→ V ⊕n is given by the full rank
r × n matrix X. ∃u1, ..., ur ∈ V such that

(v1, ..., vn) = (u1, ..., ur) ·X (⋆)

(a = 1). Because r < n, we can choose

Ö
y1
...
yn

è
∈ Ker

(
XT
)
\{

Ö
0
...
0

è
} so

X · (y1, ..., yn) = (0, ..., 0).

So plugging in gives

n∑
i=1

yivi = (u1, ..., ur) ·X · (y1, ..., yr) = 0

with (v1, ..., vn) basis and we are done.

Let A,B be associative unital algebras.

Theorem 14.6. Let V be an irreducible A-module, dimV < ∞. Let W be an
irreducible B-module, dimW < ∞. Then V ⊗W is an irreducible (A × B)-
module.

Proof. By density theorem, the algebra homomorphisms A → EndCV,B →
EndCW are surjective, so the algebra homomorphism A ⊗ B → EndCV ×
EndCW ∼= EndC(V ⊗W ) is also surjective. By characterization of irreducibliity
in terms of the cyclic and cocyclic vectors, V ⊗W is an irreducible (A ⊗ B)-
module.

Remark 14.7. The convese also holds, although we will not need it.
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Fix ℓ ∈ Z≥1. As a consequence, if V1, ..., Vℓ are irreducible finite dimension U(g)-
modules, then V1 ⊗ ... ⊗ Vℓ is an irreducible U(g)⊗ℓ-module, so an irreducible
g⊕ℓ-module.

15 Loop Algebras, Part 2

Recall Lg = g⊗C
[
z, z−1

]
. Let a1, ..., aℓ ∈ C×, eva1,...,aℓ

: Lg → g⊕ℓ, x⊗p(z) 7→
(p(a1)x, ..., p(aℓ)x).

Lemma 15.1. Fix a1, ..., aℓ ∈ C×. The evaluation map is surjective if and only
if all ai are distinct.

Proof. =⇒ : exercise.

⇐⇒: suppose {xi}dim g
i=1 is a basis for g. Then {(0, ..., 0, xi, 0, ..., 0)|1 ≤ i ≤

dim g, 1 ≤ r ≤ ℓ} where xi is in the rth spot is a basis for g⊕ℓ.

Claim: such a basis element lies in eva1,...,aℓ
(Lg) with distinct ai. Set p(z) =∏ℓ

s=1,s̸=r

as − z

as − ar
. Then p(as) = 0, p(ar) = 1 if s ̸= r. So

eva1,...,aℓ
(xi ⊗ p(z)) = (0, ..., 0, xi, 0, ..., 0)

as desired.

Recall, for a1, ..., aℓ ∈ C×, (π1, V1), ..., (πℓ, Vℓ) irreducible finite dimensional g-
reps. The evaluation rep is defined via:

π1,a1
⊗ ...⊗ πℓ,aℓ

= (π1 ⊗ ...⊗ πell) ◦ eva1,...,aℓ
: Lg → gl(V1 ⊗ ...⊗ Vℓ).

Let a1, ..., aℓ ∈ C× be distinct. Since eva1,...,aℓ
is surjective and π1 ⊗ ... ⊗ πℓ is

an irreducible g⊕ℓ-rep, we ge the following result:

Corollary 15.2. π1,a1 ⊗ ... ⊗ πℓ,aℓ
is an irreducible Lg-rep if ai are distinct

nonzero complex numbers.

16 Classification of Irreducibles

Recall the triangular deompositions of g and Lg. These two imply the triangular
decomposition of the universal enveloping algebra of the loop algebra:

U(Lg) ∼= U(Ln−)⊗ U(Lh)⊗ U(Ln+).

Definition 16.1. Let V be a Lg-module,
∧

∈ L(h)∗. Call V a loop highest
weight module with highest weight

∧
if:

1. ∃v ∈ V such that L(n+) · v = 0

2. ∀h ∈ L(h), h · v =
∧
(h)v.

30



3. V = U(L(g)) · v (= U(L(n−)) · v).

Remark 16.2. One can define a ”loop Verma module” of Lg by means of 1-dim
module of Ll+ where l+ = ⟨n+, h⟩.

We will consider a finite dimensional quotient called the Weyl module; they
play the role of the universal finite dimensional loop highest weight modules.
We first describe the set that parametrizes the Weyl module for Lsl2.

Consider p(u) ∈ C[u] such that p(0) = 1, the Drinfeld polynomial, which gives
a monoid P under multiplication. For a ∈ C× define pa(u) : 1− au ∈ P , which

=⇒ ∀p ∈ P∃!(a1, ..., aℓ) ∈ (C×)
ℓ
(up to reordering) and (s1, ..., sℓ) ∈ Zℓ

>0 such

that ai ̸= aj for i ̸= j and p =
∏ℓ

j=1 p
sj
aj . Note that ai occurs if and only if

p
(
a−1
i

)
= 0.

Consider polynomials in P whose roots lie in a finite set and order this set as
{a1, ..., aℓ} ⊆ C× where ai are distinct. To p ∈ P associate a tuple of dominant
integral sl2 weights

ℓ∏
j=1

(
paj

)sj 7→ (s, ω, ..., sℓω)

where ω ∈ h∗ satisfies ω(h) = 1.

Example 16.3. • (1− a1u) 7→ (1)

• (1− a1u)
2 7→ (2)

• (1− a1u)(1− a2u)
2 7→ (1, 2) is a1 ̸= a2.

Additionally, let eva1,...,aℓ
: Lg → g⊕ℓ, x(m) 7→ (am1 x, ..., a

m
ℓ x) be the evaluation

homomorphism, where a1, ..., aℓ ∈ C×. This is surjective if and only if aj are all
distinct. For λ ∈ P+, let V (λ) be the irreducible finite dimensional g-module
with λ as highest weight. The representation πλ gives an evaluation module
V (λ)a where a ∈ C×, with representation πλa

= πλ ◦ eva.

For the tensor product V (λ1)a1
⊗ ...⊗ V (λℓ)aℓ

, x(m) ∈ Lg acts as

ℓ∑
j=1

id⊗ ...⊗ id⊗ amj πλj
(x)⊗ id⊗ ...⊗ id.

This is irreducible if and only if all aj are distinct. The proof of this relies on
the density theorem for arbitrary Lie algebras k/C.

Proposition 16.4. The unital algebra homomorphism U(k) ρ→ End(U) is sur-
jective if (ρ, V ) is a finite dimensional irreducible k-reps.

Exercise 16.5. Show this is false if U(k) is replaced by k.

Now, we will study the converse of the statement: ”This is irreducible if and
only if all aj are distinct.”
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Definition 16.6. A loop highest weight module of Lg is a module V such
that there exists a

∧
∈ (Lh)∗ (called the loop highest weight) and there exists

a non-zero vector v ∈ V (called the loop highest weight vector) such that:

• (Ln+) · v = 0,

• h · v =
∧
(h)v for all h ∈ Lh,

• V = U(Lg) · v = U(Ln−) · v.

Lemma 16.7. Let V be a finite dimensional irreducible Lg-module. Then V is
a loop highest weight module.

Proof. Let V 0 = {v ∈ V |Ln+ · v}. To see V 0 ̸= {0}, consider the generalized
joint eigenspaces of the h-action (where h ∈ Lh) V gen

µ (where µ ∈ h+). As usual,

V =
⊕

µ∈h∗ V gen
µ . Note e

(m)
i (where 1 ≤ i ≤ r,m ∈ Z) sends V gen

µ to V gen
µ+αi

(where αi is a simple root). Because dimV < ∞, we cannot have an infinite
chain

V gen
µ → V gen

µ+αi
→ V gen

µ+αi+αj
→ ...

This gives a nonzero element of V 0 annihilated by Ln+ (last nonzero space in
this chain).

Exercise 16.8. Show that Lh-action preserves V 0.

Hint: [h
(m)
i , e

(n)
j ] = aije

m+n
j .

Deduce ∃ common eigenvector v of the h
(µ)
i -action 1 ≤ i ≤ r,m ∈ Z. In

particular, v ̸= 0. The irreducibility of V forces the submodule U(Lg) · v to be
equal to V .

Goal: describe the universal finite dimensional loop highest weight modules,
known as the Weyl modules.

Consider Lsl2 first. Recall Va1 ⊗ Va2 for a1, a2 ∈ C×, where V = V (ω) for
ω ∈ h∗, ω(h) = 1, h = Ch is a 2-dim irreducible sl2-module equal to C2.

We have (
1 0

)
⊗
(
1 0

)
= am1 + am2(

1 0
)
⊗
(
0 1

)
= am1 − am2(

0 1
)
⊗
(
1 0

)
= −am1 + am2(

0 1
)
⊗
(
0 1

)
= −am1 − am2

Note that v is a loop highest weight vector, with loop highest weight = am1 +am2 .
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Exercise 16.9. Show that these 4 vectors are joint eigenvectors of h(m) where

m ∈ Z, h =

Å
1 0
0 −1

ã
. Show that these eigenvalues are indeed equal in the

centered equations above. If a1 ̸= a2, show that the vectors f (n) · v where n ∈ Z
are not eigenvectors of any h(m).

For Lsl2, we considered P = {p ∈ C[u]|p(0) = 1} monoid under pa = 1 − au
for a ∈ C×. ∀p ∈ P∃!{a1, ..., aℓ} ⊆ C× without repeats and ∃!{s1, ..., sℓ} ⊆ Z>0

with p =
∏ℓ

j=1 (pak
)
sj .

Definition 16.10. Let a1, ..., aℓ ∈ C× be distinct and s1, ..., sℓ ∈ Z>0. Set
p =

∏ℓ
j=1(paj

)sj . Let J(p) be the left ideal of U(Lsl2) generated by:

• e

• h(m) −
∧

p

(
h(m)

)
∀m ∈ Z, where

∧
p

(
h(m)

)
=
∏ℓ

j=1 a
m
j sj.

• fdegp+1 where degp =
∑ℓ

j=1 sj.

The Weyl module is W (p) = U(Lsl2)/J(p).

Remark 16.11. Because e, h(m) −
∧

p

(
h(m)

)
∀m ∈ Z are in J(p), W (p) is

a loop highest weight module with loop highest weight
∧

p ∈ (Lh)∗ and loop
highest weight vector is 1p = 1U(Lg)+J(p). This relies on checking the following
exercise:

Exercise 16.12. Show that, if e = e(0) annihilates a joint eigenvector v of all
h(m), then all e(n) annihilate v.

Remark 16.13. Because U(Lg) ∼= U(Ln−)⊗ U(Lh)⊗ U(Ln+) and U(Ln−) ∼=
C
[
{f (m)}m∈Z

]
, each element of W (p) lies in the span of f (m1)...f (ms) · 1p for

m1, ...,ms ∈ Z,m1 ≤ m2 ≤ ... ≤ ms for some s ∈ Z≥0.

Exercise 16.14. Show that, for fixed s ∈ Z≥0, the subspace

W (p)s = spanC{f (m1)...f (ms) · 1|m1, ...,ms ∈ Z,m1 ≤ m2 ≤ ... ≤ ms}

is an Lh-module of W (p).

Remark 16.15. Note that V (ω)a1
⊗V (ω)a2

has loop highest weight (am1 + am2 )
where m ∈ Z. If p = (1−a1u)(1−a2u),W (p) has loop highest weight

∧
p

(
h(m)

)
.

For general finite dimensional simple g over C or rank r, we need r-tuples of
polynomials.

P = {p = (p1, ..., pr)|p1(0) = ... = pr(0) = 1}

is a monoid under entrywise multiplication, and the neutral element is (1, 1, ..., 1)
of length r.

Furthermore, we have p
(u)
i1

:= (1, ..., 1, 1 − au, 1, ..., 1) for a ∈ C×, 1 ≤ i ≤ r,
where the first string is i − 1 long and the second string is r − i long. We
have p =

∏ℓ
j=1

∏r
i=1(pi,aj

)sij with distinct aj ∈ C× (inverses of roots of p1...pr)
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where sij ∈ Z (multiplicity of a−1
j in pi) and ℓ is the number of distinct roots

in p1...pr.

Definition 16.16. J(p) is the left ideal of U(Lg) generated by L(n+), h
(m)
i −∧

p

Ä
h
(m)
i

ä
where

∧
p

Ä
h
(m)
i

ä
:=
∑ℓ

j=1 a
m
j sij, and f

degpi+1
i . It has 1p := 1U(g) +

J(p). The Weyl module is W (p) = U(Lg)/J(p).

Theorem 16.17 ([@chari). Theorem 1, Proposition 2.1]

1. dimW (p) <∞∀p ∈ P .

2. Universal property: let V be any loop highest weight module dimV <
∞,∃!p ∈ P such that V is a quotient of W (p).

3. W (p) has unique irreducible quotient V (p).

Remark 16.18. For (1), we need to find an efficient spanning set of W (p),

which relies on fdegpi+1
i 1p = 0.

For (3), we roughly need W (p) to have unique maximal proper submodule: sum
of all proper submodules. We can do this via weight decomposition and 1-
dimensionality of highest weight subspace.

The key idea of the proof is to embed Lg in a larger Lie algebra Lgext by adjoin-
ing element a such that ad(d) = z d

dz ,
[
d, x(m)

]
= mx(m). Then study integral

modules of Lgext and relate them to Weyl modules.

We have the following bijections:

P → {universal finite dimensional loop highest weight modules of Lg}
p 7→W (p)

Taking the unique irreducible quotients gives

V (p) ∈ {irreducible finite-dimensional loop highest weight modules of g}/iso ⇐⇒ {evaluation modules defined in terms of a1, . . . , aℓ}/iso.

Compare with evolution modules. For p ∈ P, define

p
λ,a

= ((1− au)λ(h1), ..., (1− au)λ(hr)) ∈ P.

Any p ∈ P factorizes uniquely as

p =

ℓ∏
j=1

p
λj ,aj

where aj ∈ C× are distinct. Compare to loop highest weights to obtain

V (p) ∼= V (λ1)a1
⊗ ...⊗ V (λℓ)aℓ

∀p ∈ P.

Theorem 16.19 ([@chari). Theorem 2 and 3]
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1. Let p = (p1, ..., pr) ∈ P, p′ ∈ (p′1, p
′
2, ..., p

′
r) ∈ P. If pi and p

′
j are coprime

for all 1 ≤ i, j ≤ r, then

W (p · p′) ∼=W (p)⊗W (p′).

2. For simplicity, consider g = slN , N = r + 1. Let p = (p1, ..., pr) ∈ P.
Then W (p) = V (p) ⇐⇒ p1(u)...pr(u) has distinct roots. To generalize,
define pθ(u) = p1(u)

m1 ...pr(u)
mr where θ =

∑r
i=1miαi is the highest root

and mi ∈ Z>0.

17 Affine Lie Algebras

Let g be a finite dimensional simple Lie algebra over C. We have discussed
Lg = g⊗ C[z, z−1]. We will construct ĝ, a 1-dim central extension of Lg.

17.1 Central Extensions of Groups

Definition 17.1. A projective representation of a group G on a k-linear
space V is a group homomorphism ρ : G→ PGL(V ) := GL(v)\k×IdV .

Remark 17.2. These are important in quantum mechanics, V is viewed as a
space of states of a quantum mechanical system, up to scalar multiples.

Take the collection of linear maps {ρ(g)}g∈G such that

ρ(g) ◦ ρ(h) = cg,hρ(gh)

for cgh ∈ k× (∀gh ∈ G).

Definition 17.3. If ρ is projective, then there is a central extension of G, a
short exact sequence of groups

1 → K
ι→ H

τ→ G→ 1

where ι injective, im(ι) = ker(τ), τ surjective.

These conditions imply G ∼= H/ι(K), and ι(k) ⊆ Z(G) =⇒ K abelian.
∃p̂ : H → GL(V ) (a genuine rep of H) so that we have a commuting diagram:

¡div className=”text-center”¿ ¡Image alt=”diagram” src=”/static/images/com/liealg/affine/4.png”
width=170 height=110 /¿ ¡/Image¿

Canonically: H = {(g, T ) ∈ G × GL(V )|proj(T ) = ρ(g)}. τ : H ↠ G is given
by τ(g, T ) = g. ι inclusion, K = kerτ = {eG}×k×IdV . ρ̂ : H → GL(V ) is given
by ρ̂(g, T ) = T .

Example 17.4.
1 → {±I} ↪→ SU(2)

τ→ SO(3) → 1.
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Odd-dim irreducible SU(2) reps descend to SO(3)-reos. Even-dim irreducible
irreducible SU(2) reps π induces a projective SO(3) rep π∨. We have

π∨(g) ◦ π∨(h) = ±π∨(gh)

for g, h ∈ SO(3).

17.2 Central Extensions of Lie Algebras

Definition 17.5. An extension of Lie algebras is a short exact sequence

0 → c
ι→ b

τ→ a → 0

where a, b, c are Lie algebras over k, with a = b/2(c).

In our case k = C, a = Lg. Given a it is interesting to classify extensions. We
say ”b is extension of a by c”.

Note, as k-linear spaces b ∼= a⊕ c (if b has a basis).

Exercise 17.6. 1. Show that, as a k-linear map, τ : b → a has a ”section”
σ : a → b (k-linear) τ ◦ σ = ida.

2. Deduce b = σ(a)⊕ ι(c) (as k-linear space)/

Definition 17.7. An extension is called central if ι(c) ⊆ Z(b).

In particular, c is abelian. Common choice: dim(c) = 1.

Given a, c, how do we construct all central extensions? The idea is to measure
the failure of σ to be a Lie algbera homomorphism

β(x, y) := [σ(x), σ(y)]b − σ ([x, y]a) ∈ b

for x, y ∈ a. Clearly, β is k-linear, alternating: β(x, x) = 0 =⇒ β(x, 0) =
β(0, x) = 0, β(y, z) = −β(x, y).

Exercise 17.8. 1. Show that Jacobi identity: β([x, y], z)+β([y, z], z)+β([z, x], y) =
0.

2. Show im(β) ⊆ 2(c).

Consider the space

C2(a, c) = {β : a× a → c| bilinear, alternating Jacobi identity}.

Given β ∈ C2(a, c), define a Lie bracket on a ⊕ c, and call the resulting Lie
algebra bβ . We have

[(x, y), (x′, y′)]β = ([x, x′]a, β(x, x
′))

where x, x′ ∈ a, y, y′ ∈ c.
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One checks this is a well-defined Lie bracket on b. Also, c embeds into bβ as
{0} ⊕ c ⊆ Z(bβ). Note, β, β′ ∈ C2(a, c) may produce bβ ∼= bβ′ .

INSERT IMAGE HERE

As diagrams of linear maps, θ(0, y) = (0, y), y ∈ c and τ(θ(x, y)) = x∀x ∈ a, y ∈
c =⇒ θ(x, c) = (x, c+ φ(x)) for some φ : a → c linear.

Exercise 17.9. Use the fact that θ is s Lie algebra homomorphism to deduce
β′(x, y) = β(x, y) + φ([x, y])∀x, y ∈ a.

Let B′(a, c) = {φ : a → c k − linear}. Define ( dφ)(x, y) = φ([x, y]) for x, y ∈
a, φ ∈ B′(a, c). This implies there is a linear map a : B′(a, c) → C2(a, c) with
β′ = β + dφ.

Proposition 17.10. H2(a, c) := C2(a, c)/αB′(a, c)
1:1→ {central extensions of a over c}.

with [β] = β + αβ′(a, c) 7→ bβ.

Remark 17.11. Part of Lie algebra cohomology of a valued in c. C2(a, c) =”2-
cocycles”, B′(a, c) =”1-cochains”, dB′(a, c) =”2-coboundaries”.

Also, if [β] = 0 ∈ H2(a, c), then bβ is the ”trivial central extension” and bβ ∼= a, c
as Lie algebras.

From now on, k = C,dim(c) = 1. Let g = finite dimensional simple Lie algebras
over C. We will study H2(c,C) and H2(Lg,C).

Definition 17.12. The Killing form of g is the bilinear form κ : g × g →
C, κ(x, y) = Tr(ad(x) ◦ ad(y)).

The key properties for the Killing form are:

• Nondegeneracy: ∀x ∈ g\{0},∃y ∈ g\{0}, κ(x, y) ̸= 0.

• Invariance: ∀x, y, z ∈ g, κ([x, y], z) = κ(x, [y, z]).

• Symmetry: ∀x, y ∈ g, κ(x, y) = κ(y, x).

The space of such forms is 1-dim.

Example 17.13. g = sl2 = Cℓ ⊕ Cf ⊕ Ch, then ad(e)(e) = 0, ad(e)(f) =

h, ad(e)(h) = −2e. This implies ad(e) =

Ñ
0 0 −2
0 0 0
0 1 0

é
.

Similarly, ad(f) =

Ñ
0 0 0
0 0 2
−1 0 0

é
and ad(h) =

Ñ
2 0 0
0 −2 0
0 0 0

é
.

We have κ(e, f) = 4 = κ(f, e), k(h, h) = 8, and κ(x, y) = 0 for all other
(x, y), x, y ∈ {e, f, h}.

The existence of Killing form =⇒ all derivations of g are inner.
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Proposition 17.14. H2(g,C) = 0 =⇒ all 1-dim central extensions of g are
trivial.

Proof. Let β ∈ C2(g,C). We need to show ∃φ ∈ B′(g,C) such that β = dφ.
For x ∈ g define ρ : g → g∗ by ρ(x)(y) = β(x, y). Define ν : g → g∗ by ν(x)(y) =
κ(x, y). Because of non-degeneracy, ν is invertible. So f := ν−1 ◦ ρ : g → g is
C-linear.

Exercise 17.15. 1. Show ∀x, y ∈ g, κ(f(x), y) = β(x, y).

2. Show f is a derivation on g, f([x, x′]) = [f(x), x′] + [x, f(x)]∀x, x′ ∈ g

Hint: Show, using (1), that κ(f([x, x′]), y) = κ([f(x), x′]+ [x, f(x)])∀x, x′, y ∈ g
and use non-degeneracy of κ.

Hence f = ad(y) for some y ∈ g.

Compute

β(x, x′) = ρ(x)(x′)

= κ(ν(ρ(x)), x′)

= κ(f(x), x′)

= κ([y, x], x′)

= κ(y, [x, x′])

Define φ ∈ B′(g,C) by φ(x) = κ(y, x).

( dφ)(x, x′) = φ([x, x′])

= κ(y, [x, x′])

= β(x, x′)

which implies β = dφ.

17.3 From Loop Algebras to Affine Lie Algebras

Let Lg = g ⊗ C[z, z−1], x(m) = x⊗ zm ∈ Lg, x ∈ g,m ∈ Z. To find: a 2-cocycle
β : Lg× Lg → C. Use bracket of central extension:

[x(m) + λc, y(n) + µc] = [x, y](m+n) + β(x, y)c

for m,n ∈ Z, x, y ∈ g, λ, µ ∈ C.

Instead of (x(m), λ) I will write x(m) + λc. (Identified Lg ⊕ 0 with Lg, and
c = (0, 1)). First note: Res

(∑
m∈X amz

m
)
:= a−1 so Res : C[z, z−1] → C.
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Exercise 17.16. Check that the bilinear map β2 : C[z, z−1] × C[z, z−1] → C
defined by β2(f1, f2) = Res(f ′1(z)f2(z)), f1, f2 ∈ C[z, z−1], satisfies β2(f, f) =
0, β2(f1f2, f3) + β2(f2f3, f1) + β2(f3f1, f2) = 0.

Hint: Res(f ′) = 0∀f ∈ C[z, z−1].

Note β2(z
m, zn) = Res(mzm+n−1) =

®
m if m+ n = 0

0 otherwise
. Fix any nondegener-

ate invariant symmetric bilinear form (·|·) : g×g → C (scalar multiple of Killing
form). Extend β2 to a bilinear map: Lg× Lg → C:

β(x1 ⊗ f1, x2 ⊗ f2) = (x1|x2)β2(f1f2)

with x1, x2 ∈ g, f1, f2 ∈ C[z, z−1]. Then β(x⊗ f, x⊗ f) = (x|x)β2(f, f). So

β([x1 ⊗ f1, x2 ⊗ f2], x3 ⊗ f3) + cyclic permutations

=β([x1, x2]⊗ f1f2, x3 ⊗ f3) + cyclic permutations

=([x1, x2]|x3)β2(f1f2, f3) + cyclic permutations

=([x1, x2]|x3)(β2(f1f2, f3) + cyclic permutations)

=0

Remark 17.17. Can show this β is unique (up to scalar multiple) 2-cocycle:
Lg → C (because g ↪→ Lg, x 7→ x(0) = x⊗ z0, β/g× g = 0).

Definition 17.18. The affine Lie algebra ĝ is the 1-dim central extension of
Lg with 2-cocycle β.

ĝ = Lg⊕ Cc

as C-linear spaces. C is central, and

[x(m), y(n)] = [x, y]g(m+n) + (x|y)mδm,−nc

where m,n ∈ Z, x, y ∈ g.

Note that Lg ⊂ ĝ as a subspace, not a subalgebra.

Example 17.19. For g = sl2, set (x|y) = 1
4κ(x, y). We have (e|f) = 1, (h|h) =

2, (h|e) = (h|f) = (e|e) = (f |f) = 0. Then ĝ has linear basis {e(m), f (m), h(m)}m∈Z∪
{c}.
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Exercise 17.20. Verify that the relations in ĝ are:

[h(m), h(n)] = 2δm,−nmc

[h(m), e(n)] = 2em+n

[h(m), f (n)] = −2f (m+n)

[e(m), e(n)] = [f (m), f (n)] = 0

[e(m), f (n)] = hm+n + δm,−nmc

[h(m), c] = [e(m), c] = [f (m), c] = 0

For some general facts about ĝ:

Commuting diagram of Lie algebra homomorphisms ¡div className=”text-center”¿
¡Image alt=”diagram” src=”/static/images/com/liealg/affine/1.png” width=180
height=100 /¿ ¡/Image¿

Triangular decomposition: g = n− ⊕ h ⊕ n+, Lg = Ln− ⊕ Lh ⊕ Ln+, and
ĝ = Ln− ⊕ ⟨Lh, c⟩ ⊕ Ln+.

The subalgebra ⟨Lb, c⟩ is not abelian. [h(m)
i , h−m

i ] = (hi|hi)mc where (hi|hi) ̸= 0
is the ∞-dim Heisenberg algebra, the ∞-dimensional analogue of the Cartan
subalgebra. Two important properties:

• Nilpotent: [H1, [H2, H3]] = 0∀H1, H2, H3 ∈ ⟨Lh, c⟩.

• Self-normalizing: if X ∈ ĝ satisfies [X, ⟨Lh, c⟩] ⊆ ⟨Lh, c⟩, then X ∈ ⟨Lh, c⟩.

Exercise 17.21. Prove this second property using loop-triangular decomposi-
tion.

More important for us now: ”affine Cartan subalgebra,” where ĥ = h ⊕ Cc is
finite dimensional and abelian.

By Schur’s lemma, c acts in any irreducible ĝ-module as multiplication by a
scalar.

If V is any ĝ-module such that ∃k ∈ C∀v ∈ V , c · v = kv. Then we call k = kV
the level of V . kV = 0 ⇐⇒ V is also a Lg-module.

By surjectivity of τ : ĝ → Lg, irreducible Lg-modules are irreducible ĝ-modules.
But ∃ many important irreducible ∞-dimensinoal ĝ-modules with level nonzero.
(”basic representation” in terms of ”vertex operators”).

17.4 Finite Dimensional ĝ-modules

Goal: show finite dimensional ĝ-modules V have kV = 0. This is similar to the
lemma that stated all finite dimensional irreducible Lg-modules are loop highest
weight.
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Consider V 0 = {v ∈ V |Ln+ · v = 0} is nonzero. Next, ĥ =
⊕r

i=1 Chi ⊕ Cc
preserves V 0. For v ∈ V 0, we have

e
(n)
j · (hi · v) = (hi − aij)e

(n)
j · v = 0

e
(n)
j · (c · v) = c · e(n)j · v = 0

Because ĥ abelian, ∃ common joint eigenvector v ∈ V 0: hi · v = λ(hi)v, c · v =
kv, Ln+ · v = 0 for λ ∈ h∗, k ∈ C.

First, assume V is irreducible. Because V = U(ĝ) · v, it suffices to show k = 0.

Lemma 17.22. For all 1 ≤ i ≤ r,m ∈ Z, the subspace sl
(m)
2,i := Ce(m)

i ⊕
Cf (−m)

i ⊕ C(hi +mc) ⊆ ĝ is a Lie algebra isomorphism to sl2.

Exercise 17.23. Prove this.

Let 1 ≤ i ≤ r,m ∈ Z be arbitrary. We have e
(m)
i · v = 0 for v ∈ V 0 and

(hi +mc) · v = (λ(hi) +mk)v. Consider U(sl(m)
2,i ) · v, a finite dimensional sl

(m)
2,i -

submodule of V . It has irreducible submoudle W . By explicit description of
highest weight sl2-modules, W is a highest weight module, with highest weight
λ(hi) +mk − 2s ∈ Z≥0 where s ∈ Z≥0, which implies λ(hi) +mk ≥ 0.

Now letm→ −∞. If k ̸= 0, get contradiction. Hence c·V = 0 if V is irreducible,
dimV < ∞. This implies V is an irreducible finite dimensional Lg-module, so
V is a tensor production of evaluation modules.

Remark 17.24. There is a general result that says any finite dimensinoal high-
est weight g-module is irreducible. (consequence of complete reducibility for finite
dimensional g-modules)

Let’s review some g-theory.

Let gα = {x ∈ g|[h, x] = α(h)x∀h ∈ h} where α ∈ h∗. [gα, gβ ] ⊆ gα+β gives a h∗

grading on g. THe root system is Φ := {α ∈ h∗|gα ̸= {0}, α ̸= 0}. Additionally,
we have g = h⊕

⊕
α∈Φ gα, where α ∈ Φ =⇒ −α ∈ Φ,dim gα = 1 for α ∈ Φ.

Example 17.25. For g = sl3, we have

¡div className=”text-center”¿ ¡Image alt=”diagram” src=”/static/images/com/liealg/affine/2.png”
width=180 height=300 /¿ ¡/Image¿

where C[e1, e2] = gα1+α2 = gθ,Ce1 = gα1 ,Ce2 = ga2 ,Ch1 ⊕ Ch2 = h, ↘=

ad(f1) and ↙= ad(f2). ω corresponds to rotating by 180◦, and e1 =

Ñ
0 1 0
0 0 0
0 0 0

é
, e2 =Ñ

0 0 0
0 0 1
0 0 0

é
. ¡/Image¿
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Let (·|·) be any nonzero scalar multiple of Killing form. Then (·|·) is nondegen-
erate on h×h and on gα×g−α where α ∈ Φ. We can define a linear isomorphism
ν : h → h∗ by ν(h)(h′) = (h|h′).

There exists a unique involutive automorphism ω : g → g (X 7→ −XT ) with
ω(ei) = −fi, ω(fi) = −ei, ω(hi) = −hi, ω(gα) = g−α, and ω(h) = h.

Let θ be the highest root. We can normalize (·|·) such that ∃eθ ∈ gθ, fθ ∈
g−θ, hθ ∈ h with the nice property that (eθ|hθ) = 1, (hθ|hθ) = 2, [eθ, fθ] =
hθ, [hθ, eθ] = 2eθ, [hθ, fθ] = −2fθ, ω(eθ) = −fθ, ω(hθ) = −hθ.

Example 17.26. eθ = [e1, e2], fθ = −ω(eθ) = [f2, f2], hθ = [eθ, fθ] = ... =
h1+h2. The sl3 relations are [hi, ei] = 2ei, [hi, fi] = −2fi, [ei, fi] = hi, [hi, ej ] =
−ej , [hi, fj ] = fj , [ei, fj ] = 0 for i ̸= j. We also have

κ(eθ, fθ) = κ(e1, [e2, [f2, f1]])

= κ(e1, [f2, f1])

= κ(e1, [h2, f1])

= κ(e1, f1)

= κ(e2, f2)

and κ(hθ, hθ) = κ(h1, h1)+2κ(h1, h2)+κ(h2, h2). So we can infer that κ(h1, h1) =
κ(h1, [e1, f1]) = κ([h1, e1], h) = 2κ(e1, f1) = 2κ(e2, f2) = k(h1, h2) so κ(h1, h2) =
... = −κ(e2, f2) = −κ(e1, f2) =⇒ κ(hθ, hθ) = 2κ(e1, f1) =⇒ (eθ, fθ) =
1, (hθ, hθ) = 2.

Now define the elements e0 = fθ⊗z ∈ Ln−, f0 = eθ⊗z−1 ∈ Ln+, h0 = c ·h0 ∈ ĥ.

Exercise 17.27. Show that sl2,0 := Ce0 ⊕ Cf0 ⊕ Ch0 ⊂ ĝ is a Lie algebra,
isomorphic to sl2.

Note ĥ =
⊕r

i=0 Chi. For 0 ≤ i ≤ r consider sl2,i = Cei ⊕ Cfi ⊕ Chi. By
complete sl2-reducibility, V (dimV <∞, ĝ module) decomposes as a direct sum
of sl2,i-irreducible modules. So V is a sl2,i-weight module: V =

⊕
λ∈(Chi)∗

Vλ
where Vλ = {v ∈ V |hi · v = λ(hi)v}. This tells us the action of hi on V is
diagonalizable ∀0 ≤ i ≤ r so the action of c = h0 + hθ is diagonalizable.

Let W ⊆ V be an irreducible submodule (dimW ≥ 1) c ·W = 0. Then V/W
is finite dimensional ĝ-module, with dim (V/W ) < dimV . For suitable basis, c
acts on V as Å

action on W 0
0 action on V/W

ã
.

As vector spaces, V ∼=W ⊕ V/W . By induction on dimV we get c · V = 0.

17.5 Towards Kac-Moody Algebras

Proposition 17.28. The elements e0, e1, ..., er, f0, f1, ..., fr ∈ ĝ generate ĝ =
Lg⊕ Cc.
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Proof. [hi] = [ei, fi], c ∈
⊕r

i=0 Chi. It suffices to prove that n̂+ := C⟨e0, e1, ..., er⟩
equals n+⊕g⊗zC[z] and n̂− := C⟨f0, f1, ..., fr⟩ equals n−⊕g⊗z−1C[z−1]. The

proofs are similar, we will focus on n̂−.

By induction with respect to degree in 𭟋−1. Note that eθ ∈ g is the highest
weight vector for adjoint action of g. Hence for all x ∈ g,∃Y ∈ U(n−) : x = Y ·e0
and x(−1) = Y ·f0. In particular, h⊗z−1 ⊆ U(n−) ·f0 and eθ⊗z−2 ⊆ U(n̂−) ·f0.

For each m ∈ Z>0, apply U(n−) ⊂ U(n̂−) to generate g ⊗ z−m and apply
f0 = eθ ⊗ z−1 ∈ U(n̂−) go from h⊗ z−m to eθ ⊗ z−(m+1).

Remark 17.29. Let V be an irreducible finite dimensional ĝ-module. Then
V is irreducible as n̂+ module (or n̂− module). False if you replace (ĝ, n̂+) by
(g, n+).

Example 17.30. Take g = sl2 and the ĝ-module V = eva(C2) ⊗ evb(C2) with
a, b ∈ C×, a ̸= b. The action of n̂− is: ¡div className=”text-center”¿ ¡Image
alt=”diagram” src=”/static/images/com/liealg/affine/3.png” width=600 height=200
/¿ ¡/Image¿

The (left), and the (top right bottom) form the sl2,0 module structure, and the
(right) and the (top left bottom) form the sl2,1-module structure.

To show that V is n̂− irreducible, we need to show that

Å
1
0

ã
⊗
Å
1
0

ã
is cocylic

with respect to n̂-action. ¡/Image¿

Exercise 17.31. Show this.

The Kac-Moody triangular decomposition is ĝ = n̂− ⊕ ĥ ⊕ n̂+, where n̂− =
⟨f0, f1, ..., fr⟩, ĥ = ⟨h0, h1, ..., hr⟩, n̂+ = ⟨e0, e1, ..., er⟩ are abelian, dim ĥ = r+1,
and hi = [ei, fi].

Warning: this is different from the loop-triangular decomposition.

Example 17.32 (ŝl2). n̂+ contains f (2), f (1) = e0, h
(2), h(1), e(2), e(1), e(0) = e1,

ĥ contains h0 and h1, and n̂ contains everything else.

Given α1 ∈ h+ =⇒ α1(h1) = 2, extend to an element of
Ä
ĥ
ä∗

by α1(h0) = −2.

We have [h0, e1] = [c−h1, e1] = −2e1 and similarly [H−0, f1] = 2f1. In general,
we can show that [h1, e

(m)] = 2e(m) and [h0, e
(m)] = −2e(m). We can also define

α0 ∈ ĥ∗ by α0(h0) = 2, α0(h1) = −2 to get [h0, e0] = [c− h1, f1 ⊗ 2] = 2e0 and
[h0, e1] = [c− h1, e1 ⊗ 1] = −2e1. ]

Question: how to distinguish between the e(m) where m ∈ Z using an adjoint
action?

Before we define the extension, let’s write down some new relations involving
e0, f0, f0: [h0, e0] = 2e0, [h0, f0] = −2f0, and [e0, f0] = h0.

43



Let 1 ≤ i ≤ r. We get

[ei, f0] = [ei ⊗ 1, eθ ⊗ z−1] = [ei, eθ]⊗ z−1 = 0

(similar to [ei, fj ] = 0 for 1 ≤ i, j ≤ r in g).

Similarly [fi, e0] = 0 and

[hi, f0] = [hi ⊗ 1, eθ ⊗ z−1]

= [h1, eθ]⊗ z−1

= θ(hi)eθ ⊗ z−1

= θ(hi)f0.

Similarly [hi, e0] = −θ(hi)e0.

Lemma 17.33. θ(hi) ∈ Z≥0.

Remark 17.34. So these relations are also similar to g-relations [hi, ej ] = aijej
for aij ∈ Z≤0.

Proof. The Weyl group of g acts on h∗ via si(λ) = λ− λ(hi)αi. This preserves
the root system Φ ⊂ h∗. Also Φ = Φ+ ∪ (−Φ+), where Φ+ contain the roots for
n+, (−Φ+) contain the roots for n−, and Φ+ = Φ ∩ spanZ≥0

(α1, ..., αr).

We have si(θ) = θ − θ(hi)αi ∈ Φ. If θ(hi) /∈ Z, si(θ) /∈ Φ. If θ(hi) < 0, then
si(θ) would be higher than θ.

Finally,

[h0, ei] = [c− hθ, ei] = −αi(hθ)ei

[h0, fi] = [c− hθ, fi] = −αi(hθ)fi.

Lemma 17.35. αi(hθ) ∈ Z≥0 for all 1 ≤ i ≤ r.

Proof. Analogous to the previous one, use Weyl group action on h.

Intuitively, the ”new” relations for e0, ..., er, h0, ..., hr, f0, ..., fr are close to the
relations for g itself (Chevalley-Serre presentation).

To make the extension, note:

Lemma 17.36. The linear map z d
dz : ĝ → ĝ, defined by z d

dz (x
(m)) = mx(m), z d

dz (c) =

0 is a derivation. It is not inner: z d
dz ̸= ad(y), y ∈ ĝ.

Proof. To show Leibniz rule, the only nontrivial check is:

z
d

dz
([x(m), y(n)]) = [z

d

dz
(x(m)), y(n)] + [x(m), z

d

dz
(y(n))].
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Exercise 17.37. Prove this relation.

Suppose ad(y) = z d
dz for y ∈ ĝ. ad(c) = 0, so y ∈ Lg. So y ∈

∑
α∈Φ∪{0} gα ⊗

C[z, z−1].

Because of the Killing form, [gα, g−α] = Chα∀α ∈ Φ, hα ∈ h\{0}. Hence,i f y
has a nonzero component in L(gα) with α ∈ Φ, [y, e−α] has a nonzero component
in Lh. But z d

dz e−α = 0 =⇒ y ∈ Lh.

Note: z d
dzhi ⊗ zm = mhi ⊗ zm, but [y, hi ⊗ zm] ∈ Cc =⇒ this element y does

not exist.

17.6 The Extended Affine Lie Algebra

Let’s make z d
dz ”inner.”

Definition 17.38. Let ĝext := ĝ ⊕ Cd (as vector spaces). The Lie algebra
relations are defined as follows: ĝ is a subalgebra, [d,X] = z d

dz (X) for X ∈ ĝ.

Here are some basic properties of ĝext:

1. Example of extension by derivarion, ie. a short exact sequence 0 → ĝ →
ĝext → Cd → 0 where d acts on ĝ as a derivation. ĝ is an ideal, Cd is a
subalgebra, so the sequence splits.

2. Generating set: e0, e1, ..., er, f0, f1, ..., fr, d.

3. Kac-Moody triangular decomposition: ĝext = n̂−⊕ĥext⊕n̂+ (decomposition

as ĝext-modules) where ĥext = ĥ⊕ Cd is abelian and of dimension r + 2.

Exercise 17.39. Using this decomposition, show that Z(ĝext) = Cc, [ĝext, ĝext] =
ĝ derived subaglgebra.

Remark 17.40. The center is ”small” and the derived subalgebra is ”large” so
this is ”close” to a simple Lie algebra.

Later, we will see that Z(ĝext), [ĝext, ĝext] are the only nonzero ideals.

α ∈ h∗ extends to element of
Ä
ĥext
ä∗

by setting α(c) = α(d) = 0 =⇒ αi(d) = 0

for 1 ≤ i ≤ r, which is compatible with [c, x] = 0 = [ d, x] if x ∈ g ↪→ ĝ. Now

define δ ∈
Ä
ĥext
ä∗

by δ(X) = 0 if X ∈ ĥ, otherwise δ(d) = 1.

Now we define α0 = δ− θ ∈
Ä
ĥext
ä∗

=⇒ α0(d) : δ(d)− θ(d). For 1 ≤ i ≤ r, we
get

[d, e0] = z
d

dz
e0 = e0 = α0(d)e0

[d, ei] = z
d

dz
ei = 0 = 0 = αi(d)ei.

Similar for f0, f1, ..., fr.
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This implies ĝext = bigoplusλ∈(ĥext)
∗ ĝextλ , where ĝextλ = {X ∈ ĝext|∀H ∈ ĥext, [H,X] =

λ(H)X} and ĝext0 = ĥext.

Example 17.41. ŝl2
ext

is really similar to the previous version.

Lemma 17.42. The weight space decomposition of ĝext with respect to ĥext is:

ĝext = ĥext ⊕
⊕
m∈Z,
α∈ĥ,

(m,α) ̸=(0,0)

ĥextα+mδ.

where ĝext0 = ĥext and gα ⊗ zm = ĥextα+mδ.

Proof. By construction, it holds as linear spaces:

Lg =
⊕
m∈Z,
α∈ĥ

gα ⊗ zm.

Now add Cc and Cd to g0⊗z0 to obtain ĥext. Moreover, letH = h+λc+µd ∈ ĥext

where δ(H) = µ, α(H) = α(h), λ, µ ∈ C, and h ∈ h. Suppose x ∈ gα where
α ∈ h∗. Then

[H,x⊗ zm] = [h, x⊗ zm] + µ[d, x⊗ zm]

= [h, x]⊗ zm + µmx⊗ zm

= (α+mδ)(H)x⊗ zm

which is in
Ä
ĥext
ä∗
.

Lemma 17.43. Let d be a finite dimensional abelian Lie algebra over C. Let
V be an d-weight module:

V =
⊕
λ∈d∗

Vλ

where Vλ = {v ∈ V |∀x ∈ d : x · v = λ(x)v}. Then any submodule of V is also
an d-weight module.

Proof. V =
⊕

λ∈d∗ Vλ. Let W ⊆ V be a submodule. Let w ∈ W be arbitrary.
Then w = w1 + ...+ wn with wi ∈ Vλi

\{0} for distinct λi ∈ d∗. Need to show:
wi ∈ W ( =⇒ W =

⊕
λ∈d∗ Wλ, where Wλ = W ∩ Vλ for 1 ≤ i, j ≤ n and

i ̸= j).

Let dij = {x ∈ d|λi(x) = λj(x)}. This is a proper subspace of d. Because
dim(d) > ∞, d ̸=

⋃
i ̸=j dij . Hence ∃x ∈ d, λi(x) ̸= λj(x) for all distinct i, j. Set
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ℓi = λi(x). Via the U(d)-action on W , get

w = w1 + ...+ wn

x · w = ℓ1w1 + ...+ ℓnwn

x2 · w = ℓ21w1 + ...+ ℓ2nwn

...

xn−1 · w = ℓn−1
1 w1 + ...+ ℓn−1

n wn

which arises the Vandermonde matrixá
1 1 · · · 1
ℓ1 ℓ2 · · · ℓn
...

...
. . .

...
ℓn−1
1 ℓn−1

2 · · · ℓn−1
n

ë
.

This has nonzero determinant. So w1, ..., wn are linear combinations of w, x ·
w, x2 · w, ..., xn−1 · w ∈W =⇒ w1, ..., wn ∈W .

So
{ideals of ĝext} = {submodules of adjoint action}.

Proposition 17.44. All nonzero ideals of ĝext contain a nonzero element of
ĥext.

Proof. Let i ⊆ ĝext be an ideal such that ĥext = 0. We need to show i = 0.
Assume i ̸= 0. Combining the previous two lemmas:

i =
Ä
i ∩ ĥext

ä
⊕

⊕
m∈Z,
α∈ĥ,

(m,α) ̸=(0,0)

(
i ∩ ĝextα+mδ

)
.

∃(α,m) ∈ (ĥ∗ × Z)\{(0, 0)} such that i ∩ ĝextα+nδ ̸= 0. Let x ⊗ zm ∈ i for
x ∈ gα\{0}.

By nondegeneracy of (·|·)|g×g,∃y ∈ g−α such that (x|y) ̸= 0 =⇒ [x, y] ∈ h\{0}.
Hence (x⊗ zm|y ⊗ z−m) = (x|y) ̸= 0, the pairing in ĝ.

So [x⊗ zm, y ⊗ z−m] = [x, y] + (x|y)mc in ĝ ⊂ ĝext because i ∩
hathext = 0. Because ĥext =
hath⊕ Cd = ĥ⊕ Cc⊕ Cd as vector spaces, and we get a contradiction.

Now, we can essentially conclude that ĝext is a so-called Kac-Moody algebra.

So Kac-Moody algebras are a subset of the simple finite dimensional algebras;
the finite dimensional reps are well-understood. Additionally, they are also a
subset of extended affine Lie algebras, where ∃ interesting highest weight reps of
∞ dimension.
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There are two important classes of reps of ĝ:

1. The reps of Lg

2. The reps of ĝext.

18 Kac-Moody Lie Algebras

We will now work more abstractly, with a large class of Lie algebras with uniform
definition: g arises a Cartan matrix, and we can recover g using the Chevalley-
Serre presentation. We will generalize the A→ g direction.

18.1 Realizations of Square Matrices

Let I be a finite set (ie. {1, 2, ..., r} for finite case, {0, 1, ..., r} for affine case),
which we will call the index set. Let A = (aij)i,j∈I be a square matrix with
entries in C. If J ⊆ I is a subset, AJ = (aij)i,j∈J is the principal submatrix.

Definition 18.1. A (minimal) realization of A is a triple (h,Π,Π∨) such that

• ĥ is a C-linear space of dimension dim(h) = 2|I| − rank(A) = |I| +
corank(A).

• Π = {αi}i∈I is L0I0 subset of h∗, where the elements are ”simple roots”
formed by the ”root basis”

• Π∨ = {hi}i∈I is L0I0 subset of h, where the elements are the ”simple
coroots” formed by the ”coroot basis”

• αj(hi) = aij∀i, j ∈ I.

Note: detA ̸= 0 ⇐⇒ rank(A) = |I| ⇐⇒ span (Π) = h∗ ⇐⇒ span (Π∨) = h.

Two realizations (h1,Π1,Π
∨
1 ) and (h2,Π2,Π

∨
2 ) isomorphic if ∃ linear isomor-

phism φ : h1 → h2 such that φ (Π∨
1 ) = Π∨

2 , φ
∗ (Π2) = Π1.

Proposition 18.2. Every A has a realization, unique up to isomorphism. The
realizations of A1 and A2 are isomorphic ⇐⇒ A1, A2 have the same index set
I and are related by permutations of I.

Proof. Let r = rank(A), n = |I|. A has an invertible submatrix AJ where
|J | = r. Map I bijectively to {1, 2, ..., n}. Reordering rows and columns, we

get matrix Ã =

Å
A11 A12

A21 A22

ã
where the top left block is or dimension r × r,

the bottom right is of dimension (n − r) × (n − r), and det(A11) ̸= 0. Let

C =

Ñ
A11 A12

A21 A22

0
Idn−r

0 Idn−r 0

é
, which has detC = ±det(A11) ̸= 0. Set

h = C2n−r.
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For 1 ≤ i ≤ n, define hi to be the i-th row of C ∈ h, and define αi ∈ h∗ by
αi(x1, ..., x2n−r) = xi. We can now check that this defines a realization of Ã.
Now apply the inverse map {1, 2, ..., n} → I to get a realization of A.

Exercise 18.3. Show uniqueness statements.

Given A1, A2 with realizations (h1,Π1,Π
∨
1 ) and (h2,Π2,Π

∨
2 ), A1⊕A2 =

Å
A1 0
0 A2

ã
has the realization

(h1 ⊕ h2, (Π1 × {0}) ∪ ({0} ×Π2) , (Π
∨
1 × {0}) ∪ ({0} ×Π∨

2 ))

Call A decomposable if (after permuting I) A = AJ ⊕ AI\J where ⊊ J ⊊ I.

Call A indecomposable otherwise. Two decomposable examples are

Å
2 0
0 2

ã
,

Å
0 0
0 0

ã
,

and two indecomposable examples are

Å
2 −1
−1 2

ã
and

Å
2 0
−1 2

ã
.

Set Q = spanZΠ = {
∑

i∈I kiαi|ki ∈ Z} the root lattice and Q+ = spanZΠ =
{
∑

i∈I kiαi|ki ∈ Z≥0}. For α =
∑

i∈I kiαi ∈ Q, define ht(α) =
∑

i∈I kiαi

the height. The partial ordering of h∗ is given by: λ ≥ µ :⇐⇒ λ − µ ∈ Q+,
λ > µ :⇐⇒ λ ≥ µ and λ ̸= µ.

18.2 Auxiliary Lie Algebra

Given A = (aij)i,j∈I and realization (h,Π,Π∨), define g̃ = g̃(A) = g̃(A, h,Π,Π∨)
as follows:

• Generators: {ei, fi}i∈I , h, the Chevalley generators.

• Relations: [ei, fj ] = δijhi, [h, h
′] = 0, [h, ei] = αi(h)ei, and [hi, fi] =

−αi(h)fi where i, j ∈ I, h, h′ ∈ h, i ∈ I.

Remark 18.4. 1. For now, there are no Serre relations like ad(ei)
1−aij (ej) =

0 for i ̸= j.

2. Up to isomorphism, g̃ only depends on A, not on (h,Π,Π∨).

3. Later on, we make more assumptions on A.

4. Involutive Lie algebra automorphism ω̃ : g̃ → g̃ is given by ω̃(ei) =
−fi, ω̃(fi) = −ei, ω̃(h) = −h for i ∈ I, h ∈ h.

Set A =

Å
2 −2
−2 2

ã
, I = {0, 1},dim(h) = 3,Π∨ = {h0, h1},Π = Π = {α0, α1} ⊂

h∗, h = Ch0 ⊕ Ch1 ⊕ Cd with α0(h0) = 2, α0(h1) = −2, α0(d) = 1, α1(h0) =
−2, α1(h1) = 2, and α1(d) = 0. Let g be a Lie algebra generated by e0, e1, f0, f1, h,
with h ⊆ as an abelian Lie subalgebra. Furthermore, we have relations [ei, fj ] =
δijhi, [h0, e0] = 2e0, [h0, e1] = −2e1, [d, e0] = e0, [d, e1] = 0 and similar relations
for h1.
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Let’s recover some relations of ŝl
ext

2 . We will see ŝl
ext

2
∼= some quotient of

g

Å
2 −2
−2 2

ã
of g̃

Å
2 −2
−2 2

ã
.

Here are some basic properties:

Theorem 18.5. Set ñ+ = C⟨{ei}i∈I , ñ
− = C⟨{fi}i∈I .

1. ñ+ are freely generated by the indicated generators.

2. Triangular decomposition g̃ = ñ− ⊕ h⊕ ñ+ (as h-modules).

3. Root space decomposition ñ± =
⊕

α∈Q+\{0}, Vα = {v ∈ V |h·v = α(h)v∀h ∈
h} for any h-module V , h = g̃0, and g̃α <∞ for all α ∈ Q.

4. The set {i ⊆ g̃(A)|i ideal, i ∩ h = 0} has unique maximal element r, and
n = (r ∩ ñ+)⊕ (r ∩ ñ−) (as ideals).

Proof. We provide a sketch: Set V = spanC{vi}i∈I . Given λ ∈ h∗, define g̃-rep
on T (V ) = C⊕ V ⊕ (V ⊗ V )⊕ ....

• fi · a = vi ⊗ a for a ∈ T (v), i ∈ I.

• h · 1 = λ(h) for h ∈ h, ei · 1 = 0 for i ∈ I.

• By induction with respect to s ∈ Z>0, h·(vj⊗a) = −αj(h)vj⊗a+vj⊗(h·a)
and ei · (vj ⊗ a) = δijhi · a+ vj ⊗ (ei · a) for a ∈ V ⊗(s−i), i, j ∈ I, h ∈ h.

Exercise 18.6. Prove it defines a rep of g̃ on T (V ).

1. Assignment fi 7→ vi (i ∈ I) defines an algebra homomorphism U(ñ−) ↠
T (V ). T (V ) is free, and U(n̂−) ∼= T (V ). The PBW theorem gives ñ− is
freely generated by {fi}i∈I . Use ω̃ to go to ñ+.

2. Use g̃-relations to see a Lie product of s ∈ Z≥0 elements of {eifi}i∈I ∪ h
lies in ñ− + h + ñ+. Suppose 0 = x− + h + x+ where x± ∈ ñ+, h ∈ h.
We have 0 = (x− + h + x+) · 1 = x− · 1 + λ(h) =⇒ λ(h) = 0 for any
λ ∈ h∗ =⇒ h = 0. T (V ) ∼= U(ñ−) =⇒ x− 7→ x− · 1 is the canonical
embedding ñ− ↪→ U(ñ−) =⇒ x− = 0 =⇒ x+ = 0. So the g̃-relations
=⇒ decomposition as h-modules.

3. Using [h, ei], [h, fi] we get the root space decomposition for ñ±. By combi-
natorial argument, dim g̃±α ≤ |I|ht(α) <∞ for α ∈ Q+\{0}. Additionally,
we get dim(h) = |I|+ rank(A) <∞, and h ⊆ g̃0 is an equality by part 2.

4. h is abelian and finite dimensional =⇒ submodules of h-module g̃ have
root space decomposition =⇒ ∀i ⊂ g̃ ideal i =

⊕
α∈Q(g̃(A)α∩ i). Set r :=

sum of all ideals i such that i ∩ h = 0. Then r ∩ h = 0 and r is maximal.
Part 2 impies r = (r ∩ ñ+)⊕ (r ∩ ñ−) as h-modules.

Example 18.7. Show [fi, r ∩ ñ+] ⊆ ñ+, deduce r ∩ ñ+ is an ideal of ĝ.
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This implies r = (r ∩ ñ+)⊕ (r ∩ ñ−) as ideals of ĝ.

18.3 Kac-Moody Algebras

From part 4 of the previous theorem, define g = g(A) = g̃(A)/r and n±(A) :=
n±(A)/(ñ±(A) ∩ r).

Note: all ideals of g has nonzero intersection with h, and we will use the same
notation {ei, fi}i∈I , h for generators of g. Relations of g̃ give relations for g.

Remark 18.8. If A is a Cartan matrix, g(A) will just be the finite dimensional
simple Lie algebra g with A as its Cartan matrix.

The earlier theorem implies:

• g′(A) := [g(A), g(A)] is generated by {ei, fi}i∈I and hi = [ei, fi].

• g(A) = g′(A) + h(A)

• g′(A)∩h(A) = spanCΠ
∨ =: h′(A) where spanCΠ

∨ =
⊕

i∈I Chi. So g′(A)∩
g(A)α = g(A)α if α ̸= 0.

• ω̃(r) ⊆ r =⇒ ω̃ descends to involution ω : g(A) → g(A), ω(ei) =
−fi, ω(fi) = −ei, and ω\h = −id(h).

• g(A) = n− ⊕ h ⊕ n+ with n± =
⊕

α∈Q+\{0} g(A)±α, where g(A)±α =

g̃(A)±α. The Q-graded Lie algebra is [g(A)α, g(A)β ] ⊆ g(A)α+β.

• mult(α) := dim(g(A)α) = dim(g(A)−α) for α ∈ Q+. The basic estimate
is mult(α) ≤ |I|ht(α) and the finite case is mult(α) = 1.

• Root system: Φ := {α ∈ Q|α ̸= 0,mult(α) > 0} where Φ = Φ+ ∩
(−Φ+) ,Φ+ = Φ∩Q+. We have n+(A)α = spanC{[ei1, [ei2, . . . , [ei(s−1), eis] . . .]] |
αi1 + · · · + αis = α} for s ∈ Z>1. This implies gαi = Cei and gsαi = 0.
We can proceed similarly for n−.

Consider the class of all triples (g, h,Π,Π∨) such that

• g Lie algebra over C, h ⊂ g finite dimensional abelian subalgebra

• Π∨ = {hi}i∈I ⊂ h and Π = {αi}i∈I ⊆ h∗ are linearly independent

• g is graded by h ∪ {ei, fi}i∈I subject to the relations.

• All nonzero ideals i ⊂ g contain a nonzero element of h.

• A := (αj(hi))i,j∈I satisfies dim h = |I|+ corank(A).

The notion of isomorphism is as follows: (g1, h1,Π1,Π
∨
1 ) ∼ (g2, h2,Π2,Π

∨
2 )

iff: ∃ Lie algebra isomorphism φ : g1 → g2 such that φ(h1) = h2, φ (Π∨
1 ) =

Π∨
2 , φ

∗ (Π2) = Π1.

The notion of ⊕ is direct sum of g, h, and the disjoint union of Π,Π∨.
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Proposition 18.9 ([@kac theorem 1.4). ]

The asignment A 7→ (g(A), h(A),Π,Π∨) and the assignment (g, h,Π,Π∨) 7→
A := (αj(hi))i,j∈I defines a bijection

{square matrices over C}/relabelling index sets
∼→ {tuples satisfying above conditions}/ ∼

compatible with ⊕. ]

Goal 1: describe the ideals.

Proposition 18.10 ( [@kac theorem 1.6). ]

1. Z(g) = {x ∈ h|∀j ∈ I, αj(x) = 0}.

2. dim(Z(g)) = corank(A).

3. Z(g) ⊂ h′.

]

Proof.

1. If x ∈ Z(h), then [h, x] = 0∀h ∈ h =⇒ x ∈ g0 = h. Hence 0 =
[x, ej ] = αj(x)ej =⇒ αj(x) = 0. Conversely, if αj(x) = 0 for x ∈ h,
[x, ej ] = [x, fj ] = 0 = [x, h]∀h ∈ h.

2. Since {αj}j∈I is linearly independent, dim(Z(g)) = dim(h)−|I| = corank(A).

3. Let {c(s)}1≤s≤corank(A) be a basis for Ker(At) = Coker(A). Then one

checks {
∑

i∈I c
(s)
i hj}1≤s≤corank(A) is a linearly independent subset of Z(g)∩

h′ =⇒ dim(Z(g) ∩ h′) ≥ corank(A) =⇒ Z(g) ⊂ h′.

Call A connected if ∀j, k ∈ I such that j ̸= k, ∃i0, i1, ..., iℓ ∈ I, j = i0, k = iℓ,
and ai0i1 , ai1i2 , ..., aiℓ−1iℓ ̸= 0. The distance between j and k is the minimum
of such ℓ.

Example 18.11.

Å
2 −1
0 2

ã
is not connected because there is no path down from

2 to 1.

Ñ
2 −1 0
−1 2 −1
0 −1 2

é
is connected.

Proposition 18.12 ( [@kac prop 1.7). ]

1. If i is an ideal of g, then (g is ”almost simple”) either i ⊆ Z(g) or g′ ⊆ i.

2. g(A) is simple ⇐⇒ detA ̸= 0.

]

Proof.
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1. Assume i ⊊ Z(g). Need to show ∀k ∈ I, ek, fk ∈ i. Because i ∩ h ̸= 0,
choose h ∈ i ∩ h, h /∈ Z(g). ∃j ∈ I such that αj(h) = 0 =⇒ [h, ej ] =
αj(h)ej , [h, fj ] = −αj(h)fj =⇒ ej , hj , fj ∈ i. Use connectedness and
adjoint action of h′ to show eh, fh ∈ i for all k. (induction with respect to
distance).

2. By the previous prop, dim(Z(g)) = corank(A). Also, codim(g′) = corank(A).
Hence if A invertible, Z(g) = 0, g′ = g.

Exercise 18.13. If ∀j, k ∈ I, ajk = 0 =⇒ akj = 0, then show A indecom-
posable ⇐⇒ A connected. Hint: connectedness is equivalence relation on I.
Reorder I accordingly.

For suitable A, we can deduce the Serre relations.

Lemma 18.14 ( [@kac lemma 1.5). ] Let x ∈ n− such that ∀k ∈ I, [ek, x] = 0
then x = 0. ]

Remark 18.15. By appplying ω we get similar result for n+.

Proof. Let F =
⊕

j∈I Cfj ⊂ n− subspace. Let i =
∑

ℓ,m∈Z≥0
(adF )ℓ(adh)mx ⊆

n−.

Claim: i is an ideal.

Because i ∩ h = 0, i = 0, so x = 0.

Exercise 18.16. Prove that i is an ideal.

Goal 2: Assume A is indecomposable. Decide for which A we get Serre relations
in g(A): if i, j ⊂ I, i ̸= j, ad(ei)

1−aij (ej) = 0 = ad(fi)
λaij (fj) and relations

with i⇐⇒ j but no other relations involving just ei, ej, or just fi, fj. Clearly, we
need aij ∈ Z≥0 for all i, j with i ̸= j. (aij = 1 =⇒ ej = 0 = fj =⇒ hj = 0).
Use ω to get relations for ei, ej from relations for fi, fj. View g as a module over
U(gi) (adjoint action) gi = C⟨ei, fi, hi⟩. By the lemma, the desired relations are
obtained if

∀k ∈ I, [ek, f
1−aij

i · fj ] = 0

where the · is the action of U(gi).

We also require f ℓi · fj ̸= 0∀ℓ < 1− aij. Only nontrivial cases: k = i or k = j.

For k = i:
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Exercise 18.17. Show in U(gi), we have [ei, f
m
i ] = mfm−1

i (hi +
1−m
2 aii) for

m ∈ Z>0. ¡/1¿

Hence

[ei, f
1−aij

i · fj ] = ei · (f
1−aij

i · fj)

= [ei, f
1−aij

i ] · fj

= (1− aij)f
−aij

i

(
hi + aij

aii
2

)
· fj

= (1− aij)aij

(aii
2

− 1
)
f
−aij

i · v.

By indecomposability, ∃j such that aij ̸= 0 =⇒ aii = 2 ( =⇒ gi ∼= sl2).

For k = j: [ej , f
1−aij

i · fj ] = ad(fi)
1−aij (hj). If aij = 0, this equals [fi, hj ] =

ajifi, need aji = 0. If aij < 0, this equals ad(fi)
−aij (ajifi) = 0.

Definition 18.18. Call A = (aij)i,j∈I a generalized Cartan matrix if aii =
2, i ̸= j =⇒ aij ∈ Z≤0, and aij = 0 =⇒ aji = 0. Call g(A) a Kac-Moody
algebra. ¡/0¿

Remark 18.19. 1. For suitable A, we will see that there is a presentation
of g(A) involving Serre relations.

2. If A is a generalized Cartan matrix then for all J ⊆ I, AJ := (aij)i,j∈J is
a generalized Cartan matrix.

18.4 Types of Kac-Moody Algebras and Generalizations

Finnite type: If A is a generalized Cartan matrix and det(AJ) > 0 for all
J ⊆ I, then it is an ordinary Cartan matrix, called general Cartan matrix
of finite type.

Example 18.20. (2),

Å
2 0
0 2

ã
,

Å
2 −1
−1 2

ã
,

Å
2 −1
−2 2

ã
,

Å
2 −1
−3 2

ã
, sl2, sl2 ⊕

sl2, sl3, so5/sp4, g2, etc.

Since g(A) is simple (A is invertible) we have the Lie algebra homomorphism

φ : (finite dimensional simple Lie algebras with Cartan matrix A) → g(A)

with kerφ = 0, imφ = g(A), and mappings ei 7→ ei, fi 7→ fi, hi 7→ hi. This
implies φ is an isomorphism and dim(g(A)) <∞.

There are two important generalizations:

1. Relax conditions on generalized Cartan matrix to aii ∈ {2} ∪ Z≤0, aij ≤ 0
if i ̸= j, aij ∈ Z if aii = 2, and aij = 0 =⇒ aji = 0 (not neccesarily
integer). Then we can define generalization of g(A) called Borcherds
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algebra. The Serre relations ad(ei)
1−aij (ej) = 0 are imposed only if

aii = 2. (If aij = 0 you can only impose [ei, ej ] = 0 and similarly for
fi, hi.) This was used by Borcherds in the proof of the Conway Norton
conjectures on the representation theory of the ”monster” simple group.

2. Allow aij ∈ Z≥0 for certain i, j with i ̸= j provided that aij and aji have
the same sign. The Serre relations are replaced by

ad(ei)
1+aij (fj) = 0

ad(fi)
1+aij (ej) = 0

ad(ei)(ej) = 0

ad(fi)(fj) = 0.

The resulting algebras are called generalized intersection matrix al-
gebras. These also arise as fixed point subalgebras of Cartan involutions
on Kac-Moody algebras.

If A = (aij)i,j∈I is a generalized Cartan matrix such that all principal minors
AJ = (aij)i,j∈J with J ⊆ I have det(AJ) > 0 then call A ”of finite type,”
then g(A) is finite dimensional and semisimple. The classication is in terms
of Dynkin diagrams. The ordered multigraph Γ(A) such that {vertices} =
I∀i, j ∈ I, i ̸= j:

INSERT DIAGRAMS

Definition 18.21. A generalized Cartan matrix A = (aij)i,j∈I is called of
affine type if

• detA = 0

• detAJ > 0∀J ⊊ I ⇐⇒ detA = 0 and ∀i ∈ I, AI\{i} is of finite type.

We can use the classifications of generalized Cartan matrices of finite type to
gegt classificiation generalized Cartan matrices of affine type.

Example 18.22. |I| = 1, A = (2) is of finite type (sl2).

Exercise 18.23. Show all generalized Cartan martices A with |I| = 2 of affine
type are Å

2 −2
−2 2

ã
,

Å
2 −1
−4 2

ã
,

Å
2 −4
−1 2

ã
.

Add
i·=

j
·⇐⇒ aij = aji = −2 and

i·⇛
j
·⇐⇒ aij = −1, aji = −4.

Assume A is indecomposable. To help with the classification, note the following
about generalized Cartan matrices of finite type:

• Only one branch point can occur with only three branches (also length of
the two branches is constrained)
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• Only one non-simple edge can occur · =⇒ · or · ⇛ · (length of one of the
two branches is constrained)

• No cycles can occur

Thus, the Dynkin diagrams of affine type are:

INSERT DIAGRAM

We have the ”Dynkin” notation with : subscript = rank(A) = |I| − 1 =
dim h(A)− 2.

We also have the ”Kac” notation X
(m)
r which refers more precisely to the con-

struction of the affine Kac-Moody algebra as the extesnion of the untwistied/twisted
loop algebra of a finite dimensional simple Lie algebra gfin where X = Lie type
of gfin, r = rank of gfin, and m = order of automorphism of gfin.

Recall the construction of ext affine Lie algebras: we have g(A) = gfin a finite
dimensional simple Lie algebra, which gives ĝextfin = (gfin ⊗C[z, z−1])⊗Cc⊕Cd.
We have

A Â

sl2 (2)

Å
2 −2
−2 2

ã
sl3

Å
2 −1
−1 2

ã Ñ
2 −1 −1
−1 2 −1
−1 −1 2

é
sp4

Å
2 −2
−1 2

ã Ñ
2 −1 0
−2 2 −2
0 −1 2

é
We dfeined a new sl2 triple {e0, f0, h0} ⊂ ĝfin ⊂ ĝextfin which gives a simple root of
a0 = δ−θ, where δ gives slhfin

= 0, δ(c) = 0, δ(d) = 1, and θ is the highest root of
gfin. We also have new generators {ei, fi, hi}ri=0∪{d} that satisfy the Kac-Moody

relations, and that all ideals of ĝextfin contain element of ĥextfin = hfin ⊕ Cc ⊕ Cd.
Set Â = (αj(hi))

r
i,j=0. We can verify

dim ĥextfin = |I|+ corank
Ä
Â
ä
.

Exercise 18.24. Show that rank
Ä
Â
ä
= r, using linear independence of {αi}ri=0.

So we have a trichotomy of generalized Cartan matrices into finite, affine, and
indefinite types, where the affine and indefinite types are together called the
infinite type. In [@kac] and [@carter] these three types are defined in a different
way, using the action of A on vectors of nonnegative real numbers.
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Proposition 18.25 ( [@kac proposition 4.7). ] The two definitions are equiva-

lent if A is symmetrizable: ∃(ϵi)i∈I ∈ (Q×)
I
such that ∀i, j ∈ I, ϵi ·aij = ϵj ·aji

(exists a diagonal invertible matrix D such that DA is symmetric). ]

Exercise 18.26. 1. Show, wlog, can assume {ei} are setwise coprime inte-
gers.

2. Find such (ϵi)i∈I forÅ
2 −1

−m 2

ã
,

Ñ
2 −1 0
−2 2 −1
0 −2 2

é
,

Ñ
2 −1 0
−2 2 −2
0 −1 2

é
,

Ñ
2 −2 0
−1 2 −1
0 −2 2

é
where m ∈ Z>0.

Here is a collection of facts:

Proposition 18.27. 1. A generalized Cartan matrix A is symmetrizable ⇐⇒
∀{i1, ..., ik} ⊆ I, ai1i2ai2i3 ...aiki1 = ai2i1ai3i2 ...ai1ik .

2. ϵi > ej ⇐⇒ orientation in finite/affine Dynkin diagrams.

3. If A is of finite or affine type, then it is symmetrizable.

18.5 Invertible Symmetric Bilinear Form on g(A)

Assume A is indecomposable, and A is symmetrizable ( =⇒ i, j, 1
ϵj
aij =

1
ϵi
aji).

Define a symmetric bilinear form on spanC{hi}i∈I = h′:

(hi|hj) :=
1

ϵj
aij .

Extend to a symmetric bilinear form on h(A) by choosing a complement h′′

(h = h′ ⊕ h′′) and set (x|hj) = ϵ−1
j αj(x)∀x ∈ h(A).

Proposition 18.28 ( [@carter 16.1). ] This form is nondegenerate: ∀y ∈
h, (x|y) = 0 =⇒ x = 0. ]

Example 18.29. For ŝl
ext

2 , Â =

Å
2 −2
−2 2

ã
with ϵ0 = ϵ1 = 1, and (h0|h0) =

2 = (h1|h1), (h0|h1) = −2.

Choose α ∈ ĥext\(Ch0 ⊕ Ch1) such that α0(d) = 1, α1(d) = 0 =⇒ (d|h0) =
1, (d|h1) = 0, and (d|d) = 0.

We have a canonical linear isomorphism ν : h(A) → h(A)⋆:

ν(h)(h′) = (h|h′)

with h, L′ ∈ h(A).
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Exercise 18.30. Show ∀i ∈ I, αi = ϵiν(hu).

This gives nondegenerate bilinear form on h(A)∗ by (ν(h)|ν(h′)) := (h|h′) where
h, h′ ∈ h(A) which satisfies

(αi|αj) = (ϵiν(hi)|ϵjν(hj))
= ϵiϵj(hi|hj)
= ϵiaij

= ϵjaji.

This implies (αi|αi) = 2ϵi (ei proportional to ”squared length” of αi) and sym-
metrizability corresponds to having a consistent assignment of length of simple
roots.

Proposition 18.31 (@carter theorem 16.2). g(A) has a nondegenerate invari-
ant symmetric bilinear form.

Proof. We will sketch the proof. Start with a principal grading of g(A): g =⊕
h∈Z g[h] where g[h] =

⊕
α∈Q,ht(α)=h gα,ht

(∑
i∈I miαi

)
=
∑

i∈I mi ∈ Z. Re-

cursively define (·|·) by induction with respect to |h| ∈ Z≥0. For h = 0: Cartan
subalgebra h(A).

For |h| = 1, set g[−1, 0, 1] := g[−1] ⊕ g[0] ⊕ g[1], where g[1] =
⊕

i∈I Cei and
g[−1] =

⊕
i∈I Cfi. Extend (·|·) from g[0] = h to g[−1, 0, 1]:

(fi|ej) = (ej |fi) =
1

ϵi
δij

(ei|h) = (h|ei) = (fi|h) = (h|fi) = 0

For invariance, one example:

(hi|[ej , fk]) = (hi|δjkhj) = δjk
1

ϵj
aij

([hi, ej ]|fk) = (aijej |fk) = aij
1

ϵj
δjk.

For nondegeneracy: let i = {x ∈ g|∀y ∈ g, (x|y) = 0}.

Exercise 18.32. Use invariance of (·|·) to show i is an ideal.

Now it follows: if i ̸= 0,∃h ∈ h\{0}, h ∈ i. But (·|·)|h×h is nondegenerate, so
i = 0.

Remark 18.33. 1. The form constructed here (ei|fj) = 1
ϵi
δij is called the

standard invariant form. This is not equal to Killing form of g(A) if
A is of finite type.
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2. Later, we will use (·|·) to define the generalization of the Casimir element,
acting on suitable representations.

Exercise 18.34. Show that (gα|gβ) = 0 if α ̸= −β and deduce (·|·)|gα×g−α is
nondegenerate.

Proposition 18.35. Suppose x ∈ gα, y ∈ g−α both nonzero. Then [x, y] =
(x|y)ν−1(α) ∈ h\{0}.

Proof. Let h ∈ h be arbitrary. Consider

([x, y]− (x|y)ν−1α|h) = ([x, y]|h)− (x|y)(ν−1(α)|h)
= (x|[y, h])− (x|y)α(h)
= 0.

So with nondegeneracy, [x, y] = (x|y)ν−1(α).

19 Representation Theory of Kac-Moody Alge-
bras

19.1 Integrable Modules of g(A)

Let V be a vector space over C. Call a ∈ End(V ) locally nilpotent if ∀v ∈
V,∃m ∈ Z≥0 such that am(v) = 0. Then exp(a) = IdV + a + 1

2a
2 + ... is well-

defined, invertible, and linearly independent. Additionally, we have exp(a)t =
exp(ta) for t ∈ Z.

Remark 19.1. For dim(V ) <∞: nilpotent ⇐⇒ locally nilpotent.

Example 19.2. d
dx : C[x] → C[x] is locally nilpotent, but not nilpotent.

Exercise 19.3. Let g be any Lie algebra over C with generating set {yj}. Sup-
pose x ∈ g such that ∀j,∃mj ∈ Z≥0 with ad(x)mj (yj).

1. Show that ad(x) : g → g is locally nlipotent. Hint: show ad(x)m([y, x]) =∑m
ℓ=0

(
m
ℓ

)
[ad(x)ℓ(y), ad(x)m−ℓ(z)]∀y, z ∈ g.

2. Show exp(ad(x)) : g → g is a well-defined Lie algebra automorphism.

3. If g = g(A), A a generalized Cartan matrix, show that ad(ei) and ad(fi)
are locally nilpotent for all i ∈ I.

Let X be any associative C-algebra. Fix a ∈ X. Define ad(a) := ℓa − ra :
X → X a linear map, where ℓa and ra are left and right mutliplication by
a, respectively. We have ℓa = ad(a) + ra, so by the binomial theorem, akx =∑k

s=0

(
k
s

)
ad(a)s(x)ak−s∀x ∈ X, k ∈ Z≥0, which implies that exp(a)·x = exp(ad(a))(x)·

exp(a).
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Define Ad(y) by conjugation by y. Then Adexp(a) = exp(ad(a)) ∈ GL(X).
We take X = End(V ), where V is a g(A)-module where ei and fi act locally
nilpotently. View exp(ei), exp(fi) as elements in a group associated to g(A).
This gives the Kac-Moody group G(A).

Fix i ∈ I and take gi = ⟨ei, fi⟩ ∼= sl2. The interesting element of GL(V ) :

Ti = T
(V )
i = exp(ei) ◦ exp(−fi) ◦ exp(ei). THe identity is ei =

Å
0 1
0 0

ã
, fi =Å

0 0
1 0

ã
, then Ti =

Å
0 1
−1 0

ã
∈ SL2(C). Additionally, we have ni = Ad(Ti) =

exp(ad(ei)) ◦ exp(−ad(fi)) ◦ exp(ad(ei)) ∈ AutLie(g(A)).

Exercise 19.4. Show (in gi): ni(ei) = −fi, ni(fi) = −ei, ni(hi) = −hi.

Suppose ∃ finite dimensional irreducible submodule U ⊆ V (as g-module) where

dim(U) = n,U =
⊕n−1

s=0 f
s
i · ut where u0 is the highest weight vector ei(u

+) = 0
(similarly, define u− := fn−1

i (u+) as the lowest weight vector), ni is a surjective
Lie algebra homomorphism gi → gi, and

Tiu
− = Tif

n−1
i (u+)

= ni(fi)
n−1Ti(u

+)

= (scalar)en−1
i Ti(u

+)

Definition 19.5. A g(A)-weight module is a g(A)-module V such that V =⊕
λ∈h(A)∗ Vλ where Vλ = {v ∈ V |h · v = λ(h)v∀h ∈ h(A)} is the weight space.

Furthermore, define SuppV = {λ ∈ h(A)∗|Vλ ̸= 0} and multV (λ) = dimVλ ∈
Z≥0 ∪ {∞}. A g(A)-weight module V is called integrable if ei, fi act locally
nilpotently for each i ∈ I.

Example 19.6. • g(A) itself is integrable under the adjoint action.

• A is generalized Cartan matrix of finite type, g(A) is finite dimensional
semisimple, finite dimensional g(A)-modules are integrable modules.

Proposition 19.7. If V is an integrable g(A)-module then ∀i ∈ I, V decomposes
as a direct sum of finite dimensional irreducible gi-modules, which are h(A)-
invaraint.

Remark 19.8. Hence, the action of gi ∼= sl2 can be ”integrated” to a action of
SL2(C) via exp.

Proof. We provide a sketch, see [@kac proposition 3.6] or [@carter proposition
19.13] for more details.

It suffices to show that each v ∈ Vλ (where λ ∈ Supp(v)) lies in a direct sum
of gi-modules. Using relations, we can show that U = spanC{fki eℓi · v}k,ℓ∈Z≥0

is
a ⟨g, h⟩-module. Local nilpotency of ei, fi =⇒ dim(U) < ∞. Weyl complete
reducibility gives U =

⊕
j irreducibile finite dimensional gi-module Uj . Because

fki e
ℓ
i · v are weight vectors, we can show Uj is a h-module.
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The invertible map Ti acts on any integrable module V . ∀λ ∈ SuppV , the set

Mi(λ) = (λ+ Zαi) ∩ SuppV

has natural involution, preserving multiplicities, given by

λ+ tαi 7→ λ+ (−λ(hi)− t)αi

for t ∈ Z.

19.2 Weyl Group of g(A)

Assume A is symmetrizable and indecomposable. Fix i ∈ I. We have

ni = Ad(Ti) = exp(ad(ei)) ◦ exp(−ad(fi)) ◦ exp(ad(ei)) ∈ AutLie(g).

Proposition 19.9. ni preserves h = h(A). More precisely,

ni(h) = h− αi(h)hi (⋆)

for h ∈ h.

Proof. Computation, see [@carter proposition 16.11].

Let si := ni|h. From (⋆) it follows that s2i = idh, si(hi) = −hi, and si(h) =
h ⇐⇒ αi(h) = 0 ⇐⇒ (h|hi) = 0. The Weyl group of g(A) is W = ⟨si|i ∈
I⟩ ⊂ GL(h).

Let i ∈ I, x, y ∈ h. Then

(six|siy) = (x− αi(x)hi|y − αi(y)hi)

= (x|y)− αi(x)(hi|y)− αi(y)(x|hi) + αi(x)αi(y)(hi|hi)
= (x|y)− αi(x)ϵ

−1
i αi(y)− αi(y)ϵ

−1
i αi(x) + 2ϵ−1

i αi(x)αi(y)

= (x|y)

which tells us that (·|·) is W -invariant.

Define the action of W on h∗ via: for λ ∈ h∗, w(λ) = λ ◦ w−1, ie. w(λ)(h) =
λ(w−1(h)). Compatible with isomorphism ν : h → h∗ induced by (·|·), w ◦ ν =
ν ◦ w.

Exercise 19.10. Show, using (⋆), that si(λ) = λ−λ(hi)αi where i ∈ I, λ ∈ h∗,
and verify the W -invariance of (·|·) : h∗ × h∗ → C.

Proposition 19.11. ni(gα) = gsi(α)∀α ∈ Φ, i ∈ I. So

[h, ni(x)] = ni([si(h), x])

= ni([h− αi(h)hi, x])

= (α(h)− αi(h)α(hi))ni(x)

= si(α)(h)ni(x).
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This implies dim gα = dim gw(α), w(Φ) = Φ for w ∈W .

We can study the order mij of sisj ∈ W where i, j ∈ I, i ̸= j using the linear
independence of
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