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1 Group Theory I

1.1 Groups and Their Examples

Groups are abstract algebraic structures that model common features of con-
crete objects such as numbers, permutations, linear transformations, symme-
tries, and more.

Definition 1.1. A group G is a set S together with a law of composition
(a binary operation)

m : S × S → S, (a, b) 7→ a · b,

satisfying the following axioms:

1. Identity element: There exists an element e ∈ S such that, for all a ∈ S,

a · e = e · a = a.

2. Inverses: For each a ∈ S, there exists an element b ∈ S such that

a · b = b · a = e.

The element b is the inverse of a and is often denoted by a−1.

3. Associativity: For all a, b, c ∈ S,

(a · b) · c = a · (b · c).

Remark 1.2. The following properties follow directly from the group axioms:

• The identity element e is unique. If e and e′ both satisfy the identity
property, then e = ee′ = e′.

• Each element in S has a unique inverse. If b and b′ are both inverses of
a, then b = b′.

• The cancellation law holds: for all a, b, c ∈ S, if a · b = a · c, then b = c.
Similarly, if b · a = c · a, then b = c. This follows from the existence of
inverses:

a · b = a · c =⇒ a−1 · (a · b) = a−1 · (a · c) =⇒ b = c.

Several structures related to groups arise by relaxing certain axioms:

1. If the axiom of inverses is omitted, the resulting structure is a semigroup.

2. A group in which the law of composition is commutative (i.e., a · b = b · a
for all a, b ∈ S) is an abelian group.

Here are some examples of groups:
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Example 1.3 (The Trivial Group). The set G = {e} with the composition rule
e · e = e. While simple, this is a valid group and serves as a building block in
group theory.

Example 1.4 (Number Systems Under Addition).

(Z,+), (Q,+), (R,+), (C,+),

where the identity is 0 and the inverse of x is −x. However, (N,+) (the natural
numbers under addition) is not a group, as inverses do not exist.

Example 1.5 (A Group With 2 Elements). Let G = {e, x}, where e is the
identity and x satisfies x · x = e. Examples include:

• {0, 1} with addition modulo 2, where 1 + 1 = 0.

• {+1,−1} with multiplication, where (−1) · (−1) = +1.

Example 1.6 (Cyclic Groups). The set Z/n = {0, 1, . . . , n− 1} under addition
modulo n:

(a+ b) mod n =

®
a+ b if a+ b < n,

a+ b− n otherwise.

This is a finite group of order n. Similarly, the set [0, 1) with addition modulo
1 (denoted R/Z) is an infinite cyclic group.

Example 1.7 (Nonzero Numbers Under Multiplication). The sets

Q∗ = Q \ {0}, R∗ = R \ {0}, C∗ = C \ {0},

with the operation of multiplication form groups, where the identity is 1 and
the inverse of x is 1/x. Inside C∗, the set of complex numbers with modulus 1
(denoted S1) also forms a group under multiplication. These groups are abelian.

Example 1.8 (Symmetries and Permutations).

• A permutation of a set A is a bijection f : A → A. The set of all per-
mutations of A, with composition as the operation, forms a group, denoted
Perm(A).

• The symmetric group on n elements, denoted Sn, is the group of all
permutations of the set {1, 2, . . . , n}. For example, S3 has a geometric in-
terpretation as the group of symmetries of an equilateral triangle. These
symmetries include three rotations (including the identity) and three re-
flections.
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Example 1.9 (Matrix Groups).

• The general linear group, GLn(R), is the group of all invertible n × n
matrices with real entries, under matrix multiplication.

• The special linear group, SLn(R), consists of n × n matrices with real
entries and determinant 1. Both groups generalize to matrices with coef-
ficients in C, Q, or Z/n.

1.2 Products of Groups

Definition 1.10. Let G and H be groups. The product group of G and H is
the set

G×H = {(g, h) | g ∈ G, h ∈ H},

with the composition law defined by

(g, h) · (g′, h′) = (gg′, hh′),

where g, g′ ∈ G and h, h′ ∈ H.

Proposition 1.11. If G and H are finite groups with orders |G| = m and
|H| = n, then the product group G×H is a finite group with order |G×H| = mn.

Remark 1.12. The result above generalizes to the product of n finite groups.
Specifically, if G1, G2, . . . , Gn are finite groups with orders |Gi| = mi, then the
product group

G1 ×G2 × · · · ×Gn
is a finite group with order

|G1 ×G2 × · · · ×Gn| = m1m2 · · ·mn.

Definition 1.13. Let {Gi}∞i=1 be an infinite collection of groups. We define the
following:

1. The direct product is given by

∞∏
i=1

Gi = {(a1, a2, . . .) | ai ∈ Gi for all i}.

2. The direct sum is the subset of the direct product defined as

∞⊕
i=1

Gi = {(a1, a2, . . .) | ai ∈ Gi, all but finitely many ai are the identity element of Gi}.

Example 1.14. Let G0 = G1 = G2 = · · · = (R,+), the additive group of real
numbers. Denote an element (a0, a1, . . .) by the formal series

∑
aix

i. Then:

7



1. The direct product
∏∞
i=0 R = RJxK is the set of all formal power series∑∞

i=0 aix
i, with addition defined componentwise.

2. The direct sum
⊕∞

i=0 R = R[x] is the set of polynomials
∑

finite aix
i, where

all but finitely many coefficients ai are zero. Addition is again defined
componentwise.

1.3 Subgroups

Definition 1.15. A subgroup H of a group G is a nonempty subset H ⊂ G
that satisfies the following conditions:

• Closure under composition: For all a, b ∈ H, we have ab ∈ H.

• Closure under inversion: For all a ∈ H, we have a−1 ∈ H.

Since H ̸= ∅, the above conditions imply that the identity element e ∈ H. Thus,
H (with the same operation as G) is itself a group.

Remark 1.16. A subgroup H of G is proper if H ⫋ G.

Let’s take a look at some examples of subgroups:

Example 1.17.

• (Z,+) ⊂ (Q,+) ⊂ (R,+) ⊂ (C,+)

• (Q∗,×) ⊂ (R∗,×) ⊂ (C∗,×) ⊃ (S1,×), where S1 = {z ∈ C | |z| = 1}.

• The trivial subgroup {e} ⊂ G.

• If Hi ⊂ Gi for i = 1, . . . , n, then H1 × · · · ×Hn ⊂ G1 × · · · ×Gn.

•
⊕
Gi ⊂

∏
Gi.

Proposition 1.18. Let a ∈ Z>0. Then the set

Za = {na | n ∈ Z} ⊂ Z

is a subgroup of (Z,+). In fact, every nontrivial subgroup of (Z,+) is of this
form.

Proof. This result follows from the Euclidean algorithm. Let H ⊂ Z be a
nontrivial subgroup, i.e., H ̸= {0}. Then there exists a ∈ H such that a > 0.
Let a0 be the smallest positive element of H. For any b ∈ H, we can write
b = qa0 + r for some integers q ∈ Z and 0 ≤ r < a0 (remainder). Since
b, qa0 ∈ H, we also have r ∈ H.

By the minimality of a0, it must be that r = 0. Thus, b ∈ Za0, and hence
H ⊂ Za0. Conversely, it is clear that Za0 ⊂ H. Therefore, H = Za0.

Thus, every subgroup of (Z,+) is generated by a single element a0.
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Proposition 1.19. If H and H ′ are subgroups of a group G, then their inter-
section H ∩H ′ is also a subgroup of G.

Proof. Since e ∈ H and e ∈ H ′, we have e ∈ H ∩H ′. Thus, H ∩H ′ ̸= ∅. For
any a, b ∈ H ∩H ′, we know that a, b ∈ H and a, b ∈ H ′, so ab ∈ H and ab ∈ H ′.
Therefore, ab ∈ H ∩ H ′. Similarly, a−1 ∈ H ∩ H ′ since inverses are closed in
both H and H ′. Thus, H ∩H ′ is a subgroup.

Remark 1.20. This result generalizes to intersections of arbitrarily many sub-
groups.

Definition 1.21. Let S ⊂ G be a nonempty subset of a group G. The subgroup
generated by S, denoted ⟨S⟩, is the smallest subgroup of G containing S. It is
given by

⟨S⟩ = {a1 · · · ak | ai ∈ S ∪ S−1, 1 ≤ i ≤ k}.

Definition 1.22. A group is cyclic if it can be generated by a single element.

Example 1.23. Examples of cyclic groups include:

1. The groups (Z,+) and (Z/n,+) are cyclic. In fact, these are the only
cyclic groups (up to isomorphism).

2. A more advanced example: The group SL2(Z) can be generated by two
elements:

A =

Å
0 −1
1 0

ã
, B =

Å
1 1
0 1

ã
.

Proposition 1.24 (Cayley’s Theorem). Every finite group G is isomorphic to
a subgroup of the symmetric group Sn for some n.

Proof. Define a map φ : G→ Perm(G) by

φ(g) = mg,

where mg : G→ G is left multiplication by g, i.e., mg(x) = gx for all x ∈ G.

To show φ is a homomorphism, note that for g, h ∈ G, we have

φ(gh)(x) = (gh)x and (φ(g) ◦ φ(h))(x) = g(hx).

By associativity, these are equal, so φ(gh) = φ(g) ◦ φ(h).

If g ̸= g′, then mg(e) = g ̸= g′ = mg′(e), so φ(g) ̸= φ(g′). Thus, φ is injective.
Therefore, G ≃ Im(φ) ⊂ Perm(G) ≃ S|G|.
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1.4 Homomorphisms

Definition 1.25. Given two groups G and H, a homomorphism φ : G→ H
is a map that respects the group operation:

∀a, b ∈ G, φ(ab) = φ(a)φ(b).

This definition immediately implies:

φ(eG) = eH and φ(a−1) = φ(a)−1, ∀a ∈ G.

Remark 1.26. A pedantic way to state φ(ab) = φ(a)φ(b) is by a commutative
diagram:

G×G H ×H

G H

φ×φ

mG mH

φ

Here, the multiplication maps mG and mH denote the group operation in G
and H, respectively. The diagram is commutative, meaning that the two paths
from the top-left corner to the bottom-right corner result in the same map. This
formalizes the idea that it does not matter whether we first multiply in G and
then apply φ, or apply φ first and then multiply in H.

Example 1.27. Examples of homomorphisms include:

• The modulo map: Z ↠ Z/n, a 7→ a (mod n), which sends integers to
their remainder modulo n.

• If n | m, the map Z/m ↠ Z/n defined similarly, e.g., Z/100 → Z/10
maps the last two digits to the last digit.

• The determinant map: det : GLn(R)→ (R∗,×), where det(AB) = det(A) det(B).

Definition 1.28.

• A group isomorphism is a bijective homomorphism.

• A group automorphism is an isomorphism φ : G→ G.

Example 1.29. Examples of isomorphisms include:

• All groups of order 2 are isomorphic: S2 = ({id, (1 2)}, ◦) ∼= ({±1},×) =
(Z/2,+), since their Cayley tables are identical:

◦ e x
e e x
x x e

• (R,+)
∼−→ (R+,×), t 7→ et.
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• (R/Z,+)
∼−→ (S1,×), t 7→ e2πit.

• S3 (the symmetric group on 3 elements) is isomorphic to the group of
symmetries of a triangle.

Definition 1.30. The kernel of a group homomorphism φ : G→ H is the set

ker(φ) = {a ∈ G | φ(a) = eH}.

Proposition 1.31. The kernel of a homomorphism is a subgroup of G.

Proof. Check that ker(φ) contains eG, is closed under the group operation, and
is closed under taking inverses.

Proposition 1.32. A homomorphism φ : G → H is injective if and only if
ker(φ) = {eG}.

Proof. The condition φ(a) = φ(b) is equivalent to a−1b ∈ ker(φ). Thus, if
ker(φ) = {eG}, then φ is injective.

Definition 1.33. The image of a group homomorphism φ : G→ H is the set

Im(φ) = φ(G) = {b ∈ H | ∃a ∈ G such that φ(a) = b}.

Proposition 1.34. The image of a homomorphism is a subgroup of H.

Proposition 1.35. A homomorphism φ : G → H is surjective if and only if
Im(φ) = H.

Remark 1.36. If φ : G→ H is injective, then G is isomorphic to the subgroup
Im(φ) ⊂ H. The isomorphism is given by the map G→ Im(φ), a 7→ φ(a).

Example 1.37. Let a ∈ G be any element of a group G. Then the map φ :
Z→ G, n 7→ an, is a homomorphism with image ⟨a⟩, the subgroup generated by
a.

Definition 1.38. The order of an element a ∈ G is the smallest positive integer
k such that ak = e, if such k exists. If no such k exists, a has infinite order.

Proposition 1.39. If a has infinite order, the powers of a are all distinct,
φ : n 7→ an is injective, and ⟨a⟩ ∼= Z. If a has finite order k, then ker(φ) = kZ
and ⟨a⟩ ∼= Z/k.

Remark 1.40. Do not confuse the order of an element a ∈ G with the order
of the group G, which is the cardinality of G. However, order(a) = |⟨a⟩|.

Example 1.41. The group Z/6 is isomorphic to Z/2× Z/3, with the map

a 7→ (a (mod 2), a (mod 3)).

11



The element (1, 1) ∈ Z/2×Z/3 has order 6, so it generates the group. Similarly,
if gcd(m,n) = 1, then Z/m×Z/n ∼= Z/mn. However, Z/2×Z/2 ̸∼= Z/4 because,
in Z/2× Z/2, x+ x = 0 for all x, whereas in Z/4, 1 + 1 ̸= 0.

1.5 Interlude: Set Theory

Definition 1.42. A map of sets f : S → T is:

• Injective if ∀a, b ∈ S, f(a) = f(b) =⇒ a = b (equivalently, a ̸= b =⇒
f(a) ̸= f(b)). We denote this as f : S ↪→ T .

• Surjective if ∀c ∈ T, ∃a ∈ S such that f(a) = c. We denote this as
f : S ↠ T .

• Bijective if f is both injective and surjective.

Definition 1.43. Two sets S and T have the same cardinality if there exists
a bijection f : S → T . In this case, we write |S| = |T |. If there exists an
injection f : S ↪→ T , we write |S| ≤ |T |.

This notation works because of the following theorem.

Proposition 1.44 (Schröder-Bernstein Theorem). If there exist injective maps
f : S ↪→ T and g : T ↪→ S, then |S| = |T |.

Proof. See Halmos’ Naive Set Theory, page 88, for a complete proof. The proof
constructs a bijection S

∼→ T by using f on a subset of S and g−1 on the
complement.

Example 1.45. The sets N, Z, and Q all have the same cardinality and are
countably infinite.

To define a bijection N→ Z, consider the piecewise function:

f(n) =

®
n
2 if n is even,

−n+1
2 if n is odd.

For Q, we eed to enumerate N× N to establish a bijection between N and Q.

Example 1.46. In contrast, the set R is uncountable, as demonstrated by
Cantor’s diagonal argument. No map f : N→ R can be surjective. To see this,
consider the decimal or binary expansion of the numbers in the image of f :

f(0) = a00a01a02a03 . . .

f(1) = a10a11a12a13 . . .

f(2) = a20a21a22a23 . . .

f(3) = a30a31a32a33 . . .

Now define a number y = b0b1b2b3 . . . where bi ̸= aii for each i. By construction,
y ̸= f(i) for all i ∈ N, so f cannot be surjective.
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The same argument generalizes to show that there are arbitrarily large cardi-
nalities. For any set S, consider its power set P(S) = {subsets of S}, which
satisfies |P(S)| > |S|. We can represent the power set as {0, 1}S, the set of
maps f : S → {0, 1}. This isomorphism is defined as follows:

A 7→ (⊮A : x 7→
®
1 if x ∈ A,
0 if x /∈ A.

)

Conversely, any map f : S → {0, 1} corresponds to the subset f−1(1) ⊂ S.

If S is finite with |S| = n, then |P(S)| = 2n.

What happens if S is infinite?

Proposition 1.47. If S is infinite, then |P(S)| > |S|.

Proof. Given any map f : S → P(S), define the set

A = {x ∈ S | x /∈ f(x)}.

Assume, for contradiction, that A = f(a) for some a ∈ S. Then:

a ∈ A ⇐⇒ a /∈ f(a) = A,

a contradiction. Thus, A /∈ f(S), and f cannot be surjective.

1.6 Classification of Finite Groups

Proposition 1.48. Every finite group G is isomorphic to a subgroup of the
symmetric group Sn for some n.

In fact, we can take n = |G|. While this result establishes that every finite group
embeds into a symmetric group, it is not particularly useful for classifying finite
groups, as subgroups of Sn are notoriously challenging to classify in general.

Proof. Define a map ϕ : G → Perm(G) by ϕ(g) = mg, where mg is the left
multiplication by g given by:

mg : G→ G, x 7→ gx.

To see that mg is a permutation, note that it is a bijection since group multi-
plication is invertible. The map ϕ is a homomorphism because:

ϕ(gh) = mgh, mgh(x) = (gh)x = g(hx),

which is the same as ϕ(g) ◦ ϕ(h) = mg ◦mh.

To show injectivity, assume g ̸= g′. Then:

mg(e) = g ̸= g′ = mg′(e),

so ϕ(g) ̸= ϕ(g′). Hence, ϕ is injective, and we have G ≃ Im(ϕ) ⊂ Perm(G) ≃
S|G|.

13



An important question in group theory is the classification of finite groups up
to isomorphism. This problem becomes increasingly challenging as |G| grows.
Here are some foundational results for small group orders:

• Every group of order 2 is isomorphic to Z/2. This can be verified by
writing out the group operation table.

• Similarly, every group of order 3 is isomorphic to Z/3.

• For groups of order 4, there are exactly two isomorphism classes: Z/4 and
Z/2× Z/2. These groups are distinct:

– In Z/2× Z/2, every nonzero element has order 2.

– In Z/4, there exists an element of order 4.

Hence, these are the only two groups of order 4 up to isomorphism.

The full classification of finite groups was completed in the 1980s and spans
thousands of pages of mathematical work. While we will explore some of the
key tools and concepts in this course, the complete classification is far beyond
our scope.

1.7 Interlude: Equivalence Relations and Partitions

An equivalence relation on a set S is a way to declare certain elements equiv-
alent to each other (denoted ”a ∼ b”), resulting in a smaller set of equivalence
classes ”S/ ∼” (the quotient of S by ∼).

Definition 1.49. An equivalence relation on a set S is a binary relation
(i.e., a map ∼: S×S → {0, 1}, or equivalently a subset of S×S; we write a ∼ b
if and only if (a, b) is in this subset) which satisfies the following properties:

1. Reflexive: ∀a ∈ S, a ∼ a.

2. Symmetric: ∀a, b ∈ S, a ∼ b =⇒ b ∼ a.

3. Transitive: ∀a, b, c ∈ S, if a ∼ b and b ∼ c, then a ∼ c.

The equivalence class of a ∈ S is defined as:

[a] = {a′ ∈ S | a ∼ a′}.

By the transitivity property, all elements of [a] are equivalent to each other.

Proposition 1.50. The equivalence classes form a partition of S. That is,
the equivalence classes are mutually disjoint subsets of S, and their union equals
S.

Definition 1.51. The quotient of S by ∼ is the set of equivalence classes:

S/∼ = {[a] | a ∈ S} ⊂ P(S),
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where P(S) is the power set of S. This comes with a natural surjective map:

S → S/∼, a 7→ [a].

Example 1.52.

1. Let S = Z. For a fixed n ∈ Z>0, define a ∼ b if and only if n | (b − a).
This is the congruence relation modulo n, which can be verified to be an
equivalence relation. The equivalence classes are:

[0] = {. . . ,−n, 0, n, 2n, . . .} = nZ, [1] = {. . . , 1− n, 1, 1 + n, 1 + 2n, . . .},

continuing up to [n − 1]. There are n distinct equivalence classes. The
quotient is naturally in bijection with Z/n:

Z↠ Z/∼ ≃ Z/n, a 7→ [a].

Although Z/n is often written as {0, . . . , n − 1} to avoid the language of
equivalence classes, it is more accurate to redefine it as the quotient set.

2. Given a map f : S → T , define a ∼ b if and only if f(a) = f(b). This is
an equivalence relation, and the partition into equivalence classes is:

S =
⊔
t∈T

f−1(t) = {a ∈ S | f(a) = t},

where the disjoint union is taken over t ∈ f(S) ⊂ T . The map f naturally
factors through the quotient:

S ↠ S/∼ ↪→ T, a 7→ [a] 7→ f(a).

If f is surjective, then S/∼ ≃ T .

Using this conclusion, we observe the following equivalence:

Equivalence relation on S ⇐⇒ Partition of S into disjoint subsets

⇐⇒ Surjective map S → T

(up to composition with a bijection T
∼−→ T ′).

1.8 Cosets and Normal Subgroups

Let φ : G→ H be a surjective group homomorphism. Recall that the kernel of
φ, denoted K = Ker(φ) = {a ∈ G | φ(a) = eH}, is a subgroup of G. Consider
the partition of G induced by φ. We have the following equivalence:

φ(a) = φ(b) ⇐⇒ φ(a)−1φ(b) = eH

⇐⇒ a−1b ∈ K
⇐⇒ b ∈ aK = {ak | k ∈ K}.
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Definition 1.53. Given a subgroup K of a group G, the set

aK = {ak | k ∈ K} ⊂ G

is the left coset of K in G containing a.

Proposition 1.54.

• The relation a ∼ b ⇐⇒ a−1b ∈ K is an equivalence relation on G, and
the equivalence classes are the left cosets of K.

• The quotient, denoted by G/K, is the set of left cosets. Therefore, we have
a partition G =

⊔
aK∈G/K aK.

Proof.

• Reflexivity: For any a ∈ G, we have a−1a = e ∈ K, so a ∼ a.

• Symmetry: If a ∼ b, then a−1b ∈ K. Therefore, (a−1b)−1 = b−1a ∈ K, so
b ∼ a.

• Transitivity: If a ∼ b and b ∼ c, then a−1b ∈ K and b−1c ∈ K. Hence,
(a−1b)(b−1c) ∈ K, so a ∼ c.

Additionally, we can check that b ∈ aK ⇐⇒ ∃k ∈ K such that b = ak ⇐⇒
∃k ∈ K such that a−1b = k ⇐⇒ a−1b ∈ K ⇐⇒ a ∼ b.

Example 1.55. Consider the surjective homomorphism φ : Z ↠ Z/n, a 7→ a
(mod n). The kernel of φ is Zn ⊂ Z. The cosets of Zn are [k] = k + Zn for
0 ≤ k ≤ n−1. We have a bijection Z/Zn ≃ Z/n, where [k] 7→ k. This gives rise
to a group law on the quotient: coset addition corresponds to addition modulo
n.

When a subgroup K is the kernel of a homomorphism φ : G↠ H, we obtain a
bijection G/K ≃ H with aK 7→ φ(a). This bijection provides a group structure
on G/K, where (aK) · (bK) = abK. Thus, the map G ↠ G/K, a 7→ aK is a
group homomorphism.

However, this does not necessarily work for all subgroups K ⊂ G. For example,
it fails for {e, h} ⊂ D4.

Analogous to left cosets, we can also define right cosets:

Definition 1.56. The set

Ka = {ka | k ∈ K} ⊂ G

is the right coset of K in G containing a, and it corresponds to the equivalence
relation a ∼ b ⇐⇒ ba−1 ∈ K.

Remark 1.57. Neither left cosets nor right cosets are subgroups of G (except
for K itself). However, the set aKa−1 = {aka−1 | k ∈ K} is a subgroup.
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Definition 1.58. A subgroup K ⊂ G is a normal subgroup if the left cosets
equal the right cosets, i.e., aK = Ka for all a ∈ G.

In other words, the two equivalence relations a ∼ b ⇐⇒ a−1b ∈ K and
a ∼ b ⇐⇒ ba−1 ∈ K must coincide.

Proposition 1.59. Given a group G and a subgroup K ⊂ G, there exists
a group homomorphism φ : G → H with Ker(φ) = K if and only if K is
a normal subgroup. In this case, G/K inherits a group structure defined by
(aK) · (bK) = abK, and the map G↠ G/K is a group homomorphism.

Proof. ( =⇒ direction): Suppose there exists a homomorphism φ : G → H
with Ker(φ) = K. For any a, b ∈ G, we have φ(a) = φ(b) ⇐⇒ φ(a)−1φ(b) =
e ⇐⇒ φ(a−1b) = e ⇐⇒ a−1b ∈ K, which implies b ∈ aK. Similarly, b ∈ Ka.
Thus, aK = Ka for all a ∈ G, so K is normal.

( ⇐= direction): Assume K is normal. Define an operation on G/K by
(aK) · (bK) = abK. We need to verify that this operation is well-defined: if
aK = a′K and bK = b′K, then a−1a′ ∈ K and b−1b′ ∈ K. It follows that

(ab)−1(a′b′) = b−1a−1a′b′ ∈ K,

using the normality of K. This operation satisfies the group axioms. Further-
more, the map G↠ G/K, a 7→ aK is a well-defined group homomorphism with
kernel K.

Example 1.60.

• Any subgroup of an abelian group is normal.

• In D4, the subgroup {e, h} is not normal. However, the subgroup generated
by the horizontal and vertical reflections is normal, and the quotient is
isomorphic to Z/2.

• In any group G, the center Z(G) = {z ∈ G | az = za for all a ∈ G} is a
normal subgroup. To verify that Z(G) is indeed a subgroup, observe that
for any a ∈ G and z ∈ Z(G), we have a−1za = z for all z ∈ Z(G). This
demonstrates that Z(G) is invariant under conjugation, which is stronger
than normality, where we only require a−1za to lie in Z(G) (not necessarily
equal to z).

Earlier, we discussed the partition of a group G into (left) cosets of a subgroup
H ⊂ G, where aH = {ah | h ∈ H} ⊂ G.

Definition 1.61. The cosets of H in G are the equivalence classes under
the relation a ∼ b ⇐⇒ a−1b ∈ H. The quotient G/H is the set of cosets,
and the index of the subgroup H in G is the number of cosets, denoted by
(G : H) = |G/H|.
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When G is a finite group, each coset has cardinality |aH| = |H|, since the
map a 7→ aH, with h 7→ ah, is a bijection. This implies that the partition
G =

⊔
aH∈G/H aH leads to Lagrange’s Theorem:

Theorem 1.62 (Lagrange’s Theorem). If H is a subgroup of a finite group G,
then

|G| = |G/H| × |H|.

Corollary 1.63. If H is a subgroup of a finite group G, then |H| divides |G|.

Corollary 1.64. For any element a ∈ G in a finite group, the order of a divides
|G|.

Corollary 1.65. If |G| = p is prime, then G ≃ Z/p.

Proof. Take any a ∈ G such that a ̸= e. The order of a is p, so ⟨a⟩ = G, and
G = {e, a, . . . , ap−1}. We define a bijection G

∼−→ Z/p by mapping ak 7→ k
(mod p).

Example 1.66. Consider S3, the group of permutations of {1, 2, 3}. We have:

• e, the identity element, which does nothing, has order 1.

• Three transpositions that swap two elements: (1 2), (2 3), and (1 3), which
are the reflections of the triangle; each has order 2.

• Two 3-cycles: (1 2 3) and (1 3 2), corresponding to rotations by ±120◦;
each has order 3.

The subgroups of S3 have orders 1, 2, 3, or 6, and any subgroup of order 2 or
3 is necessarily cyclic:

• {e} is trivial.

• {e, (1 2)} and two others are isomorphic to Z/2.

• {e, (1 2 3), (1 3 2)} is a subgroup of rotations, isomorphic to Z/3.

• The entire group S3.

Which ones are normal subgroups?

1. {e} and S3 are obviously normal subgroups.

2. {e, (1 2)} is not normal because its conjugate, (1 2 3){e, (1 2)}(1 2 3)−1 =
{e, (2 3)}, is not equal to {e, (1 2)}.

3. {e, (1 2 3), (1 3 2)} ≃ Z/3 is normal: It’s the kernel of the homomorphism

S3

sign
↠ {±1} ≃ Z/2, where rotations map to +1 and reflections map to

−1, corresponding to the determinant of the corresponding 2× 2 matrix.

Definition 1.67. A group G is simple if it has no normal subgroups other
than G and {e}.
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1.9 Exact Sequences

Definition 1.68. A sequence of groups and homomorphisms

· · · → Gi−1
φi−1→ Gi

φi→ Gi+1 → . . .

is an exact sequence if, for all i, the image of φi−1 equals the kernel of φi,
i.e.,

Im(φi−1) = Ker(φi).

This condition means that for each x ∈ Gi, φi(x) = e⇐⇒ ∃a ∈ Gi−1 such that
x = φi−1(a). In particular, we have φi ◦ φi−1 = 0, where 0 denotes the trivial
homomorphism.

Definition 1.69. A short exact sequence is a special case of an exact se-
quence, which has the form

{e} → A
φ→ Gi

ψ→ Gi+1 → {e},

where φ is an injective homomorphism, ψ is a surjective homomorphism, and
Im(φ) = Ker(ψ).

Proposition 1.70. A short exact sequence of the form

{e} → A
φ→ Gi

ψ→ Gi+1 → {e}

exists if and only if there is a normal subgroup K ∼= A of B, such that the
quotient group B/K ∼= C.

The prototypical short exact sequence is given by

1→ K
inclusion→ B

quotient→ B/K → 1.

Example 1.71.

1. For any groups A and C, the following sequence is exact:

{e} → A→ A× C → C → {e}, a 7→ (a, e), (a, c) 7→ c.

2. The sequence

0→ Z/2→ Z/6→ Z/3→ 0, n 7→ 3n, m 7→ m (mod 3)

is exact, as well as the sequence

0→ Z/3→ Z/6→ Z/2→ 0, n 7→ 2n, m 7→ m (mod 2).

3. There exists an exact sequence

{e} → Z/3→ S3
sign→ Z/2→ {e}, n 7→ (123)n,

but there is no exact sequence

{e} → Z/2→ S3
sign→ Z/3→ {e}

because there is no normal subgroup of S3 of order 2.
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1.10 More About Symmetric Groups

Definition 1.72. A cycle σ = {a1 a2 . . . ak} ∈ Sn, where each ai is a distinct
element of {1, . . . , n}, is a permutation that maps a1 7→ a2, a2 7→ a3, . . . ,
ak 7→ a1, and all other elements are mapped to themselves.

Proposition 1.73. Any permutation can be expressed as a product of disjoint
cycles, uniquely up to the reordering of the factors.

Since disjoint cycles commute, the order of multiplication does not matter.

Example 1.74. Ñ
1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
3 5 6 4 2 1

é
= (136)(25)

Proposition 1.75. A k-cycle can be written as a product of (k − 1) transposi-
tions:

(a1 a2 . . . ak) = (a1 a2) ◦ (a2 a3) ◦ · · · ◦ (ak−1 ak)

Therefore, Sn is generated by transpositions (i j) where 1 ≤ i < j ≤ n. In fact,
it is generated by the set of transpositions (1 2), (2 3), . . . , (n− 1n).

The idea for theorems of this kind are as follows: draw σ as

1 2 n

σ(n) σ(2) σ(1)

and then slice it into stacks of

(i i+ 1)

Remark 1.76. Take a look at the bubble sort algorithm.

Permutations are classified as odd or even depending on the length of the ex-
pression of σ as a product of transpositions. This is equivalent to the parity of
the set #{(i, j) | 1 ≤ i < j ≤ n, σ(j) > σ(i)}. This fact is nontrivial, and its
proof can be done by induction.
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The even permutations form a normal subgroup, An = alternating subgroup ⊂
Sn, with the exact sequence:

1→ An → Sn → Z/2→ 1

Let’s see a cool fact. Although A3 ≃ Z/3 and A4 has a normal subgroup
Z/2× Z/2:

Proposition 1.77. An is simple for n ≥ 5

This result is crucial for proving that there is no general formula for solving
polynomial equations of degree n ≥ 5. For instance, the quadratic formula
has a ±

√
· term, and the sign comes from the fact that there is no consistent

choice of square root in C—this ambiguity arises in Z/2 ≃ S2, which permutes
the two roots. The Cardano formula for cubics contains nested roots such as
3
√
· · ·+√. . ., and similar ambiguities involving Z/2 and Z/3 combine to form

an S3 group that permutes the roots. Similarly, the formula for the roots of
a degree 5 equation must incorporate an S5 symmetry. However, expressions
involving radicals like k

√
. . . can only involve cyclic groups Z/k, which cannot

be isomorphic to S5, as A5 is simple.

Here’s another cool fact:

Proposition 1.78. Aut(Sn) ≃ Sn for all n except when n = 2 (Aut(S2) = {id})
and n = 6 (Aut(S6) ⫋ S6).

1.11 Free Groups

We’ve discussed the center Z(G) = {z ∈ G | az = za for all a ∈ G}. Since
elements of the center commute with every element of the group, they also
commute with each other, implying that Z(G) is abelian. Additionally, we have
aZ(G)a−1 = Z(G), so Z(G) is a normal subgroup of G.

Another interesting object is the commutator subgroup:

Definition 1.79. The commutator subgroup is defined as

C(G) = [G,G] =

{
k∏
i=1

[ai, bi] | ai, bi ∈ G

}

where [a, b] := aba−1b−1.

Note that the commutator [a, b] = e if and only if ab = ba.

Proposition 1.80. The commutator subgroup is a normal subgroup of G.

Proof. We compute the conjugate of the commutator subgroup:

g−1
k∏
i=1

[ai, bi]g =

k∏
i=1

[g−1aig, g
−1big] =⇒ g−1C(G)g = C(G) for all g ∈ G.
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Definition 1.81. The quotient G/[G,G] is the abelianization of G.

Since [G,G] contains all commutators [a, b], taking the quotient makes all com-
mutators trivial, i.e., [a, b] = e in the quotient group, which implies that all
elements commute with each other in G/[G,G]. Because [G,G] is generated
by commutators, it is the smallest subgroup of G where this property holds.
Therefore, the abelianization is the largest abelian group onto which G admits
a surjective homomorphism.

Definition 1.82. The free group Fn on n generators a1, . . . , an is the collec-
tion of all reduced words an1

i1
an2
i2
. . . ank

ik
of any length k ≥ 0, where i1, . . . , ik ∈

{1, . . . , n}, ij ̸= ij+1, and n1, . . . , nk are non-zero integers. The law of com-
position is given by juxtaposition, and non-reduced words (where ij = ij+1 for
some j or some nj is zero) are simplified to reduced ones by combining repeated
terms and eliminating unnecessary ones. The identity element is represented by
the empty word of length k = 0.

This is the ”largest” group with n generators, and all other groups with n
generators are isomorphic to quotients of Fn. If G is generated by g1, . . . , gm ∈
G, a homomorphism Fn → G is defined by mapping the word

∏mj

aij
to
∏
g
mj
ij

.

Definition 1.83. A finitely generated group is finitely presented if the kernel
of the homomorphism

∏mj

aij
7→
∏
g
mj
ij

is the smallest normal subgroup of Fn

containing a finite subset {r1, . . . , rk} ⊂ Fn (i.e., the subgroup generated by rj’s
and their conjugates x−1rjx).

If we write G ≃ ⟨a1, . . . , an | r1, . . . , rk⟩, where a1, . . . , an are the generators
and r1, . . . , rk are the relations, then G ≃ Fn/⟨conjugates of r1, . . . , rk⟩.

Example 1.84.

Zn ≃ ⟨a1, . . . , an | aiaja−1i a−1j for all i, j⟩

Example 1.85.
S3 ≃ ⟨t1, t2 | t21, t22, (t1t2)3⟩
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2 Linear Algebra I

2.1 Rings and Fields

Now, we proceed to the study of rings and fields on our way to vector spaces.

Definition 2.1. A (commutative) ring is a set R with two operations + and
×, such that

1. (R,+) is an abelian group with identity 0 ∈ R.

2. (R,×) is a commutative semigroup with identity 1 ∈ R, i.e., 1a = a1 = a
for all a ∈ R, and a(bc) = (ab)c for all a, b, c ∈ R. Additionally, ab = ba
for all a, b ∈ R if the operation is commutative.

3. The distributive law holds: a(b+ c) = ab+ ac for all a, b, c ∈ R.

Definition 2.2. A field K is a commutative ring such that for all a ̸= 0, there
exists b = a−1 such that ab = 1.

For example, (K − {0},×) is an abelian group rather than a semigroup.

Remark 2.3.

• The ring axioms imply 0a = a0 = 0 for all a ∈ R: a0 = a(0+0) = a0+a0.

• The trivial ring R = {0} is the only case where 0 = 1. By convention, this
is not considered a field.

• Most rings of interest to us are commutative, with matrices being the main
exception.

• In a field, ab = 0 implies a = 0 or b = 0, but this is not necessarily true
in a ring.

• In a field, we have the usual cancellation properties for both addition and
multiplication.

Definition 2.4. A ring/field homomorphism is a map φ : R → S that
respects both operations:

φ(a+ b) = φ(a) + φ(b), φ(ab) = φ(a)φ(b), φ(1R) = 1S .

Thus, φ(0) = 0 and φ(−a) = −φ(a). The latter does not follow directly from
φ(ab) = φ(a)φ(b), even for fields; for instance, consider the homomorphism
φ ≡ 0.

Proposition 2.5. If φ : R→ S is a field homomorphism, then φ is injective.

Proof. If a ̸= 0, then there exists b such that ab = 1R, so φ(a)φ(b) = φ(ab) =
1S ̸= 0S , which implies φ(a) ̸= 0R. Therefore, Ker(φ) = {0}, so φ is injective.
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Example 2.6.

• Z, Z/n are rings.

• Q, R, C are fields. Similarly, Z/p for primes p, denoted Fp, is a field. This
is because, for any non-zero k ∈ Z/p, its order is p, so {0, k, 2k, . . . , (p−
1)k} = Z/p, and there exists k ∈ {0, . . . , p− 1} such that lk = 1 (mod p),
providing an inverse.

Definition 2.7. Given a field k, the ring of polynomials in one formal vari-
able x is defined as

k[x] := {a0 + a1x+ · · ·+ anx
n | ai ∈ k, n ∈ N} .

Remark 2.8. In the above definition, x is a formal variable, i.e., not an element
of any set, though we can evaluate a polynomial at any element of a field contain-
ing k. Thus, a polynomial corresponds to a finite tuple (a0, a1, . . . , an, 0, 0, . . . )
of elements from k, with component-wise addition (but not component-wise mul-
tiplication).

Example 2.9. k[x] is not a field, but it can be turned into one by considering
fractions. The field of rational functions is

k(x) =

ß
p

q
| p, q ∈ k[x], q ̸= 0

™
,

where p
q ∼

p′

q′ if pq′ = p′q.

Remark 2.10. This generalizes to polynomials of rational functions in any
number of variables.

Definition 2.11. The ring of formal power series in x is

KJxK =

{ ∞∑
i=0

aix
i | ai ∈ K

}
.

Addition and multiplication in this ring follow the same rules as for polynomi-
als, performed term by term. It is important to check that each coefficient in(∑

aix
i
) (∑

bjx
j
)
is a finite expression.

Lemma 2.12.
∑
aix

i has a multiplicative inverse in KJxK if and only if a0 ̸= 0.

Proof. We seek
∑
i≥0 bix

i such thatÑ∑
i≥0

aix
i

éÑ∑
i≥0

bix
i

é
= 1.
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This results in the following system of equations:

a0b0 = 1,

a0b1 + a1b0 = 0,

a0b2 + a1b1 + a2b0 = 0,

. . .

If a0 = 0, there is clearly no solution. If a0 ̸= 0, we can solve inductively:
b0 = 1

a0
, b1 = −a1b0a0

, and so on. (Each step involves solving for bi = − ...
a0
).

Since every nonzero element of KJxK can be written as amx
m + am+1x

m+1 +
· · · = xm(am + am+1 + . . . ), where am is the first non-zero coefficient and
am + am+1 + . . . is invertible, to obtain a field, we must allow for x−m.

Definition 2.13. The field of Laurent series is

k((x)) =

{ ∞∑
i=m

aix
i | m ∈ Z, ai ∈ K

}
.

Given a field k and a polynomial f ∈ k[x] of degree ≥ 0, we can evaluate f(r)
for r ∈ k and search for roots r ∈ k such that f(r) = 0. If no roots exist in k,
we can form a field K ⊃ k in which f has a root.

Example 2.14.

1. For k = Q, the polynomial x2 − 2 has no roots, but we can form the field
Q(
√
2) := {a+ b

√
2 | a, b ∈ Q}, which is a field.

2. For k = R, the polynomial x2 + 1 leads to the field R(
√
−1) = C.

Given a field k, we always have a ring homomorphism φ : R → k, 1 7→ 1k.
For some fields, this homomorphism is injective. If it is, we say that k has
characteristic zero.

Proposition 2.15. ker(φ : Z→ k) = Zp for some prime p.

Proof. ker(φ) is a subgroup of Z, hence must be of the form Zn. If n is not
prime, we can write n = ab for some integers a, b such that 1 < a, b < n. Then,
φ(n) = φ(ab) = φ(a)φ(b) = 0 ∈ k, but this implies φ(a) = 0 or φ(b) = 0.
Since n is the smallest positive integer such that φ(n) = 0, this leads to a
contradiction.

We say that k has characteristic p if ker(φ) = Zp. This means p·1k = 1+· · ·+1
(with p summands) equals 0.

Thus far, our only example of such a field is Z/p, though there are more.

Proposition 2.16. For all n ≥ 1 and prime p, there exists a unique field with
pn elements (up to isomorphism), and these are all the finite fields.
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There are also infinite fields of characteristic p, such as Z/p((x)).

2.2 Vector Spaces

Definition 2.17. Fix a field k. A vector space over k is a set V with two
operations:

1. Addition +: V ×V → V such that (V,+) is an abelian group with identity
0 ∈ V .

2. Scalar multiplication ·: k × V → V which is associative: (ab)v = a(bv),
1v = v, 0v = 0, and distributive: a(v+ v′) = av+ av′, (a+ b)v = av+ bv.

Definition 2.18. A subspace of a vector space is a nonempty subset W ⊂ V
that is preserved by addition and scalar multiplication, i.e., W +W ⊂ W and
k ·W ⊂W .

In fact, equality = holds instead of ⊂, and the second condition implies 0 ∈W .
Thus, W is also a vector space!

Example 2.19.

• kn = {(a1, . . . , an) | ai ∈ k} with component-wise addition and scalar
multiplication.

• k∞ = {(ai)i∈N | ai ∈ k} (sequences in k) ⊂ {sequences that are eventually zero}.
(This corresponds to polynomials k[x], and power series kJxK).

• Given any set S, kS = {maps f : S → k} (k∞ ⇐⇒ case where S = N).

• {maps R→ R} ⊃ {continuous maps} ⊃ {differentiable maps R→ R}.

Let V be a vector space over k.

Definition 2.20. Given v1, . . . , vn ∈ V , the span of v1, . . . , vn is the smallest
subspace of V that contains v1, . . . , vn. Concretely,

span(v1, . . . , vn) = {a1v1 + · · ·+ anvn | ai ∈ k}.

In this case, we say that v1, . . . , vn span V .

Definition 2.21. We say v1, . . . , vn are linearly independent if

a1v1 + · · ·+ anvn = 0 =⇒ a1 = a2 = · · · = an = 0.

Equivalently, given v1, . . . , vn ∈ V , we have a linear map ϕ : kn → V , (a1, . . . , an) 7→∑
aivi, such that v1, . . . , vn are linearly independent if and only if ϕ is injective,

and v1, . . . , vn span V if and only if ϕ is surjective.

Definition 2.22. The set (v1, . . . , vn) is a basis of V if they are linearly inde-
pendent and span V .

Then any element of V can be expressed uniquely as
∑
aivi for some ai ∈ k.
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Example 2.23. The vectors (0, 1), (1, 0) form a basis of k2. So do (1, 1) and
(1,−1) for most fields k. What if char(k) = 2?

We will see soon that if V has a basis with n elements, then every basis of V
has n elements. We say the dimension of V is dim(V ) = n.

One can also consider infinite-dimensional vector spaces.

Definition 2.24.

• span(S) is the smallest subspace of V containing S, i.e.,

{a1v1 + · · ·+ akvk | k ∈ N, ai ∈ k, vi ∈ S}

(all finite linear combinations of elements of S).

• The elements of S are linearly independent if there are no finite linear
relations: a1v1 + · · · + akvk = 0 (with ai ∈ k, vi ∈ S) implies a1 = · · · =
ak = 0.

• S is a basis of V if its elements are linearly independent and span V .

Example 2.25. The set {1, x, x2, x3, . . . } is a basis of k[x].

Example 2.26. Does kJxK have a basis? What is it?

2.3 Linear Maps

Let V,W be vector spaces over k. A homomorphism of a vector space, or a
linear map, φ : V →W , is any map that is compatible with the operations:

φ(u+ v) = φ(u) + φ(v), φ(λv) = λφ(v) ∀λ ∈ k, ∀u, v ∈ V.

Proposition 2.27. The set of linear maps V →W is itself a vector space over
k, denoted Hom(V,W ).

Proof. Given φ,ψ ∈ Hom(V,W ) for λ ∈ k, define:

1. φ+ ψ by (φ+ ψ)(v) = φ(v) + ψ(v),

2. λφ by (λφ)(v) = λ · φ(v).

One can check that φ + ψ and λφ are linear maps and these operations on
Hom(V,W ) satisfy the axioms of a vector space.

Soon, we will see that if dim(V ) = n and dim(W ) = m, then dim(Hom(V,W )) =
mn. (In terms of bases for V and W , linear maps become m× n matrices!)

Now, let’s consider the following question: How does the choice of the field k
affect the discussion of vector spaces? Given a subfield k′ ⊂ k (e.g., R ⊂ C
or Q ⊂ R), a vector space over k can also be viewed as a vector space over k′

by ”restriction of scalars” (i.e., restricting scalar multiplication to the domain
k′ × V ⊂ k × V ). In particular, k itself is a vector space over k′.
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Example 2.28. C is a vector space over itself (of dimension 1, with {1} as a
basis). It is also a vector space over R (of dimension 2, with basis {1, i}).

If V,W are C-vector spaces (and hence also R-vector spaces), any C-linear map
is also R-linear. However, the converse is not true:

HomC(V,W ) ⫋ HomR(V,W ).

For example, complex conjugation C→ C, z = a+ bi 7→ a− bi, is R-linear but
not C-linear. Thus, the choice of field k does indeed matter.

2.4 Basis and Dimension

Definition 2.29. A vector space V is finite-dimensional if there exists a
finite subset {v1, . . . , vm} that spans V , i.e., every element of V is a linear
combination

∑
aivi.

Lemma 2.30. If {v1, . . . , vm} spans V , then a subset of {v1, . . . , vm} is a basis
of V .

Proof. If the set {v1, . . . , vm} is linearly independent, then it already forms a
basis. Otherwise, there exists a non-trivial linear relation

∑
aivi = 0, where

not all ai are zero. We can solve for vi as a linear combination of the others
(if ai ̸= 0). Thus, we can remove vi, and the remaining set {vj | j ̸= i} still
spans V . This process can be repeated until the remaining elements are linearly
independent.

Thus, every finite-dimensional vector space has a basis.

Lemma 2.31. If {v1, . . . , vm} are linearly independent, then there exists a basis
of V that contains {v1, . . . , vm}.

Proof. Let {w1, . . . , wr} be a spanning set for V . By induction, we can enlarge
{v1, . . . , vm} to a basis of each subspace Wj = span({v1, . . . , vm, w1, . . . , wj}) ⊂
V for j = 0, . . . , r. For j = 0, {v1, . . . , vm} is already a basis of W0. Assuming
that {v1, . . . , vm, wi1 , . . . , wik} forms a basis ofWj−1 = span({v1, . . . , vm, w1, . . . , wj−1}),
ifWj ⊂Wj−1, then we already have a basis ofWj . Otherwise, {v1, . . . , vm, wi1 , . . . , wik , wj}
is linearly independent and spans Wj . This process ultimately results in a basis
of Wr = V since {w1, . . . , wr} spans V .

Proposition 2.32. If {v1, . . . , vm} and {w1, . . . , wn} are bases of V , then m =
n.

Proof. We claim that there exists j ∈ {1, . . . , n} such that {v1, . . . , vm−1, wj} is
a basis. Indeed, the set {v1, . . . , vm−1} is linearly independent, but it does
not span V , or else vm ∈ span{v1, . . . , vm−1} would give a linear relation∑m−1
i=1 aivi−vm+1 = 0. Therefore, there exists a j such that wj /∈ span{v1, . . . , vm−1}

(otherwise w1, . . . , wn could not span V ).
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Now, the set {v1, . . . , vm−1, wj} is linearly independent. By expressing wj in
terms of the basis {v1, . . . , vm}, we get wj =

∑m
i=1 aivi (with am ̸= 0), so

that vm = 1
am

Ä
wj −

∑n−1
i=1 aivi

ä
∈ span({v1, . . . , vm−1, wj}), implying that

{v1, . . . , vm−1, wj} spans V and forms a basis.

Repeating this process allows us to exchange one v for one w at each step
(without repeating the same w because the new w must be independent of the
current basis). Ultimately, we will obtain a subset of {w1, . . . , wn} of sizem that
is also a basis. Since this subset is a basis, it must be the entire set {w1, . . . , wn},
and thus m = n.

Definition 2.33. The dimension of V is the cardinality of any basis of V .

Given a basis (v1, . . . , vn) of V , we can define a linear map φ : kn → V by
(a1, . . . , an) 7→

∑
aivi:

• Linear independence ⇐⇒ φ is injective, and spanning V ⇐⇒ φ is surjec-
tive, so φ is an isomorphism.

• Every finite-dimensional vector space over k is isomorphic to kn, where
n = dim(V ) (and the basis gives a specific choice of such an isomorphism).

Given bases (v1, . . . , vn) of V and (w1, . . . , wm) of W , we can represent a linear
map φ ∈ Hom(V,W ) by an m × n matrix A ∈ Mm,n. This representation
amounts to the following diagram:

V W

kn km

φ

≃basis

A

≃basis

We write A = (aij)1≤i≤m,1≤j≤n =

á
a11 . . . a1n
a21
...

am1 . . . amn

ë
. The matrix A acts

by multiplying column vectors:Ö
x1
...
xn

è
7→ A

Ö
x1
...
xn

è
.

Notation: A =M(φ, (v), (w)).

The entries of A are characterized by φ(vj) =
∑m
i=1 aijwi. In other words, the

columns of A give the components of φ(v1), . . . , φ(vn) in the basis {w1, . . . , wm}.
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Representing any element x ∈ V as

x =

n∑
i=1

xivi ⇐⇒ column vector X =

Ö
x1
...
xn

è
,

and similarly for y = φ(x) ∈W ,

y =
∑

yiwi ⇐⇒ Y =

Ö
y1
...
ym

è
= AX.

As a memory aid, the isomorphism kn
∼→ V given by the basis can be written

symbolically as multiplication of row and column vectors:

(v1, . . . , vn)

Ö
x1
...
xn

è
=
∑

xivi.

Thus, φ((v1, . . . , vn)X) = (w1, . . . , wn)AX, which corresponds to the commu-
tative diagram.

This construction provides an isomorphism between the vector spaces Hom(V,W )
and Mm,n. In particular, dim(Hom(V,W )) = dim(Mm,n) = mn, and linear
maps correspond to matrices.

What happens if we choose different bases for V and/or W? If we change the
basis from (v1, . . . , vn) to (v′1, . . . , v

′
n), we can write v′j =

∑m
i=1 pijvi and define

an n × n matrix P whose j-th column gives the components of v′j in the basis
(v1, . . . , vn). Symbolically:

(v′1, . . . , v
′
n) = (v1, . . . , vn)P.

Thus,
(v′1, . . . , v

′
n)X

′ = (v1, . . . , vn)PX
′.

This means that the element x′ ∈ V , described by the column vector X ′ in the
new basis, is described by X = PX ′ in the old basis. More conceptually:

P =M(idv, (v
′), (v)).

Similarly for W , we define the inverse transformation with:

Q =M(idw, (w), (w
′)).

Thus, we get:

φ((v′1, . . . , v
′
n)X

′) = φ((v1, . . . , vn)PX
′) = (w1, . . . , wm)APX ′ = (w′1, . . . , w

′
n)QAPX

′,
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which gives M(φ, (v′), (w′)) = QAP .

In particular, if V =W and we change the basis for φ ∈ Hom(V, V ), the matrices
A =M(φ, (v), (v)) and A′ =M(φ, (v′), (v′)) are related by A′ = P−1AP .

However, the point of linear algebra is to avoid dealing with these coordinate
transformations and work with linear maps in a coordinate-free manner as much
as possible.

2.5 Direct Sums and Products

Definition 2.34. Given vector spaces V and W , the direct sum is defined as

V ⊕W = V ×W = {(v, w) | v ∈ V,w ∈W}.

For n vector spaces, the direct sum is given by

V1 ⊕ · · · ⊕ Vn = V1 × · · · × Vn = {(v1, . . . , vn) | vi ∈ Vi}.

For an infinite collection of vector spaces (Vi)i∈I , the direct sum is⊕
i∈I

Vi = {(vi)i∈I | vi ∈ Vi, and only finitely many vi ̸= 0},

which differs from the direct product:∏
i∈I

Vi = {(vi)i∈I | vi ∈ Vi}.

Example 2.35. Consider the direct sum
⊕

n∈N k ≃ k[x] versus the direct prod-
uct

∏
n∈N k ≃ kJxK.

Definition 2.36. Given subspaces W1, . . . ,Wn ⊂ V of some vector space V ,
we define:

• The span ofW1, . . . ,Wn asW1+· · ·+Wn = {w1+· · ·+wn | wi ∈Wi} ⊂ V .

• The subspaces W1, . . . ,Wn are independent if w1 + · · · + wn = 0 with
wi ∈Wi implies wi = 0 for all i.

• If the subspaces W1, . . . ,Wn are independent and span V , we say that V
has a direct sum decomposition of the form V =W1 ⊕ · · · ⊕Wn.

A relation to the previous notation: For each i, we have an inclusion map
Wi ↪→ V . We then assemble these into a linear map

φ :

n⊕
i=1

Wi → V, (w1, . . . , wn) 7→
n∑
i=1

wi.
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The subspaces W1, . . . ,Wn span V if and only if φ is surjective, and they are
independent if and only if φ is injective. If both conditions hold, then φ is an
isomorphism

n⊕
i=1

Wi
∼−→ V,

and we have a direct sum decomposition. In this case, we also have the dimen-
sion formula

dim(V ) =

n∑
i=1

dim(Wi),

and a basis of V can be obtained by taking the union of the bases ofW1, . . . ,Wn.

For the case of two subspaces, we have the following:

• The subspaces W1 and W2 are independent if and only if W1 ∩W2 = {0}.
Thus, w1 + w2 = 0 if and only if w1 = −w2 ∈W1 ∩W2.

• The dimension of the sum is given by the formula

dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2).

• The direct sum V = W1 ⊕W2 holds if and only if W1 ∩W2 = {0} and
dim(W1) + dim(W2) = dim(V ).

Additionally, note that for any subspace W ⊂ V , there exists another subspace
W ′ such that

W ⊕W ′ = V.

Note that W ′ is not necessarily unique. To find W ′, take a basis {w1, . . . , wr}
of W , and complete it to a basis {w1, . . . , wr, w

′
1, . . . , w

′
s} of V . Then, define

W ′ = span(w′1, . . . , w
′
s).

2.6 Rank and the Dimension Formula

Definition 2.37. Given finite-dimensional vector spaces V andW , and a linear
map φ : V →W , we define the following:

• The kernel of φ is

Ker(φ) = {v ∈ V | φ(v) = 0} ⊂ V.

• The image of φ is

Im(φ) = {w ∈W | ∃v ∈ V such that φ(v) = w} ⊂W,

which is a subspace of W .

• The dimension of the image of φ, denoted by dim(Im(φ)), is called the
rank of φ.
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Proposition 2.38 (The Dimension Formula). The following dimension formula
holds:

dim(Ker(φ)) + dim(Im(φ)) = dim(V ).

Proof. Start by choosing a basis {u1, . . . , um} for Ker(φ), and extend it to a
basis {u1, . . . , um, v1, . . . , vr} of V . We claim that {φ(v1), . . . , φ(vr)} forms a
basis for Im(φ). Indeed:

• If w = φ(v) ∈ Im(φ), then write v =
∑
aiui +

∑
bjvj and apply φ:

φ(v) =
∑

bjφ(vj),

showing that {φ(vj)} spans Im(φ).

• If
∑
cjφ(vj) = 0, then φ (

∑
cjvj) = 0, which implies that

∑
cjvj ∈

Ker(φ). Hence, we have∑
cjvj =

∑
aiui for some ai ∈ k.

Since {u1, . . . , um, v1, . . . , vr} is linearly independent, this forces all cj = 0
and ai = 0. Therefore, the set {φ(vj)} is linearly independent.

Thus, {u1, . . . , um, v1, . . . , vr} is a basis of V , where m = dim(Ker(φ)) (since
{u1, . . . , um} is a basis of Ker(φ)), and r = dim(Im(φ)) = rank(φ) (since
{φ(v1), . . . , φ(vr)} forms a basis of Im(φ)). Therefore, we conclude that

m+ r = dim(V ).

Corollary 2.39. Given a linear map φ : V → W , there exist bases of V and
W in which the matrix of φ has the formÅ

I 0
0 0

ã
,

where I is an r × r identity matrix, and r = rank(φ).

Proof. Take a basis of V given by {v1, . . . , vr, u1, . . . , um}, where {u1, . . . , um} is
a basis of Ker(φ). Extend the set {φ(v1), . . . , φ(vr)} (which is a basis of Im(φ))
to a basis of W .

Corollary 2.40. For subspaces W1,W2 ⊂W , the following holds:

dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2).
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Proof. Consider the map from V =W1 ⊕W2 to W , defined by

φ(w1, w2) = w1 + w2.

Then, we have
Im(φ) =W1 +W2,

and
Ker(φ) = {(u1, . . . , uk) | ui ∈W1 ∩W2} ≃W1 ∩W2.

Thus, using the dimension formula, we get

dim(Ker(φ)) + dim(Im(φ)) = dim(W1 ∩W2) + dim(W1 +W2)

= dim(V )

= dim(W1) + dim(W2).

2.7 Quotient and Dual Spaces

Definition 2.41. Let V be a vector space over the field k, and let U ⊂ V be a
subspace. The quotient space V/U = {v + U} is the space of cosets of U in
V , with addition defined by

(v + U) + (w + U) = (v + w) + U

and scalar multiplication given by

a(v + U) = av + U.

The linear map V
q→ V/U , defined by v 7→ v+U , is surjective, with kernel equal

to U . Hence, we obtain the exact sequence

0→ U → V → V/U → 0.

By the dimension formula, we have

dim(V/U) = dim(V )− dim(U).

Remark 2.42.

1. Given a linear map φ : V → W , if U ⊂ Ker(q), then φ factors through
V/U . Specifically, there exists a map φ : V/U → W such that φ = φ ◦ q.
This can be depicted in the following commutative diagram:

V W

V/U

φ

q φ
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Define φ(v + U) = φ(v), which is well-defined and independent of the
choice of v in the coset.

Conversely, given φ ∈ Hom(V/U,W ), the map φ = φ◦q : V →W satisfies
U ⊂ Ker(φ). Hence, we have the isomorphism

Hom(V,W )
∣∣
U⊂Ker(φ)

≃ Hom(V/U,W ).

2. There is a bijection between the set of subspaces of V containing U and
the set of subspaces of V/U . Specifically, for W ⊂ V with W ⊃ U , we
have

W 7→W/U = {w + U | w ∈W}.

Conversely, for W ⊂ V/U , we have

q−1(W ) ⊂ V.

Thus, we see that U = q−1(0) ⊂ q−1(W ) since 0 ∈W .

Definition 2.43. The dual vector space V ∗ is the space of linear functionals
on V , i.e., the set of linear maps V → k. Formally, we define

V ∗ = Hom(V, k) = {linear maps ℓ : V → k}.

Example 2.44. If V = kn = {(x1, . . . , xn) | xi ∈ k}, then any tuple (a1, . . . , an)
with ai ∈ k determines a map ℓa : kn → k defined by

ℓa(x1, . . . , xn) =

n∑
i=1

aixi.

Conversely, if ei is the standard basis of kn, then given a linear functional
ℓ : kn → k, define ai = ℓ(ei). Thus, for any vector (x1, . . . , xn), we have

ℓ(x1, . . . , xn) = ℓ

(
n∑
i=1

xiei

)
=

n∑
i=1

aixi.

Hence, ℓ = ℓa. Therefore, we conclude that

(kn)∗ = {(a1, . . . , an) | ai ∈ k} ≃ kn.

More generally, given a finite-dimensional vector space V with a basis {e1, . . . , en},
any linear map ℓ : V → k is uniquely determined by its values on the basis vec-
tors ℓ(ei). Thus, we obtain an isomorphism

V ∗ ≃ kn, ℓ 7→ (ℓ(e1), . . . , ℓ(en)).
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Equivalently, we can describe a basis for V ∗ consisting of the linear functionals
{e∗1, . . . , e∗n}, where e∗i (ei) = 1 and e∗i (ej) = 0 for i ̸= j. Therefore, any linear
functional ℓ can be written as

ℓ =

n∑
i=1

ℓ(ei)e
∗
i .

This is known as the dual basis of V ∗.

However, there is no natural map from V to V ∗, even though both spaces have
similar bases. Each element of the dual basis e∗i depends not just on ei, but on
all the basis vectors ej . Thus, we cannot speak of ”the dual of a vector.”

On the other hand, there is a natural map called the evaluation map:

V
ev→ (V ∗)∗, v 7→ evv : V

∗ → k, ℓ 7→ ℓ(v).

If V is finite-dimensional, then by working in bases {e1, . . . , en} for V , the dual
basis {e∗1, . . . , e∗n} for V ∗, and the double dual basis {e∗∗1 , . . . , e∗∗n } for V ∗∗, we
see that

e∗∗i (e∗j ) = e∗j (ei),

and thus ev(ei) = e∗∗i . Hence, the evaluation map ev is an isomorphism.

Proposition 2.45. If V is finite-dimensional, then V ≃ V ∗∗, where the iso-
morphism is given by

v 7→ (ℓ 7→ ℓ(v)).

When V is infinite-dimensional, the evaluation map ev : V → V ∗∗ is injective,
but not an isomorphism. The reason is that if V has a basis {ei}i∈I , then every
element of V can be uniquely written as

∑
i∈I xiei with only finitely many

nonzero xi. Hence, V ≃
⊕

i∈I kei. For each choice of (ai)i∈I ∈
∏
i∈I k, we can

define a linear functional ℓa : V → k by

ℓa

(∑
i∈I

xiei

)
=
∑
i∈I

xiai,

which is a well-defined element of V ∗. Thus, we have the isomorphism

V ∗ ≃
∏
i∈I

k,

which is a larger space than V . The linear functionals {e∗i }, with ai = 1 and
aj = 0 for all j ̸= i, do not span V ∗. One can complete this set to a basis using
Zorn’s Lemma. A similar enlargement occurs when passing from V ∗ to V ∗∗.
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2.8 Annihilators and Transposes

Definition 2.46. The annihilator of a subspace U ⊂ V is the set

Ann(U) = {ℓ : V → k | ℓ|U = 0} ⊂ V ∗.

Proposition 2.47. Ann(U) is a subspace of V ∗.

We now state the following properties:

• The map V ∗ → U∗ is surjective with kernel equal to Ann(U), yielding the
exact sequence

0→ Ann(U)→ V ∗ → U∗ → 0, ℓ 7→ ℓ|U .

This implies that V ∗/Ann(U) ≃ U∗.

• As seen above, the map

{ℓ ∈ Hom(V, k) | U ⊂ Ker(ℓ)} ≃ Hom(V/U, k)

gives the isomorphism Ann(U) ≃ (V/U)∗.

• Consequently, we have the dimension formula

dim(Ann(U)) = dim(V )− dim(U).

Check: The map φ∗ is linear.

Definition 2.48. Given a linear map φ : V →W , the transpose of φ, denoted
φ∗ : W ∗ → V ∗, is defined as follows: for a linear functional ℓ : W → k, we
define

φ∗(ℓ) = ℓ ◦ φ : V → k.

Thus, φ∗ :W ∗ → V ∗ is the map ℓ 7→ φ∗(ℓ) = ℓ ◦ φ.

Check: Given a basis {ei} of V , the elements of V can be represented by column
vectors X and row vectors Y . Applying a linear functional ℓ ∈ V ∗ to a vector
v ∈ V corresponds to the action Y X ∈ k.

If M(φ, (ei), (fj)) = A, then M(φ∗, (f∗j ), (e
∗
i )) = AT , the transpose of the ma-

trix A. To see why, consider the following: for any ℓ ∈W ∗ and v ∈ V , we have
the equation

ℓ(φ(v)) = (φ∗∗(ℓ))(v) = Y AX,

where Y and X are row vectors corresponding to ℓ and v, respectively.

Now, if we view φ∗ as an operation on row vectors, we can see that φ∗ maps Y
to Y A. On the other hand, the dual basis provides a representation of elements
of V ∗ and W ∗ as column vectors, which are the transposes of the corresponding
row vectors. Thus, the claim follows: since φ∗ℓ as a column vector is (Y A)T =
ATY T , we conclude that M(φ∗, (f∗j ), (e

∗
i )) = AT .
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Proposition 2.49. In the finite-dimensional case:

1. φ is injective if and only if φ∗ is surjective.

2. φ is surjective if and only if φ∗ is injective.

This follows from the following property:

Proposition 2.50. In the finite-dimensional case, we have:

1. Ker(φ∗) = Ann(Im(φ)).

2. Im(φ∗) = Ann(Ker(φ)).

Proof.

1. Ker(φ∗) = Ann(Im(φ)): If ℓ ∈ Ann(Im(φ)), then

ℓ(φ(v)) = 0 ∀v ∈ V,

which implies φ∗(ℓ) = ℓ ◦ φ = 0. Hence, ℓ ∈ Ker(φ∗).

2. Im(φ∗) = Ann(Ker(φ)): If ℓ′ = φ∗(ℓ) ∈ Im(φ∗), then ℓ′ = ℓ◦φ. Therefore,
for any v ∈ Ker(φ), we have

ℓ′|Ker(φ) = 0.

Thus, ℓ′ ∈ Ann(Ker(φ)), so Im(φ∗) ⊂ Ann(Ker(φ)).

By the dimension formula and the previous result, we have rank(φ∗) =
rank(φ). Therefore, the conclusion follows.

2.9 Linear Operators and Invariant Subspaces

Definition 2.51. A linear operator on V (also called an endomorphism of
V ) is a linear map φ : V → V .

Notation: End(V ) = Hom(V, V ).

When expressing φ ∈ Hom(V, V ) using a basis, we use the same basis on both
sides. If A = M(φ, (ei), (ei)) represents the matrix of φ in a given basis (ei),
then A transforms as P−1AP under a change of basis.

Note that if dim(V ) ≤ ∞, the following are equivalent:

φ : V → V is injective ⇐⇒ φ is surjective

⇐⇒ φ is an isomorphism

⇐⇒ rank(φ) = dim(V ).

In this case, we say that φ is invertible, and its inverse φ−1 : V → V exists.
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At this point, we can compose linear operators. If φ and ψ are operators,
their composition is denoted by φ ◦ ψ, and it is a map v → V . We can also
compose operators with themselves, writing φn = φ◦φ◦ · · · ◦φ (with n factors),
or apply polynomials to them. For a polynomial p(x) =

∑
anx

n, we define
p(φ) =

∑
anφ

n, which is also a linear map V → V . Additionally, Hom(V, V ) is
a (noncommutative) ring under composition.

Given vector spaces V1, V2 and linear operators φi : Vi → Vi, we can define the
operator φ = φ1 ⊕ φ2 : V1 ⊕ V2 → V1 ⊕ V2 on the direct sum V = V1 ⊕ V2. The
operator φ leaves the subspaces V1 and V2 invariant, meaning that φ(Vi) ⊂ Vi.
In a basis of V such that e1, . . . , em ∈ V1 and em+1, . . . , en ∈ V2, the matrix of
φ is block diagonal: Å

φ1 0
0 φ2

ã
.

Conversely, if V = V1 ⊕ V2 and φ(Vi) ⊂ Vi for i = 1, 2, then the matrix of
φ is of this block diagonal form. More generally, if V1 ⊂ V is invariant (i.e.,
φ(V1) ⊂ V1) but V2 is not necessarily invariant, then the matrix of φ will be
block triangular: Å

φ1 ∗
0 ∗

ã
.

Thus, a common strategy for studying φ : V → V is to search for invariant
subspaces.

Proposition 2.52. If U ⊂ V is invariant and dim(U) = 1 (so U = k · v for
some v ∈ V ), then necessarily φ(v) = λv for some λ ∈ k.

2.10 Eigenvectors and Eigenvalues

Definition 2.53. A eigenvector of a linear map φ : V → V is a nonzero
vector v ∈ V such that φ(v) = λv for some scalar λ ∈ k. The scalar λ is called
the eigenvalue corresponding to v.

If we can find a basis of V consisting entirely of eigenvectors of φ, then we say
that φ is diagonalizable. In this case, we can express φ in a basis where its
matrix representation is diagonal:á

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

ë
,

with φ(vi) = λivi for each vi.

This is the best outcome, but it is not always possible!
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Example 2.54. Consider the space V = R2. The matrixÅ
λ1 0
0 µ

ã
has eigenvectors (1, 0) and (0, 1) (or any scalar multiples) with eigenvalues λ1
and µ, respectively.

However, the matrix Å
1 0
1 1

ã
has only one eigenvector, (1, 0) (up to scaling), with eigenvalue 1, since it is not
diagonalizable.

Moreover, the matrix Å
0 −1
1 0

ã
has no eigenvectors.

Proposition 2.55. Eigenvectors of a linear map φ : V → V corresponding to
distinct eigenvalues are linearly independent.

Proof. Let v1, v2, . . . , vℓ be eigenvectors of φ with distinct eigenvalues λ1, λ2, . . . , λℓ,
so that φ(vi) = λivi for each i. Assume there exists a nontrivial linear combi-
nation a1v1 + a2v2 + · · · + aℓvℓ = 0 where not all ai are zero. Without loss of
generality, suppose a1 ̸= 0.

Then, applying φ to the linear combination:

φ(a1v1 + a2v2 + · · ·+ aℓvℓ) = a1λ1v1 + a2λ2v2 + · · ·+ aℓλℓvℓ = 0.

This is another linear relation. Subtracting λ1 times the first term, we obtain a
new relation:

a1(λ1 − λ1)v1 + · · ·+ aℓ(λℓ − λ1)vℓ = 0,

where all coefficients except a1 remain nonzero since λi ̸= λ1 for i ̸= 1. This
contradicts the assumption that the linear combination had the fewest nonzero
coefficients, completing the proof.

Corollary 2.56. The number of distinct eigenvalues of a linear map φ ∈
Hom(V, V ) is at most n = dim(V ). If equality holds, then φ is diagonalizable.

Definition 2.57. A field k is said to be algebraically closed if every non-
constant polynomial p(x) ∈ k[x] has at least one root in k, i.e., there exists an
α ∈ k such that p(α) = 0.

If k is algebraically closed, by the division algorithm for polynomials, any poly-
nomial p(x) can be factored as:

p(x) = c(x− α1)(x− α2) · · · (x− αd),
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where d = deg(p) and αi ∈ k.

The fundamental theorem of algebra states that C is algebraically closed. How-
ever, the proof is not purely algebraic; we will discuss it in Part B of this course.

If k is not algebraically closed, there exists an algebraically closed extension
field k containing k, constructed by adjoining roots of polynomials in k[x].

Example 2.58. For example, R = C, while Q is the field of all roots of poly-
nomials with rational coefficients, i.e., Q ⊂ C.

Lemma 2.59. If k is algebraically closed and V is a finite-dimensional vector
space over k, then any linear map φ : V → V has at least one eigenvector, i.e.,
there exists v ∈ V \ {0} and λ ∈ k such that φ(v) = λv.

Proof. Let n = dim(V ). Choose a nonzero vector v ∈ V . The set of vec-
tors v, φ(v), φ2(v), . . . , φn(v) must be linearly dependent, so there exist scalars
a0, a1, . . . , an ∈ k, not all zero, such that:

a0v + a1φ(v) + a2φ
2(v) + · · ·+ anφ

n(v) = 0.

This is a polynomial equation in φ. Since k is algebraically closed, we can factor
the polynomial:

a0 + a1φ+ a2φ
2 + · · ·+ anφ

n = c(φ− λ1)(φ− λ2) · · · (φ− λd),

where c ̸= 0 and the λi ∈ k. Since the operator c(φ − λ1) · · · (φ − λd) is not
invertible, it must have a nontrivial kernel, which implies the existence of an
eigenvector v with eigenvalue λi.

Corollary 2.60. Given a linear map φ : V → V over an algebraically closed
field k, there exists a basis (v1, v2, . . . , vn) of V such that the matrix of φ is upper
triangular, i.e., for each k, the subspace Vk = span(v1, . . . , vk) is invariant under
φ.

Proof. We prove this by induction on dim(V ). If dim(V ) = 1, then any nonzero
vector v1 is mapped to a scalar multiple of itself, and any 1×1 matrix is trivially
upper triangular.

Assume the result holds for dim(V ) ≤ n − 1 and consider φ : V → V where
dim(V ) = n. By the lemma, φ has at least one eigenvalue λ ∈ k. Let U =
Im(φ − λ). Since φ − λ has nontrivial kernel (eigenvectors for λ), dim(U) <
dim(V ). Moreover, U is an invariant subspace under φ.

By the induction hypothesis, φ|U ∈ Hom(U,U) is upper triangular, so there
exists a basis (u1, . . . , um) of U such that φ|U is upper triangular. Now, complete
this basis to a basis (u1, . . . , um, v1, . . . , vk) of V . This gives the required upper
triangular form for φ.
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Remark 2.61. This proof also proceeds by induction, but with a different start-
ing point. We begin with V0 = k ·v0, where v0 is an eigenvector of φ, and define
U = V/V0 as the quotient space. Let q : V → U denote the quotient map. Since
φ(V0) ⊂ V0, there exists a map φ : U → U such that the following diagram
commutes:

V V

U U

φ

q q

φ

.

The commutativity of this diagram follows because (q ◦ φ)|V0
= 0, meaning that

q ◦φ = φ on the quotient space U . Thus, the map φ factors through V/V0 = U .

By the induction hypothesis, there exists a basis {u1, . . . , un−1} of U such that
φ(ui) ∈ span(u1, . . . , ui). Now, for each i, let vi ∈ V such that q(vi) = ui. Then
we have:

q(φ(vi)) ∈ span(u1, . . . , ui),

which implies that φ(vi) ∈ span(v0, v1, . . . , vi), since (v0, . . . , vn−1) is a basis of
V .

Now, suppose we have φ : V → V and a basis (v1, ..., vn) of V such that
M(φ) = A is upper-triangular, i.e. each Vi = span(v1, ..., vi) is an invariant
subspace of φ. Denote by λi = aii the entries of E.

Lemma 2.62. φ is invertible if and only if all the diagonal entries of A are
nonzero.

Proof. If all λi are nonzero, then φ is surjective, and hence an isomorphism. To
see this, consider the following:

• Since φ(v1) = λ1v1 and λ1 ̸= 0, we have v1 ∈ Im(φ).

• Next, for φ(v2) = λ2v2+a12v1 with λ2 ̸= 0, we can solve for v2 as follows:

v2 =
1

λ2
(φ(v2)− a12v1) ∈ Im(φ).

• Repeating this argument for each vi, we conclude that vi ∈ Im(φ) for all
i.

Thus, if all λi are nonzero, φ is surjective.

On the other hand, if any λi = 0, then φ(Vi) ⊆ Vi−1. In this case, the restriction
φ|Vi has a nontrivial kernel, since:

rank(φ|Vi
) ≤ dim(Vi−1) < dim(Vi).

Therefore, Ker(φ|Vi
) ̸= 0, implying that φ is not invertible.
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Corollary 2.63. The following are equivalent:

1. λ is an eigenvalue of φ.

2. φ− λ is not invertible.

3. λ is a diagonal entry of the upper triangular matrix A representing φ.

Proof. 1⇐⇒ 2: Eigenvectors correspond to the kernel of φ− λ.

2 ⇐⇒ 3: By applying the lemma to φ − λ, we conclude that λ is a diagonal
entry of the matrix A representing φ.

2.11 Generalized Eigenvectors

We have just discussed linear operators φ : V → V , their invariant subspaces
(U ⊂ V such that φ(U) ⊂ U), and eigenvectors (v ̸= 0 such that φ(v) = λv,
i.e., v ∈ Ker(φ− λI)).

Over any field:

• Eigenvalues need not exist; eigenvectors corresponding to distinct λ are
linearly independent.

• If there are n = dimV distinct eigenvalues, then φ is diagonalizable,
meaning there exists a basis such that the matrix representation of φ is:

M(φ) =

Ö
λ1 0

. . .

0 λn

è
.

For algebraically closed fields, such as C, we have:

• Every operator has at least one eigenvector.

• There exists a basis such that the matrix representation of φ is upper
triangular:

M(φ) =

Ö
λ1 ∗

. . .

0 λn

è
.

(This is equivalent to the fact that the subspaces Vi = span(v1, . . . , vi) are
all invariant).

• φ − λI is invertible ⇐⇒ λ /∈ {λ1, . . . , λn}, meaning that the diagonal
entries of the matrix are the eigenvalues of φ.

Next, we explore the study of invariant subspaces and eigenvalues for linear
operators over algebraically closed fields, particularly C. This leads us to the
Jordan normal form.

Recall that the Ker(φ) = {v ∈ V | φ(v) = 0}.
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Definition 2.64. The generalized kernel of φ is given by:

gker(φ) = {v ∈ V | ∃m ≥ 0 such that φm(v) = 0}.

The generalized kernel consists of all vectors that eventually get mapped to 0
by repeated applications of φ.

Proposition 2.65. The sequence of kernels is nested:

0 ⊂ Ker(φ) ⊂ Ker(φ2) ⊂ · · ·

because φm(v) = 0 =⇒ φm+1(v) = 0. If Ker(φm) = Ker(φm+1), then the
sequence becomes constant after that.

Proof. Since Ker(φm) = φ−1(Ker(φm+1)), we have Ker(φm) = Ker(φm+1) =⇒
Ker(φm+1) = Ker(φm+2).

Because the sequence of kernels stops increasing after at most n = dimV steps,
we conclude that:

gker(φ) = Ker(φn).

Example 2.66. Consider the linear operator φ : k2 → k2 defined by e1 7→ 0
and e2 7→ e1, represented by the matrix:Å

0 1
0 0

ã
.

Then, Ker(φ) = k · e1, but Ker(φ2) = gker(φ) = k2.

Lemma 2.67. If gker(φ) = Ker(φm), then V = Ker(φm)⊕ Im(φm).

Proof. Let v ∈ Im(φm) ∩ Ker(φm). Then v = φm(u) for some u ∈ V . Since
v ∈ Ker(φm), we have:

φm(v) = φm(φm(u)) = φ2m(u) = 0.

Thus, u ∈ Ker(φ2m), and since Ker(φ2m) = Ker(φm) (by assumption gker(φ) =
Ker(φm)), we conclude that u ∈ Ker(φm).

Therefore, v = φm(u) = 0, implying that:

Im(φm) ∩Ker(φm) = {0}.

By the dimension formula, we conclude that:

V = Ker(φm)⊕ Im(φm).
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Definition 2.68. We say that φ is nilpotent if there exists some m ≥ 0 such
that φm = 0, i.e., gker(φ) = V .

We can apply the same ideas to eigenspaces.

Definition 2.69. A vector v ∈ V is a generalized eigenvector of φ with
generalized eigenvalue λ if v ∈ gker(φ− λI), i.e., there exists some m ≥ 0 such
that (φ − λI)mv = 0. The subspace gker(φ − λI) is called the generalized
eigenspace.

Definition 2.70. The multiplicity of the eigenvalue λ is the dimension of the
generalized eigenspace:

Vλ = gker(φ− λI) = Ker((φ− λI)n).

In a basis where the matrix of φ is triangular, this multiplicity is the number of
times λ appears on the diagonal.

Proposition 2.71. The generalized eigenspaces Vλ = Ker(φ− λI)n and Wλ =
Ker(φ− λI)n are invariant subspaces of φ, and:

V = Vλ ⊕Wλ.

Proof. Let v ∈ Vλ. Then, (φ − λI)nv = 0, so φ(φ − λI)nv = 0. Since φ − λI
commutes with φ, this implies (φ − λI)nφv = 0, meaning φ(v) ∈ Vλ. If v =
(φ− λI)nu ∈Wλ, then:

φ(v) = φ(φ− λI)nu = (φ− λI)nφ(u) ∈ Im(φ− λI)n =Wλ.

The lemma above, applied to φ−λI, implies that V = Ker((φ−λI)n)⊕Im((φ−
λI)n).

Proposition 2.72. The subspaces Vλ ⊂ V are independent: if
∑
vi = 0, with

vi ∈ Vλi and λi distinct, then vi = 0 for all i.

Proof. Assume
∑ℓ
i=1 vi = 0, where vi ∈ Vλi

and the λi’s are distinct. We will
show vi = 0 for all i.

If vi ̸= 0, let k ≥ 0 be the largest integer such that (φ−λiI)kvi = w ̸= 0, where
(φ− λiI)k+1vi = 0, implying φ(w) = λiw.

Next, observe that:

(φ− λℓI)n(φ− λℓ−1I)n · · · (φ− λ1I)n(v1 + · · ·+ vℓ) = 0

since v1 + · · · + vℓ = 0. This expression simplifies to the sum of terms of the
form:

(φ− λℓI)n · · · (φ− λ2I)nw =

ℓ∏
j=2

(λ1 − λj)nw ̸= 0,
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and the remaining terms vanish:

(φ− λℓI)n · · · (φ− λ2I)n(φ− λ1I)n(v1 + · · ·+ wℓ)vj = 0 for all j ≥ 2.

This leads to a contradiction, hence vi = 0 for all i.

Proposition 2.73. Let k be algebraically closed, and let V be a finite-dimensional
vector space over k. If φ : V → V , then V decomposes into the direct sum of
the generalized eigenspaces of φ, i.e.,

V =
⊕
λ

Vλ.

Proof. We induct on dim(V ). The result is clear for dim(V ) = 1. Assume the
result holds for all vector spaces of dimension n−1, and consider the case where
dim(V ) = n.

Since k is algebraically closed, φ has at least one eigenvalue λ1. Let Vλ1
=

gker(φ − λ1I) = Ker((φ − λ1I)n), and let U = Wλ1
= Im((φ − λ1I)n). Both

Vλ1
and U are invariant subspaces, and we have:

V = Vλ1 ⊕ U.

Since dim(U) < dim(V ), by the induction hypothesis, U decomposes into gen-
eralized eigenspaces for φ|U :

U = Uλ2
⊕ · · · ⊕ Uλℓ

,

where λ2, . . . , λℓ are eigenvalues of φ|U , which are eigenvalues of φ with an
eigenvector in U .

Moreover, we have:

Uλj
= Ker((φ|U − λjI)n) = Ker((φ− λjI)n) ∩ U = Vλj

∩ U.

Note that φ|U does not have λ as an eigenvalue, since:

Ker((φ− λI)n) ∩ U = 0 ⇒ λ /∈ {λ1, . . . , λℓ}.

Since the generalized eigenspaces Vλj
contain the subspaces Uλj

for all j ≥ 2,
we conclude that Vλ1

, . . . , Vλℓ
span V , and they are independent. Hence, we

have:
V = Vλ1

⊕ · · · ⊕ Vλℓ
.

In fact, Vλj
= Uλj

for all j ≥ 2. In other words:

Im((φ− λiI)n) =
⊕
j ̸=i

Ker((φ− λjI)n).
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The decomposition V =
⊕
Vλi gives us bases in which φ is represented by a

block diagonal matrix:

φλ1

φλ2

. . .

φλℓ

0

0

Moreover, φ|vλi
can be represented by a triangular matrix in a suitable basis

for vλi
. Since its only eigenvalue is λi, all the diagonal entries of this matrix are

equal to λi. Thus,

. . .

0

0

λ1

λ1

. . .
0

∗

λ2

λ2

. . .
0

∗

λℓ

λℓ

. . .
0

∗

φ ∼

We can further analyze the blocksÖ
λi ∗

. . .

0 λi

è
,

but this requires a more detailed study of nilpotent operators. Note that φ|Vλi
−

λiI is nilpotent!

2.12 Nilpotent Operators

Let φ : V → V be a nilpotent operator, i.e., φm = 0 for some m ≤ dimV . This
result holds for any field. The goal is to find a ”nice” basis for V with respect
to φ.
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Observe that if dim(V ) = 2, there are two cases: either φ = 0, or φ2 = 0 but
φ ̸= 0. In the second case, let φ /∈ ker(φ). Then, φ(v) = u ∈ ker(φ), so u and v
are independent and form a basis. In this basis, the matrix of φ is

M(φ) =

Å
0 1
0 0

ã
.

Jordan’s method generalizes this to higher dimensions.

Proposition 2.74. There exists a basis of V :

{φm1(v1), φ
m1−1(v1), . . . , v1, . . . , φ

mk(vk), . . . , vk}

where φmi+1(vi) = 0 for all i, in which the matrix of φ has the form:

. . .

0

0

0

0

. . .

0

M(φ) ∼

0

1

1
. . .

0

0

. . .

0

0

1

1
. . .

0

0

. . .

0

0

1

1
. . .

he block diagonals of M(φ) form nilpotent Jordan blocks:à
0 1 0

. . .
. . .

. . . 1
0 0

í
,

where each basis vector maps to the previous one, and the first basis vector maps
to 0.

Proof. Recall that the sequence of subspaces satisfies:

0 ⊂ ker(φ) ⊂ ker(φ2) ⊂ · · · ⊂ ker(φm) = V.
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We claim that if a subspace U ⊂ ker(φk+1) satisfies ker(φk)∩U = {0} for k ≥ 1,
then the restriction φ|U is injective, φ(U) ⊂ ker(φk), and ker(φk+1) ∩ φ(U) =
{0}.

Indeed, for any v ∈ U , if v ̸= 0, we have φk(v) ̸= 0 and φk+1(v) = 0. In
particular, φ(v) ̸= 0, meaning ker(φ|U ) = {0}, so φ|U is injective. Also, since

φk(φ(v)) = 0, we have φ(v) ∈ ker(φk). Furthermore, φk−1(φ(v)) = 0 implies
φ(v) ∈ ker(φk−1), and φk−1(φ(v)) = φk(v) ̸= 0, so φ(v) /∈ ker(φk−1).

Now, let Um be a subspace such that ker(φm) = V = ker(φm−1)⊕Um. Choose
a basis (vm,1, . . . , vm,km) for Um, which will yield Jordan blocks of size m. We
can extend this to a basis of V by adding vectors vm,1, . . . , vm,km and letting
Um be their span.

By the claim, the vectors vm−1,1 = φ(vm,1, . . . , vm−1,km) = φ(vm,km) are lin-
early independent, and their span is contained in ker(φm−1) but independent of
ker(φm−2).

Starting from a basis of ker(φm−2), add vectors vm,1, . . . , vm−1,km and com-
plete to a basis of ker(φm−1) by adding other vectors vm−1,km+1, . . . , vm−1,km−1

,
yielding blocks of size m− 1. Let Um−1 = span(vm−1,1, . . . , vm−1,km−1

). Then,
ker(φm−1) = ker(φm−2)⊕ Um−1.

We continue this process for all j, eventually constructing a basis of V = U1 ⊕
· · · ⊕Um. By rearranging the vectors as (v1,1, . . . , vm,1, v1,2, . . . ), we obtain the
desired basis.

We can now combine our results to arrive at the following theorem:

Proposition 2.75. Let V be a finite-dimensional vector space over an alge-
braically closed field k, and let φ ∈ Hom(V, V ). Then, there exists a basis of V
in which the matrix of φ is block-diagonal, with each block being a Jordan block.

Remark 2.76.

1. φ is diagonalizable if and only if all the blocks have size 1.

2. The eigenvalues of φ are precisely the values λ that appear in the Jordan
blocks. There may be several blocks with the same λ; their direct sum is
the generalized eigenspace Vλ.

3. Here is an outline of the proof: We have seen that V =
⊕
Vλ, where

the Vλ are the generalized eigenspaces. Now, for each λ, the restriction
φ|Vλ

−λI is nilpotent, and so Vλ can be decomposed into nilpotent Jordan
blocks.

2.13 Characteristic Polynomial

Let k be an algebraically closed field, and let φ : V → V be a linear map,
where V

⊕ℓ
i=1 Vλi

is a generalized eigenspace decomposition of V . For each
i, define ni = dim(Vλi

) to be the multiplicity of λi, with the condition that
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∑
ni = dim(V ), and let mi denote the nilpotency order of (φ|Vλi

− λiId), i.e.,
the smallest integer mi such that Vλi = Ker((φ− λiI)mi).

From the above, it follows that mi ≤ ni, and Vλi is diagonalizable if and only if
mi = 1 for all i.

Definition 2.77. The characteristic polynomial of φ is given by

χφ(x) =

ℓ∏
i=1

(x− λi)ni .

The usual definition of the characteristic polynomial, once the determinant is
defined, is

χφ(x) = det(xI − φ).

Manifestly, in a basis where M(φ) is triangular (or Jordan normal form), we
have

M(xI − φ) =

Ö
x− λ1 ∗

. . .

x− λn

è
.

This is equivalent to the determinant definition, although any basis can be used
to compute the determinant.

The significance of the characteristic polynomial is that, given the matrix rep-
resentation A of φ in any basis, we can compute χ(x) = det(xI − A) ∈ k[x],
which allows us to find the roots (i.e., the eigenvalues) and their multiplicities
(i.e., the dimensions of the generalized eigenspaces). This result holds even for
non-algebraically closed fields k, although there is no guarantee that χ(x) has
any roots in k.

Definition 2.78. The minimal polynomial of φ is given by

Mφ(x) =

ℓ∏
i=1

(x− λi)mi .

The significance of the minimal polynomial is as follows: (φ − λi)k = 0 on the
generalized eigenspace Vλi

if and only if k ≥ mi, and it is invertible on the other
generalized eigenspaces. Hence, Mφ(φ) is the simplest polynomial in φ that

annihilates all Vλi
’s, and therefore annihilates the entire space V =

⊕ℓ
i=1 Vλi

.

Thus, we have Mφ(φ) = 0, and for any polynomial p ∈ k[x], p(φ) = 0 ∈
Hom(U, V ) if and only if Mφ divides p. Since the nilpotency order mi is always
less than or equal to dim(Vλi

) = ni, it follows that Mφ divides χφ. Therefore,
we obtain the following result:

Proposition 2.79 (Cayley-Hamilton Theorem).

χφ(φ) = 0.
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This result also holds for non-algebraically closed fields k, by passing to an
algebraic closure. An example is given below.
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3 Linear Algebra II

3.1 Real Operators

We now discuss operators on finite-dimensional real vector spaces. Let V be a
real vector space and φ : V → V a linear operator. Since R is not algebraically
closed, φ might not have eigenvalues, and it is not always possible to put φ into
triangular or Jordan form. Nevertheless, every real operator has an invariant
subspace of dimension 1 or 2. A common approach to address this issue is to
work over C, which is algebraically closed.

Definition 3.1. The complexification of V is the vector space VC = V ×V =
{v + iw | v, w ∈ V }, with addition defined by

(v1 + iw1) + (v2 + iw2) = (v1 + v2) + i(w1 + w2),

and scalar multiplication defined by

(a+ ib)(v + iw) = (av − bw) + i(bv + aw),

for all a, b ∈ R.

This is a C-vector space of dimension n. If (e1, . . . , en) is a basis of V over R,
then (e1, . . . , en) is also a basis of VC over C.

Given φ : V → V as an R-linear operator, we can extend it to a C-linear
operator φC : VC → VC by defining

φC(v + iw) = φ(v) + iφ(w).

If (e1, . . . , en) is a basis of V , the matrix representation of φC is the same as
that of φ. However, now φC is guaranteed to have an eigenvector, along with
generalized eigenspaces, Jordan form, and more.

Let v′ = v + iw be an eigenvector of φC corresponding to the eigenvalue λ ∈ C,
so that φC(v

′) = λv′. There are two possible cases:

• If λ ∈ R, then

φC(v+iw) = φ(v)+iφ(w) = λv+iλw =⇒ v = Re(v′) and w = Im(v′)

are eigenvectors of φ corresponding to the same eigenvalue λ (provided
that either v or w is nonzero). The multiplicity of λ for φ does not
necessarily need to be even.

• If λ = a+ ib /∈ R, then

φC(v + iw) = (a+ ib)(v + iw) =⇒ φC(v − iw) = (a− ib)(v − iw),

which follows by comparing real and imaginary parts. Hence, the complex
conjugate v′ = v−iw is also an eigenvector of φC with eigenvalue λ. Conse-
quently, v and w are linearly independent, and they span a 2-dimensional
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invariant subspace U ⊂ V where

φ(v) = av − bw, φ(w) = bv + aw.

The matrix representation of φ|U in the basis (v, w) is

M(φ|U , (v, w)) =

Å
a b
−b a

ã
.

Further analysis, such as the study of block triangular decompositions of φ, can
be pursued starting from φC.

3.2 Interlude: Category Theory

Definition 3.2. A category is a collection of objects, and for each pair of
objects, a collection of morphisms Mor(A,B), along with an operation called
composition of morphisms:

Mor(A,B)×Mor(B,C)→ Mor(A,C), f, g 7→ g ◦ f,

such that the following hold:

1. Every object A has an identity morphism idA ∈ Mor(A,A) such that
for all f ∈ Mor(A,B),

f ◦ idA = idB ◦ f = f.

2. Composition is associative:

(f ◦ g) ◦ h = f ◦ (g ◦ h).

Example 3.3. Examples of categories include:

1. The category of sets, Sets, where Mor(A,B) is the set of all maps A→ B.

2. The category Vectk, consisting of finite-dimensional vector spaces over k,
with morphisms being linear maps.

3. The category of groups, Grp, where the morphisms are group homomor-
phisms.

4. The category of topological spaces, Top, with continuous maps as mor-
phisms.

Definition 3.4. A morphism f ∈ Mor(A,B) is an isomorphism if there exists
a morphism g ∈ Mor(A,B) (called the inverse isomorphism) such that

g ◦ f = idA and f ◦ g = idB .

The following properties hold:
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• The inverse of f , if it exists, is unique.

• idA is an isomorphism.

• If f is an isomorphism, then f−1 is also an isomorphism.

• If f and g are isomorphisms, then g ◦ f is an isomorphism.

Thus, the automorphisms of an objectA, denoted Aut(A) = {isomorphisms A→
A} ⊂ Mor(A,A), form a group.

Isomorphic objects have isomorphic automorphism groups. Specifically, an iso-
morphism f ∈ Mor(A,B) induces an isomorphism of groups cf : Aut(A) →
Aut(B), defined by

cf (g) = f ◦ g ◦ f−1.

Example 3.5.

1. In Sets, if A is a finite set with n elements, then Aut(A) = {bijections A→
A} ∼= Sn, the symmetric group on n elements.

2. If V is an n-dimensional vector space over k, then Aut(V ) ∼= GLn(k), the
group of invertible n× n matrices.

Now, we discuss products and sums in categories:

Definition 3.6. Given objects A and B in a category C, a product A×B is an
object Z of C along with two maps π1 : Z → A and π2 : Z → B such that for all
objects T ∈ ObC, and for all morphisms f1 ∈ Mor(T,A) and f2 ∈ Mor(T,B),
there exists a unique morphism φ ∈ Mor(T,Z) such that

π1 ◦ φ = f1 and π2 ◦ φ = f2.

This is represented as:

T

A Z B

f1 ∃!φ f2

π1 π2

Example 3.7.

• In Sets, the product A×B is the usual Cartesian product, with π1 and π2
being the projection maps. Given f1 : T → A and f2 : T → B, we define

T → A×B, t 7→ (f1(t), f2(t)).

• In Vectk, the product is A ⊕ B (so a sum is treated as a product in this
context), with i1 and i2 being the inclusion maps A → A ⊕ B and B →
A⊕B, respectively. We define the morphism

φ : T → A⊕B, (a, b) 7→ f1(a) + f2(b).
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Next, we discuss functors:

Definition 3.8. Let C and D be categories. A (covariant) functor F : C → D
is an assignment that:

• assigns to each object X in C, an object F (X) in D,

• assigns to each morphism f ∈ MorC(X,Y ), a morphism F (f) ∈ MorD(F (X), F (Y )),

such that:

1. F (idX) = idF (X),

2. F (g ◦ f) = F (g) ◦ F (f).

Example 3.9. Examples of functors include:

1. The forgetful functor, which takes a group, topological space, etc., to its
underlying set.

2. For vector spaces, given a vector space V , the functor F :W 7→ Hom(V,W )
assigns to each vector space W , the set of linear maps Hom(V,W ). If
f :W →W ′ is linear, the induced map is

Hom(V,W )
F (f)→ Hom(V,W ′), a 7→ f ◦ a.

This gives a functor Vectk → Vectk, denoted Hom(V, ·).

3. The complexification functor VectR → VectC, which sends each vector
space V over R to its complexification VC, and each morphism φ to φC.

4. The functor
Sets→ Groups, X 7→ ⟨X⟩,

which sends a set X to the free group generated by X. For example,
F ({a, b}) = ⟨a, b⟩, the free group on two generators.

A contravariant functor is a functor where the direction of morphisms is reversed.

Definition 3.10. A contravariant functor is a functor such that for f ∈
MorC(X,Y ), we map f to F (f) ∈ MorD(F (Y ), F (X)), and F (g ◦ f) = F (f) ◦
F (g).

Example 3.11. On Vectk, the dual functor V 7→ V ∗ is contravariant.

Finally, we consider natural transformations:

Definition 3.12. Given two functors F,G : C → D, a natural transfor-
mation t from F to G consists of, for each object X ∈ ObC, a morphism
tX ∈ MorD(F (X), G(X)) such that for all objects X,Y ∈ ObC, and for all
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morphisms f ∈ MorC(X,Y ), the following diagram commutes:

F (X) G(X)

F (Y ) G(Y )

tX

F (f) G(f)

tY

Example 3.13. The functor Vectk → Sets that sends a vector space to its un-
derlying set has natural transformations, which allow for compatibility between
the functors.

3.3 Bilinear Forms

Definition 3.14. A bilinear form on a vector space V over a field K is a
map b : V × V → K that is linear in each variable: for all u, v, w ∈ V and
λ ∈ K, we have

b(λv,w) = b(v, λw) = λb(v, w), b(u+v, w) = b(u,w)+b(v, w), b(u,w+v) = b(u,w)+b(u, v).

Note that this is not a linear map V × V → K. Indeed, for a bilinear form, we
have

b(λ(v, w)) = b(λv, λw) = λ2b(v, w) ̸= λb(v, w).

Definition 3.15. We say b is symmetric if b(v, w) = b(w, v) for all v, w ∈ V ,
and skew-symmetric if b(v, w) = −b(w, v).

Example 3.16.

• The usual dot product on Kn, (v, w) 7→
∑n
i=1 viwi, is symmetric.

• The map b : K2×K2 → K, b((x1, x2), (y1, y2)) = x1y2−x2y1 = det

Å
x1 y1
x2 y2

ã
,

is skew-symmetric.

Given a bilinear map b : V × V → K, we can define a linear map φb : V → V ∗

by φb(v) = b(v, ·) ∈ V ∗, which maps w ∈ V to b(v, w) ∈ K. Conversely, a linear
map φ : V → V ∗ determines a bilinear form b(v, w) = (φ(v))(w). This defines
a bijection

B(V )
∼→ Hom(V, V ∗).

Definition 3.17. The rank of the bilinear form b : V × V → K is the rank
of φb : V → V ∗, i.e., dim(Im(φb)). If φb is an isomorphism, we say that b is
nondegenerate.

For a given vector space V , the space of bilinear formsB(V ) = {bilinear forms V×
V → K} is itself a vector space over K. What is its dimension?
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If we choose a basis {e1, . . . , en} for V , it is enough to specify b(ei, ej) for all
i, j in order to determine b. By bilinearity, we have

b

Ñ∑
i

xiei,
∑
j

yjej

é
=
∑
i,j

xiyjb(ei, ej).

Thus, the values of b(ei, ej) can be chosen freely. For example, a basis of B(V )
is given by the set (bkℓ)1≤k≤n,1≤ℓ≤n such that

bkℓ(ei, ej) =

®
1 if (i, j) = (k, ℓ),

0 otherwise.

Therefore, we have dim(B(V )) = (dim(V ))2, consistent with the isomorphism
B(V ) ≃ Hom(V, V ∗). The map b 7→ φb is an isomorphism of vector spaces.

Given a basis {e1, . . . , en} of V , the bilinear form b : V × V → K is represented
by an n× n matrix A = (aij) where aij = b(ei, ej). We have

b

Ñ∑
i

xiei,
∑
j

yjej

é
=
∑
i,j

xiyjb(ei, ej) = (x1, . . . , xn)A

Ö
y1
...
yn

è
,

so in terms of column vectors, we write b(X,Y ) = XTAY .

Remark 3.18. The isomorphism

B(V )
∼→ Hom(V, V ∗) given by b 7→ φb

is natural in the sense that we have contravariant functors V 7→ B(V ) and
V 7→ Hom(V, V ∗). For a morphism f : V →W , we have

B(f) : B(W )→ B(V ), b(·, ·) 7→ b(f(·), f(·)),

and
Hom(W,W ∗)→ Hom(V, V ∗), φ 7→ f∗ ◦ φ ◦ f.

The isomorphisms B(V )
∼→ Hom(V, V ∗) define a natural transformation between

these functors.

Definition 3.19. If S ⊂ V is a subspace of a vector space equipped with a
bilinear form b : V × V → K, we define its orthogonal complement as the
vector space

S⊥ = Ann(φb(S)) = {b(v, ·) | v ∈ S} ⊂ V ∗.

Equivalently, S⊥ = Ann(φb(S)), where Ann(φb(S)) ⊂ V consists of the vectors
on which all the linear forms in φb(S) vanish. This is most useful when B is
symmetric or skew-symmetric. Otherwise, we must be cautious about left/right
orthogonality.
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Proposition 3.20. If b is nondegenerate, then dim(S⊥) = dim(V ) − dim(S).
Otherwise, dim(S⊥) = dim(V )− dim(φb(S)).

Example 3.21.

• For V = Rn with the standard dot product, V = S ⊕ S⊥ is the ”usual”
orthogonal complement, since S ∩S⊥ = {0} (if v ∈ S ∩S⊥, then b(v, v) =
0 =⇒ v = 0) and dim(S) + dim(S⊥) = dim(V ).

• For b : K2 ×K2 → K, b((x1, x2), (y1, y2)) = x1y2 − x2y1, if S ⊂ K2 is a
1-dimensional subspace spanned by any nonzero vector v, we have S⊥ = S
(because b(v, w) = 0 ⇐⇒ det(v, w) = 0 ⇐⇒ w ∈ K · v = S).

3.4 Inner Product Spaces

Definition 3.22. An inner product space is a vector space V over R together
with a symmetric positive definite bilinear form ⟨·, ·⟩ : V × V → R.

Remark 3.23.

• Symmetric: ⟨u, v⟩ = ⟨v, u⟩

• Positive definite: ⟨u, u⟩ ≥ 0 for all u ∈ V , and ⟨u, u⟩ = 0 if and only if
u = 0.

This definition is meaningful only over an ordered field, so the condition ⟨v, v⟩ ≥
0 makes sense. In practice, this means the field R. We cannot define an in-
ner product over C in the same way, because ⟨iv, iv⟩ = i2⟨v, v⟩ = −⟨v, v⟩,
which breaks the positivity condition for a bilinear form. However, there is a
workaround: observe that |λ|2 ≥ 0 for all λ ∈ C, which allows us to define
Hermitian forms.

Definition 3.24. Let V be a vector space over C. A Hermitian form is a
map h : V × V → C which is linear in the second variable and conjugate linear
(or ”complex antilinear”) in the first variable:

h(λv,w) = λh(v, w)∀λ ∈ C vs. h(v, λw) = λh(v, w)

h(v1 + v2, w) = h(v1, w) + h(v2, w) vs. h(v, w1 + w2) = h(v, w1) + h(v, w2)

and conjugate symmetric: h(v, w) = h(w, v).

We then study C-vector spaces with a Hermitian inner product, which is a
positive-definite Hermitian form.

Let φ : V → V ∗, v 7→ ⟨v, ·⟩ be the linear map corresponding to the inner product
⟨·, ·⟩. If ⟨·, ·⟩ is positive definite, then φ is injective (since for all v ̸= 0, φ(v) ̸= 0,
implying vφ(v) > 0). Thus, assuming dim(V ) < ∞, φ is an isomorphism
V
∼→ V ∗, i.e., ⟨·, ·⟩ is nondegenerate. Note that the converse of this is false.

Proposition 3.25. If V is a finite-dimensional inner product space and S ⊂ V
is a subspace, then V = S ⊕ S⊥.
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Proof. Since ⟨·, ·⟩ is nondegenerate, we have dim(S⊥) = dim(V )−dim(S). Fur-
thermore, since ⟨·, ·⟩ is positive definite, v ∈ S∩S⊥ implies ⟨v, v⟩ = 0, and hence
v = 0. Therefore, S ∩ S⊥ = {0}. Since the dimensions add up to dim(V ), we
conclude that S ⊕ S⊥ = V .

Definition 3.26. The norm of a vector is ∥v∥ =
√
⟨v, v⟩. Two vectors v, w ∈

V are orthogonal if ⟨v, w⟩ = 0.

Some familiar properties include:

• ∥v − w∥2 = ⟨v − w, v − w⟩ = ∥v∥2 + ∥w∥2 − 2⟨v, w⟩.

• If v and w are orthogonal, then ∥v − w∥2 = ∥v∥2 + ∥w∥2.

• In general, the angle between two vectors is defined as ∡(v, w) = cos−1
Å ⟨v, w⟩
∥v∥ ∥w∥

ã
.

This definition makes sense only if |⟨v, w⟩| ≤ ∥v∥ ∥w∥.

Proposition 3.27 (Cauchy-Schwarz Inequality). For all u, v ∈ V , |⟨u, v⟩| ≤
∥u∥ ∥v∥.

Proof. The inequality is unaffected by scaling, so we assume ∥u∥ = 1. Decom-
pose v along V = S⊕S⊥, where S = span(u) ⊂ V . Explicitly, v = v1+v2, where
v1 = ⟨v, u⟩u ∈ span(u) and v2 = v − ⟨v, u⟩u is orthogonal to u. Then v1 ⊥ v2,
so ∥v∥2 = ∥v1∥2 + ∥v2∥2 ≥ ∥v1∥2 = ⟨v, u⟩2. This is the desired inequality for
∥u∥ = 1.

Definition 3.28. Let V be a finite-dimensional vector space over R with inner
product ⟨·, ·⟩. A basis v1, . . . , vn of V is said to be orthonormal if

⟨vi, vj⟩ =
®
1 if i = j,

0 if i ̸= j.

In such a basis, (V, ⟨·, ·⟩) ≃ Rn with the standard dot product.

Theorem 3.29. Every finite-dimensional inner product space over R has an
orthonormal basis.

Two proofs:

Proof. By induction on dim(V ): Choose v ̸= 0 ∈ V , let v1 =
v

∥v∥
, so ∥v1∥ = 1.

Let S = span(v1), and apply the decomposition V = S ⊕ S⊥ (the restriction
of ⟨·, ·⟩ to S⊥ is an inner product). Then v1, . . . , vn is an orthonormal basis for
V .

Proof. Start with any basis w1, . . . , wn of V and apply the Gram-Schmidt pro-

cess. First set v1 =
w1

∥w1∥
. Then take w2−⟨w2, v1⟩v1, which is orthogonal to v1
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(and nonzero by the independence of wi), and set v2 =
w2 − ⟨w2, v1⟩v1
∥w2 − ⟨w2, v1⟩v1∥

, and

so on. Set vj =
wj −

∑j−1
i=1 ⟨wj , vi⟩vi

∥wj −
∑j−1
i=1 ⟨wj , vi⟩vi∥

. Then (v1, . . . , vn) is an orthonormal

basis.

Therefore, every finite-dimensional inner product space over R is isomorphic (as
an inner product space, not just as a vector space) to the standard Rn, where
n = dim(V ).

3.5 Orthogonal and Self-Adjoint Operators

Let (V, ⟨·, ·⟩) be an inner product space. There are two special classes of linear
operators on V that are of particular interest to us.

Definition 3.30. A linear operator T : V → V is said to be an orthogonal
operator if it respects the inner product, i.e.,

⟨Tu, Tv⟩ = ⟨u, v⟩ ∀u, v ∈ V.

In other words, T preserves lengths and angles.

Remark 3.31.

1. Orthogonal operators map orthonormal bases to orthonormal bases:

⟨Tei, T ej⟩ = ⟨ei, ej⟩ =
®
1 if i = j,

0 if i ̸= j.

In particular, orthogonal operators are always invertible.

2. If T is orthogonal, then T−1 is also orthogonal, since

⟨T−1u, T−1v⟩ = ⟨T (T−1u), T (T−1v)⟩ = ⟨u, v⟩ ∀u, v.

If T1 and T2 are orthogonal, then their product T1T2 is also orthogonal.
Hence, the set of orthogonal operators forms a subgroup of Aut(V ).

3. If M is the matrix representing T in an orthonormal basis, then MTM =
I. To see this, the entries of MTM are the dot products of the columns
of M :

(MTM)ij =
∑
k

MT
ikMkj =

∑
k

MkiMkj = ⟨M(ei),M(ej)⟩ = ⟨ei, ej⟩.

Definition 3.32. Let T : V → V be a linear operator on an inner product space
(V, ⟨·, ·⟩). There exists a unique linear operator T ∗ : V → V , called the adjoint
of T , such that

⟨v, T (w)⟩ = ⟨T ∗(v), w⟩ ∀v, w ∈ V.
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Given v ∈ V , the linear functional φv : V → R defined by w 7→ ⟨v, T (w)⟩ can,
by the non-degeneracy of ⟨·, ·⟩, be written as the inner product of w with some
element of V , which we denote T ∗(v). Hence, T ∗(v) is the unique element of V
such that ⟨w, T ∗(v)⟩ = ⟨v, T (w)⟩.

Alternatively, define the isomorphism φ : V → V ∗ and observe that T ∗ is the
composition

V
φ→ V ∗

TT

→ V ∗
φ−1

→ V,

which maps v to ⟨v, ·⟩, then ⟨v, T (·)⟩ = ⟨T ∗(v), ·⟩, yielding T ∗(v).

Definition 3.33. A linear operator T : V → V is self-adjoint if T ∗ = T , i.e.,

⟨T ∗(v), w⟩ = ⟨T (v), w⟩ ∀v, w ∈ V.

In an orthonormal basis (e1, . . . , en) of V , if the matrix of T is M , the matrix
of T ∗ is N . We have

⟨v, T (w)⟩ = vTMw, ⟨T ∗(v), w⟩ = (Nv)Tw = vTNTw,

which implies NT = M , so N = MT . Hence, in an orthonormal basis, T is
self-adjoint if and only if the matrix M(T ) is symmetric.

Note that self-adjoint operators need not be invertible. For example, the zero
operator is self-adjoint.

Proposition 3.34. If T is self-adjoint and S ⊂ V is an invariant subspace of
T (i.e., T (S) ⊂ S), then the orthogonal complement S⊥ is also an invariant
subspace of T (i.e., T (S⊥) ⊂ S⊥).

Proof. Let v ∈ S⊥. Then for all w ∈ S, we have T (w) ∈ S, so

⟨Tv,w⟩ = ⟨v, Tw⟩ = 0

(the first equality follows from T ∗ = T , and the second from v ∈ S⊥ and
T (w) ∈ S). Since ⟨Tv,w⟩ = 0 for all w ∈ S, we conclude that Tv ∈ S⊥.

Lemma 3.35. If T is self-adjoint, then for all a ∈ R+, the operator T 2 + a is
invertible.

Proof. For all v ∈ V \ {0}, we have

⟨(T 2 + a)v, v⟩ = ⟨T 2v, v⟩+ a⟨v, v⟩ = ⟨Tv, Tv⟩+ a⟨v, v⟩ = ∥Tv∥2 + a∥v∥2 ≥ 0.

Thus, (T 2 + a)v ̸= 0, implying that Ker(T 2 + a) = {0}.

Corollary 3.36. If p(x) ∈ R[x] is a quadratic polynomial with no real roots and
T ∗ = T , then p(T ) is invertible.
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Proof. It suffices to show that T 2 + bT + c is invertible whenever b2 − 4c < 0.
We can write

T 2 + bT + c =

Å
T +

b

2

ã2
+ a, a = c− b2

4
> 0,

and since T + b
2 is self-adjoint, by the lemma, T 2 + bT + c is invertible.

Proposition 3.37 (The Spectral Theorem for Real Self-Adjoint Operators).
If T : V → V is self-adjoint, then T is diagonalizable with real eigenvalues.
Moreover, T can be diagonalized in an orthonormal basis of (V, ⟨·, ·⟩).

Proof. First, we show the existence of an eigenvector. Pick v ∈ V , v ̸= 0.
Since the vectors v, Tv, T 2v, . . . , Tnv are linearly dependent, there exists a non-
constant polynomial such that

(anT
n + · · ·+ a0)v = 0.

This polynomial factors into linear and quadratic factors over R:∏
(T − λi)

∏
(T 2 + bjT + cj)v = 0,

where the first product corresponds to real eigenvalues and the second to irre-
ducible quadratics corresponding to complex conjugate eigenvalues.

At least one of these operators must have a nontrivial kernel (otherwise their
product would be invertible, which would imply v = 0). By the previous corol-
lary, each T 2 + bjT + cj is invertible, so some T − λi must have a nontrivial
kernel, thus yielding an eigenvector!

Now, diagonalization: we know there is an eigenvector v1 ∈ V with eigenvalue
λ1 ∈ R. Scaling v1 if needed, we may assume ∥v1∥ = 1. The subspace S =
span(v1) ⊂ V is invariant under T , and by the Spectral Theorem, S⊥ is also
invariant under T . By induction, restricting ⟨·, ·⟩ to S⊥, we find that there is
an orthonormal basis (v2, . . . , vn) of eigenvectors of T , and (v1, . . . , vn) forms a
basis of V in which T is diagonal.

Corollary 3.38. If T is self-adjoint, then the matrix of T in a suitable or-
thonormal basis is diagonal:

M(T ) =

Ö
λ1 0

. . .

0 λn

è
.

Remark 3.39. This also implies that eigenvectors of T corresponding to distinct
eigenvalues are orthogonal. This can be seen as follows: if Tv = λv and Tw =
µw, then

λ⟨v, w⟩ = ⟨Tv,w⟩ = ⟨v, Tw⟩ = µ⟨v, w⟩.
Thus, if λ ̸= µ, we must have ⟨v, w⟩ = 0, so v ⊥ w.
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Back to orthogonal transformations: Do we have a similar structure/result?

• In dimension 1: T is multiplication by a scalar, so T orthogonal ⇐⇒ T =
±I.

• In dimension 2: T orthogonal ⇐⇒ T is a rotation or reflection. Given
an orthonormal basis (e1, e2), Te1 is any unit vector on the unit circle,
{v ∈ V | ∥v∥ = 1} = {cos θe1 + sin θe2}, and Te2 is also a unit vector
orthogonal to Te1, implying two possibilities: the rotation matrix or the
reflection matrix.

The rotation matrix by θ degrees isÑ
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

é
,

which has no eigenvectors.

The reflection matrix is Ñ
1 0 0
0 cos θ − sin θ
0 sin θ cos θ

é
,

which has eigenvalues ±1 and two orthogonal eigenspaces.

Notation for (V, ⟨·, ·⟩): The subgroups SO(V ) ⊂ O(V ) ⊂ GL(V ) are defined as
follows:

• SO(V ) is the subgroup of orientation-preserving orthogonal transforma-
tions, those with det = ±1. In dimension 1: {±I}. In dimension 2:
rotations.

• O(V ) is the orthogonal group of V .

• GL(V ) is the group of invertible linear operators T : V → U .

Since V ≃ Rd by choosing an orthonormal basis, we typically write O(Rn) =
O(n) and SO(Rn) = SO(n). We also have the short exact sequence:

1→ SO(n)→ O(n)→ {±1} = Z/2→ 1,

where SO(n) has index 2 in O(n), and SO(2) ≃ S1 (rotations correspond to
angles).

Proposition 3.40. If T : V → V is an orthogonal operator on a finite-
dimensional inner product space, then V decomposes into a direct sum of orthog-
onal invariant subspaces V =

⊕
Vi, where Vi ⊥ Vj for i ̸= j and T (Vi) = Vi,

with dimVi = 1 or 2. Specifically:

• If dimVi = 1, then T |Vi = ±I.

• If dimVi = 2, then T |Vi
is either a rotation or a reflection.
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In the latter case, we can further decompose into ±1 eigenspaces, so we can
replace reflections by 1-dimensional blocks.

This provides a nice way to think about an individual transformation as built
from reflections and rotations on individual subspaces, but it doesn’t help in un-
derstanding the composition of two orthogonal transformations (whose invariant
subspaces may not coincide). For example, in R3, is there a nice formula for the
product of two rotations?

3.6 Hermitian Inner Products

Now, let’s examine the analogue of inner products for complex vector spaces:
Hermitian inner products. As noted previously, a bilinear form on a complex
vector space V × V → C cannot be positive-definite, since b(iv, iv) = −b(v, v).
The solution is to abandon C-linearity in one of the two variables and instead
require ”conjugate linearity.”

Definition 3.41. A Hermitian form on a complex vector space V is a map
H : V × V → C such that H is sesquilinear, i.e.,

• H(u+ v, w) = H(u,w) +H(v, w) and H(u, v + w) = H(u, v) +H(u,w),

• H(u, λv) = λH(u, v), but H(λu, v) = λH(u, v),

and H is conjugate symmetric, i.e., H(u, v) = H(v, u).

Conjugate symmetry implies that H(u, u) ∈ R for all u ∈ V .

Definition 3.42. A Hermitian inner product is a positive-definite (conju-
gate symmetric) Hermitian form.

Remark 3.43. The map

φu : V → V ∗, u 7→ H(u, ·),

is now a complex antilinear map, meaning that φ(λu) = λφ(u) for all λ ∈ C.

Various properties carry over from the real case:

• If H is positive-definite, then H is non-degenerate (i.e., Ker(φH) = 0),

• Given a subspace W ⊂ V , its orthogonal complement W⊥ = {v ∈ V |
H(v, w) = 0 ∀w ∈ W} is also a subspace, and V = W ⊕W⊥. Conjugate
linearity does not affect the fact that W⊥ is a C-subspace. Moreover,
positivity implies that W ∩W⊥ = {0}.

The following property also holds:

Definition 3.44. An orthonormal basis of V with a Hermitian inner product
is a basis {ei} such that

H(ei, ej) = δij =

®
1 if i = j,

0 if i ̸= j.
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Proposition 3.45. Every finite-dimensional Hermitian inner product space ad-
mits an orthonormal basis.

This can be proven similarly to the real case by induction on dim(V ). Start by
choosing a vector v1 such that ||v1||2 = H(v1, v1) = 1, then take an orthonormal
basis {v2, . . . , vn} of the orthogonal complement of span(v1), or apply the Gram-
Schmidt process.

Corollary 3.46. Every finite-dimensional Hermitian inner product space is
isomorphic to Cn with the standard Hermitian inner product,

H(z, w) =
∑
j

zjwj .

In matrix form, this is written as

H(z, w) = z∗w,

where z∗ = zT = (z1, . . . , zn) is the conjugate transpose.

Example 3.47 (Fourier Series). This is a not-quite-example. Let V = C∞(S1,C),
the space of infinitely differentiable functions from S1 ≃ R/Z to C, and define

⟨f, g⟩ =
∫
S1

f(t)g(t) dt.

The functions fn(t) = e2πint form an orthogonal set, with ⟨fn, fm⟩ = δmn.
The set {fn}n∈Z is not a basis for V , but their span W ⊂ V is the space of
trigonometric polynomials. We can think of the Fourier series as an orthogonal
projection onto W . This becomes clearer with analysis or, even better, with the
theory of Hilbert spaces.

Definition 3.48. Let V be a complex vector space, H a Hermitian inner prod-
uct, and T : V → V a linear map. The following definitions hold:

• The adjoint of T is T ∗ : V → V such that

H(T ∗v, w) = H(v, Tw) ∀v, w ∈ V.

• T is self-adjoint if T ∗ = T , i.e., H(v, Tw) = H(Tv,w) for all v, w ∈ V .

• T is unitary if H(Tv, Tw) = H(v, w) for all v, w ∈ V , i.e., T ∗ = T−1.

Unitary operators form a subgroup U(V,H) ⊂ Aut(V ) (and U(n) ⊂ GL(n,C)).
Note that U(1) ≃ S1 (the group of complex numbers with norm 1, i.e., multi-
plication by any complex number of norm 1).

In an orthonormal basis, the matrix of the adjoint M(T ∗) is the conjugate
transpose of the matrix of T :

M(T ∗) =M(T )∗ =M(T )T .
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This follows from the identity

H(Tv,w) = (Mv)∗w = v∗M∗w = H(v, T ∗w).

Thus, self-adjoint complex operators are represented by Hermitian matrices:
aij = aji.

Now we state the complex spectral theorem.

Proposition 3.49 (The Complex Spectral Theorem). If V is a finite-dimensional
complex vector space, H : V × V → C is a Hermitian inner product, and
T : V → V is self-adjoint (i.e., T ∗ = T ) or unitary (i.e., T ∗ = T−1), then
there exists an orthonormal basis consisting of eigenvectors of T . Thus, T is
diagonalizable, with eigenvalues in R if self-adjoint, or in the unit circle S1 if
unitary.

Proof. As in the real case, the key observation is that if S ⊂ V is invariant
under T (i.e., T (S) ⊂ S), then so is S⊥ ⊂ V . In both cases, if S is invariant for
T , it is also invariant for T ∗ = T±1. Thus, if v ∈ S⊥, for all w ∈ S, we have

H(Tw,w) = H(v, T ∗w) = 0.

Starting with an eigenvector v1 such that Tv1 = λ1v1 and ||v1|| = 1, we let
S = span(v1) and consider the restriction of T to S⊥.

Returning to (non-degenerate) symmetric bilinear forms:

Suppose V is a finite-dimensional vector space over a field k and B : V ×V → k
is a non-degenerate symmetric bilinear form. Can we classify such forms?

Remark 3.50. Define the quadratic form Q(v) = B(v, v) : V → k. Note that
Q is not necessarily positive-definite unless B is positive-definite. However, if
k = R, we can still classify these forms using the Spectral Theorem.

Classification approach: Find a vector v such thatB(v, v) ̸= 0, and then consider
the orthogonal complement of the span of v, denoted span(v)⊥. (Note that
span(v)⊥ = Ker(φB(v)), where φB(v) : v 7→ k.) Thus, when B(v, v) ̸= 0, we
have the direct sum decomposition V = span(v) ⊕ span(v)⊥. Next, study the
restriction of B to span(v)⊥, i.e., B|span(v)⊥ , and so on.

Proposition 3.51. Over C, any nondegenerate symmetric bilinear form admits
a basis {e1, . . . , en} such that B(ei, ej) = δij.

Remark 3.52. Hermitian forms are typically of greater interest in many ap-
plications, however.

Proof. Since B(u, v) ̸= 0, it follows that at least one of B(u, u), B(v, v), or
B(u + v, u + v) must be nonzero. Therefore, the nondegeneracy of B im-

plies the existence of a vector v such that B(v, v) ̸= 0. Let e1 = B(v, v)−
1
2 v.

Consider the orthogonal complement of span(e1), denoted W = span(e1)
⊥.
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Additionally, since B(e1, e1) ̸= 0, we have span(e1) ∩ span(e1)
⊥ = {0}, and

dim(W ) = dim(Ker(B(e1, ·))) = dim(V ) − 1. Hence, we can express V as a
direct sum: V = span(e1)⊕W .

The restriction of B toW is nondegenerate because the matrix of B in the basis
{e1, some basis of W} is Å

1 0
0 B|W

ã
which is invertible (rank n) if and only if B|W is invertible (rank n−1). We can
complete the proof by induction on the dimension. Assuming the result holds
for dim(V ) = n−1, we can extend it to dim(V ) = n by choosing an appropriate
basis for V such that B|W (ej , ek) = δjk for all j, k.

Proposition 3.53. Over R, any nondegenerate symmetric bilinear form admits
a basis such that

B(ei, ej) =

®
0 if i ̸= j,

±1 if i = j.

That is, we can assume that for any linear combination
∑n
i=1 xiei and

∑n
i=1 yiei,

the bilinear form satisfies

B

(
n∑
i=1

xiei,

n∑
i=1

yiei

)
=

k∑
i=1

xiyi −
n∑
k+1

xiyi,

where

B =
1

1
. . .

−1

−1
. . .

{

{

k

n−
k

We say that a bilinear form B has signature (k, n − k), where the case (n, 0)
corresponds to a definite positive form. Here, k is the maximum dimension of
a subspace W ⊆ V such that the restriction B|W is definite positive, and n− k
is the maximum dimension of a subspace W ⊆ V such that B|W is definite
negative.

Proof. The proof is the same as in the complex case, except that in the real case
we cannot always scale to B(e1, e1) = 1. Instead, we can only force B(e1, e1) =
±1.

Over Q, the situation becomes much more complicated—number theory enters
the picture!
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Example 3.54. Consider the bilinear form B =

Å
1 0
0 1

ã
. The associated

quadratic form is Q(v) = B(v, v) = v21 + v22. However, there does not exist
a vector v = (v1, v2) ∈ Q2 such that B(v, v) = v21 + v22 = 3.

To see this, suppose there are integers n1, n2,m ∈ Z with no common factor
such that n21 + n22 = 3m2. Since n21 + n22 ≡ 0, 1, 2 (mod 4) and 3m2 ≡ 0, 3
(mod 4), it follows that n21+n

2
2 ≡ 3m2 (mod 4), which leads to a contradiction,

as both must be congruent to 0 or 1 (mod 4).

In contrast, the bilinear form B′ =

Å
2 0
0 1

ã
does admit a solution. Specifically,

there exists a vector v = (1, 1) such that B′(v, v) = 3.

Now, consider the skew-symmetric case. Suppose char(k) ̸= 2. We can still find
a standard basis for a finite-dimensional vector space V with a nondegenerate
skew-symmetric bilinear form B : V ×V → k (also known as a symplectic form),
but the process is slightly different since B(v, v) = 0 for all v ∈ V .

To begin, pick any nonzero e1 ∈ V . Since V is nondegenerate, the map
B(e1, ·) : V → k is nonzero, implying the existence of a vector f1 ∈ V such that
B(e1, f1) ̸= 0. We can scale f1 so that B(e1, f1) = 1. Now consider the subspace
span(e1, f1). Since B is skew-symmetric, we have span(e1, f1)∩ span(e1, f1)⊥ =
{0}, because if v = ae1 + bf1 satisfies B(v, e1) = 0 and B(v, f1) = 0, it fol-
lows that a = b = 0. Therefore, we can write V as the direct sum V =
span(e1, f1)⊕ span(e1, f1)

⊥. We then study the restriction of B to the subspace
span(e1, f1)

⊥ using induction on the dimension. This leads to the following
result:

Proposition 3.55. Let V be a finite-dimensional vector space over a field k with
char(k) ̸= 2, and let B be a nondegenerate skew-symmetric bilinear form on V .
Then the dimension of V is even, and there exists a basis {e1, f1, . . . , en, fn} of
V such that:

B(ei, ej) = B(fi, fj) = 0, B(ei, fj) = δij = −B(fj , ei).

That is, the matrix of B in this basis is

. . .

0

0−1
1

0

0−1
1

The group of linear transformations preserving B is the symplectic group
Sp(V,B) ≃ Sp(2n, k).
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3.7 Tensor Products: Definition and Basic Properties

Let V,W be finite-dimensional vector spaces over k. The tensor product is a
vector space V ⊗W with a bilinear map

V ×W → V ⊗W
(v, w) 7→ v ⊗ w.

There are three equivalent definitions (from concrete to abstract; all give the
same output up to natural isomorphism).

Definition 3.56. Choose bases e1, . . . , em of V , and f1, . . . , fn of W . Then
V ⊗W is the vector space with basis {ei ⊗ fj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

The bilinear map is (ei, fj) 7→ ei ⊗ fj , and it extends by linearity.

Elements of the form v ⊗ w = (
∑
aiei)⊗ (

∑
bjfj) =

∑
aibj(ei ⊗ fj) are called

pure tensors. Not every element of V ⊗W is of this form! The rank of an
element of V ⊗W is the minimum number of terms needed to express it as a
linear combination of pure tensors.

This definition is concrete and shows that dim(V ⊗W ) = mn, but the indepen-
dence of the choice of basis isn’t obvious. To de-emphasize the basis:

Definition 3.57. Start with a vector space U with basis {v⊗w | v ∈ V,w ∈W}
(this is often an uncountably large basis), and quotient it by a subspace R of
relations among these elements. Specifically, R is the span of the following
relations:

(λv)⊗ w − λ(v ⊗ w),

v ⊗ (λw)− λ(v ⊗ w),

(u+ v)⊗ w − u⊗ w − v ⊗ w,

u⊗ (v + w)− u⊗ v − u⊗ w,

for all scalars λ and vectors u, v, w.

Defining V ⊗W = U/R sets all these relations to zero, enforcing the bilinearity
of the map (v, w) 7→ v ⊗ w.

This definition shows the independence of the choice of basis but involves a
large construction. Ultimately, if we have bases {ei} of V and {fj} of W , the
relations in R ensure that all elements of V ⊗W are linear combinations of ei⊗fj .
However, before checking this, it’s not even obvious that dim(V ⊗W ) <∞.

The least concrete, yet most mathematically satisfactory, definition character-
izes what V ⊗ W does without specifying its construction. Namely, V ⊗ W
is the largest space through which all bilinear maps from V ×W factor. (For
example, in the second definition, U is too large, and quotienting by R enforces
bilinearity.)
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Definition 3.58. The tensor product V ⊗W is the universal vector space
through which all bilinear maps from V ×W factor. That is, it is a vector space
V ⊗W and a bilinear map β : V ×W → V ⊗W such that, given any vector
space U over k, and any bilinear map b : V ×W → U , there exists a unique
linear map φ : V ⊗W → U such that b = φ ◦ β:

V ×W U

V ⊗W

b

β ∃!φ

This definition tells us the key property of V ⊗W and implies uniqueness up
to isomorphism (the universal property gives isomorphisms between any two
candidate constructions of V ⊗W ). Existence ultimately follows from one of
the previous constructions.

Check: definition 1 satisfies the property. Given bases {ei} and {fj} of V and
W , we have

{bilinear maps b : V ×W → U} ↔ {linear maps φ : V ⊗W → U},

by defining b(ei, fj) = φ(ei ⊗ fj) and vice versa.

Now, let’s move on to some basic properties:

Proposition 3.59. ⊗ : Vectk ×Vectk → Vectk is a functor.

This means that, given linear maps f : V → V ′, g : W → W ′, we get a linear
map f ⊗ g : V ⊗W → V ′⊗W ′ on pure elements: (f ⊗ g)(v⊗w) = f(v)⊗ g(w),
and this respects composition.

Proposition 3.60.
V ⊗W ∼=W ⊗ V.

This is a natural isomorphism, and we could even claim that they are equal.

Proposition 3.61.

(U ⊕ V )⊗W ∼= (U ⊗W )⊕ (V ⊗W ).

This is more surprising but extremely useful:

Proposition 3.62.
Hom(V,W ) ≃ V ∗ ⊗W.

Proof. The map

V ∗ ×W → Hom(V,W )

(ℓ, w) 7→ (v 7→ ℓ(v)w)

70



is bilinear. So, by the universal property, we get a linear map V ∗ ⊗ W →
Hom(V,W ) that takes ℓ ⊗ w 7→ (v 7→ ℓ(v)w). Pick bases (e1, . . . , en) of V ,
(f1, . . . , fm) of W , and let (e∗1, . . . , e

∗
n) be the dual basis of V ∗. Then (e∗i ⊗ fj)

is a basis of V ∗ ⊗W . The above construction takes (e∗i ⊗ fj) to

φij : V →W

v 7→ e∗i (v)fj ,

whose action on basis elements is that ei maps to fj , and all others map to 0.
Thus, M(φij) is an m×n matrix with a single nonzero entry in the ith column
and jth row. These form a basis of Hom(V,W ). Since it maps a basis to a basis,
V ∗ ⊗W → Hom(V,W ) is an isomorphism.

Example 3.63. If V has a basis (e1, e2), V
∗ has a basis (e∗1, e

∗
2), and W has a

basis (f1, f2), then the linear map with matrix

Å
a b
c d

ã
is

e∗1 ⊗ (af1 + cf2) + e∗2 ⊗ (bf1 + df2).

This is generally a rank 2 tensor, except if ad − bc = 0, in which case we can
write it as a pure tensor

(xe∗1 + ye∗2)⊗ (zf1 + wf2).

Proposition 3.64. The tensor rank in V ∗ ⊗ W is the same as the rank in
Hom(V,W ) (hence the name).

For the rank 1 case: ℓ⊗w corresponds to (v 7→ ℓ(v)w), whose image is span(w).
This is easiest to see if we take a basis of V in which er+1, . . . , en is a basis of
Ker(φ) and of W in which f1, . . . , fr is a basis of Im(φ), with fi = φ(ei) for all
1 ≤ i ≤ r. Then φ corresponds to

∑r
i=1 e

∗
i ⊗ fi, and the matrix of φ isá

1
. . .

1

0

0 0

ë
where the width of the matrix is r = rank(φ).

The isomorphism Hom(V,W ) ≃ V ∗ ⊗W also implies:

• (V ⊗W )∗ ≃ V ∗ ⊗W ∗. This can be seen as follows:

(V ⊗W )∗ = Hom(V ⊗W,k)
= {Bilinear maps V ×W → k}
≃ Hom(V,W ∗)

≃ V ∗ ⊗W ∗.

The first ≃ is given by b 7→ φb, where φb(v) = b(v, ·), with v ∈ V and
b(v, ·) ∈W ∗.
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• Hom(V,W ) ≃ V ∗ ⊗ W = (W ∗)∗ ⊗ V ∗ ≃ Hom(W ∗, V ∗). This is the
transpose construction, where φ ∈ Hom(V,W ) corresponds to φt :W ∗ →
V ∗.

We can now properly define the trace of a linear operator! In standard linear
algebra classes, the trace of an n × n matrix A = (aij) is defined as tr(A) =∑n
i=1 aii, the sum of the diagonal entries. Noting that tr(AB) =

∑
i,j aijbji =

tr(BA), we have tr(P−1AP ) = tr(A), and so the trace of T : V → V is defined
as the trace ofM(T ) in any basis. We could also define the trace via eigenvalues
and their multiplicities, and for an algebraically closed field, in a basis where
M(T ) is triangular, we see that tr(T ) =

∑
niλi.

We can improve this definition (conceptually) by using Hom(V, V ) ≃ V ∗ ⊗ V ,
and the contraction linear map V ∗ ⊗ V → k. Namely, there’s a natural bilinear
pairing

ev : V ∗ × V → k

(ℓ, v) 7→ ℓ(v)

which determines tr : V ∗⊗V → k. On pure tensors, ℓ⊗v 7→ ℓ(v). This is indeed
equivalent to the usual definition: choosing a basis (ei) and the dual basis (e∗i ),
tr(e∗i ⊗ ej) = e∗i (ej) = δij , which corresponds to the trace of the matrix with a
single entry 1 in position (j, i).

Definition 3.65. A map m : V1 × · · · × Vk → W is called multilinear if it is
linear in each variable separately.

The tensor product V1 ⊗ · · · ⊗ Vk can be defined in various ways: either by
using bases of V1, . . . , Vk, or as a quotient of a universal vector space by certain
relations, or through the universal property for multilinear maps. Specifically,
there exists a multilinear map µ : V1 × · · · × Vk → V1 ⊗ · · · ⊗ Vk such that
(v1, . . . , vk) 7→ v1 ⊗ · · · ⊗ vk. Moreover, for any vector space W , and for any
multilinear mapm : V1×· · ·×Vk →W , there exists a unique map φ ∈ Hom(V1⊗
· · · ⊗ Vk,W ) such that m = φ ◦ µ:

V1 × · · · × Vk W

V1 ⊗ · · · ⊗ Vk

m

µ ∃!φ

In fact, nothing new is happening here, since we have the well-known isomor-
phism (U ⊗V )⊗W = U ⊗ (V ⊗W ) = U ⊗V ⊗W . However, in the special case
where V ⊗n = V ⊗ · · · ⊗ V (with n copies of V , and by convention V ⊗0 = k,
V ⊗1 = V ), we obtain bilinear maps V ⊗k × V ⊗ℓ → V ⊗(k+ℓ) for all k, ℓ ≥ 0.
Taken together, these maps define a multiplication on the tensor algebra

T (V ) =

∞⊕
n=0

V ⊗n,

making it a noncommutative ring.
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3.8 Symmetric and Exterior Algebra

Recall that the space of bilinear forms B(V ) ≃ V ∗ ⊗ V ∗ decomposes into

B(V ) = Bsym ⊕Bskew

where Bsym and Bskew represent the symmetric and skew-symmetric bilinear
forms, respectively. Equivalently, there is an involution (an automorphism such
that φ2 = id) φ : B(V ) → B(V ) that maps b(x, y) 7→ b(y, x), or equivalently,
on V ∗ ⊗ V ∗: ℓ⊗ ℓ′ 7→ ℓ′ ⊗ ℓ.

This involution φ has eigenvalues ±1, with:

Ker(φ− I) = Bsym, Ker(φ+ I) = Bskew.

We can also extend this to higher tensor powers of V or V ∗ (in the latter case,
considering multilinear forms).

There is an action of the symmetric group Sd on V ⊗d, i.e., each permutation
σ ∈ Sd defines a linear map

V ⊗d
σ→ V ⊗d with v1 ⊗ · · · ⊗ vd 7→ vσ(1) ⊗ · · · ⊗ vσ(d).

This defines a group homomorphism Sd → Aut(V ⊗d).

Definition 3.66. A tensor η ∈ V ⊗d is symmetric if σ · η = η for all σ ∈ Sd.
The space of symmetric tensors is denoted Symd(V ) ⊂ V ⊗d.

For example, Symd(V ∗) consists of symmetric multilinear forms m : V × · · · ×
V → k, satisfying m(vσ(1), . . . , vσ(d)) = m(v1, . . . , vd).

If char(k) = 0, the symmetric part of a tensor can be obtained by averaging:

α : V ⊗d → Symd(V ), α(v1 ⊗ · · · ⊗ vd) =
1

d!

∑
σ∈Sd

vσ(1) ⊗ · · · ⊗ vσ(d).

Definition 3.67. If char(k) = 0, we can also define Symd(V ) as the quotient
of V ⊗d by the subspace spanned by elements of the form η − σ(η), for σ ∈ Sd.
Explicitly, this quotient is generated by elements like

v1 ⊗ v2 ⊗ v3 ⊗ · · · ⊗ vd − v2 ⊗ v1 ⊗ v3 ⊗ · · · ⊗ vd,

where transpositions generate Sd, and similarly for swapping other factors. This
definition is different from, but isomorphic to, the previous one.

To determine which definition (as a quotient versus subspace of V ⊗d) is prefer-
able, we use a universal property.

Recall that V ⊗d comes with a multilinear map µ : V d → V ⊗d, and it is charac-
terized by the isomorphism:

Hom(V ⊗d, U) ≃ {multilinear maps V d → U}, φ 7→ φ ◦ µ.
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Now, SymdV comes with a symmetric multilinear map V d → SymdV , and it is
characterized by:

Hom(SymdV,U) ≃ {symmetric multilinear maps V d → U}.

Definition 3.68. The product operations V ⊗k × V ⊗ℓ → V ⊗k+ℓ induce a prod-
uct SymkV × SymℓV → Symk+ℓV (using ⊗ followed by averaging with α).
These combine into a product operation on the symmetric algebra Sym·(V ) :=⊕

d≥0 Sym
d(V ), called the symmetric algebra of V .

Proposition 3.69. The symmetric algebra Sym·(V ) is a commutative ring.

Proof. The product remains associative despite the symmetrization by averag-
ing:

α(α(u⊗ v)⊗ w) = α(u⊗ α(v ⊗ w)) = α(v ⊗ v ⊗ w).

Concretely, if e1, . . . , en is a basis of V , then

Sym·(V ) ≃ k[e1, . . . , en]

is the algebra of polynomial expressions in the formal variables e1, . . . , en.

This can be seen by denoting α(ei1 ⊗ · · · ⊗ eik) by ei1 · · · eik , and considering
finite linear combinations of all such terms.

More explicitly: if e1, . . . , en is a basis of V , then any linear form on V , ℓ ∈ V ∗,
is of the form v =

∑
xiei 7→ ℓ(v) =

∑
aixi, which is a degree 1 polynomial.

Symmetric multilinear forms η ∈ SymdV ∗ are likewise polynomials (with only
degree d terms):

v =
∑

xiei 7→ η(v, . . . , v) =
∑

i1,...,id

xi1 · · ·xid .

Thus, we have the following result:

Proposition 3.70.
Sym·(V ∗) ≃ k[x1, . . . , xn]

where the xi are considered as the coordinates of a vector in V , viewed as linear
(degree 1) polynomials on V (i.e., this is another notation for e∗i ∈ V ∗).

Next, we perform a similar construction for skew-symmetric (alternating) mul-
tilinear forms.

Definition 3.71. A tensor η ∈ V ⊗d is alternating if σ(η) = (−1)ση for all
σ ∈ Sd, where (−1)σ is the sign of σ: −1 for transpositions and products of an
odd number of them. The space of alternating tensors is denoted Λd(V ) ⊂ V ⊗d.
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In characteristic zero, we can view Λd(V ) as the image of the skew-symmetrization
operator:

β : V ⊗d → V ⊗d, v1∧· · ·∧vd := β(v1⊗· · ·⊗vd) =
1

d!

∑
σ∈Sd

(−1)σvσ(1)⊗· · ·⊗vσ(d).

This is zero whenever vi = vj for some i ̸= j, and by multilinearity, it is also zero
whenever v1, . . . , vd are linearly dependent. Thus, we have Λd(V ) = 0 whenever
d > dimV .

Alternative definitions:

Definition 3.72. Λd(V ) can be defined as the quotient of V ⊗d by the subspace
spanned by elements like:

v1 ⊗ v2 ⊗ · · · ⊗ vd + v2 ⊗ v1 ⊗ · · · ⊗ vd,

and similarly for other transpositions swapping two factors.

Or alternatively:

Definition 3.73. Λd(V ) can be defined as the vector space with an alternating
multilinear map

V × · · · × V → ΛdV, (v1, . . . , vd) 7→ v1 ∧ · · · ∧ vd,

where v1∧v2 = −v2∧v1, and so on. This is universal for alternating multilinear
maps on V × · · · × V .

Proposition 3.74. If (e1, . . . , en) is a basis of V , then the set {ei1 ∧ · · · ∧ eid |
i1 < · · · < id} forms a basis of ΛdV .

There is a product ΛkV × ΛℓV → Λk+ℓV induced by tensor algebra and skew-
symmetrization:

(v1 ∧ · · · ∧ vk) ∧ (w1 ∧ · · · ∧ wℓ) = v1 ∧ · · · ∧ vk ∧ w1 ∧ · · · ∧ wℓ.

This defines the exterior algebra Λ·V =
⊕

d≥0 Λ
dV as a (skew-commutative)

ring, where for η ∈ ΛkV and ξ ∈ ΛℓV , we have η∧ ξ = (−1)kℓξ∧η. (It is known
that dimΛ·V = 2dimV .)

3.9 Volume and Determinant

If dimV = n, then dimΛnV = 1. If (e1, . . . , en) is a basis of V , then e1∧· · ·∧en ∈
ΛnV . A choice of isomorphism ΛnV

∼→ k is determined by the data of a volume
form vol ∈ ΛnV ∗ = (ΛnV )∗, where vol ̸= 0, i.e., a non-degenerate alternating
multilinear map:

V × · · · × V → k, (v1, . . . , vn) 7→ vol(v1, . . . , vn).

This can be interpreted as the signed volume of the parallelepiped with edge
vectors v1, . . . , vn, which is naturally given by v1 ∧ · · · ∧ vn ∈ ΛnV and becomes
a scalar once we identify ΛnV

∼→ k.
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Example 3.75. In a real inner product space with orthonormal basis (e1, . . . , en),
the natural volume form is vol = e∗1∧· · ·∧e∗n, so vol(e1, . . . , en) = 1. Reordering
the basis results in ±1, indicating that orientation matters!

If vj =

Ö
v1j
...
vnj

è
for each j, we have:

vol(v1, . . . , vn) = (e∗1∧· · ·∧e∗n)(v1, . . . , vn) =
∑
σ∈Sn

(−1)σ(e∗σ(1)⊗· · ·⊗e
∗
σ(n))(v1, . . . , vn).

This simplifies to the determinant of the matrix formed by the columns v1, . . . , vn:

vol(v1, . . . , vn) = det(v1, . . . , vn).

Recall that the determinant of a matrix is given by:

det(A) =
∑
σ∈Sn

(−1)σ
∏

aσ(j)j .

The determinant is characterized by the following properties:

• It is multilinear in the columns of the matrix.

• It is alternating (i.e., swapping two columns changes the sign of the de-
terminant).

• det(Id) = 1.

Even though the notion of the determinant/volume of n = dimV vectors re-
quires a choice of volume form (isomorphism ΛnV

∼→ k), the determinant of a
linear operator requires no such choice.

Definition 3.76. Given a linear map T : V → V , define the determinant of
T as det(T ) = det(A), where A =M(T ) is the matrix representation of T in
any basis. Using the property det(AB) = det(A) det(B), we have that under a
change of basis, det

(
P−1AP

)
= det(A).

Definition 3.77. The exterior power is a functor. Given a linear map T : V →
V , it induces a linear operator ΛnT : ΛnV → ΛnV , defined explicitly by

(ΛnT )(v1 ∧ · · · ∧ vn) = T (v1) ∧ · · · ∧ T (vn).

Since dim(ΛnV ) = 1, and any linear operator on a 1-dimensional vector space
is a scalar multiple of the identity map, we define det(T ) ∈ k such that

ΛnT = det(T ) id.

This definition expresses the fact that the map T scales the volume of paral-
lelepipeds in V by a factor of det(T ), without the need to choose an isomorphism
ΛnV ∼= k to measure the volume.
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By defining the determinant in terms of the action on the n-th exterior power,
the independence of the choice of basis is immediate, and so is the property that
det(T1T2) = det(T1) det(T2) for any linear maps T1 and T2.
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4 Group Theory II

4.1 Modules

Let R be a commutative ring (with 1 ̸= 0), i.e., relaxing the field axioms by not
requiring multiplicative inverses. Main examples includeR = Z,Z/n, k[x], k[x1, . . . , xn].

Definition 4.1. A module M over a ring R is a set with two operations:

• + :M ×M →M (addition), such that (M,+) is an abelian group.

• × : R×M →M (scalar multiplication), satisfying:

(ab)v = a(bv), a(v+w) = av+aw, (a+b)v = av+bv, 0v = 0, 1v = v.

Example 4.2.

• Rn = {(x1, . . . , xn) | xi ∈ R} with component-wise operations is the free
module of rank n over R.

• Any abelian group is a Z-module (where n · g = g + · · ·+ g n times).

Definition 4.3.

• A subset Γ ⊂ M spans M (or is a generating set) if every element
of M is a finite linear combination

∑
aivi, where vi ∈ Γ and ai ∈ R.

Equivalently, the map φ : RΓ → M , defined by φ((ai)) =
∑
aivi, is

surjective. The moduleM is finitely generated if it has a finite spanning
set.

• The elements of Γ ⊂ M are linearly independent if φ : RΓ → M is
injective, i.e.,

∑
aivi = 0 with vi ∈ Γ and ai ∈ R implies ai = 0 for all i.

• The elements of Γ ⊂M form a basis if φ : RΓ →M is an isomorphism.
In this case, M is called a free module.

In general, nothing is true for modules!

• A basis does not need to exist! For example, consider M = Z/n as a
Z-module: nx = 0 for all x ∈M , so φ : ZΓ →M cannot be injective.

• Even if M is free (admits a basis), a linearly independent set may not be
a subset of a basis. For instance, consider M = Z as a Z-module. No
basis contains 2 as an element. Similarly, a spanning set does not need to
contain a subset that is a basis. For example, in M = Z as a Z-module,
{4, 5} spans Z (since n = n·5−n·4) but is not independent (5·4−4·5 = 0).
Neither subset {4} nor {5} spans all of Z.

• A submodule of a finitely generated module need not be finitely gener-
ated. For example, let R = k[x1, x2, . . .] (polynomials in infinitely many
variables) and M = R as an R-module generated by 1. The submodule
M ′ = {polynomials with zero constant term} ⊂ M is not finitely gen-
erated because any finite subset involves only finitely many xi’s, which
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cannot span the remaining variables. By contrast, this holds for modules
over Noetherian rings, including Z and k[x1, . . . , xn].

Definition 4.4. Let M,N be modules over R. A module homomorphism
φ ∈ HomR(M,N) is a map φ :M → N such that:

φ(v + w) = φ(v) + φ(w), φ(av) = aφ(v).

Observe that HomR(M,N) is itself an R-module. For free modules, things work
as expected: HomR(R

m, Rn) ≃ Rm×n (since φ is determined by the images
φ(ei) ∈ Rn of the basis vectors of Rm). However, nonzero modules M,N can
exist such that HomR(M,N) = 0.

Example 4.5. Let R = k[x] and M = k, with multiplication defined by (a0 +
a1x + · · · ) · b = a0b. Then HomR(k, k[x]) = 0 because 1 ∈ k satisfies x · 1 = 0,
so φ(1) = p(x) ∈ k[x] must satisfy xp(x) = 0, implying p(x) = 0.

A couple remarks:

Remark 4.6.

• R is a module over itself (a free module of rank 1). A submodule of R is
called an ideal, i.e., a subset N ⊂ R such that N is an abelian subgroup
of (R,+) and R ×N ⊆ N (multiplication by any element of R preserves
N). Examples include:

– Ideals in Z: nZ.

– Ideals in k[x]: p(x)k[x].

Both are generated by a single element, a property special to principal ideal
domains (PIDs). This relates to Euclidean division algorithms: span(p, q) =
span(gcd(p, q)).

• The quotient of an R-module by a submodule is an R-module. For example:

Z/nZ = Z/n as a Z-module, k[x]/xk[x] = k as a k[x]-module.

The quotient of R by an ideal is not only an R-module but also a ring.

The study of modules is a vast subject, which we won’t study further, with
one exception: we’re returning to group theory, but we will start with the
classification of finite generated abelian groups (which are Z-modules).

The main theorem is below:

Proposition 4.7. Any finitely generated abelian group is isomorphic to a prod-
uct of cyclic groups:

G ≃ (Z/n1 × · · · × Z/nk)× Zℓ,

where, using the fact that Z/mn ≃ Z/m×Z/n if and only if gcd(m,n) = 1, the
finite factors can be arranged such that each ni is a power of a prime.
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4.2 Classification of Finitely Generated Abelian Groups

A major challenge with modules is that bases do not always exist, and linearly
independent families cannot always be extended to form a basis.

Proposition 4.8. If M is a finitely generated Z-module, then ∃m,n and T ∈
Hom(Zm,Zn) such that M ≃ Zn/Im(T ). Equivalently, ∃ an exact sequence

Zm T−→ Zn −→M −→ 0.

This relies on the following:

Lemma 4.9. Any submodule of Zn is finitely generated (in fact, free of rank
≤ n).

Proof. We proceed by induction on n.

For n = 1: subgroups of (Z,+) are either {0} or Za for a ∈ Z \ {0}.

Assume the result holds for Zn−1, and consider a submodule M ⊂ Zn. Define
the projection map

π : Zn → Zn−1, (a1, . . . , an) 7→ (a2, . . . , an).

The image Im(π) is a submodule of Zn−1, which is finitely generated (and free)
by the induction hypothesis. The kernel Ker(π) = M ∩ (Z × 0 × · · · × 0) is a
subgroup of Z, hence free (of rank 0 or 1).

Since both Ker(π) and Im(π) are finitely generated and free, M must also be
finitely generated and free. Let {e1, . . . , ek} be a basis for Ker(π), and let
{f1, . . . , fm} be a generating set for Im(π). Then for any x ∈M , we can write

π(x) =
∑

aifi for some ai ∈ Z.

Thus, x−
∑
aifi ∈ Ker(π), implying

x ∈ span(e1, . . . , ek, f1, . . . , fm).

Therefore, (ei, fj) generate M .

Now, let’s prove the theorem.

Proof. IfM is finitely generated with generators (e1, . . . , ek), define φ : Zn →M
by

φ(a1, . . . , an) =
∑

aiei.

The map φ is surjective, and Ker(φ) = Im(T ) for some T : Zm → Zn. This
gives an exact sequence

Zm T−→ Zn φ−→M −→ 0,

with Ker(φ) = Im(T ). Hence, M ≃ Zn/Im(T ).
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The next ingredient is the notion of divisibility for elements of Zn (viewed as a
free Z-module).

Definition 4.10. The divisibility of a nonzero element x = (a1, . . . , an) ∈ Zn
is the largest d ∈ Z+ such that ∃y ∈ Zn with x = dy (i.e., d = gcd(a1, . . . , an)).
An element of Zn is primitive if its divisibility is 1.

Lemma 4.11. An element of a free finitely generated Z-module (e.g., Zn) can
be chosen to be part of a basis if and only if it is primitive (or d times a basis
element if and only if its divisibility is d).

Proof. Clearly, elements of a basis (e1, . . . , en) are primitive, as linear indepen-
dence prevents ei = d

∑
aiei for any d > 1.

For the converse, let v = a1e1 + · · · + anen be primitive. Without loss of
generality, assume a1 ̸= 0 and |a1| = min{|ai| : ai ̸= 0}. Using the Euclidean
algorithm, redefine the basis to iteratively reduce the coefficients of v, ultimately
leaving v as a multiple of a basis vector.

Proposition 4.12. For any T ∈ Hom(Zm,Zn), there exist bases (e1, . . . , em)
of Zm, (f1, . . . , fn) of Zn, r ≤ min(m,n) (the rank of T ), and positive integers
d1, . . . , dr such that

T (ei) =

®
difi if 1 ≤ i ≤ r,
0 if i > r.

Equivalently, T can be represented as a block matrix:á
d1 0

. . .

0 dr

0

0 0

ë
.

Proof. If T = 0, the statement is obvious for all m,n. Otherwise, proceed by
induction on m.

Base case m = 1: Let d = div(T (1)). By the lemma, there exists a basis of Zn
such that T (1) = df1. Assume the result holds for Zm−1.

Now, consider the case when m > 1. Let T : Zm → Zn (assume T ̸= 0). Let
d1 = min{div(T (x)) | x /∈ Ker(T )}, and let e1 be such that div(T (e1)) = d1.
Note that e1 must be primitive: if it were divisible by some integer d, then
div(T ( 1de1)) =

1
ddiv(T (e1)).

Thus, we can write T (e1) = d1f1, where f1 ∈ Zn is primitive. Using the lemma,
extend e1 to a basis (e1, e2, . . . , em) of Zm, and (f1, f2, . . . , fm) of Zn.

Now, the matrix representation of T with respect to these bases is given by

M(T, (ei), (fi)) =

Å
d1 ∗
0 M(T ′)

ã
81



where T ′ is the restriction of T to span(e2, . . . , em) ≃ Zm−1, and T ′ is composed
with the projection to span(f2, . . . , fn) ≃ Zn−1. By the induction hypothesis,
we can replace (e2, . . . , em) and (f2, . . . , fn) with some other basis of their spans,
and assume

T ′(ej) =

®
djfj for dj ≤ r
0 otherwise

Then, the matrix representation becomes

M(T, (ei), (fi)) =

á
d1 a1 . . . am

0

d2 0
. . .

0 dn

ë
i.e., T (ej) = djfj + ajf1 for some aj ∈ Z for j ≥ 2. Write aj = qjd1 + rj ,
and change basis to (e1, e

′
2 = e2 − q2e1, . . . , e′m = em − qme1). Then the matrix

representation becomes

M(T, (ei), (fi)) =

á
d1 r1 . . . rm

0

d2 0
. . .

0 dn

ë
with 0 ≤ r2, . . . , rm < d1. Now, if rj ̸= 0, it would imply div(T (ej)) | rj < d1,
contradicting our choice of d1. Therefore, rj = 0 for all j ≥ 2, and we are
done.

Now we prove the theorem:

Proof. Proposition 1.8 implies that any finitely generated Z-module M is iso-
morphic to Zn/Im(T ) for some T ∈ Hom(Zm,Zn). Proposition 1.12 ensures
that, after a suitable change of basis on Zn, Im(T ) is spanned by d1f1, . . . , drfr
for some di > 0, r ≤ n. Thus,

M ≃ Zn/Im(T ) ≃ Z/d1 × · · · × Z/dr × Zn−r.

4.3 Group Actions

Definition 4.13. An action of a group G on a set S is a homomorphism
ρ : G→ Perm(S). Equivalently, we have a map G× S → S, (g, s) 7→ g · s, such
that:

• e · s = s for all s ∈ S, and

• (gh) · s = g · (h · s) for all g, h ∈ G and s ∈ S.
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This gives rise to the idea of groups as symmetries of geometric objects. Under-
standing the sets on which a group G acts (and the manner of action) provides
insight into the structure of G.

Definition 4.14. An action is faithful if ρ is injective.

Otherwise, the group that ”really acts” on S is G/ ker(ρ)...

Definition 4.15. The orbit of s ∈ S under G is defined as

Os = G · s = {g · s | g ∈ G} ⊆ S.

Observe: t ∈ Os if and only if there exists g ∈ G such that g · s = t. Conversely,
s = g−1 · t ∈ Os.

Equivalently, s ∼ t if and only if there exists g ∈ G such that g · s = t. This
defines an equivalence relation:

• Reflexivity: s ∼ s since e · s = s.

• Symmetry: If s ∼ t, then there exists g ∈ G such that g · s = t. Thus,
t = g · s implies s = g−1 · t, so t ∼ s.

• Transitivity: If s ∼ t and t ∼ u, then there exist g, h ∈ G such that g ·s = t
and h · t = u. Hence, (hg) · s = h · (g · s) = u, so s ∼ u.

The orbits are the equivalence classes of this relation.

Definition 4.16. An action is transitive if there is only one orbit, i.e., for all
s, t ∈ S, there exists g ∈ G such that g · s = t.

Note: Given any G-action on S, by restriction, we obtain a G-action on each
orbit. Each of these actions is transitive (by definition). Thus, any group action
can be decomposed into a disjoint union of transitive actions.

Definition 4.17. The stabilizer of s ∈ S is defined as

Stab(s) = {g ∈ G | g · s = s}.

This is a subgroup of G.

Definition 4.18. The fixed points of g ∈ G are the subset

Sg := {s ∈ S | g · s = s}.

If s′ = g ·s, then Stab(s′) = gStab(s)g−1. This implies the following proposition:

Proposition 4.19. Elements in the same orbit have conjugate stabilizers.

Proof. If h · s = s, then (ghg−1) · (g · s) = g · (h · s) = g · s. Thus, gStab(s)g−1 ⊆
Stab(s′). Conversely, applying the same argument to s = g−1·s′ gives g−1Stab(s′)g ⊆
Stab(s). Hence, equality holds.
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Example 4.20. Let H ⊆ G be a subgroup. Define G/H = {cosets aH}. To
avoid notation confusion, we write [H], [aH], . . . for elements of G/H. The
group G acts on G/H by left multiplication: g · [aH] = [gaH]. This action is
transitive, since ba−1 maps [aH] to [bH]. Furthermore:

• Stab([H]) = H, and

• Stab([aH]) = aHa−1.

The following is what a general group action looks like when restricted to an
orbit.

Proposition 4.21. If G acts on a set S, and s ∈ S, let H = Stab(s) ⊆ G.
Then

ϵ : G/H → Os, [aH] 7→ a · s

is a bijection and equivariant, i.e., it intertwines the G-actions:

ϵ(g · [aH]) = g · ϵ([aH]).

Note that this is

• Well-defined: If a′ = ah ∈ aH, then a′ · s = a · (h · s) = a · s.

• Surjective: By definition of the orbit.

• Injective: a′ ·s = a·s implies a−1(a′ ·s) = s. Hence a−1a′ ∈ Stab(s) = H,
so a′ ∈ aH.

For example, the action of G on the orbit Os is the same as on G/Stab(s) and
the action of G on S is obtained as a disjoint union over orbits.

Corollary 4.22. If G and S are finite, then

|Os| =
|G|

|Stab(s)|
, |S| =

∑
|Os|.

Example 4.23. Let G be the group of rotational symmetries of a tetrahedron
acting on the set S of its faces, where |S| = 4.

The action is transitive, i.e., there is only one orbit, |O| = |S| = 4. The
stabilizer of an element A ∈ S consists of the rotations that map a face to itself,
which implies |Stab(A)| = 3. Therefore, we find |G| = |OA| and |Stab(A)| =
4 · 3 = 12.

In fact, G ≃ A4 ⊂ S4: id and we have 8 elements of order 3:
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120◦

as well as 3 elements of order 2:

180◦

Now, let’s take a look at Burnside’s Lemma, a formula to count orbits of a group
action. Let G be a finite group acting on a finite set S. Consider

∑
= {(g, s) ∈

G× S | g · s = s}. There are two ways of calculating |
∑
|:

1. As a sum over G: |
∑
| =

∑
g∈G |Sg|.

2. As a sum over S: |
∑
| =

∑
s∈S |Stab(s)|.

However, since all elements in an orbit O have conjugate stabilizers of size
|Stab(s)| = |G|/|O| as seen above, we can rewrite this by grouping over orbits:

|
∑
| =

∑
s∈S
|Stab(s)|

=
∑

O orbit

(|O| · |Stab(O)|)

=
∑

O orbit

|G| · |G|
|O|

= |G| · (number of orbits).

This implies Burnside’s Lemma.

Proposition 4.24 (Burnside’s Lemma). The number of orbits is equal to 1
|G|
∑
g∈G |Sg|.

Example 4.25. How many ways are there to color the faces of a tetrahedron
with 3 colors, up to symmetries?

Let S be the set of all colorings of the faces, so |S| = 34 = 81. Let G = A4 be
the group of rotations of the tetrahedron.

• e = identity: |Sg| = |S| = 81.
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• 120◦ rotation: There are 8 such elements g, and 3 sides have the same
color =⇒ |Sg| = 3× 3 = 9.

• 180◦ rotation: There are 3 such elements g, and |Sg| = 3 × 3 = 9 =⇒
n = 1

|G|
∑
g∈G |Sg| =

1
12 (81 + 11 · 9) = 15.

Now, let’s take a look at Burnside’s Lemma, a formula to count orbits of a group
action. Let G be a finite group acting on a finite set S. Consider

∑
= {(g, s) ∈

G× S | g · s = s}. There are two ways of calculating |
∑
|.

1. As a sum over G: |
∑
| =

∑
g∈G |Sg|.

2. As a sum over S: |
∑
| =

∑
s∈S |Stab(s)|.

However, since all elements in an orbit O have conjugate stabilizers of size
|Stab(s)| = |G|/|O| as seen above, we can rewrite this by grouping over orbits:

|
∑
| =

∑
s∈S
|Stab(s)| =

∑
O orbit

(|O|·|Stab(O)|) =
∑

O orbit

|G|· |G|
|O|

= |G|·(number of orbits).

This implies Burnside’s Lemma.

Proposition 4.26 (Burnside’s Lemma). The number of orbits is equal to 1
|G|
∑
g∈G |Sg|.

Example 4.27. How many ways are there to color the faces of a tetrahedron
with 3 colors, up to symmetries?

Let S be the set of all colorings of the faces, so |S| = 34 = 81. Let G = A4 be
the group of rotations of the tetrahedron.

• e = identity: |Sg| = |S| = 81.

• 120◦ rotation: There are 8 such elements g, and 3 sides have the same
color =⇒ |Sg| = 3× 3 = 9.

• 180◦ rotation: There are 3 such elements g, and |Sg| = 3 × 3 = 9 =⇒
n = 1

|G|
∑
g∈G |Sg| =

1
12 (81 + 11 · 9) = 15.

Now, let’s look at actions of G on itself.

If G acts on itself by left multiplication: g · h = gh. This is transitive, with
Stab(h) = {e} for all h ∈ G. The fixed points are φ for all g ̸= e. The map
G ↪→ Perm(G) is faithful. Thus, we get

Proposition 4.28 (Cayley’s Theorem). Every finite group G is isomorphic to
a subgroup of Sn, where n = |G|.

This is not particularly useful for understanding G, however. Here is a more
useful action.

If G acts on itself by conjugation: g acts by h 7→ ghg−1.
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We’ve seen that this defines a homomorphism G→ Aut(G) ⊂ Perm(G), so it is
indeed an action. Now we have a more interesting structure: the orbits of this
action are the conjugacy classes in G, and the stabilizer of an element h ∈ G
is Stab(h) = {g ∈ G | gh = hg} (ghg−1 = h ⇐⇒ gh = hg), the subgroup of
elements which commute with h. This is called the centralizer of h, denoted
Z(h) ⊂ G. Note that

⋂
h∈G Z(h) = Z(G), the center of G, is the kernel of the

action (i.e., the subgroup of elements which act trivially).

Thus, the action is trivial when G is abelian, and faithful if and only if Z(G) =
{e}. How does this help?

The conjugacy classes form a partition of G, so

|G| =
∑
C⊂G

|C|,

which is called the class equation of the group G.

For each conjugacy class, |Ch| = |G|
|Z(h)| divides G. Moreover, |Ce| = 1 for the

identity element, and |Ch| = 1 if and only if h ∈ Z(G).

This is extremely useful. For example:

Theorem 4.29. If |G| = p2 for some prime p, then G must be abelian.

Proof. • Conjugacy classes have orders |C| ∈ {1, p, p2} and
∑
|C| = p2.

Thus, the number of conjugacy classes such that |C| = 1 (i.e., of central
elements of G) must be a multiple of p. Hence, p | |Z(G)|.

• Z(G) is a subgroup of G, so |Z(G)| divides p2: it must be either p or p2.
If |Z(G)| = p2, then G is abelian.

• Now assume |Z(G)| = p and let g /∈ Z(G). Then g commutes with itself
and with Z(G), so Z(g) ⊃ Z(G) ∪ {g}, hence |Z(g)| > p. But Z(g) is a
subgroup of G, so |Z(g)| | p2. This implies Z(g) = G, i.e., g commutes
with all elements of G, i.e., g ∈ Z(G), which is a contradiction. Thus,
Z(G) = G, and G is abelian.

Proposition 4.30. There are exactly 5 groups of order 8 up to isomorphism.

These are Z/8, Z/2× Z/4, (Z/2)3, D4, and the quaternions.

There are two ways to show that there are exactly two non-abelian groups of
order 8.

1. By hand: If |G| = 8 and G is not abelian, then

(a) A group where every element has order 2 must be abelian, so there
must be an element a of order 4.
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(b) The order 4 subgroup generated by a is normal. Work out the pos-
sibilities for multiplication by an element b such that ab ̸= ba.

2. Using conjugacy and the class equation:

(a) The class equation is 8 =
∑
|C|, with |C| ∈ {1, 2, 4, 8}. Since |Ce| =

1, we have Z(G) = {g | |Cg| = 1}, and its order must be 2, 4, or 8.
It cannot be 8 because then G would be abelian, and 4 is impossible
by the same argument as for p2 above. Thus, |Z(G)| = 4.

(b) If g /∈ Z(G), then Z(g) ⊊ G, but Z(G)∪{g} ⊂ Z(g). Hence, |Z(g)| =
4 and |Cg| = 2. Therefore, the class equation is 8 = 1+1+2+2+2.
Now, work out the possibilities.

4.4 Finite Subgroups of SO(3)

Let us use group actions to classify the finite subgroups of SO(3), the group of
rotations of R3.

Recall: for an inner product space (V, ⟨., .⟩), the orthogonal group is defined
as O(V ) = {T ∈ GL(V ) | ⟨Tu, Tv⟩ = ⟨u, v⟩ ∀ u, v ∈ V }. The elements
of O(V ) satisfy det(T ) = ±1, and the special orthogonal group is defined as
SO(V ) = {T ∈ O(V ) | det(T ) = 1} (”the connected component of Id in O(V )”).

We have seen that for T ∈ O(V ), there exists a decomposition V =
⊕
Vi, where

Vi ⊥ Vj for i ̸= j, dim(Vi) ∈ {1, 2}, and T (Vi) = Vi. This result follows from
the fact that there exists an initial invariant subspace, and if W is invariant,
then so is W⊥. If dim(Vi) = 1, then T|Vi

= ±1, and if dim(Vi) = 2, then T|Vi
is

a rotation.

In dimension 3, either

T ∼

±1 ±1
±1

 or T ∼
ï
±1

rotation

ò
.

The condition det(T ) = 1 restricts the possibilities to Id,1 −1
1

 , and

ï
1

rotation

ò
.

This implies that every element of SO(3) is a rotation. If T ̸= Id, then T has
an axis (the +1-eigenspace, which is a line), and it rotates by some angle in the
plane perpendicular to the axis.

Given a subset Σ ⊂ R3, we can consider its symmetry group:

{T ∈ SO(3) | T (Σ) = Σ}.

This symmetry group can either be infinite (e.g., if Σ is a circle in a plane, all
rotations with an axis perpendicular to the plane will be symmetries) or finite.
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Example 4.31. Let Σ be a regular n-gon in a plane (centered at the origin).

• The group contains n rotations (with axis perpendicular to the plane and
angles 2πk

n ):

• The group also contains n flips, which are rotations by π about axes lying
in the plane. Together, this group is isomorphic to the dihedral group Dn:

There exist some special cases:

n = 1 n = 2

Example 4.32. To only keep Z/n ⊂ Dn in the above example, consider a cone
on a regular n-gon in a plane:

Example 4.33. Symmetry of regular polyhedra:

• The tetrahedron, cube, and octahedron have the same symmetries, so by
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duality, vertices ⇐⇒ centers of the faces. In other words, P ∗ = {v ∈ R3 |
⟨v, u⟩ ≤ 1 ∀u ∈ P}.

• The dodecahedron (with 20 pentagonal faces) and icosahedron (with 20
triangular faces) are duals and share the same symmetries.

These correspond to the symmetry groups A4 (action on vertices or faces of the
tetrahedron), S4 (action on the 4 diagonals of the cube), and A5 (action on the
icosahedron).

Theorem 4.34. This is the complete list of finite subgroups of SO(3): Z/n,Dn, A4, S4, A5.

The key observation is that every T ∈ SO(3), T ̸= id, is a rotation about some
axis, hence fixes exactly two unit vectors, ±v, called the poles of T :

poles

For a finite subgroup G ⊂ SO(3), let P denote the set of all poles of elements
of G:

P = {v ∈ R3 | ∥v∥ = 1 and ∃g ∈ G, g ̸= id such that gv = v}.

Now, if v is a pole of g ∈ G, and given any h ∈ G, h(v) is a pole of hgh−1 ∈ G
(since hgh−1 · hv = hgv = hv). Hence, G acts on P ! This is the key to
understanding the group G.

Example 4.35. In the case of symmetry groups of regular polyhedra, we have
P = {vertices} ∪ {centers of faces} ∪ {midpoints of edges}. These form three
distinct orbits under the action of G on P : one orbit for the vertices, one for
the faces, and one for the edges. (In the case of a regular polyhedron, each of
these actions is transitive.)

The next observation is that for p ∈ P , the stabilizer Stab(p) consists of rotations
with axis ±p. These form an abelian cyclic subgroup of G. Thus, Stab(p) ≃
Z/rp, where rp > 1 (since p is a pole of some element of G, Stab(p) must be
nontrivial). In other words, the angles of rotation about p form a finite subgroup
of R/2πZ, and these angles must be multiples of 2π

rp
. With this understanding,

the proof of the theorem follows as a counting argument.

Proof. et G ⊂ SO(3) be a nontrivial finite subgroup, and let P be the set of
poles as defined above. Define

∑
= {(g, p) ∈ G× P | g ̸= e, g(p) = p} (i.e., p is

a pole of g). For each element of G \ {e}, there are exactly 2 poles. Therefore,
|
∑
| = 2|G| − 2. For each p ∈ P , there are rp − 1 rotations in G \ {e} that fix

p. Thus,

|
∑
| = 2|G| − 2 =

∑
p∈P

(rp − 1).
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Now, the elements p ∈ O of an orbit ofG have conjugate stabilizers (Stab(g(p)) =
gStab(p)g−1), and hence the stabilizers Stab(p) have the same order: rgp = rp.
Thus, we have:

2|G| − 2 =
∑

Oi orbit

|Oi|(ri − 1),

where ri = rp for p ∈ Oi.

Recall the orbit-stabilizer theorem: |Oi| = |G|
Stab = |G|

ri
, so we obtain:

2|G| − 2 =
∑

Oi orbit

|G|
ri

(ri − 1),

which simplifies to:

2− 2

|G|
=
∑
orbits

1− 1

ri
.

The right-hand side increases rapidly if there are too many orbits: each term is
at least 1

2 since ri ≥ 2. Therefore, the number of orbits is at most 3.

Now, we analyze each case based on the number of orbits:

• 1 orbit: This is impossible because the left-hand side is at least 1 (since
|G| ≥ 2), while the right-hand side is less than 1.

• 2 orbits: We have:

2− 2

|G|
= 1− 1

r1
+ 1− 1

r2
,

which simplifies to:
2

|G|
=

1

r1
+

1

r2
.

Since each ri = |Stab(p)| divides |G|, we must have r1 = r2 = |G|. Hence,
Stab = G, and there are exactly two poles, ±p, each fixed under all of G.
Therefore, G = Stab(p), and G is a cyclic subgroup consisting of rotations
by 2πk

r about the axis ±p.

• 3 orbits: We have:

2− 2

|G|
= 3− 1

r1
− 1

r2
− 1

r3
.

Assume 2 ≤ r1 ≤ r2 ≤ r3. Then:

1

r1
+

1

r2
+

1

r3
= 1 +

2

|G|
> 1,

which implies that r1 = 2 and r2 ≤ 3 (otherwise, the sum would be less
than or equal to 1). We now analyze two cases for r2.
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1. If r2 = 2, then:

2− 2

|G|
= 3− 1

2
− 1

2
− 1

r3
=⇒ r3 =

|G|
2
.

Thus, |O3| = |G|
r3

= 2, so these two poles form an orbit. These poles

are necessarily ±p, and half of G will consist of rotations by 2πk
r3

about ±p (the stabilizer of ±p), while the other half of G will consist
of rotations by 180° that swap p ←→ −p. Hence, G is a dihedral
group.

2. If r2 = 3, then: ∑ 1

ri
> 1 =⇒ r3 ∈ {3, 4, 5}.

These three cases correspond to the tetrahedron, cube, and icosahe-
dron. In each case, we have 2

|G| =
∑

1
ri
− 1, implying that |G| =

12, 24, 60.

Note that for regular polyhedra:

• Poles at the midpoints of edges have r = 2.

• Poles at vertices: r = number of faces meeting at that vertex.

• Poles at the centers of faces: r is the number of edges of the face.

Thus, 2
|G| =

∑
1
ri
− 1 implies |G| = 12, 24, 60.

We may wonder: what is the 5-element set that the symmetries of the dodeca-
hedron act on?

The answer is that the 20 vertices of a dodecahedron can be partitioned into 5
sets of 4 vertices, each forming a regular tetrahedron. These 5 tetrahedra can
be arranged in two distinct ways, which are mirror images of each other but
not related by a rotation. A rotation of the dodecahedron then permutes the 5
tetrahedra:

• Rotations about the centers of faces correspond to 5-cycles (24 of them).

• Rotations about the vertices correspond to 3-cycles (123), etc. (20 of
them).

• Half rotations about the midpoints of edges correspond to (12)(34), etc.
(15 of them).
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4.5 Conjugacy Classes in the Symmetric Group Sn

Definition 4.36. A k-cycle σ = (a1a2 . . . ak) ∈ Sn is a permutation that maps
a1 7→ a2, a2 7→ a3, . . . , ak 7→ a1, while leaving all other elements fixed.

Definition 4.37. Two cycles are disjoint if the subsets of elements they per-
mute are disjoint.

Remark 4.38. Disjoint cycles commute.

Proposition 4.39. Any permutation in Sn can be expressed as a product of
disjoint cycles. This decomposition is unique up to reordering the factors, as
disjoint cycles commute.

Algorithm: To find the disjoint cycle decomposition of a permutation σ, pro-
ceed as follows:

• Start with the successive images of 1 under σ. This gives a subset of
elements cyclically permuted by σ.

• Consider similar subsets for elements not already included, and repeat the
process.

In other words, the disjoint cycles correspond to the restrictions of σ to the
orbits of ⟨σ⟩ ⊂ Sn acting on {1, . . . , n}.

Proposition 4.40. Let σ = (a1 . . . ak) be a k-cycle and τ ∈ Sn any permuta-
tion. Then, τστ−1 = (τ(a1) . . . τ(ak)).

Proof. Consider the action of τστ−1 on {τ(a1), . . . , τ(ak)}. By calculation:

τ(ai) 7→ ai 7→ ai+1 7→ τ(ai+1),

showing that the elements {τ(a1), . . . , τ(ak)} are permuted as claimed. For
elements not in {a1, . . . , ak}, τ(b) 7→ b 7→ b 7→ τ(b), so they remain fixed.

Corollary 4.41. All k-cycles are conjugate in Sn. More generally, two permu-
tations σ, τ ∈ Sn are conjugate if and only if they have the same cycle lengths in
their disjoint cycle decompositions. Hence, conjugacy classes in Sn correspond
to the partitions of n.

This means that the conjugacy classes correspond to the ways of writing n as a
sum of positive integers, up to reordering the terms.

Example 4.42. For n = 3, the partitions and the sizes of the conjugacy classes
are:

1. Identity (3 = 1 + 1 + 1): size 1.

2. Transpositions (3 = 2 + 1): size 3.

3. 3-cycles (3 = 3): size 2.
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Example 4.43. For n = 4, the partitions and the sizes of the conjugacy classes
are:

1. Identity 1 + 1 + 1 + 1: size 1.

2. Transpositions 2 + 1 + 1: size 6.

3. Two transpositions 2 + 2: size 3.

4. 3-cycles 3 + 1: size 8.

5. 4-cycles 4: size 6.

The class equation of S4 is:

24 = 1 + 3 + 6 + 6 + 8.

This helps us identify the normal subgroups of S4. A subgroup H ⊂ S4 is
normal if and only if aHa−1 = H for all a ∈ S4. Thus, a normal subgroup must
be a union of conjugacy classes, must include the identity, and its order must
divide |S4| = 24. The possible normal subgroups are:

• 1 + 3 = 4, corresponding to {id} ∪ {(ij)(kl)}. This is indeed a normal
subgroup, isomorphic to Z/2× Z/2.

• 1+3+8 = 12, corresponding to {id}∪ {(ij)(kl)}∪ {3-cycles}. This is the
alternating group A4 ⊂ S4.

Example 4.44. For n = 5, the partitions and the sizes of the conjugacy classes
are:

1. Identity 1 + 1 + 1 + 1 + 1: size 1.

2. Transpositions 2 + 1 + 1 + 1: size 10.

3. Two transpositions 2 + 2 + 1: size 15.

4. 3-cycles 3 + 1 + 1: size 20.

5. 3-cycle + transposition 3 + 2: size 20.

6. 4-cycles 4 + 1: size 30.

7. 5-cycles 5: size 24.

The class equation of S5 is:

120 = 1 + 10 + 15 + 20 + 20 + 30 + 24.

To find normal subgroups of S5 (besides {id} and S5), we examine the possible
unions of conjugacy classes:

• 1+15+24 = 40, corresponding to {id}∪{(ij)(kl)}∪{5-cycles}. However,
this is not a subgroup since (12345)(12)(34) = (135).
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• 1 + 15 + 20 + 24 = 60, corresponding to {id} ∪ {(ij)(kl)} ∪ {5-cycles} ∪
{3-cycles}. This is the alternating group A5 ⊂ S5.

4.6 The Alternating Group

Recall that we defined the sign homomorphism sgn : Sn → {±1} by

sgn

(
k∏
i=1

transpositions

)
= (−1)k,

using the fact that transpositions generate Sn. It remains to verify that this
definition is independent of the choice of transpositions. Additionally, we have
sgn(σ) = (−1)inversions, where the inversions are defined as

inversions = {(i, j) | 1 ≤ i < j ≤ n and σ(i) > σ(j)}.

This definition requires verification that sgn is indeed a homomorphism.

Alternatively, consider the following approach: take a vector space V ≃ Rn with
basis (e1, . . . , en), and associate to each σ ∈ Sn an element ofGL(V ), specifically
the linear map Tσ : V → V defined by Tσ(ei) = eσ(i). This construction defines
an injective homomorphism Sn ↪→ GL(n), with the image being the subgroup of
permutation matrices. The map Tσ has finite order (since σ does), so det(Tσ) ∈
R is a root of unity and hence det(Tσ) ∈ {±1}. We define sgn(σ) = det(Tσ),
which is clearly well-defined and a homomorphism.

Concretely, to compute the sign: the action of
∧n

Tσ on
∧n

V maps

e1 ∧ · · · ∧ en 7→ eσ(1) ∧ · · · ∧ eσ(n).

The sign corresponds to the number of transpositions required to return the
result to the original order, which agrees with the earlier definition.

Observe that a k-cycle has sign (−1)k−1 because (i1 . . . ik) = (i1i2)(i2i3) . . . (ik−1ik).
Therefore, if σ ∈ Sn has cycle lengths k1, . . . , kl (including 1-cycles), correspond-
ing to the partition n = k1 + · · ·+ kl, then

sgn(σ) = (−1)
∑

(ki−1) = (−1)n−l.

Definition 4.45. The alternating group is defined as An = ker(sgn) ⊂ Sn,
a normal subgroup of index 2 in Sn.

Proposition 4.46. If C ⊂ Sn is a conjugacy class, then one of the following
holds:

1. C is odd, so C ∩An = ∅.

2. C ⊂ An is a conjugacy class in An.

3. C ⊂ An splits into two conjugacy classes in An.
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In the last two cases, consider σ ∈ C and its centralizer Z(σ) = {τ ∈ Sn |
τστ−1 = σ}. If Z(σ) ⊂ An, then the conjugates of σ by odd permutations are
distinct from those by even permutations, resulting in two conjugacy classes in
An. Otherwise, all conjugates of σ in Sn are conjugates by elements of An.

Example 4.47. Consider n = 5:

A5 = {id} ∪ {(ij)(kl)} ∪ {3-cycles} ∪ {5-cycles}.

• The 3-cycles form a single conjugacy class in A5 because (45) ∈ Z((123)).
Similarly, for (ij)(kl), since (ij) ∈ Z((ij)(kl)).

• The 5-cycles split into two conjugacy classes in A5.

Thus, the class equation of A5 is

60 = 1 + 15 + 20 + 12 + 12.

We now consider the normal subgroups of A5. Since it is impossible to parti-
tion 60 (the order of A5) in a nontrivial way using union of conjugacy classes
including {id}, we deduce:

Proposition 4.48. A5 is simple.

Let p(n) denote the number of partitions of n, i.e.,

p(n) = #{(a1, . . . , ak) | a1 ≥ · · · ≥ ak,
∑

ai = n}.

Alternatively, let mj = #{1 | ai = j} (the number of times j appears in the
partition). Then

p(n) = #{(m1, . . . ,mn) ∈ Nn |
∑

jmj = n}.

There is no closed formula for p(n), but it grows faster than any polynomial.

Theorem 4.49 (Hardy-Ramanujan 1918).

p(n) ∼ 1

4n
√
3
exp

Ç
ϕ

…
2n

3
e

å
Remark 4.50. This is very hard to prove.

However, there are recursive formulas and a nice expression for the generating
series:

f(t) =

∞∑
n=0

p(n)tn =

∞∏
j=1

1

1− tj
,

where the coefficient of tn in this product is p(n). This is because:

1

1− tj
= 1 + tj + t2j + . . . ,

so the coefficient of tn in the product is the number of ways to write n as the
sum of multiples of j for j = 1, 2, . . . , i.e., n = m1 + 2m2 + 3m3 + . . . .
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Problem 4.51. What is the size of the conjugacy class in Sn corresponding to
a given partition n =

∑
jmj? (That is, m1 fixed elements, m2 2-cycles, m3

3-cycles, etc.)

Answer: We first need to partition {1, . . . , n} into m1 subsets of size 1, m2

subsets of size 2, etc.

There are:
n!

(1!)m1(2!)m2 . . .

ways to do this, because Sn acts transitively on the set of such decompositions,
with a stabilizer subgroup

∏
j(Sj)

mj , which is the product of permutations that
permute only within each subset. However, we don’t care about the ordering of
the various subsets of a given size. Therefore, we divide by mj ! for each j (since
we can permute the mj subsets of size j). Thus, we obtain:

n!∏
j≥1(j!)

mjmj !
.

Now, in Sj , there are (j−1)! j-cycles, so the total number of ways to choose the
cycles acting on each subset is

∏
((j − 1)!)mj . Hence, the size of the conjugacy

class is:

|C| = n!∏
j≥1(j

mj ·mj !)
.

Remark 4.52. Can you check by direct calculation that these add up to n! =
|Sn|?

Let’s now return to the alternating group An = Ker(sgn : Sn → {±1}).

Observe: a k-cycle has sign (−1)k−1 (since (i1...ik) = (i1i2)(i2i3)...(ik−1ik)). So
σ ∈ An if and only if its cycle decomposition has an even number of cycles of
even length.

Next, let’s return to the alternating group An = Ker(sgn : Sn → {±1}).

Observe that a k-cycle has sign (−1)k−1 (since (i1 . . . ik) = (i1i2)(i2i3) . . . (ik−1ik)).
Thus, σ ∈ An if and only if its cycle decomposition has an even number of cycles
of even length.

Proposition 4.53. If C ⊂ Sn is a conjugacy class, then either C ∩ An = ∅ or
C ⊂ An. In the latter case, either C is a conjugacy class in An, or it splits into
two conjugacy classes in An. Specifically, C is a single conjugacy class in An if
and only if, given σ ∈ C, there exists an odd permutation τ that commutes with
σ.

Proof. • All elements of C have the same cycle lengths, which implies they
have the same sign. Therefore, C ⊂ An or C ∩ An = ∅ (since An is a
normal subgroup of Sn, it is a union of conjugacy classes).
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• Assume Cσ = {gσg−1 | g ∈ Sn} ⊂ An. Then, split Sn into the two right
cosets of An: Sn = An ∪An · τ , where sgn(τ) = −1. Thus,

Thus,
Cσ = {hσh−1 | h ∈ An} ∪ {hτστ−1h−1 | hτ ∈ Anτ}.

These two conjugacy classes are either equal or disjoint. They are equal if and
only if σ is in the latter conjugacy class, i.e., there exists g = hτ (an odd
permutation) such that gσg−1 = σ, or equivalently, gσ = σg.

In other words: for σ ∈ C, the centralizer Z(σ) = {τ ∈ Sn | τστ−1 = σ}. If
Z(σ) ⊂ An, then conjugates of σ by odd permutations are different from conju-
gates by even permutations, forming two conjugacy classes in An. If Z(σ) ̸⊂ An,
then all conjugates of σ ∈ Sn are conjugates by elements of An.

Example 4.54.

A5 = {id} ∪ {(ij)(kl)} ∪ {3-cycles} ∪ {5-cycles}.

The 3-cycles still form a single conjugacy class in A5, as do the (ij)(kl)’s, but
the 5-cycles split into two conjugacy classes in A5.

Thus, the class equation of A5 is 60 = 1 + 15 + 20 + 12 + 12.

More generally:

Proposition 4.55. For σ ∈ An, the conjugacy class C = {gσg−1 | g ∈ Sn}
splits into two conjugacy classes in An if and only if the cycle lengths of σ are
all odd and distinct.

Proof. • σ commutes with the cycles in its own cycle decomposition. There-
fore, every even-length cycle in σ gives an odd permutation in Z(σ), im-
plying that Cσ does not split.

• If two odd cycles (a1 . . . ak) and (b1 . . . bk) of the same length appear in the
cycle decomposition of σ, then (a1b1)(a2b2) . . . (akbk) ∈ Z(σ) is odd. This
includes the case where k = 1, where we cannot have two fixed points.

• If the cycle lengths are all distinct, then an element of Z(σ) must permute
each of the corresponding subsets of {1, . . . , n}. On a j-element subset,
Z((12 . . . j)) is the cyclic subgroup of Sj generated by (12 . . . j), which is
a subgroup of Aj . Hence, Z(σ) ⊂ An.

Now, let’s look for the normal subgroups of A5. We cannot find a divisor of 60
in any nontrivial way as the union of conjugacy classes, except by taking all of
A5. Therefore:

Proposition 4.56. A5 is simple, i.e., its only normal subgroups are {id} and
itself.
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Theorem 4.57. An is simple for all n ≥ 5.

We have already shown A5 is simple; A6 follows by a similar argument using the
class equation. However, the result is false for A4 (since {id} ∪ {(ij)(kl)} ⊂ A4

is normal). The general case relies on the following lemma:

Lemma 4.58. An is generated by 3-cycles.

Proof. Induction on n: this is true for A3 = {id, 3-cycles} ⊂ S3. Now assume
An−1 is generated by 3-cycles. Let σ ∈ An. If σ(n) = n, then σ belongs to a
subgroup {τ ∈ An | τ(n) = n} ≃ An−1, so it is a product of 3-cycles by the
induction hypothesis. Otherwise, let i = σ(n) and j be any element distinct
from i and n. Then, τ ≃ (jin)σ ∈ An, and τ(n) = n, so by the induction
hypothesis, τ is a product of 3-cycles, and therefore so is σ = (ijn)τ .

Furthermore, for n ≥ 5, 3-cycles form a single conjugacy class in An; since
(j1j2j3) and (k1k2k3) are conjugates by any permutation j1 7→ k1, and some of
these elements lie in An. Thus, to prove that a normal subgroup H ⊂ An with
H ̸= {e} is all of An, it suffices to show that it contains a 3-cycle.

Now let’s prove the theorem.

Proof. Let H ⊂ An be a normal subgroup with H ̸= {e}. As noted earlier, it
suffices to show that H contains a 3-cycle (and thus, by conjugation, contains
all 3-cycles, implying H = An). Let σ ∈ H with σ ̸= e. We may assume that σ
has prime order by replacing it with some power of τ . Let m = order(σ) and p
be a prime divisor of m. Then σ

m
p ∈ H has order p. Since the order of σ is the

least common multiple (LCM) of its cycle lengths, it follows that σ is a product
of disjoint p-cycles. We now analyze the cases depending on the value of p.

• Case 1: p ≥ 5. If p ≥ 5, we write σ = (i1 . . . ip)τ , where τ permutes
the remaining elements, fixing i1, . . . , ip. Let g = (i4i3i2)τ , and since H is
normal, we have gσg−1 ∈ H. Now, consider the commutator gσg−1σ−1.
Using the fact that σ = (i1 . . . ip)τ , we compute:

gσg−1σ−1 = (i4i3i2) ◦ [(i1 . . . ip)τ ] ◦ (i2i3i4) ◦ (τ−1(ip . . . i1)).

After simplifying the action on the elements i1, i2, . . . , i5, we get:

i1 7→ i1, i2 7→ i4, i3 7→ i3, i4 7→ i5, i5 7→ i2.

This is a 3-cycle, implying that H contains a 3-cycle.

• Case 2: p = 3. If σ is a 3-cycle, we are done. Otherwise, assume σ is a
product of at least two disjoint 3-cycles. Write σ = (i1i2i3)(i4i5i6)τ . Let
g = (i4i3i2), and compute the commutator gσg−1σ−1:

gσg−1σ−1 = (i1i5i2i4i3),

which is a 5-cycle. Since 5-cycles belong to An, this reduces to the previous
case, where p ≥ 5, and we conclude that H contains a 3-cycle.
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• Case 3: p = 2 and σ is a product of two transpositions. If σ =
(i1i2)(i3i4), then σ is not in An, as it is an odd permutation. Now let
i5 /∈ {i1, . . . , i4}, and define g = (i5i3i1). We compute the commutator
gσg−1σ−1:

gσg−1σ−1 = (i1i5i2i4i3),

which is a 3-cycle. This reduces to the first case, where p ≥ 5, and we
conclude that H contains a 3-cycle.

• Case 4: p = 2 and σ is a product of at least three transpositions.
If σ = (i1i2)(i3i4)(i5i6)τ , then we again let g = (i5i3i1) and compute the
commutator:

gσg−1σ−1 = (i1i5i3)(i2i4i6),

which is a product of two 3-cycles. Since products of 3-cycles are in An,
this reduces to Case 2, where p = 3, and we conclude that H contains a
3-cycle.

Thus, in all cases, we have shown that H contains a 3-cycle. By conjugation,
this implies that H contains all 3-cycles, and therefore H = An.

4.7 The Sylow Theorems

Our next topic, still closely related to understanding finite groups, is the Sylow
theorems. If |G| = n and k | n, there is no general reason for G to contain an
element of order k, or even a subgroup of order k: the converse to Lagrange’s
theorem fails.

Example 4.59. • A4 (resp. A5) has no subgroups of order 6 (resp. 30).

• Such a subgroup, if it existed, would necessarily be normal.

Now, fix a prime p that divides |G|, and write |G| = pem, where p ∤ m.

Definition 4.60. A subgroup H ⊂ G of order |H| = pe is called a Sylow
p-subgroup of G.

Theorem 4.61 (Sylow, 1872). • For every prime p, a Sylow p-subgroup of
G exists.

• All Sylow p-subgroups are conjugates of each other: if H,H ′ ⊂ G are
p-Sylow subgroups, then ∃g ∈ G such that H ′ = gHg−1. Moreover, any
subgroup K ⊂ G with |K| a power of p is contained in a Sylow p-subgroup.

• Let sp be the number of Sylow p-subgroups of G. Then:

sp ≡ 1 (mod p) and sp | |G| or equivalently, sp | m =
|G|
pe
.

Example 4.62 (Classifying Groups of Order 15). If |G| = 15, then there exist
Sylow subgroups H,K ⊂ G with |H| = 3 and |K| = 5. The number of such
Sylow subgroups is determined as follows:
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s3 | 5 and s3 ≡ 1 (mod 3) =⇒ s3 = 1,

s5 | 3 and s5 ≡ 1 (mod 5) =⇒ s5 = 1.

This implies that both H and K are normal (since the conjugates gHg−1 and
gKg−1 are also Sylow subgroups, and H and K are the unique such subgroups).
Using the criterion, which we will discuss next, for direct products, this implies:

G ≃ H ×K ≃ Z/3× Z/5 ≃ Z/15.

Thus, every group of order 15 is cyclic.

4.8 (Semi)Direct Products

Let N ⊂ G be a normal subgroup. Then we have the exact sequence:

1 N G G/N Ninclusion

p

∼

inclusion

where H ≃ G/N .

where H ≃ G/N .

However, this does not imply that G ≃ H × N , or even that G contains a
subgroup isomorphic to H.

Example 4.63. Consider Z · p ⊂ Z (subgroup), with 0→ Zp→ Z→ Z/p→ 0.
Here, Z has no subgroup isomorphic to Z/p.

On the other hand, assume H can indeed be identified with a subgroup of G
via an injective homomorphism i : H ↪→ G such that p ◦ i = idH .

This means N and H are subgroups of G, N is normal, and every coset of N
contains a unique element of H. So H ≃ G/N , where h 7→ hN = Nh is a group
isomorphism. The above setup arises as:

1→ N
inclusion→ G→ G/N ≃ H.

Thus, every element of G can be uniquely expressed as g = nh with n ∈ N and
h ∈ H. There is therefore a bijection of sets N ×H → G, (n, h) 7→ n · h. This
need not be a group isomorphism (particularly because H need not be a normal
subgroup of G). However, since N is normal, we have:

(n1h1)(n2h2) = (n1h1n2h
−1
1 )(h1h2).

This can be interpreted as a semi-direct product of N and H:
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Definition 4.64. Given groups N and H, and an action of H on N by auto-
morphisms (i.e., a homomorphism ϕ : H → Aut(N)), we define the semidirect
product N ⋊ϕ H as follows:

• Set: N ×H.

• Group Law (n1, h1) · (n2, h2) = (n1ϕ(h1)(n2), h1h2).

Remark 4.65. Check that this satisfies the group axioms, particularly associa-
tivity.

In the above setting,H ⊂ G acts on the normal subgroupN ⊂ G by conjugation:
ϕ(h)(n) = hnh−1. Then, G ≃ N ⋊ϕ H. To summarize:

Proposition 4.66. If N and H are subgroups of G, with N normal, such that
every coset of N contains a unique element of H (i.e., every element of G is
uniquely expressible as g = n ·h), then G is isomorphic to the semidirect product
N ⋊ϕ H.

Example 4.67.

1→ A3 → S3
sgn→ Z/2→ 1,

where A3 = {1, σ, σ2} ≃ Z/3 (alternating subgroup, normal). We can realize
Z/2 as the subgroup {id, τ} ⊂ S3 (τ is a transposition, not normal), so:

S3 ≃ Z/3⋊ Z/2,

where the Z/2-action on A3 by conjugation is τστ−1 = σ−1. Similarly:

1→ Z/n→ Dn → Z/2→ 1,

where Z/2 ≃ {id, reflection} ⊂ Dn, so:

Dn ≃ Z/n⋊ Z/2.

These are not direct products.

Remark 4.68. If G is finite, |G| = |H| · |N |, and H ∩ N = {e}, then every
coset of N contains a unique element of H. Assuming N is normal, we have a
semidirect product by the proposition.

Indeed: consider the homomorphism

H → G/N,

h 7→ hN

with
H G G/N.

This map has ker = H∩N = {e}, so it is injective. Since |H| = |G/N |, it is also
bijective. Alternatively, if n1h1 = n2h2, then n

−1
2 n1 = h2h

−1
1 ∈ H ∩ N = {e},
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so n1 = n2 and h1 = h2. Thus, the products n · h, n ∈ N,h ∈ H, are distinct,
and every element of G has exactly one such expression. Hence, |G| = |N ||H|.

Finally: if both N and H are normal subgroups of G, and every element of G
can be uniquely expressed as g = n · h, n ∈ N,h ∈ H (⇐⇒ every coset of one
subgroup contains a unique elements of the other subgroup) then G ≃ N ×H
(ie. the semidirect product is actually a direct product).

This is because cosets intersect in a single element: nH ∩Nh = {nh}. Since H
and N are normal, we have the following:

(n1h1)(n2h2) ∈ Nh1 ·Nh2 = Nh1h2

and
(n1h1)(n2h2) ∈ n1H · h2H = n1n2H.

Thus,
(n1h1)(n2h2) ∈ n1n2H ∩Nh1h2,

which implies
(n1h1)(n2h2) = (n1n2)(h1h2),

showing that the map N ×H → G, (n, h) 7→ nh, is a group isomorphism.

Corollary 4.69. If G is finite, N,H ⊂ G are normal subgroups, N ∩H = {e},
and |G| = |H| · |N |, then G ≃ N ×H.

Remark 4.70. The condition N ∩ H = {e} is, for instance, automatic if
gcd(|N |, |H|) = 1 (since N ∩ H is a subgroup of both N and H, so its order
divides both |N | and |H|).

Returning to a group G of order 15, the Sylow theorems imply that G has
unique subgroups H and K of orders 3 and 5, respectively, which are normal
(uniqueness implies gHg−1 = H and gKg−1 = K). Since 3 · 5 = 15 and
gcd(3, 5) = 1, the criterion holds, and so G ≃ H ×K ≃ Z/3× Z/5 ≃ Z/15.

Example 4.71. Another example: Consider groups of order 21. The Sylow
theorems give the existence of subgroups H of order 3 and K of order 7. Also,
the number of conjugate subgroups of each of these is:

• S7 ≡ 1 (mod 7), so S7 = 1.

• S3 ≡ 1 (mod 3), and S3 | 7, so S3 could be either 1 or 7.

If S3 = S7 = 1, then H and K are normal (since they are equal to their
conjugates), and the above criterion implies that G ≃ H × K ≃ Z/3 × Z/7 ≃
Z/21.

Otherwise, if S3 = 7, then K is normal, but H is not, and we have a semidirect
product K⋊H. Let x be a generator of K ≃ Z/7 and y a generator of H ≃ Z/3.
Then x7 = y3 = e, and every element of G can be uniquely expressed as xayb

with 0 ≤ a ≤ 6 and 0 ≤ b ≤ 2. To determine the group structure, we need to
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know how y · x behaves. Since K is normal, yx ∈ yK = Ky, so yx = xαy for
some 0 ≤ α ≤ 6. Therefore, yxy−1 = xα, which fully determines the group law.

Furthermore, investigation shows that there exists a unique non-abelian group
of order 21 up to isomorphism. The best way to prove existence is to construct
it explicitly, for example, as a subgroup of S7 or another group.

Next, we’ll look at the proof of the Sylow theorems. For now, a couple comments:

Recall that for any g ∈ G, the order of g divides |G|, but the converse does
not always hold. Specifically, in general, k | |G| does not imply the existence of
g ∈ G such that ord(g) = k.

A corollary of Sylow’s first theorem (the existence of Sylow p-subgroups) is that
the converse does hold for primes.

Corollary 4.72. If p | |G| and p is prime, then G contains an element of order
p.

Proof. Let H ⊂ G be a Sylow p-subgroup, and let g ∈ H such that g ̸= e. Since
the order of g divides |H| = pe, it follows that the order of g is pk for some

1 ≤ k ≤ e. Therefore, gpk−1

has order p.

For a p-group (|G| = pn), Sylow tells us essentially nothing! Specifically, a Sylow
p-subgroup has pn elements, and the only such subgroup is G itself. Thus, in
the Sylow approach to classification, p-groups are the hardest to classify. In
fact, the number of different p-groups grows rapidly with exponent n.

Example 4.73. For p = 2, there exists:

• 1 group of order 2,

• 2 groups of order 4,

• 5 groups of order 8,

• 14 groups of order 16,

• 51 groups of order 32.

Another corollary of Sylow’s first theorem:

Corollary 4.74. If p | |G| and p is prime, then G contains an element of order
p.

Proof. Let H ⊂ G be a Sylow p-subgroup, and let g ∈ H such that g ̸= e. Since
the order of g divides |H| = pe, it follows that the order of g is pk for some

1 ≤ k ≤ e. Therefore, gpk−1

has order p.
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4.9 Proofs of Sylow Theorems

The first two theorems are proved by studying the action of G on its subsets by
left multiplication.

The proof of Sylow’s first theorem was two lemmas:

The proof of Sylow’s first theorem relies on two lemmas:

Lemma 4.75. Given n = pem with p ∤ m, we have p ∤
(
n
pe

)
.

Proof. Ç
n

pe

å
=
n(n− 1) · · · (n− pe + 1)

pe(pe + 1) · · · 1
=

pe−1∏
k=0

pem− k
pe − k

.

The highest power of p dividing pem−k or pe−k is exactly the highest power of
p dividing k (considering it modulo pe). Hence, the numerator and denominator
each contain some powers of p in their prime factorizations, and the end result
contains no powers of p.

Lemma 4.76. Let U ⊂ G be any subset, and consider the action of G on
P (G), the set of all subsets of G, by left multiplication. Then the stabilizer of
[U ] ∈ P (G), Stab([U ]) = {g ∈ G | gU = U}, satisfies |Stab(U)| divides |U |.

Proof. Let H = Stab(U). Then H acts on U by left multiplication (hU = U
for all h ∈ H), so U is a union of orbits Ou = {hu | h ∈ H} = Hu for various
u ∈ U . Each orbit is a (right) coset of H, and has size |Ou| = |H|. Since U is a
union of such orbits, we conclude that |H| divides |U |.

Now, we can prove Sylow’s first theorem (the existence of Sylow subgroups).

Proof. Let S = {U ∈ P (G) | |U | = pe} be the set of all subsets of G with pe

elements. Consider the action of G on S by left multiplication, U 7→ gU , and
partition S into orbits for this action. By Lemma 1, p ∤ |S|, so there exists an
orbit OU ⊂ S such that p ∤ |OU |. Since pe divides |G| = |OU ||Stab(U)|, we
find that pe divides |Stab(U)|. But by Lemma 2, |Stab(U)| divides |U | = pe, so
|Stab(U)| = pe. This shows that Stab(U) is a Sylow p-subgroup, and in fact, U
is a right coset of Stab(U).

Next, we prove Sylow’s second theorem:

Theorem 4.77 (Sylow’s Second Theorem). If H ⊂ G is a Sylow p-subgroup
and K ⊂ G is any p-subgroup, then there exists a conjugate H ′ = gHg−1 such
that K ⊂ H ′ (for |K| = pe, this says that all Sylow p-subgroups are conjugate).
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Proof. Let C be the set of left cosets of H, and consider the action of G on
C by left multiplication. This action is transitive, i.e., there is only one orbit,

since p ∤ |C| = |G|
pe = mj . There exists c0 ∈ C, namely c0 = [H], such that

Stab(c0) = H. Any G-action on a set with these properties works in the same
way. Now, restrict the action of G on C to a p-subgroup K. The K-action on
C has orbits whose sizes divide |K|, hence each orbit has a size that is a power
of p.

Since p ∤ |C|, there is at least one fixed point, i.e., there exists c ∈ C such
that k · c = c for all k ∈ K. Thus, K ⊂ Stab(c) = H ′, which is conjugate to
Stab(c0) = H because c, c0 belong to the same orbit of G. Specifically, if the
coset gH is fixed by K, i.e., kgH = gH for all k ∈ K, then there exists k ∈ K
such that g−1kgH = H. This implies g−1kg ∈ H, so k ∈ gHg−1, and thus
K ⊂ gHg−1.

Before we proceed with the proof of the third theorem, we need to discuss
normalizers and conjugate subgroups.

Problem 4.78. Given a group G and a subgroup H, what is the largest subgroup
K ⊂ G such that H is normal inside K?

Observe: The issue is that the condition gHg−1 = H may not hold for all g ∈ G,
but it needs to hold for all g ∈ K.

Definition 4.79. The normalizer of a subgroup H ⊂ G is N(H) = {g ∈ G |
gHg−1 = H}. This is a subgroup of G, and for subgroups H ⊂ K ⊂ G, H is
normal in K if and only if K ⊂ N(H).

Example 4.80. Let G = S3:

• H = {id, σ = (123), σ2} = A3 ⊂ S3, so N(H) = G (since H is normal in
G, even though for transpositions g, we have gσg−1 = σ2 ̸= σ).

• H = {id, τ} ≃ Z/2 ⊂ S3 for τ a transposition, so N(H) = H (since
gHg−1 = H implies g ∈ {id, τ}).

The normalizer measures how close H is to being normal in G. If H is normal,
then N(H) = G.

The group G acts by conjugation on the set of all its subgroups. The orbit
of H is the set of its conjugate subgroups gHg−1 ⊂ G. If H is normal, then
OH = {H}. The stabilizer of H is {g ∈ G | gHg−1 = H} = N(H), so by the
orbit-stabilizer theorem, the size of the orbit is |OH | = |G/N(H)|, and the set
of subgroups conjugate to H corresponds to the cosets of N(H).

Proposition 4.81. The number of subgroups conjugate to H in G is |G/N(H)|.

Now, let’s prove Sylow’s third theorem (the number of Sylow p-subgroups equals
sp where sp divides m and sp ≡ 1 (mod p)).
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Proof. Consider the action of G on the set of Sylow p-subgroups by conjugation.
By the second theorem, this action is transitive (all Sylow p-subgroups are
conjugate), and if H ⊂ G is any Sylow p-subgroup, the stabilizer is {g ∈ G |
gHg−1 = H} = N(H), so the size of the orbit is sp = |OH | = |G|

|N(H)| .

Since H ⊂ N(H) ⊂ G and |H| = pe, we know that pe divides |N(H)|, so

sp =
|G|
|N(H)| =

|G|
pe = m.

Next, restrict the conjugation action of G on the set of all Sylow p-subgroups
to H. Observe that H itself is fixed under conjugation (hHh−1 = H for all
h ∈ H), so this gives an orbit of size 1. We claim that this is the only orbit.

Indeed, if H ′ is a Sylow p-subgroup such that hH ′h−1 = H ′ for all h ∈ H, then
H ⊂ N(H ′). But |N(H ′)| is a multiple of |H ′| = pe, a divisor of |G| = pem.
Therefore, H and H ′ are Sylow p-subgroups of N(H ′), and since H ′ is normal
in N(H ′), we conclude that H = H ′.

Thus, the only orbit of size 1 under the action of H on the set of Sylow p-
subgroups is {H} itself. Since the size of an orbit of an H-action divides |H| =
pe, all other orbits must have sizes divisible by p. We conclude that sp =
#{Sylow p-subgroups} ≡ 1 (mod p).

One more example to show that things can get complicated quickly:

Example 4.82. Let’s try to classify groups of order 12. If |G| = 12, then by
Sylow’s theorems, we have:

• A subgroup H ⊂ G, with |H| = 4. The number of such subgroups is
s2 ∈ {1, 3} (s2 | 3, s2 ≡ 1 (mod 2)).

• A subgroup K ⊂ G, with |K| = 3. The number of such subgroups is
s3 ∈ {1, 4} (s3 | 4, s3 ≡ 1 (mod 3)).

At least one of these subgroups must be normal. Indeed, if s3 = 4, then the
nontrivial elements of k1, k2, k3, k4 all have order 3, and ki∩kj = {e} (since the
order divides 3 and is less than 3). Hence, we have 8 elements of order 3. This
leaves at most 4 elements of order in {1, 2, 4}, which forces s2 = 1 and implies
that H is normal.

If both H and K are normal, then G ≃ H ⋊ K (using |G| = |H| · |K| and
H ∩K = {e}), and so G is abelian. Specifically, G is isomorphic to one of the
following:

Z/4× Z/3 ≃ Z/12 or (Z/2× Z/2)× Z/3 ≃ Z/2× Z/6.

If H is normal but K is not, consider the action of G on {k1, k2, k3, k4} by
conjugation. Conjugation by a nontrivial element of K1 maps K1 to itself but
does not fix any of the other 3 subgroups. Recall that the stabilizer of Ki is

N(Ki) = {g ∈ G | gKig
−1 = Ki}.
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By the orbit-stabilizer theorem, we have

|N(Ki)| =
|G|
s3

=
12

4
= 3,

so N(Ki) = Ki. Thus, a nontrivial element of K1 acts on {K1,K2,K3,K4}
by a 3-cycle, permuting {K2,K3,K4}, and similarly for the other subgroups.
Therefore, the action of G on {K1, . . . ,K4} gives a homomorphism φ : G→ S4,
where yi 7→ 3-cycles. This implies that Im(φ) ⊃ A4, and hence Im(φ) = A4.
Therefore, G ≃ A4.

If K is normal but H is not, there are two subcases: H ≃ Z/4 or H ≃ Z/2×Z/2.

• If H ≃ Z/4, let x ∈ H be a generator, and let K = {e, y, y2}. Then
G ≃ K⋊H, determined by the conjugation action of H on K. Specifically,
we need to know xyx−1 ∈ K. We cannot have xyx−1 = e (which would
imply y = e) or xyx−1 = y (which would imply that x and y commute,
making G abelian). Therefore, we must have xyx−1 = y2 = y−1. In this
case, G is generated by x and y, with relations x4 = y3 = e and xy = y2x.
This is a semidirect product Z/3 ⋊ Z/4, where Z/4 acts on the normal
subgroup Z/3 by the automorphism Z/4 → Aut(Z/3) = {±id}, with the
action k 7→ (−1)k.

• If H ≃ Z/2 × Z/2, consider the conjugation action H
φ→ Aut(K) ≃ Z/2,

which must have kernel Ker(φ) ≃ Z/2. Denote its generator by z, and let
x ∈ H such that x and z generate H, with y a generator of K. Then G is
generated by x, y, z, with relations x2 = z2 = y3 = e, xz = zx, zy = yz,
and xy = y2x. This gives G ≃ D6, the dihedral group of order 6. The
subgroup generated by y and z is isomorphic to Z/6 and normal in G. In
this case, y corresponds to a rotation by 2π

3 , z corresponds to a rotation
by π, and x is any reflection.

Thus, there are 5 isomorphism classes of groups of order 12:

Z/12, Z/2⋊ Z/6, A4, Z/3⋊ Z/4, D6.

4.10 Generators, Presentations, and Cayley Graph

Definition 4.83. The free group Fn on n generators a1, . . . , an consists of
elements that are reduced words of the form am1

i1
am2
i2

. . . amk
ik

for k ≥ 0 (with
the empty word being denoted by e), where i1, i2, . . . , ik ∈ {1, . . . , n}, ij ̸= ij+1,
and m1,m2, . . . ,mk ∈ Z− {0}.

For non-reduced words, we apply the following reduction rules:

• If ij = ij+1, combine ami a
m′

i into am+m′

i .

• If an exponent is zero, remove a0i .

This process is repeated until the word is fully reduced.
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The free group Fn is the largest group with n generators. Any other group
generated by n elements is isomorphic to a quotient of Fn. Specifically, if G is
generated by g1, . . . , gn ∈ G, we define a homomorphism φ : Fn ↠ G by setting
ai 7→ gi for all i. Consequently, a word in Fn of the form am1

i1
am2
i2

. . . amk
ik

maps

to the corresponding word in G, i.e.,
∏
a
mj

ij 7→
∏
g
mj

ij .

Definition 4.84. A finitely generated group is said to be finitely presented
if the kernel of φ is the smallest normal subgroup of Fn containing some finite
set of relations {r1, . . . , rk} ⊂ Fn, i.e., the subgroup generated by the rj’s and
their conjugates c−1rjc.

We then writeG ≃ ⟨a1, . . . , an | r1, . . . , rk⟩, whereG ≃ Fn/⟨conjugates of r1, . . . , rk⟩.

Example 4.85. • Zn ≃ ⟨a1, . . . , an | aiaja−1i a−1j for all i, j⟩.

• S3 ≃ ⟨s1, s2 | s21, s22, (s1s2)3⟩.

In practice, given generators g1, . . . , gn ∈ G, it is often possible to find relations
r1, . . . , rk, i.e., words in the free group Fn, such that under the homomorphism
φ : Fn → G defined by ai 7→ gi, we have rj 7→ e. If these relations hold
in G, then φ induces a surjective homomorphism ⟨a1, . . . , an | r1, . . . , rk⟩ =
Fn/⟨conjugates of rj⟩ ↠ G. This is an isomorphism once we have identified a
complete set of relations among the gi, i.e., when the relations r1, . . . , rk and
their conjugates generate Ker(φ).

Problem 4.86. How should one work with a group described by generators and
relations?

In some cases, we may already know what G is, while in others, we may not.
Two useful concepts (among many others) are:

1. The Cayley Graph.

2. Normal Forms.

Definition 4.87. Given generators g1, . . . , gn ∈ G, the Cayley graph of G is
constructed such that

• The vertices correspond to the elements of the group.

• Two vertices s and t are connected by an edge labeled gi when t = sgi.

Remark 4.88. Here, we are using right multiplication; one could use left mul-
tiplication instead.

Example 4.89. Consider Z with its usual generator 1. It’s Cayley graph is
given as follows:

... • −2• −1• 0• 1• 2• • ...
1 1 1 1 1 1

Example 4.90. Consider S3 with generators s1 = (1 2), s2 = (2 3) (note that
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s−1i = si, so edges are undirected). It’s Cayley graph is given as follows:

(1 3)

•

(1 2 3) = s1s2 • • s2s1 = (1 3 2)

s1 = (1 2) • • (2 3) = s2

•

e

s2s1

s1s2

s2s1

The fact that this graph closes up shows the relation s1s2s1 = s2s1s2 (which
implies (s1s2)

3 = e). Since any word in s1, s2 with the relations s21 = s22 = e
can be reduced, one can use this to verify that S3 ≃ ⟨s1, s2 | s21, s22, (s1s2)3⟩.

Example 4.91. Consider S4 with generators si = (i i + 1) for i ≤ 3. This
generates a permutahedron, where faces are square relations s1s3 = s3s1 and
hexagonal relations s1s2s1 = s2s1s2 and s2s3s2 = s3s2s3.

More generally, Sn has the following presentation:

Sn = ⟨s1, . . . , sn−1 | s2i = 1 for all i, sisj = sjsi for |i−j| ≥ 2, sisi+1si = si+1sisi+1⟩.

Proposition 4.92. G acts on its Cayley graph by ”left multiplication”: vertices
s 7→ gs, edges (s 7→ sgi) 7→ (gs 7→ gsgi).

This action is transitive on vertices (and on edges with a given label gi), which
makes the graph very symmetric.

Definition 4.93. The word length of an element g ∈ G is the shortest distance
from the identity element e to g in the Cayley graph.

For infinite groups, we can inquire about the growth rate of G. Given a set of
generators gi, how does the number of elements represented by words of length
≤ N grow with N? Does it grow polynomially or exponentially?

Even if we change our set of generators to some other set g′j , the word length of
a given element changes by a bounded factor only. The bound is determined by
the word lengths of the new generators in terms of the old ones and vice versa.
Therefore, the exponential or polynomial nature of the growth is independent
of the set of generators.

Example 4.94. Abelian groups have polynomial growth, while free groups have
exponential growth.
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4.11 Braids

For finite groups, the Cayley graph is finite, and growth isn’t relevant. However,
questions about word length remain interesting!

In Sn, where {si = (i i+ 1)}, the largest element is1 2 . . . n
J J
n n− 1 . . . 1


with a word length of n(n−1)

2 . The word length of σ ∈ Sn is the number of
inversions, i.e., the pairs (i, j) such that i < j and σ(i) > σ(j).

This is best understood by representing permutations as diagrams:

1 2 n

σ(n) σ(2) σ(1)

where

• Composition: Stack diagrams.

• The expression in terms of si comes from decomposing the diagram into
layers with a single crossing:

i i+ 1

i i+ 1

= si

• Presentation of Sn ⇐⇒ Any two diagrams for σ are related by three braid
relations:

1.

∼

s2i = e
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2.

∼

sisj = sjsi |i− j| ≥ 2

3.

∼

sisi+1si = si+1sisi+1

The word length, defined as the number of inversions, becomes clearer. We can
even list all the shortest words that represent a given permutation. Namely, σ ∈
Sn has a shortest word ending with si ⇐⇒ w(σsi) < w(σ)⇐⇒ σ(i+ 1) < σ(i).
We call the set of such i the ”ending set” of σ. Then, for each i ∈ the ending
set, repeat the process for σs−1i = σsi.

For each σ ∈ Sn, we can find a preferred expression of σ as a word in s1, . . . , sn
by choosing, at each step, the smallest i such that σ(i+1) < σ(i) to end the word.
This provides a normal form for elements of Sn (a preferred word representing
each element) and thus a solution to the word problem: When do two words
represent the same element? (i.e., when does a word represent e ∈ G?)

For Sn or other groups where it isn’t well understood how to calculate elements
(e.g., groups of matrices), we don’t need fancy algorithms or normal forms to
solve the word problem. However, in many groups, this is all we have!

Definition 4.95. The braid group is defined as

Bn = ⟨s1, . . . , sn−1 | sisj = sjsi ∀|i− j| ≥ 2, sisi+1si = si+1sisi+1⟩,

but s2i ̸= 1.

Now let’s talk about Markov’s theorem:

Theorem 4.96 (Markov’s Theorem). Every knot or link in R3 can be repre-
sented as the closure of a braid. Two braids have isotopic closures if and only
if they are related by a sequence of moves of two types:

• Conjugation in Bn: For σ ∈ Bn, we have σ ∼ gσg−1 ∈ Bn for all g ∈ Bn.

• Stabilization: Bn ≃ ⟨s1, . . . , sn−1⟩ ⊂ Bn+1, and σ ∈ Bn is related to
σS±1n ∈ Bn+1.

112



Braids play an important role in knot theory, and their algorithmics are similar
to those of Sn. Permutation braids are defined similarly, and any two strands
can cross at most once. These form a finite set, in bijection with Sn.

Let ∆ be the longest permutation braid. Since its shortest word can start or end
with any si, the word ∆ is still a permutation braid, and it conjugates si ⇐⇒
sn−i. Thus, any element of Bn can be written as g = ∆−kP1P2 · · ·Pr, where
each Pj is a permutation braid. Additionally, ”moving to the left everything
that can be” implies we can find an expression such that

{ending set of Pj} ⊃ {starting set of Pj+1} ∀j.

In other words, any attempt to add an initial letter of a shortest word of Pj+1

to the end of Pj would cause it to no longer be a permutation braid.

This result leads to the Garside normal form and provides a solution to the
word problem in Bn.

One more example:

Example 4.97. Consider SL2(Z) and PSL2(Z) = SL2(Z)/{±I}. SL2(Z) is

generated by

ï
0 −1
1 0

ò
and

ï
1 1
0 1

ò
.

Proof. Given M =

ï
a b
c d

ò
∈ SL2(Z), we wish to express it in terms of the

generators S and T .

• If c = 0, then a, d = ±1. In this case, M is either

ï
1 n
0 1

ò
= Tn orï

−1 −n
0 −1

ò
= S2Tn.

• Now assume c ̸= 0, and apply the following algorithm to modify M :

– If |a| ≥ |c|, use Euclidean division to write a = nc+r, where |r| < |c|.
Then

T−nM =

ï
−1 −n
0 −1

ò ï
a b
c d

ò
=

ï
a− nc b− nd
c d

ò
,

which decreases max(|a|, |c|).

– If |a| < |c|, apply S−1M =

ï
0 1
−1 0

ò ï
a b
c d

ò
=

ï
c d
−a −b

ò
, which

brings us back to the case |a| > |c|.

After finitely many steps, we find that the product of M with some word in S
and T has c = 0 and |a| = 1, hence it is either Tn or S2Tn.

113



There is an alternative, geometric proof based on the fact that PSL2(Z) acts on
the upper half-plane H = {z ∈ C | Im(z) > 0} by the Möbius transformationï

a b
c d

ò
: z 7→ az + b

cz + d
.

Here, S acts by z 7→ − 1
z and T by z 7→ z + 1.

The region ∆ = {z ∈ C | |z| ≥ 1, |Re(z)| ≤ 1
2} is a fundamental domain of

this action, in the sense that ∆ and its images under PSL2(Z) tile H. Since the
regions immediately adjacent to ∆ are T±1(∆) and S(∆), the regions adjacent
to g(∆) are gT±1(∆) and gS(∆). The structure of the tiling exactly reproduces
the Cayley graph of PSL2(Z) with generators S and T , and the fact that all
regions can be reached from ∆ in finitely many steps implies that S and T
generate PSL2(Z).

There also exist other generators: Instead of S and T , we can also use:

• S =

ï
0 −1
1 0

ò
and R = ST =

ï
0 −1
1 1

ò
, which have finite order: S4 =

R6 = I.

• T =

ï
1 1
0 1

ò
and T ′ =

ï
1 0
−1 1

ò
= (TST )−1, which are conjugates: T ′ =

STS−1.

• The images of these matrices in PSL2(Z) also generate PSL2(Z).

Theorem 4.98.
PSL2(Z) ≃ ⟨S,R | S2, R3⟩.

Proof. Since S2 = −I and R3 = −I, S and R have orders 2 and 3 in PSL2(Z).
These relations S2 = R3 = e reduce any word in S±1, R±1 to the form . . . SR±1SR±1SR±1 . . . .
(The word can start and end with either S or R±1.) Mapping F2 = ⟨s, r⟩ to
PSL2(Z) by r 7→ R, s 7→ S induces a surjective homomorphism

⟨s, r | s2, r3⟩ = F2/⟨conjugations of s2, r3⟩↠ PSL2(Z),

and the kernel consists of elements whose corresponding expression in S and R
equals e in PSL2(Z), i.e., ±I in SL2(Z).

Observe that S ̸= e and R±1 ̸= e. If some longer word w in S and R±1’s
(alternating between these) simplifies to e ∈ PSL2(Z), we have:

• If it starts and ends with S, conjugating by S yields a shorter word w′:
since S2 = e, Sw′S = e⇐⇒ w′ = e.

• If it starts with R±1, conjugating gives another word that doesn’t simplify
to e: R±1w′ = e⇐⇒ w′R±1 = e.
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Iterating this process, we eventually obtain a word of the form SR±1 . . . SR±1 =

±I. However, SR = −T = −
ï
1 1
0 1

ò
and SR−1 =

ï
1 0
1 1

ò
. A product of

these matrices cannot simplify to ±I, as multiplying matrices with non-negative

entries by

ï
1 1
0 1

ò
or

ï
1 1
1 0

ò
increases the sum of the entries.

Thus, no word in SR±1 simplifies to e, and we are done.

This presentation can be rewritten in terms of other generators:

PSL2(Z) ≃ ⟨S, T | S2, (ST )3⟩ ≃ ⟨T, T ′ | (TT ′)3 = e, TT ′T = T ′TT ′⟩,

and
SL2(Z) = ⟨T, T ′ | (TT ′)6 = 1, TT ′T = T ′TT ′⟩.

(For constructing the two strands of the discussion, the center of the braid group
B3 = ⟨s1, s2 | s1s2s1 = s2s1s2⟩ is generated by ∆2 = (s1s2)

3, and Z ∼= ⟨∆2⟩.
Thus, mapping s1 7→ T, s2 7→ T ′ gives a sequence 1 → Z = ⟨∆2⟩ ↪→ B3 ↠
PSL2(Z)→ 1.)
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5 Representation Theory

5.1 Representations

Representation theory is the study of group actions on vector spaces, i.e., homo-
morphisms G → GL(V ) (typically with k = C). Historically, groups first arose
as geometric symmetries, and in the 19th century, groups were primarily seen
as subgroups of GL(n), rather than abstract entities. The modern viewpoint
divides this into two main components: the study of groups themselves (which
we’ve explored) and the interpretation of an abstract group G as a subgroup of
GL(n) (which we will now consider). While we focus on representations of finite
groups, this problem is also significant for discrete finite groups (e.g., SL2(Z),
braid groups, etc.), and continuous groups (Lie groups such as S1, SO(3), etc.).

Definition 5.1. A representation of a group G is a vector space V with an
action of G on V by linear operators, i.e., G× V → V such that for all g ∈ G,
the map g : V → V is linear.

Equivalently, a representation is a homomorphism ρ : G → GL(V ), where
GL(V ) is the group of invertible linear operators on V .

Definition 5.2. A subrepresentation of a representation is a subspace W ⊂
V that is invariant under the action of G, i.e., gW =W for all g ∈ G.

Definition 5.3. A representation is irreducible if it has no nontrivial subrep-
resentations.

Example 5.4. If G ∼= Z/n is a cyclic group, then a representation of G is a
vector space V together with a map φ = ρ(1) : V → V such that φn = idV .

Lemma 5.5. If V is a finite-dimensional C-vector space and φ : V → V has
finite order, i.e., φn = id, then φ is diagonalizable.

Proof. This follows because the minimal polynomial of φ divides φn − 1, which
factors as a product of linear factors with distinct roots. Specifically, over C,
we have φn − 1 = 0 factoring as

∏
k(φ − λk) = 0, where λk = e

2πik
n are the

nth roots of unity. Therefore, the eigenvalues of φ are these nth roots of unity,
and we obtain a direct sum decomposition of V into eigenspaces. Since each
eigenspace is invariant under φ, φ is diagonalizable.

Returning to the example, the invariant subspaces of φ = ρ(1) are subrepre-
sentations, and V splits into a direct sum of 1-dimensional irreducible repre-
sentations. These correspond to homomorphisms Z/n → C× = GL1(C), with
1 7→ λ = e

2πik
n .

Now, if V is a C-representation of a finite abelian group G ∼= Z/m1 × Z/m2 ×
· · · × Z/mr, the G-action is equivalent to the data of φ1, . . . , φr : V → V such
that φmi

i = idV and the φi pairwise commute, i.e., φiφj = φjφi. Each φi
is diagonalizable by the lemma, and commuting diagonalizable operators are
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simultaneously diagonalizable. By induction on r, this shows that V splits
into a direct sum of 1-dimensional subrepresentations, each corresponding to a
homomorphism G→ GL1(C) ∼= C×.

For a finite abelian group G, define its dual as Ĝ = Hom(G,C×). This is
an abelian group under pointwise multiplication. If ρ, ρ′ ∈ Hom(G,C×), their
product ρρ′ is also a homomorphism, defined by

(ρρ′)(g) = ρ(g)ρ′(g) for all g ∈ G.

For example, if G ∼= Z/n, then Ĝ ∼= Z/n, with ρ 7→ ρ(1) being a map into the
nth roots of unity, which forms a group isomorphic to Z/n.

Similarly, if G = Z/m1 × · · · × Z/mr, then Ĝ ∼= ˆZ/m1 × · · · × ˆZ/mr, and the
homomorphisms are determined by the images of the generators of G, which
are roots of unity in C×. This completes the classification of complex represen-
tations of finite abelian groups!

Definition 5.6. Given two representations V and W of G, a homomorphism
of representations φ : V → W is a linear map that is equivariant, i.e., satisfies
φ(gv) = gφ(v) for all v ∈ V and g ∈ G.

The set of homomorphisms of representations, denoted by HomG(V,W ), con-
sists of G-equivariant linear maps (as opposed to all linear maps, which form
Hom(V,W )).

We can construct new representations from existing ones. In particular:

• If V,W are representations of G and φ ∈ HomG(V,W ), then Ker(φ) and
Im(φ) are preserved by G, hence they are subrepresentations of V andW .

• If W ⊂ V is a subrepresentation, then V/W is also a representation, as G
acts on cosets: g(v +W ) = gv +W .

• If V and W are representations of G, then V ⊕W is also a representation
with g(v, w) = (gv, gw).

• The tensor product V ⊗W is a representation, where g(v⊗w) = gv⊗ gw
(extended by linearity).

• Hom(V,W ) (the space of all linear maps) can also be given the structure
of a representation, but the action of g is given by conjugation: g(φ)(v) =
gφ(g−1v).

• Specializing to V ∗ = Hom(V, k), where k has the trivial representation,
the dual representation of V is V ∗ with g(ℓ) = ℓ ◦ g−1.

Theorem 5.7. Let V be a representation of a finite group G (over C or any
field of characteristic zero), and suppose W ⊂ V is an invariant subspace (a
subrepresentation). Then there exists another invariant subspace U ⊂ V such
that V = U ⊕W as a direct sum of representations.
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Corollary 5.8. Any finite-dimensional representation of a finite group decom-
poses into a direct sum of irreducible representations.

To prove this, let’s first prove a lemma.

Lemma 5.9. If V is a C-representation of a finite group G, then there exists
a positive definite Hermitian inner product on V that is preserved by G, i.e.,
H(gv, gw) = H(v, w) for all v, w ∈ V and g ∈ G. In other words, all the linear
operators g : V → V are unitary.

Proof. Let H0 be any Hermitian inner product on V , and define H(v, w) =
1
|G|
∑
g∈GH0(gv, gw). This new inner product is Hermitian, positive definite,

and invariant under the action of G.

Now we proceed with the first proof of the theorem.

Proof. Equip V with a G-invariant Hermitian inner product H as in the lemma.
If g(W ) = W , then g is unitary, implying that g(W⊥) = W⊥. Therefore,
U =W⊥ is a complementary invariant subspace, and we have V = U ⊕W .

Next, let’s consider an alternate proof.

Proof. Choose any complementary subspace U0 ⊂ V such that V = U0 ⊕W .
Define the projection π0 : V → W onto W with kernel U0. Then define π(v) =
1
|G|
∑
g∈G gπ0(g

−1v) ∈ W . The map π is a homomorphism of representations,

and its kernel U = Ker(π) is an invariant subspace. Since π|W = id, it is
surjective, and we conclude that V = U ⊕W .

Remark 5.10. The proof fails if char(k) ̸= 0 (specifically, if char(k) = p
and |G| is divisible by p), which is one reason why modular representations
(representations over fields of positive characteristic) are more complicated. The
proof also fails if G is infinite (and does not carry a finite invariant measure),
as the averaging trick does not work in this case.

Example 5.11. If G = Z or R acts on C2 by t 7→
ï
1 t
0 1

ò
, then the first factor

C×0 is invariant under the action of G, but there is no complementary invariant
subspace.

5.2 Irreducibility and Representations of S3

Goal: Given a group G, find its irreducible representations and describe how
other representations decompose into irreducibles.

Theorem 5.12 (Schur’s Lemma). Let V,W be irreducible representations of a
group G, and let φ : V → W be a homomorphism of representations. Then,
either φ = 0, or φ is an isomorphism.
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If k = C, and V is an irreducible representation of G, then any homomorphism
φ : V → V is a scalar multiple of the identity map, i.e., φ = λ · id for some
λ ∈ C.

Proof. Let φ : V →W be a homomorphism. The kernel of φ, denoted Ker(φ), is
an invariant subspace of V , i.e., it is a subrepresentation. Since V is irreducible,
we have two possibilities: either Ker(φ) = 0 (in which case φ is injective), or
Ker(φ) = V (in which case φ = 0).

Similarly, the image of φ, Im(φ), is an invariant subspace ofW . Hence, Im(φ) =
0 (if φ = 0) or Im(φ) =W (if φ is surjective). Therefore, we conclude that either
φ = 0, or φ is an isomorphism.

For k = C, suppose φ : V → V is a homomorphism. Then, φ has an eigenvalue
λ, and the map φ − λI : V → V has a nonzero kernel. Since V is irreducible,
we deduce that φ− λI = 0, implying φ = λI.

Example 5.13. Let V be an irreducible representation of G, and let h ∈ Z(G)
be an element of the center of G (i.e., h commutes with every g ∈ G). The
action of h on V satisfies h(gv) = gh(v) for all g ∈ G, so h is equivariant. By
Schur’s Lemma, h ∈ HomG(V, V ) must act by a scalar multiple of the identity,
i.e., h = λ · id for some λ ∈ C.

In particular, if G is abelian and V is irreducible, then every element of G
acts by a scalar multiple of the identity. This provides an alternate proof that
irreducible representations of finite abelian groups are 1-dimensional.

Next, we consider the simplest non-abelian group S3. We know that the triv-
ial representation U ≃ C (where every element σ ∈ S3 acts as the identity).
Another 1-dimensional representation U ′ ≃ C corresponds to the alternating
representation, where σ ∈ S3 acts by (−1)σ.

We also have the permutation representation ≃ C3 with basis e1, e2, e3,
where S3 acts by permuting the basis vectors: σei 7→ eσ(i).

This representation has an invariant subspace, namely span(e1 + e2 + e3), and
we can find a complementary subrepresentation, specifically V = {(z1, z2, z3) ∈
C3 | z1 + z2 + z3 = 0}. This is the standard representation of S3, with
dim(V ) = 2, and it is irreducible.

Remark 5.14. Similarly, for Sn, the two 1-dimensional representations are the
trivial representation U = C and the alternating representation U ′ = C where σ
acts by (−1)σ. The permutation representation Cn, where σ acts by permuting
the basis vectors ei 7→ eσ(i), has an invariant subspace span(e1 + · · ·+ en) ≃ U ,
with a complementary subrepresentation V = {(z1, . . . , zn) ∈ Cn |

∑
zi = 0}. It

turns out that V is irreducible, and it is the standard representation of Sn, with
dim(V ) = n− 1.
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For S3, however, this exhausts the list of irreducible representations (over C).
The group Sn has more irreducible representations. In fact, the number of
irreducible representations of Sn corresponds to the number of partitions of n.

Proposition 5.15. The irreducible representations of S3 over C are U , U ′, and
V . Hence, any representation of S3 is isomorphic to a direct sum U⊕a⊕U ′⊕b⊕
V ⊕c for some unique a, b, c ∈ N.

Proof. Let W be any finite-dimensional representation of S3. Restricting to
the abelian subgroup A3 ≃ Z/3 ⊂ S3, let τ ∈ S3 be a 3-cycle, and σ ∈ S3

be a transposition. We have τ3 = σ2 = id and σ−1τσ = τ2. Restricting the
representation to the subgroup generated by τ , W has a basis of eigenvectors

(vj), where τ(vj) = λjvj and λj = e
2πikj

3 are roots of unity.

Now consider how σ acts. If v is an eigenvector of τ with eigenvalue λ, then
τ(σv) = λ2σ(v). Thus, σ maps the λ-eigenspace of τ to its λ2-eigenspace.

For each eigenvector v of τ , span(v, σv) is an invariant subspace. Therefore,
irreducible representations have dim ≤ 2.

Now, let W be irreducible. Consider the case where v ∈W is an eigenvector of
τ .

Case 1: λ = 1. If τ(v) = v, then τ(σv) = σv. If σv is linearly independent of
v, then w = v+σv is an invariant subspace, which contradicts the irreducibility
of W . Thus, σv must be a scalar multiple of v, and since σ2 = id, we have
σ(v) = ±v. Therefore,W is isomorphic to either U or U ′, depending on whether
σ(v) = v or σ(v) = −v.

Case 2: λ = e±
2πi
3 . In this case, τ(v) = λv and τ(σv) = λ2σv. Since λ ̸= λ2,

the eigenvectors v and σv are linearly independent, and their span forms an
invariant subspace. By irreducibility, this span must equal W , and we conclude
that W ≃ V .

Given a representation W ≃ U⊕a ⊕ U ′⊕b ⊕ V ⊕c, how do we find a, b, c?

Answer: Look at the eigenvalues of τ . The 1-eigenspace of τ corresponds to
U⊕a ⊕ U ′⊕b, so a+ b = dim(Ker(τ − 1)). The eigenvalue e±

2πi
3 corresponds to

the V -eigenspace, so the multiplicity of these eigenvalues gives c. Similarly, σ
acts by +1 on U , −1 on U ′, and by a matrix resembling the standard action on
V . From this, we deduce a, b, c.

Example 5.16. Consider the standard representation V of S3 and V ⊗2 =
V ⊗ V . How does V ⊗2 decompose into irreducibles?

Start with a basis e1, e2 of V , where τe1 = λe1, τe2 = λ2e2, σe1 = e2, and
σe2 = e1, with λ = e

2πi
3 . Then V ⊗V has a basis e1⊗e1, e1⊗e2, e2⊗e1, e2⊗e2.

These are eigenvectors of τ with eigenvalues λ2, 1, 1, λ. On the 1-eigenspace
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span(e1 ⊗ e2, e2 ⊗ e1), σ swaps the two vectors, so e1 ⊗ e2 ± e2 ⊗ e1 is an
eigenvector of σ with eigenvalue ±1. Hence, V ⊗ V ≃ U ⊕ U ′ ⊕ V .

Similarly, Sym2(V ) has a basis e21, e1e2, e
2
2, and Sym2(V ) ≃ U ⊗ V . The action

of τ on this space is given by eigenvalues λ2, 1, λ, while ∧2V ≃ U ′, corresponding
to the determinant versus the sign.

Next, we will discuss symmetric polynomials and introduce characters as a tool
to study representations.

5.3 Symmetric Polynomials and Characters

This concept generalizes to more complicated groups. We’ll see that eigenvalues
play a crucial role in classifying representations. However, we need a systematic
way to organize this information.

Now, we digress to discuss symmetric polynomials, which serves as motivation
for the study of characters.

Observe that an efficient way to store information about n complex numbers,
unordered and possibly with repetitions, is to specify the coefficients of the poly-
nomial whose roots are these numbers. That is, the polynomial is of the form∏n
i=1(x−λi). The coefficients of this polynomial are symmetric polynomials

in the variables λ1, . . . , λn.

The symmetric group Sn acts on the space of polynomials C[z1, . . . , zn] by per-
muting the variables.

Definition 5.17. A symmetric polynomial is a polynomial f ∈ C[z1, . . . , zn]
that is a fixed point of the Sn-action, i.e., σ(f) = f for all σ ∈ Sn.

Remark 5.18. Equality of polynomials means, as usual, equality of coefficients.
Over a finite field, this is a stronger condition than equality as functions on kn,
but there is no distinction over C.

Definition 5.19. The elementary symmetric polynomials are defined as
follows:

σ1(z1, . . . , zn) =

n∑
i=1

zi,

σ2(z1, . . . , zn) =
∑

1≤i<j≤n

zizj ,

...

σk(z1, . . . , zn) =
∑

1≤i1≤···≤ik≤n

zi1 . . . zik ,

σn =

n∏
i=1

zi.
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We can check that the coefficient of xn−k in the polynomial
∏n
i=1(x− zi) is, up

to a sign factor of (−1)k, the elementary symmetric polynomial σk(z1, . . . , zn).

Thus, by the fundamental theorem of algebra, there is a bijection

{unordered n−tuples of complex numbers, with repetitions allowed} ∼⇐⇒ Cn ordered tuples

given by
[z1, . . . , zn] 7→ (σ1(zi), . . . , σn(zi)),

and
(σ1, . . . , σn) 7→ [the roots of xn − σ1xn−1 + · · ·+ (−1)nσn].

In other words, [z1, . . . , zn]⇐⇒ the coefficients of the polynomial
∏
(x− zi).

Theorem 5.20. The subring of symmetric polynomials in C[z1, . . . , zn], i.e.,
C[z1, . . . , zn]Sn , is isomorphic to the polynomial algebra in the elementary sym-
metric polynomials.

We won’t prove this here, but let’s see why it works in the case n = 2:

The vector space of symmetric polynomials has the following basis:

1 = 1,

z1 + z2 = σ1,

z21 + z22 = (z1 + z2)
2 − 2z1z2 = σ2

1 − σ2,
z1z2 = σ2,

z31 + z32 = σ3
1 − 3z21z2 − 3z1z

2
2 = σ3

1 − 3σ1σ2,

z21z2 + z1z
2
2 = σ1σ2.

Observe that any symmetric polynomial in 2 variables can be written as

p(z1, z2) =
∑

ak(z
k
1 + zk2 ) + z1z2q(z1, z2)

=
∑

ak(z1 + z2)
k + z1z2q

′(z1, z2)

=
∑

akσ
k
1 + σ2q

′.

We can continue by induction on the degree.

Remark 5.21. The theorem can be understood in terms of the representation
theory of Sn! Specifically, the space of homogeneous degree 1 polynomials is
W1 = span(z1, . . . , zn) ≃ Cn, on which Sn acts by the permutation represen-
tation, which decomposes as V ⊕ U , with the invariant part WSn

1 ≃ U being
the trivial summand. Similarly, homogeneous degree d polynomials correspond
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to Wd = Symd(Wℓ), and the invariant part WSn

d is the trivial summand in the
decomposition of Wd into irreducibles. (Unfortunately, we haven’t studied the
representations of Sn in enough depth to carry through with a proof along these
lines.)

Another family of symmetric polynomials are the power sums:

τk(z1, . . . , zn) =

n∑
i=1

zki ,

where τ1 = σ1, τ2 = σ2
1 − 2σ2, . . . .

These make sense for all k, but in fact, τ1, . . . , τn are sufficient:

Theorem 5.22.
C[z1, . . . , zn]Sn ∼= C[τ1, . . . , τn].

In particular, specifying an unordered tuple {z1, . . . , zn} is equivalent to speci-
fying

∑
zi,
∑
z2i , . . . ,

∑
zni .

Now, let’s return to representation theory to see why this matters. We’ve seen
that to understand a representation V of a group G, we should examine the
eigenvalues of the action g : V → V for each g ∈ G. However, this provides a
lot of information. We’ve just established that to specify the eigenvalues λi of
g : V → V , it is enough to specify the power sums

∑
λki . In fact,

∑
λki = tr(gk).

Thus, it suffices to describe just the sum of the eigenvalues,
∑
λi = tr(g), for

each g ∈ G, since G is a group, and the trace of gk is also part of this.

Definition 5.23. The character χV of a representation V is the function
χV : G→ C defined by χV (g) = tr(g).

Remark 5.24. For a 1-dimensional representation of G, i.e., a homomorphism
G → C∗, the character is just the same as the homomorphism. For a higher-
dimensional representation, however, we have χ(g1g2) ̸= χ(g1)χ(g2).

However, since trace is conjugation-invariant, i.e., tr(ghg−1) = tr(h), the char-
acter χV (g) only depends on the conjugacy class of g.

Definition 5.25. A class function f : G→ C is a function that is invariant
under conjugation, i.e., f(ghg−1) = f(h).

Example 5.26. Given representations V and W :

• χV⊕W (g) = χV (g) + χW (g) (eigenvalues of the block matrix

Å
φ 0
0 φ

ã
),

• χV⊗W (g) = χV (g)χW (g) (eigenvalues of φ⊗ ψ : vi ⊗ wj 7→ λiλ
′
jvi ⊗ wj),

• χV ∗(g) = χV (g) since g acts by t(g−1), and the eigenvalues are roots of
unity, so λ−1i = λi =⇒

∑
λ−1i =

∑
λi,

• χ∧2V (g) =
∑
i<j λiλj =

1
2

(
(
∑
λi)

2 −
∑
λ2i
)
= 1

2 (χV (g)
2 − χV (g2)).
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Example 5.27. If G acts on a finite set S, then there is an associated permuta-
tion representation V of dimension |S|, with basis (es)s∈S, where G acts by per-
mutation matrices g·es = eg·s. In this case, χV (g) = tr(g) = #{s ∈ S | g·s = s},
since the 1’s on the diagonal of the matrix correspond to fixed points of g, and
the 0’s correspond to non-fixed points.

The character table of a group is the table listing, for each irreducible repre-
sentation of G, the values of its character on each conjugacy class of G.

Example 5.28. For G = S3, the character table is:

S3 e (1 2) (1 2 3)
U 1 1 1
U ′ 1 −1 1
V 2 0 −1

where e, (1 2), and (1 2 3) represent the conjugacy classes, and U , U ′, and V
represent the irreducible representations.

For the left column, χV (e) = tr(id) = dim(V ), and for the bottom row, the

eigenvalues are ±1 for (1 2), e
2πi
3 for (1 2 3), or U ⊕ V = permutation represen-

tation, which takes values (3, 1, 0); subtracting χU = (1, 1, 1) gives the result.

We now have a faster way to decompose V ⊗V into its irreducibles: χV⊗V (g) =
χV (g)

2, so χV⊗V takes values (4, 0, 1). Since χU , χU ′ , and χV are linearly
independent, χV⊗V = χU + χU ′ + χV , implying V ⊗ V ≃ U ⊕ U ′ ⊕ V . This
method is faster than counting eigenvalues, as we did previously!

Now for some magic with characters: If V is a representation of G, the invariant
part is

V G = {v ∈ V | gv = v ∀g ∈ G}.

Proposition 5.29. The map

φ =
1

|G|
∑
g∈G

g : V → V

is a projection onto V G ⊂ V , satisfying Im(φ) = V G and φ|V G = id.

Thus,

dim(V G) = tr(φ) =
1

|G|
∑
g∈G

χV (g).

If V,W are representations of G, then

HomG(V,W ) = Hom(V,W )G = (V ∗ ⊗W )G,
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which implies

dim(HomG(V,W )) =
1

|G|
∑
g∈G

χV ∗⊗W (g) =
1

|G|
∑
g∈G

χV (g)χW (g).

If V and W are irreducible, then by Schur’s lemma:

dim(HomG(V,W )) =

®
1 if V ≃W,
0 otherwise.

Definition 5.30. Define a Hermitian inner product on the space of class func-
tions G→ C by

H(α, β) =
1

|G|
∑
g∈G

α(g)β(g).

For characters of representations, by the above,

dim(HomG(V,W )) = H(χV , χW ).

This leads to the following theorem:

Theorem 5.31. The characters of irreducible representations of G are or-
thonormal with respect to H.

As a consequence, the characters of irreducible representations are linearly in-
dependent class functions.

Corollary 5.32. The number of irreducible representations of G is at most the
number of conjugacy classes of G.

Remark 5.33. We will see later that these numbers are in fact equal.

Corollary 5.34. Every representation of G is completely determined by its
character. Denoting the irreducible representations by V1, . . . , Vk, any represen-
tation W can be expressed as

W ≃
⊕

V ⊕aii ,

where
ai = dim(HomG(Vi,W )) = H(χVi

, χW ).

Corollary 5.35. For any representation W =
⊕
V ⊕aii ,

H(χW , χW ) =
∑

a2i ,

and W is irreducible if and only if H(χW , χW ) = 1.
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This is particularly useful because, given a representation W , it provides infor-
mation about the number of irreducible summands in W . For example:

H(χW , χW ) =


1 ⇐⇒W is irreducible,

2 ⇐⇒W is a direct sum of 2 different irreducible representations,

4 ⇐⇒W is either 4 different irreducible representations or twice the same.

We now apply this to the regular representation R, which is the vector space
with basis {eg}g∈G, where G acts by permuting the basis vectors by left multi-
plication: g · eh = egh.

Let V1, . . . , Vk be the irreducible representations of G, and write

R =
⊕

V ⊕aii .

What are the ai?

Since G acts by permutation matrices,

χR(g) = tr(g) = #{h ∈ G | g · eh = eh}.

Unless g = e, there are no fixed points, which implies:

χR(g) =

®
|G| if g = e,

0 if g ̸= e.

Thus,

H(χR, χVi
) =

1

|G|
∑
g∈G

χR(g)χVi
(g) = χVi

(e) = tr(idVi
) = dim(Vi).

Hence, each Vi appears ai = dim(Vi) times in the regular representation R. The
third corollary then implies:

H(χR, χR) =
1

|G|
∑
g∈G
|χR(g)|2 =

1

|G|
|χR(e)|2 = |G| =

∑
a2i =

∑
(dim(Vi))

2.

Corollary 5.36. The irreducible representations V1, . . . , Vk of G satisfy∑
(dim(Vi))

2 = |G|.

At this point, we have significant information about the irreducible representa-
tions of G and their characters.
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5.4 S4

Let G = S4. The conjugacy classes of S4 are:

{e}, size 1, transpositions, size 6, 3-cycles, size 8, 4-cycles, size 6, pairs of transpositions, size 3.

We know three irreducible representations: U , U ′, and V . The character table
is as follows:

S4 e (1 2) (1 2 3) (1 2 3 4) (1 2)(34)
U 1 1 1 1 1
U ′ 1 −1 1 −1 1
V 3 1 0 −1 −1

For the first row, g acts as the identity, so the trace is tr = 1. For the second
row, we have tr((−1)σ) = (−1)σ, meaning the trace is either 1 or -1, depending
on the permutation. For the last row, the direct sum U ⊕ V is the permutation
representation, C4, where χU⊕V (σ) = tr(σ) represents the number of fixed
points of σ, i.e., the number of i such that σ(i) = i. This implies χV (σ) =
# fixed points− 1.

Quick check: these characters are indeed orthonormal! However, we have∑
dim2 = 12 + 12 + 32 = 11, which is less than 24, so there must be other

irreducible representations. In fact, by Corollary 1, we know there are at most
two missing representations (since the number of irreducible representations is
less than or equal to the number of conjugacy classes, which is 5). Since 13 is
not a perfect square, we conclude that exactly two irreducible representations
are missing, with dimensions 2 and 3.

How do we build the missing entries? We begin by looking at tensor products
of known irreducible representations. First, recall that the tensor product of an
irreducible representation with a 1-dimensional representation is still irreducible,
as it leaves the same invariant subspaces. So, we consider the tensor product
V ′ = V ⊗U ′, which represents the twice-standard representation by (−1)σ. The
character χV ′ is given by:

χV ′ = χV · χU ′ = (3,−1, 0, 1,−1),

which is irreducible, as H(χV ′ , χV ′) = 1, and different from V .

Thus, we have found one of the missing irreducible representations, V ′.

Now, we find the last 2-dimensional irreducible representation,W . SinceW⊗U ′
is also 2-dimensional and irreducible, we deduce thatW⊗U ′ ≃W . This implies
χW = χW · χU ′ , so χW = 0 for the odd conjugacy classes (1 2) and (1 2 3 4).
The orthogonality relations help us determine the rest of χW without explicitly
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constructing it. The character table now becomes:

S4 e (1 2) (1 2 3) (1 2 3 4) (1 2)(34)
U 1 1 1 1 1
U ′ 1 −1 1 −1 1
V 3 1 0 −1 −1
V ′ 3 −1 0 1 −1
W 2 0 a = −1 0 b = 2

To find a and b, we use the orthogonality relations:

H(χV , χW ) =
1

24
(2+8a+3b) = 0, H(χV , χW ) =

1

24
(6−3b) = 0 =⇒ (a, b) = (−1, 2).

Note that χW ((1 2)(34)) = 2, which means the eigenvalues of W are 1 and 1
(the roots of unity summing to 2).

This gives us a clue about W : the normal subgroup H = {id} ∪ {(ij)(kl)} ≃
Z/2×Z/2 lies in the kernel of the map S4

ρ→ GL(W ). In other words, ρ factors
through the quotient S4/H ≃ S3, where S4 acts on the set of splittings of
{1, 2, 3, 4} into two pairs (there are three such splittings). Under this quotient:

• Transpositions and 4-cycles map to transpositions.

• 3-cycles map to 3-cycles.

Thus, the character χW on the quotient S3 becomes:
id 7→ 2,

transposition 7→ 0,

3-cycle 7→ −1.

This is the standard representation of S3, ”pulled back” to S4 by the map
S4 ↠ S3.

Alternatively, we can look at the tensor product V ⊗ V . The character of this
product is χV⊗V = χ2

V = (9, 1, 0, 1, 1). Using the orthogonality relations:

H(χU , χV⊗V ) = 1, H(χU ′ , χV⊗V ) = 0, H(χV , χV⊗V ) =
1

24
(27+6−6−3) = 1,

H(χV ′ , χV⊗V ) =
1

24
(27− 6 + 6− 3) = 1,

we find that V ⊗ V contains U ⊕ V ⊕ V ′ (dimension 7), leaving one copy of the
missing irreducible W . Therefore:

V ⊗ V = U ⊕ V ⊕ V ′ ⊕W.

We can find χW by subtracting the other characters from χV⊗V .
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5.5 A4

The alternating group A4 has 4 conjugacy classes:

{e} (1 element), (1 2 3) (4 elements), (1 3 2)) (4 elements), (1 2)(34) (3 elements).

We can approach the classification of irreducible representations of A4 by first
restricting the irreducible representations of S4 to A4. Some of these become
isomorphic (for instance, the alternating representation U ′ has elements of A4

acting by (−1)σ = 1, so it is isomorphic to the trivial representation), while
others may become reducible. This approach is feasible but challenging, partic-
ularly due to the role of the representation W .

Alternatively, we can proceed directly. We know that A4 has at most 4 irre-
ducible representations, and the sum of the squares of their dimensions must
equal 12, i.e., ∑

dim2 = 12.

This includes the trivial representation of dimension 1, so the only possible
dimension configuration is:

12 = 32 + 12 + 12 + 12.

The three 1-dimensional representations correspond to Hom(A4,C∗), which con-
tains the trivial representation and two other elements.

Now, observe that H = {id} ∪ {(ij)(kl)} is a normal subgroup of A4, and
A4/H ≃ Z/3. Thus, we can conclude that:

Hom(A4,C∗) ≃‘Z/3 =
¶
m 7→ e

2πimk
3

©
.

Specifically, let λ = e
2πi
3 , and the rank-1 representations are as follows:

A4 e (1 2 3) (1 3 2)) (1 2)(34)
U 1 1 1 1
U ′ 1 λ λ2 1
U ′′ 1 λ2 λ 1
V 3 0 0 −1

Remark 5.37. Note that the restriction of the standard representation W of
S4 to A4 decomposes as W |A4

≃ U ′ ⊕U ′′. Elements of H (i.e., (ij)(kl)) act as
the identity, and this is the restriction of the standard representation of S4.

In the previous section, we stated (but did not prove) that the characters of
irreducible representations form an orthonormal basis (with respect to the inner
product for class functions) of the space of class functions G→ C.

The proof follows from a general averaging/projection formula. As we saw
earlier, the operator φ = 1

|G|
∑
g∈G g is a projection onto the invariant subspace

V G (the trivial summand in V ).
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Proposition 5.38. Given any class function α : G→ C and any representation
V of G, let

φα,V =
1

|G|
∑
g∈G

α(g)g : V → V.

Then φα,V is G-linear (equivariant).

Proof. We compute:

φα,V (hv) =
1

|G|
∑
g∈G

α(g)ghv =
1

|G|
∑
g′∈G

α(hg′h−1)(hg′h−1)hv =
1

|G|
∑
g′∈G

α(g′)hg′v = h

Ñ
1

|G|
∑
g′∈G

α(g′)g′v

é
= hφα,V (v).

Thus, φα,V is G-linear.

This leads to the following theorem:

Theorem 5.39. The characters of the irreducible representations of G form an
orthonormal basis (with respect to the inner product for class functions) of the
space of class functions G → C, and the number of irreducible representations
equals the number of conjugacy classes.

Proof. To show that the characters χ1, . . . , χm of the irreducible representations
span the space of class functions, it suffices to prove that H(α, χi) = 0 for all i
implies that α = 0. Given any class function α and an irreducible representation
V , the operator φα,V is defined as above. By Schur’s Lemma, φα,V = λidV ,
where λ = 1

n tr(φα,V ) and n = dim(V ). Thus:

λ =
1

n
tr(φα,V ) =

1

n

1

|G|
∑
g∈G

α(g)tr(g) =
1

n

1

|G|
∑

α(g)χV (g) =
1

n
H(α, χV ).

So if H(α, χVi) = 0 for all irreducible representations Vi, then φα,Vi = 0 for all
Vi. By considering direct sums, we have φα,V = 0 for all representations of G,
particularly for the regular representation R of G (the permutation representa-
tion for left multiplication on G).

For the regular representation, we compute:

φα,R(e1) =
1

|G|
∑
g∈G

α(g)eg = 0.

Since the eg are linearly independent, this implies α(g) = 0 for all g ∈ G, so
α = 0.

Along the way, we find the following result. For irreducible representations Vi
and Vj , consider φα,V for α = χVi

. Then φα,Vj
= λidVj

, where:

λ =
1

dim(Vj)
tr(φα,Vj ) =

1

dimVj
H(χVi , χVj ) =

®
1

dimVj
, if i = j,

0, if i ̸= j.
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This leads to the following proposition:

Proposition 5.40. If V is any representation of G, and V =
⊕
V ⊕aii is its

decomposition into irreducibles, then:

φVi =
dimVi
|G|

∑
g∈G

χVi(g)g : V → V

is the projection onto the summand V ⊕aii (i.e., it is the identity on that summand
and zero on the others).

In the case of the trivial representation, this formula reduces to our previous
projection formulas for V G.

5.6 The Representation Ring of G

Fix a group G and consider the set of representations of G up to isomorphism.
There are two operations, ⊕ and ⊗, which are commutative, associative, and
distributive:

(U ⊕ V )⊗W = (U ⊗W )⊕ (V ⊗W ).

So, is this a ring? ... Almost! We are missing additive inverses — let’s just add
them! Define

R̂ =

{∑
finite

ai[Vi] | ai ∈ Z, Vi are representations of G

}
,

the set of formal linear combinations with integer coefficients of representations
of G. Consider the additive subgroup generated by all sums [V ]+[W ] = [V ⊕W ].
Let R(G) be the quotient of R̂ by this subgroup. In R(G), we have [V ] + [W ] =
[V ⊕W ], but we can also subtract representations.

Definition 5.41. The pair (R(G),⊕,⊗) is called the representation ring of
G, where we extend these operations to formal sums and differences of repre-
sentations by linearity.

As a set, R(G) consists of elements of the form

R(G) =

{
k∑
i=1

aiVi | ai ∈ Z

}
,

where Vi are the irreducible representations of G (by complete reducibility and
the uniqueness of decomposition into irreducible representations). In other
words, (R(G),+) is a free abelian group, isomorphic to Zk, where k is the
number of irreducible representations of G.

General elements of R(G), i.e., the coefficients ai ∈ Z, are called virtual repre-
sentations. Actual representations, i.e., elements such that ai ≥ 0 for all i, form
a cone inside R(G) (i.e., a subset that is closed under addition).
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Next, the character map V 7→ χV can be extended by linearity to a map R(G)→
Cclass(G), where Cclass(G) denotes the space of class functions on G. This map
is a ring homomorphism, since

χU⊕V = χU + χV and χU⊗V = χUχV .

The image of this map consists of the virtual characters, which are formal linear
combinations of the irreducible characters:¶∑

aiχVi | ai ∈ Z
©
.

If we pass to complex linear combinations instead of integer coefficients, our
results about irreducible characters forming a basis imply that:

R(G)⊗Z C ≃ Cclass(G),

where the map is given by

k∑
i=1

ai[Vi] 7→ χ∑
aiVi

=
∑

aiχVi
.

This is an isomorphism, since the tensor product of free Z-modules behaves
similarly to the tensor product of vector spaces.

There are theorems of Artin and Brauer that describe the lattice of virtual
characters

∧ =
¶∑

aiχVi
| ai ∈ Z

©
inside Cclass(G). We will explore these results later.

5.7 S5

Now, let’s explore the representations of S5 and A5 to gain further practice
with characters and to motivate the discussion of restriction and induction of
representations (representations of G⇐⇒ representations of subgroups of G).

One can begin constructing the character table of S5 in the usual manner:
start with known representations. We know that V ⊕ U ≃ the permutation
representation C5, so χV⊕U (σ) = #{i | σ(i) = i}, and similarly for χV , χU⊕V ,
with the shift by −1.

S5 e (1 2) (1 2 3) (1 2 3 4) (12345) (1 2)(34) (1 2 3)(45)
U 1 1 1 1 1 1 1
U ′ 1 −1 1 −1 1 1 −1
V 4 2 1 0 −1 0 −1

V ′ = V ⊗ U ′ 4 −2 1 0 −1 0 1
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Next, we need to find more irreducible representations. Since |S5| = 120 =∑
dim2, we are still missing 3 irreducibles with

∑
dim2 = 86. The most effective

way to find them is to continue building tensor products — namely, consider
V ⊗ V (dimension 16), or more specifically, its two parts: Sym2(V ) (dimension
10) and ∧2V (dimension 6).

Observe that if g : V → V has eigenvalues λi (gvi = λivi, for 1 ≤ i ≤ r),
then the corresponding maps on Sym2(V ) have eigenvalues λiλj for 1 ≤ i ≤
j ≤ r, because (vi) forms a basis for V =⇒ (vivj) forms a basis for Sym2(V ).
Similarly, ∧2(V ) has eigenvalues λiλj for 1 ≤ i < j ≤ r, since (vi) forms a basis
for V =⇒ (vi ∧ vj) forms a basis for ∧2(V ).

Now, we have the following identities:

∑
i≤j

λiλj =
1

2

(Ä∑
λi
ä2
−
∑

λ2i

)
,

=⇒ χSym2(V )(g) =
1

2

(
χV (g)

2 − χV (g2)
)
,

and

∑
i<j

λiλj =
1

2

(Ä∑
λi
ä2
−
∑

λ2i

)
,

=⇒ χ∧2(V )(g) =
1

2

(
χV (g)

2 − χV (g2)
)
.

These formulas allow us to calculate χSym2(V ) and χ∧2(V ) for the standard rep-
resentation of S5.

S5 e (1 2) (1 2 3) (1 2 3 4) (12345) (1 2)(34) (1 2 3)(45)
V 4 2 1 0 −1 0 −1
∧2(V ) 6 0 0 0 1 −2 0

Sym2(V ) 10 4 1 0 0 2 1

Observe that

H(χ∧2(V ), χ∧2(V )) =
1

120

(
62 + 24 + 15 · 22

)
= 1,

so ∧2(V ) is irreducible! On the other hand,

H(χSym2(V ), χSym2(V )) =
1

120

(
102 + 10 · 42 + 20 + 15 · 22 + 20

)
= 3,
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so Sym2(V ) decomposes into 3 irreducible summands.

Additionally,

H(χV , χSym2(V )) =
1

120

(
102 + 10 · 4 + 20 + 15 · 2 + 20

)
= 1,

so Sym2(V ) contains one copy of U . Similar calculations show that Sym2(V )
also contains V with multiplicity 1, but not U ′ or V ′.

Therefore, Sym2(V ) = U ⊕ V ⊕W , where W is some irreducible 5-dimensional
representation. Subtracting the known representations, we find χW , and by
considering W ′ =W ⊗ U ′, we complete the list of irreducible representations.

Thus, we have the table:

S5 e (12) (123) (1234) (12345) (12)(34) (123)(45)
U 1 1 1 1 1 1 1
U ′ 1 −1 1 −1 1 1 −1
V 4 2 1 0 −1 0 −1

V ′ = V ⊗ U ′ 4 −2 1 0 −1 0 1
∧2(V ) 6 0 0 0 1 −2 0
W 5 1 −1 −1 0 1 1

W ′ =W ⊗ U ′ 5 −1 −1 1 0 1 −1

Remark 5.42. The standard representation V and its exterior powers, ∧2(V ),
∧3(V ) ≃ V ′, and ∧4(V ) ≃ U ′ are all irreducible! This is, in fact, a general
property: for all 0 ≤ k ≤ n − 1, the exterior powers ∧k(V ) of the standard
representation of Sn are irreducible.

5.8 A5

Now let’s move on to A5. We begin by restricting the irreducible representations
of S5 to A5 and examining which ones remain irreducible or decompose. Nat-
urally, different irreducible representations of S5 can become isomorphic after
restriction. Specifically, elements of A5 act trivially on U ′, so U ′ becomes trivial,
and the restrictions of V and V ′ = V ⊗U ′ become isomorphic. Similarly,W also
decomposes. The character table for S5 gives, after restriction, the following:

A5 e (1 2 3) (12345) (12354) (1 2)(34)
U 1 1 1 1 1
V 4 1 −1 −1 0
W 5 −1 0 0 1
∧2(V ) 6 0 1 1 −2

By calculatingH(χ, χ), we find that U , V , andW are irreducible, whileH(χSym2(V ), χSym2(V )) =
2, so ∧2(V ) decomposes into the direct sum of two distinct irreducible represen-
tations. Additionally, ∧2(V ) does not contain U , V , or W , so we conclude that

134



∧2(V ) = Y ⊕ Z, where Y and Z are the last two irreducible representations of
A5.

From the fact that the sum of the squared dimensions equals the order of A5,∑
dim2 = |A5| = 60, we deduce that dim(Y ) = dim(Z) = 3. To determine χY

and χZ , we use orthogonality. Since χY + χZ = χ∧2(V ), we find that χY − χZ
lies in the orthogonal complement of the span of χU , χV , χW , χ∧2(V ). Hence,
χY − χZ = (0, 0, a,−a, 0), where H(χY − χZ , χY − χZ) = 2. This implies:

24a2 = 120 =⇒ a = ±
√
5.

Thus, the characters of Y and Z are:

A5 e (123) (12345) (12354) (12)(34)
U 1 1 1 1 1
V 4 1 −1 −1 0
W 5 −1 0 0 1

Y 3 0 1+
√
5

2
1−
√
5

2 −1
Z 3 0 1−

√
5

2
1+
√
5

2 −1

What are Y and Z? Recall that A5 is the group of rotational symmetries of the
icosahedron in R3. Hence, we have the inclusion A5 ↪→ SO(3) ⊂ GL(3,R) ⊂
GL(3,C). The representations Y and Z differ by an outer automorphism of A5,
specifically conjugation by a transposition inside S5.

The fact that the character table contains irrational values implies that there
does not exist a regular icosahedron (or dodecahedron) in R3 whose vertices all
have rational coordinates. Otherwise, we would obtain a representation that
factors through GL(3,Q), and we would have tr(g) ∈ Q for all g ∈ A5.

5.9 Induced Representations

We now present a more systematic approach: if G is a finite group and H ⊂ G
is a subgroup, then we define a restriction operation ResGH that maps repre-
sentations of G to representations of H. This operation is, in fact, a functor
Rep(G) → Rep(H), where objects are representations of G and H, and mor-
phisms are homomorphisms (or equivalently, transpositions of representations).
But what about the opposite direction?

Suppose V is a representation of G, and W ⊂ V is invariant under H (but not
necessarily under all of G). For g ∈ G, the subspace gW ⊂ V depends only on
the coset gH, and each gW is a representation of gHg−1, with the diagram:

H GL(W )

gHg−1 GL(gW )

ρ

cg ≃ conjugation by g
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The simplest possible scenario is that

V =
⊕

σ∈G/H

σW

but in general, there is no reason for this to hold.

If it does hold, then the representation of G is completely determined by that
of H. Indeed, choose representations σ1, . . . , σk ∈ G for the cosets of H (each
coset containing exactly one σi). Given g ∈ G, gσi ∈ σjH for some j, so there
exists h ∈ H such that g = σjhσ

−1
i . Then g acts by mapping σiW to σjW ,

with
g(σiw) = σjh(w).

Remark 5.43.
dim(V ) = |G/H| · dim(W ).

Definition 5.44. A representation V of G, with a subspace W ⊂ V that is
invariant under the subgroup H ⊂ G (i.e., a subrepresentation of ResHG (V )), is
said to be induced by W ∈ Rep(H) if, as a vector space, V =

⊕
σ∈G/H σW .

We write V = IndGHW .

That is, by fixing one element in each coset σ1, . . . , σk ∈ G, we can write each
v ∈ V uniquely as

v = σ1w1 + · · ·+ σkwk

where w1, . . . , wk ∈W .

Theorem 5.45. Given a representation W of H, the induced representation
V = IndGHW exists and is unique up to isomorphism of G-representations.

Proof. Uniqueness: Given V ∈ Rep(G) and a subspace W ⊂ V invariant

under H such that V =
⊕k

i=1 σiW , the action of g ∈ G maps σiW to σjW ,
where j is such that gσi ∈ σjH, i.e., h = σ−1j gσi ∈ H. Thus, g(σiw) = σjhw ∈
σjW . This uniquely determines the action of g on V .

Existence: We build V =
⊕k

i=1 σiW , where the σi are formal symbols (i.e.,
the direct sum of k = |G/H| copies of W ), and we define the action of g ∈ G as
described above.

Example 5.46.

1. The permutation representation associated with the left action of G on
G/H is induced by the trivial representation of H. Indeed, V has a ba-
sis {eσ}σ∈G/H ; the basis element eH (for the coset H) is fixed by H,
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so W = span(eH) is invariant under H, and gW = span(egH), with
V =

⊕
gH∈G/H span(egH) =

⊕
gH∈G/H gW .

2. The regular representation of G is induced by the regular representation
of H. Here, W = span{eh : h ∈ H} ⊂ V = span{eg : g ∈ G}.

Proposition 5.47.

IndGH(W⊕W ′) = IndGH(W )⊕IndGH(W ′), but Ind(W⊗W ′) ̸= IndGH(W )⊗IndGH(W ′).

On the other hand, if U is a representation of G and W is a representation of
H, then:

Ind(Res(U)⊗W ) = U ⊗ Ind(W ).

Indeed, Ind(W ) =
⊕

σ∈G/H σW , so U ⊗ Ind(W ) =
⊕

σ∈G/H(U ⊗ σW ) =⊕
G/H σ(U ⊗W ), where U ⊗W ⊂ U ⊗ Ind(W ) is invariant under H and iso-

morphic to Res(U)⊗W as a H-representation. In particular:

Ind(Res)(U) = U ⊗ Ind(trivial) = U ⊗ (permutation representation of G/H).

We can actually calculate the character of an induced representation. Choose
representatives σ1, . . . , σk of cosets of H as usual. The element g ∈ G maps
σ1W to σjW such that gσi ∈ σjH. If i ̸= j, this does not contribute to tr(g). If
i = j, then h = σ−1i gσi ∈ H, and g acts on σiW by g(σiw) = σihw. Therefore,
tr(g|σiW ) = tr(h|W ) = χW (h). Summing over σi, we get:

χInd(W )(g) =
∑

σ∈G/H such that σ−1
i gσi∈H

χW (σ−1i gσi) =
1

|H|
∑

s∈G such that s−1gs∈H

χW (s−1gs).

5.10 Frobenius Reciprocity

A key property for understanding induced representations is Frobenius reci-
procity.

Proposition 5.48. If U is a representation of G, and W is a representation
of H, then every H-equivariant map W → Res(U) extends uniquely to a G-
equivariant map Ind(W )→ U , i.e.,

HomH(W,Res(U)) ≃ HomG(Ind(W ), U).

Proof. Choose representatives σ1, . . . , σk ∈ G for the cosets of H, and let V =
Ind(W ) =

⊕
σiW . Given anH-equivariant map φ :W → Res(U), if φ̃ : V → U

is G-equivariant and φ̃|W = φ, we must show that φ̃ is determined uniquely.
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The situation is described by the following commutative diagram:

W U

σiW U

φ

σi σi

φ̃

Thus, the map φ̃|σiW is given by

φ̃(σiw) = σiφ(w),

where σi ∈ G acts on φ(w) ∈ U . This uniquely determines φ̃.

To verify that φ̃ is G-equivariant, recall that for g ∈ G, the action on V maps
σiW to σjW where gσi = σjh ∈ σjH, and the map acts as g(σiw) = σjhw.
Then,

φ̃(g(σiw)) = φ̃(σjhw) = σjφ(hw) = σjhφ(w) = gσiφ(w) = g(φ̃(σiw)).

This shows that φ̃ is G-equivariant on σiW for all i, and hence on V .

Therefore, φ has a unique G-equivariant extension φ̃.

Conversely, given φ̃ ∈ HomG(V,U), we claim that φ̃ is H-equivariant. Since
V =

⊕
σiW , restricting φ̃ to W ⊂ V yields an H-equivariant map.

Comparing dimensions, we obtain the following corollary by noting that

dim(HomG(. . . )) = dim(HomH(. . . )).

Corollary 5.49 (Frobenius Reciprocity).

⟨χInd(W ), χV ⟩G = ⟨χW , χRes(U)⟩H .

Thus, if U is an irreducible representation of G and W is an irreducible repre-
sentation of H, then the number of times W appears in Res(U) is equal to the
number of times U appears in Ind(W ).

Example 5.50. Let H = S3 ⊂ G = S4. The restrictions of the irreducible
representations of S4 are:

• Trivial: Res(U4) = U3

• Alternating: Res(U ′4) = U ′3

• Standard: Res(V4) = V3 ⊕ U3 (since the permutation representation Ck
restricts to the direct sum of the permutation and trivial representations:
Res(V4 ⊕ U4) = V3 ⊕ U3 ⊕ U3)
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• V ′4 = V4 ⊗ U ′4: Res(V ′4) = V3 ⊕ U ′3 (using V3 ⊗ U ′3 ≃ V3).

• W (factors through S4/{(ij)(kl)} ≃ S3): Res(W ) = V3 (Alternatively,
one can use character tables directly).

By Frobenius reciprocity, Ind(V3) =
⊕

of the irreducible representations of S4

whose restrictions contain V3 (dimension 8), which gives

Ind(V3) = V4 ⊕ V ′4 ⊕W.

Another example:

Example 5.51. H = ⟨(1 2 3 4)⟩ ≃ Z/4 ⊂ G = S4. The irreducible representa-
tions of H are 1-dimensional, with (1 2 3 4) acting by powers of i:

U0 = trivial, U1, U2, U3 : (1 2 3 4) acts by i, i2 = −1, i3 = −i.

To find the induced representations, consider the irreducible representations of
S4 and the eigenvalues of (1 2 3 4) and (1 2 3 4)2 = (1 3)(2 4):

U 7→ U0,

U ′ 7→ U2,

V 7→ U1 ⊕ U2 ⊕ U3,

V ′ 7→ U3 ⊕ U0 ⊕ U1,

W 7→ U0 ⊕ U2.

The line of reasoning is as follows: Since χ((1 3)(2 4)) = −1, the eigenvalues
of the matrix are λ2i = −1,−1,+1; for χ(1 2 3 4) = −1, the eigenvalues are
λi = i,−i,−1. Therefore, the representation U ⊕ V has (1 2 3 4) mapped to the
matrix 

0 1

1
. . .

1
. . .

1 0

 ,
with eigenvalues ±1,±i, and we find that Res(U ⊕ V ) = U0 ⊕ · · · ⊕ U3.

Frobenius reciprocity implies the following induced representations:

Ind(U0) = U ⊕ V ′ ⊕W (permutation representation of S4 on G/H),

Ind(U1) = Ind(U3) = V ⊕ V ′,
Ind(U2) = U ′ ⊕ V ⊕W (≃ U ′ ⊗ Ind(U0), consistent with U2 = Res(U ′)).

Some of the key motivation for studying induced representations comes from
two deep theorems of Artin and Brauer:
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Theorem 5.52 (Artin). Every character of a representation of G is a linear
combination with rational coefficients of characters of representations induced
from cyclic subgroups of G.

Theorem 5.53 (Brauer). Every character of a representation of G is a linear
combination with integer coefficients of characters of representations induced
from ”elementary” subgroups of G, where ”elementary” means isomorphic to a
product C ×H, with H a p-group (|H| = pk) and C cyclic (C ≃ Z/n, p ∤ n).

We won’t cover the proofs of these theorems in this course.

5.11 Group Algebra

The group algebra of a finite group G provides an alternative perspective on the
representations of G. Although it is not as immediately useful for calculating
characters and finding irreducibles, it is conceptually important.

Definition 5.54. The group algebra of G is the vector space CG =
¶∑

g∈G ageg | ag ∈ C
©
,

with the product eg ◦eh = egh (extended by linearity). This is a noncommutative
ring, with multiplication given by:(∑

g

ageg

)(∑
g

bgeg

)
=
∑
g

(∑
h

ahbh−1g

)
eg

(commutative if and only if G is abelian).

As a vector space, CG is isomorphic to the regular representation of G; the
novelty here is in the multiplication structure.

An action of G on a vector space V (a representation) is a homomorphism
ρ : G → GL(V ), which extends linearly to an algebra homomorphism (i.e., a
linear map of vector spaces that preserves multiplication) CG→ End(V ). This
map sends basis elements eg 7→ ρ(g) and extends linearly:

∑
ageg 7→

∑
agρ(g).

To verify that this map is compatible with multiplication, we use (bi)linearity.
It is enough to check for basis elements: eg · eh = egh 7→ ρ(gh) = ρ(g) ◦ ρ(h).

Proposition 5.55. A G-representation is the same as a (left) CG-module. That
is, a vector space V and an action CG×V → V , given by a ring homomorphism
CG→ End(V ).

Example 5.56. The regular representation of G corresponds to CG as a module
over itself, where the operation of CG is left-multiplication.

Since we haven’t delved deeply into rings and modules, we will not explore this
further. However, there is one elegant result worth mentioning:

Given a finite group G, let V1, . . . , Vr be the irreducible representations of G.
Each of these representations gives a ring homomorphism CG → End(Vi). To-
gether, these yield a map CG→

⊕r
k=1 End(Vi) (which is a subring of End (

⊕r
i=1 Vi)—the

subring of block-diagonal linear operators on
⊕r

i=1 Vi). This map is again a

140



ring homomorphism, with the product in CG mapping to the composition in
End(Vi).

Proposition 5.57. If V1, . . . , Vr are the irreducible representations of G, then
the map CG→

⊕r
i=1 End(Vi) is an isomorphism of rings.

Proof. We already know that the map is a homomorphism, so we just need to
verify that it is bijective.

• Injectivity : Assume that
∑
ageg ∈ CG belongs to the kernel. Then for

all irreducible representations, we have
∑
agρVi

(g) = 0, implying that
for all representations of G,

∑
agρ(g) = 0. However, for the regular

representation, the maps ρ(g) are linearly independent (since
∑
agρg maps

e1 to
∑
ageg). This implies that ag = 0 for all g.

• Surjectivity : We have dim(CG) = |G| =
∑

(dim(Vi))
2 = dim (

⊕r
i=1 End(Vi)),

so an injective linear map is surjective.

In the ring
⊕

End(Vi), as in any direct sum of rings, the projectors onto each
summand are given by:

Pi =

®
Id on End(Vi),

0 on End(Vj), j ̸= i

These projectors are orthogonal idempotents: P 2
i = Pi and PiPj = 0 for i ̸= j.

By comparison with projection formulas: we have seen that for all represen-

tations V , the map φi = dim(Vi)
|G|

∑
g χVi(g)g : V → V is the projection onto

the Vi-summands. This means the idempotents of CG corresponding to the
projectors Pi under the isomorphism are:

πi =
dim(Vi)

|G|
∑
g∈G

χVi(g)eg ∈ CG

The identities π2
i = πi and πiπj = 0 for i ̸= j recover, among other things,

the orthonormality of the characters χVi . Given a CG-module V , it has a
submodule πiV—these are the pieces of V corresponding to the Vi-summands
in the decomposition of V .

5.12 Real Representations

We have studied actions of finite groups on complex vector spaces, and now we
want to extend this study to real vector spaces.
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If V0 is a representation of G over R, it has an invariant inner product ⟨·, ·⟩.
This can be constructed starting from any inner product b(·, ·) and defining

⟨v1, v2⟩ =
1

|G|
∑
g∈G

b(gv1, gv2).

This ensures that the elements of G act by orthogonal transformations (isome-
tries).

This leads to complete reducibility: every representation over R splits into
the direct sum of irreducibles (the same proof as in the complex case: if U0 ⊂ V0
is an invariant subspace (subrepresentation), then V0 = U0 ⊕ U⊥0 ).

However, Schur’s Lemma does not hold in the same way:

Example 5.58. Consider the action of Z/n on R2 by rotations, where k acts
by the matrix ï

cos
(
2πk
n

)
− sin

(
2πk
n

)
sin
(
2πk
n

)
cos
(
2πk
n

) ò .
This is irreducible as a representation over R, but the representation has auto-
morphisms that are not multiples of Id: any rotation of R2 is Z/n-equivariant.

Therefore, many of the results we developed for complex representations do
not directly apply to real representations. Instead, we must use the concept of
complexification, which we have already encountered when studying operators
on real vector spaces.

We define a map

{real representations of G} → {complex representations of G}, V0 7→ V0⊗RC = V0⊕iV0,

where G acts on V = V0 ⊕ iV0 by

g(v + iw) = gv + igw.

In other words, given a basis (ej) of V0, we have ej + 0i (which is just ej) as a
basis of V , and G acts by the same matrix on both V0 and V .

Definition 5.59. A complex representation V of G is called real if there exists
a representation V0 over R such that V = V0 ⊗R C.

A necessary condition for V to be real is that its character χV must take real
values, because the matrix g : V → V in a suitable basis has real entries.
However, this is not a sufficient condition.

Example 5.60. Consider the quaternion group Q = {±1,±i,±j,±k}, with the
relations i2 = j2 = k2 = ijk = −1. The group Q acts by

±1 7→ ±Id, ±i 7→ ±
ï
i 0
0 −i

ò
, ±j 7→ ±

ï
0 1
−1 0

ò
, ±k 7→ ±

ï
0 i
i 0

ò
.
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The character χ(±1) = ±2 and χ(±i) = χ(±j) = χ(±k) = 0, so χ takes real
values.

However, this does not come from a 2-dimensional real representation of Q in
GL(2,R). If there were such a representation, it would have an invariant inner
product, so Q would embed in O(2), with −1 acting by −Id. But only two
elements of O(2) square to −Id (the rotations by ±90◦), whereas we need four
such elements for ±i,±j,±k.

To classify representations over R using characters, we need to understand which
complex representations are real. We will focus on this for irreducible represen-
tations over C. However, note that if V0 is an irreducible representation over R,
then V = V0 ⊗R C can still be reducible over C (for example, the rotations of
R2 by Z/n).

Proposition 5.61. A complex representation V of G is real if and only if there
exists a G-equivariant complex antilinear map τ : V → V (i.e., τ(λv) = λτ(v))
such that τ2 = id.

Proof. One direction is clear: if V = V0 ⊗R C, define τ(v + iw) = v − iw for
v, w ∈ V0, which corresponds to complex conjugation.

For the opposite direction, given such a map τ , decompose any v ∈ V as Re(v) =
v+τ(v)

2 and iIm(v) = v−τ(v)
2 , which belongs to the ±1-eigenspaces of τ . Let

V0 = Ker(τ − id), which is an R-subspace of V (but not a C-subspace). Since τ
is R-linear, we have τi = −iτ , so iV0 is the −1-eigenspace, and V = V0 ⊕ iV0 ≃
V0 ⊗R C.

Since τ is G-equivariant, the eigenspaces V0 = Ker(τ− id) and iV0 are preserved
by G, and thus both are subrepresentations over R.

Now, let V be an irreducible complex representation of G such that χV takes
real values. In this case, χV = χV = χV ∗ , so V ≃ V ∗ as G-representations.

Let φ : V
≃→ V ∗ be such an isomorphism (which, by Schur’s Lemma, is unique

up to multiplication by a scalar λ ∈ C∗).

Recall that a linear map φ : V → V ∗ determines a bilinear form B : V ×V → C,
where B(v, w) = φ(v)(w). The invariance of B under the action of G implies
that φ is G-equivariant. Thus, V admits a G-invariant bilinear form B, unique
up to scaling, and nondegenerate if nonzero.

Recall that B ∈ (V ⊗ V )∗ = Sym2(V ∗) ⊕ ∧2V ∗, i.e., the symmetric and skew
parts of B. By uniqueness, one of these parts is zero and the other is nonde-
generate. Thus, B is either symmetric or skew-symmetric.

The symmetric case corresponds to real representations, while the skew-symmetric
case corresponds to quaternionic representations.
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5.13 Quaternionic Representations

Proposition 5.62. An irreducible complex representation V of a finite group G
is real if and only if V contains a G-invariant nondegenerate symmetric bilinear
form B : V × V → C.

Proof. Assume V = V0⊗RC is real. Then V0 has an invariant real inner product
B; extend it to a C-bilinear form as follows:

B(v1 + iw1, v2 + iw2) := B(v1, v2) + iB(w1, v2) + iB(v2, w1)−B(v2, w2),

which defines a nondegenerate symmetric bilinear form on V .

Conversely, if B : V × V → C determines an isomorphism φ : V → V ∗ (which
is C-linear and equivariant), choosing an invariant Hermitian inner product H
on V , we also obtain a C-antilinear equivariant bijection V → V ∗. Composing
the two maps gives a C-antilinear equivariant map τ : V → V , characterized by

H(τ(v), w) = B(v, w).

Now, τ2 is an equivariant C-linear isomorphism V → V , so by Schur’s lemma,
τ2 = Id. A calculation shows:

H(τ2(v), v) = B(τ(v), v) = B(v, τ(v)) = H(τ(v), τ(v)) ≥ 0,

which implies that λ ∈ R+. By rescaling H as λ1/2H, we can arrange that
τ2 = id. Thus, V is real by the previous proposition.

In the case where the invariant bilinear form B is skew-symmetric, the same
argument yields a C-antilinear equivariant bijective map J : V → V , which
now satisfies J2 = −id. This defines a quaternionic structure on V , i.e., it
describes an H-module structure on V , where H is the quaternions:

H = {a+ bi+ cj + dk | a, b, c, d ∈ R}, i2 = j2 = k2 = ijk = −1,

a division algebra (noncommutative analogue of a field: H is a noncommutative
ring such that every nonzero element has a multiplicative inverse). We have
H = C1 ⊕ Cj, with the relations ji = −ij and j2 = −1. Thus, an H-module
is equivalent to a C-vector space, together with an antilinear map j such that
j2 = −id.

Example 5.63. The regular representation V of S3 is real. This can be seen
directly by noting that S3 ≃ D3 acts on V0 = R2 by rotations and reflections, and
V0⊗RC ≃ V . Alternatively, one can observe that V ∗ ≃ V , and ∧2(V ∗) ≃ U ′ has
no trivial summand, hence there is no invariant skew-symmetric bilinear form
B ∈ ∧2V ∗. However, Sym2(V ∗) does have such a form, which can be applied
using the argument above.
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Example 5.64. The quaternion group is a quaternionic representation: H ≃
C⊕jC. The linear maps correspond to left multiplication by elements of Q (e.g.,
i(z1+ jz2) = iz1+ j(−iz2) and k(z1+ jz2) = −iz2+ j(−iz1)). The C-antilinear
map J : V → V , where J2 = −1, is right multiplication by j, and it commutes
with left multiplication by v.
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6 Point Set Topology

6.1 Metric Spaces

What is topolog? Unlike geometry, which concerns quantitative information
about spaces (distances, volumes,...), topology concerns itself with qualitative
properties that are invariant under continuous deformation. Eg: is it connected
(a single piece) simply connected? (sphere vs torus)

Point-set topology also gives a language (topological spaces, open and closed
sets, compactness) but for algebraic topology (associate algebraic invariants to
spaces, eg fundamental group) and for analysis.

Example 6.1 (Extreme Value Theorem). f : [a, b] → R continuous =⇒ f
achieves it max and min at some points of [a, b].

This is in fact true for any continuous f : X → R whenever X is a compact
topological space, and is a special instance of:

Theorem 6.2. If f : X → Y continuous mapping between topological spaces
and X is compact, then f(X) is compact.

Since the general notion of topological space is quite abstract; let’s start with a
more familiar class of examples: metric spaces.

Example 6.3. A metric space (X, d) is a set X together with a distance
function d : X ×X → R≥0 such that

1. For p, q ∈ X, d(p, q) = 0↔ p = q

2. For p, q ∈ X, d(p, q) = d(q, p)

3. For p, q, r ∈ X, d(p, r) ≤ d(p, q) + d(q, r) (the triangle inequality)

Example 6.4. X = Rn with Euclidean distance d(x, y) =
(∑n

i=1(yi − xi)2
) 1

2

Example 6.5. If Y ⊂ X then (Y, d|Y ) is a metric space (induced metric)

Example 6.6. Different metrics on Rn: d1(x, y) =
∑n
i=1 |yi − xi|, d∞(x, y) =

max(|yi − xi|)

Exercise: check (Rn, d1) and (Rn, d∞) are metric spaces. What do balls look
like?

Definition 6.7. Let (X, d) be a metric space, p ∈ X, r > 0: the open ball of
radius r around p is Br(p) = {q ∈ X|d(p, q) < r}.

Here is a more general notion:

Definition 6.8. U ⊂ X is open if ∀p ∈ U,∃r > 0 s.t. Br(p) ⊂ U .
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p

∃ r

U

Proposition 6.9. Open balls are open; so are arbitrary unions and finite in-
tersections of open sets.

In fact, open sets are unions of open balls! U =
⋃
p∈U Br(p)(p).

This is useful to a general discussion of continuity:

Definition 6.10. (X, dX), (Y, dY ) metric spaces. f : X → Y is continuous if
∀p ∈ X,∀ϵ > 0,∃δ > 0 s.t. dX(p, x) < δ =⇒ dY (f(p), f(x)) < ϵ.

p

∃ δ − ball
f f(p)

given ϵ− ball

Theorem 6.11. f : X → Y is continuous if and only if ∀U ⊂ Y open,
f−1(U) ⊂ X is open.

Proof. Assume f is continuous. Let U ⊂ Y open, let p ∈ f−1(U), i.e. f(p) ∈ U .
Since U is open, ∃ϵ > 0 such that Bϵ(f(p)) ⊂ U . By continuity, ∃δ > 0 such
that dX(p, x) < δ =⇒ f(x) ∈ Bϵ(f(p)) ⊂ U . Hence Bδ(p) ⊂ f−1(U). So
f−1(U) is open.

Conversely, assume U open =⇒ f−1(U) is open. Fix p ∈ X, ϵ > 0. Bϵ(f(p))
is open in Y , so f−1(Bϵ(f(p))) ∋ p is open in X. Hence ∃δ > 0 such that
Bδ(p) ⊂ f−1(Bϵ(f(p))). This means dX(p, x) < δ =⇒ x ∈ f−1(Bϵ(f(p))) =⇒
f(x) ∈ Bϵ(f(p)).

We cann also talk about sequences and their limits:

Definition 6.12. A sequence p1, p2, ... in (X, d) converges to a limit p ∈ X
(write pn → p or limn→∞ pn = p) if ∀ϵ > 0,∃N s.t. ∀n ≥ N, d(pn, p) < ϵ.

Remark 6.13. The limit is unique if it exists.

Definition 6.14. A sequence p1, p2, ... in X is Cauchy if ∀ϵ > 0, ∃N s.t.
∀m,n ≥ N, d(pn, pm) < ϵ.
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The difference bs that pn get closer to p v.s. get closer to each other.

Exercise 6.15. If a sequence converges then it is Cauchy, but not necessarily
vice-versa.

Definition 6.16. A metric space is complete if every Cauchy sequence con-
verges.

Example 6.17. R is complete, but Q (with the induced metric) isn’t complete.

The notion of Cauchy sequence is sepcific to metric spaces, but reallyt useful
for real analsysis.

Example 6.18. e =
∑∞
k=0

1
k! - if we take this to be th edefinition of e, we can’t

prove direct that xn =
∑n
k=0

1
j! converges to e, instead use Cauchy criterion to

show that the liit exists.

Interlude:what is R?

It’s an ordered field (ie: +−×/ and < compatible with usual rules) with the least
upper bound property: every nonempty subset E ⊂ R that admits an upper
bound (∃M ∈ R s.t. ∀x ∈ E, x ≤ M) has a least upper bound sup(E) ∈ R (ie
sup(E) is an upper bound, and every upper bound for E is ≥ sup(E)).

The least upper bound property is equivalent to completeness of R; any ordered
field with this property is isomorphic to (R,+,×, <). Constructions of R from
Q involve adding thee missing elements (irrationals) so that the least upper
bound property and completeness holds; the elements of R end up being either
the sups of certain subsets of Q or the limits of Cauchy sequences of Q.

Returning to limits of sequences. . .

Proposition 6.19. If pn → p, then every open subset U ∋ p contains pn for
all but finitely many n.

This will be the definition of limit outside the metric case.

Proof. U ∋ p, U open =⇒ ∃ϵ > 0 s.t. Bϵ(p) ∈ U . So ∃N s.t. n ≥ N =⇒
pn ∈ Bϵ(p) ⊂ U .

Definition 6.20. Z ⊂ X is closed if its complement X\Z is open.

Most subsets of X are neither open nor closed... and ∅ and X are both!

Proposition 6.21. If Z ⊂ X is closed, then ∀ sequence {pn} in Z which
converges to a limit p ∈ X, then p ∈ Z.

The converse is true in metric spaces and in nice enough topological spaces -
first countable.

Proof. Assume ∃{pn} ∈ Z, p ∈ X\Z, pn → p: ∀U ∋ p open, U contains pn for
all but finitely many n, but pn ∈ Z, so U ̸⊂ X\Z. If Z is closed then U = X\Z
is open and we get a contradicgion.
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Our goal will be to reformulate/generalize al this in the context of topoligcal
spaces, i.e. sets equipped with a topology which may or may not come from a
matric.

6.2 Topological Spaces

We will now reformulate/generalize all this in the context of topological spaces,
ie. sets equipped with a topology which may or may not come from a metric.

Definition 6.22. A topological space is a set X together with a collection
τ ⊂ P (X), the open sets in X, such that

• ∅ ∈ τ,X ∈ τ

• arbitrary unions of open sets are open.

• finite intersections of open sets are open.

Why bother? One answer: many natural topologies do not come from a metric!
Eg, in analysis:

• On the space of (bounded) functions f : X → R, uniform convergence
topology (fn → f if and only if supx|fn(x) − f(x)| → 0) comes from a
metric (d(f, g) = supx|f(x)− g(x)|) but pointwise convergence (fn → f if
and only if ∀x ∈ X, fn(x)→ f(x)) doesn’t.(”product topology”)

• C∞ topology on smooth functions R → R doesn’t come from a metric
either.

And on the other hand, a metric contains extraneous information for topology.
(Rn, d), (Rn, d1), (Rn, d∞) have the same open sets =⇒ same topologies.

Definition 6.23. A function f : X → Y is continuous if ∀U ⊂ Y,U open
=⇒ f−1(U) ⊂ X is open.

Definition 6.24. A sequence {pn} in X converges to a limit p (pn → p) if
∀U ∋ p open, ∃N ∈ N such that n ≥ N =⇒ pn ∈ U .

Example 6.25.

• (X, d) metric space =⇒ τ = {U ⊂ X|∀p ∈ U∃ϵ > 0 such that Bϵ(p) ⊂
U} metric topology.

• Discrete topology: τ = P(X) (every subset is open and closed.) eg. usual
topology on Z ⊂ R, which is in fact a metric topology: set d(x, y) = 1∀x ̸=
y.

These abstract definitions imply basic facts about continuity, such as:

Proposition 6.26.

• If f : X → Y continuous, pn → p in X =⇒ f(pn)→ f(p) in Y .

• f : X → Y and g : Y → Z continuous =⇒ g ◦ f : X → Z continuous.
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Given two topologies τ, τ ′ on X, if τ ⊂ τ ′ we say τ ′ is finer and τ is coarser.
The finest topology on X is the discrete one (all points are isolated), while the
coarsest is {∅, X} (”one big clump”).

The finer topology τ ′ has more open sets; it’s easier for functions X → Y to
be continuous with respect to τ than τ (every function from a discrete set is
continuous). It’s harder for sequences to converge in τ ′ (eg. on a discrete set,
convergent subsequences must be constant after finitely many terms; while for
τ = {∅, X}, every sequence converges to every point of X, in particular limit
isn’t unique!)

6.3 Bases

Keeping track of all the open sets is cumbersome - in metric spaces we started
with open balls and got a characterization of open sets in terms of these.

The analogous notion for a general topology is that of basis:

Definition 6.27. Assume B ⊂ P(X) is a collection of subsets of X such that

1.
⋃
B∈B B = X

2. If B1, B2 ∈ B and x ∈ B1 ∩B2 then ∃B′ ∈ B such that x ∈ B′ ⊂ B1 ∩B2.

Then we say B is a basis and generates the topology τ = arbitrary unions of
elements of B. Equivalently: U ∈ τ ⇐⇒ ∀x ∈ U∃B ∈ B such that x ∈ B ⊂ U .

x

∃B′
B1

B2

Check: the two characterizations of τ are equivalent, and τ is a topology.

Remark 6.28. Unlike bases in linear algebra, bases in topology can contain
redundant info - a better analogy is with generating sets... eg. metric topology
is generated by any of: all open sets; open balls Br(x), x ∈ X, r > 0; open balls
B1/n(x), x ∈ X; open balls B1/n(y), y ∈ Y ⊂ X dense subset (every nonempty
open intersects Y ) eg. Q ⊂ R. So for example the usual topology on R on Rn
actually admits a countable basis.

6.4 Subspaces and Products

How do you make new topological spaces? Subspaces and products.

Definition 6.29. (X, τX) topological space, Y ⊂ X any subset =⇒ the sub-
space topology on Y is τU = {U ∩ Y |U ∈ τX}.
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It’s important when stating ”U is open” to be clear: as a subset of what space?
Eg. Y is always open as a subset of itself! (0, 1) ⊂ R ⊂ R2 is open in R but not
in R2.

0 1

U

R ⊂ R

It’s the coarsest topology on Y that makes the inclusion Y ↪→ X continuous.
Also, if τX comes from a metric d on X, then τY comes from d|Y : Y × Y ↪→
X ×X d→ R≥0.

Definition 6.30. (X, τX), (Y, τY ) topological spaces =⇒ the product topol-
ogy on X ×Y is the topology generated by basis B = {U ×V |U ⊂ X open, V ⊂
Y open}.

WhenX,Y are metric spaces, this is also a metric topology, defined by d∞X×Y ((x1, y1)(x2, y2)) =

max(dX(x1, x2) + dY (y1, y2)). Or in fact d2X×Y =
√
dX(x1, x2)2 + dY (y1, y2)2,

d1X×Y = dX(x1, x2) + dY (y1, y2) define the same topology on X × Y . So this
gives the usual topology on Rn.

X

Y

U1

V2

V1

U2

In general, it’s the coarsest topology on X × Y such that the projection maps

X × Y p1→ X,X × Y p2→ Y are continuous. Also: (xn, yn)→ (x, y) if and only if
xn → x and yn → y.

Similarly for finite products X1× ...×Xn. For infinite products these are several
different natural topologies; we’ll see this later.

Homeomorphisms: what is the correct notion of 2 topological spaces being ”the
same”?

Definition 6.31. X,Y are homeomorphic if there exist continuous maps f :
X → Y and g : Y → X such that f ◦ g = idY , g ◦ f = idX .

Equivalent, a homeomorphism f : X → Y is a continuous bijection such that
f−1 continuous, ie: a bijection X ⇐⇒ Y under which τX ⇐⇒ τY .

Remark 6.32.

• A continuous bijection need not be a homeomorphism. Eg. X with 2
topologies, τ ′ strictly finer than τ =⇒ (X, τ ′) → (X, τ) is a bijection,
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continuous since U ∈ τ =⇒ id−1(U) = U ∈ τ ′ but not homeomorphic.

• Say a metric space (X, d) is bounded if diam(X) = sup{d(p, q)|p, q ∈
X} <∞. This is not a topological property, eg.

f : (−π
2
,
π

2
)→ R,

x 7→ tanx

is a homeomorphism (tan and arctan are continuous), so R is homeomor-
phic to (−π2 ,

π
2 ) (or any open interval in R).

−π2 π
2

6.5 Interior and Closure

Definition 6.33. A subset A of a topological space X is closed if X\A is open.

Remark 6.34. Subsets can be both closed and open, eg. ∅ and X, or neither
(eg. [0, 1) or Q in R).

Axioms of open sets imply:

• ∅, X are closed.

• arbitrary intersection of closed sets are closed.

• finite unions of closed sets are closed.

Definition 6.35. For A ⊂ X any subset, we define:

1. The closure of A: Ā = smallest closed set containing A =
⋂
A⊂F,F closed F

(A ⊂ Ā, Ā closed since it’s ∩ of closed)

2. The interior of A, int(A) = largest open set contained in A =
⋃
U⊂A,U open U

(open).

3. The boundary of A is ∂A = Ā− int(A).

A A int(A) ∂A
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Example 6.36. A = [0, 1) ⊂ R, usual topology =⇒ Ā = [0, 1], int(A) =
(0, 1), ∂A = {0, 1}.

Remark 6.37.

• A is closed if and only if Ā = A, open if and only if int(A) = A.

• X\A = X − int(A), int(X −A) = X −A.

Definition 6.38. Say U ⊂ X is a neighborhood of p ∈ X if U is open and
p ∈ U .

p

U

Proposition 6.39.

1. p ∈ int(A) if and only if A contains a neighborhood of p.

2. p ∈ Ā if and only if every neighborhood of p intersects A nontrivially.

Proof.

1. p ∈ int(A)⇐⇒ ∃U open such that p ∈ U ⊂ A.

2. p ∈ A⇐⇒ p /∈ int(X −A)⇐⇒ ∀U ∋ open, A ∩ U = ∅.

Definition 6.40. Say A is dense if Ā = X (ie. every nonempty open subset
of X intersects A nontrivially).

Example 6.41. Q is dense in R (for usual topology).

6.6 Closed Sets and Limit Points

Definition 6.42. x ∈ X is a limit point of A ⊂ X if, for every neighborhood
U ∋ x, U ∩ (A− {x}) ̸= ∅.

A

limit points

not a limit point

Example 6.43. In Rstd, 1 is a limit point of (0, 1) and of [0, 1], but is not a
limit point of { 1n , n ≥ 1} ∩ {0} (but 0 is).
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Proposition 6.44. Ā = A ∪ {limit points of A}.

Proof. A ⊂ Ā by definition, so it’s enough to consider points not in A. If
x /∈ A,∀U ∋ x neighborhood, U ∩ (A− {x}) = U ∩A, so x ∈ Ā if and only if x
limit point.

Corollary 6.45. A is closed if and only if A contains all of its limit points.

What is the connection between limit points and limits of sequences?

Proposition 6.46. p ∈ X:

• if ∃{pn} sequence in A ⊂ X such that pn → p then p ∈ Ā.

• if ∃{pn} sequence in A, pn ̸= p for ∞ many n, pn → p, then p is a limit
point of A.

Proof. Any neighborhood U ∋ p contains pn for all large n, hence contains
points of A.

The converse is true in metric spaces: if p ∈ Ā (resp. a limit point of A) then
∀n > 0,∃pn ∈ B1/n(p) ∩ A (resp. with pn ̸= p), so ∃ sequence in A such that
pn → p.

This holds more generally in spaces whose points have countable bases of neigh-
borhoods U1 ⊂ U2 ⊂ ... (ie. ∀p,∃ neighborhoods U1, U2, ... such that ∀ neigh-
borhoods U ∋ p,∃n such that p ∈ Un ⊂ U), but not in arbitrary topological
spaces.

6.7 Hausdorff Spaces

In a metric space, a sequence converges to at most one limit. This is not true
in an arbitrary topological space!

Example 6.47. X = R with finite complement topology: open subsets = ∅ and
R − {finite subsets}. Let a1, ... be a sequence in X with all ai distinct. Then
∀x ∈ X, every neighborhood U ∋ x contains all but finitely many of the ai,
hence ∃N such that an ∈ U∀n ≥ N . Thus the sequence converges to every point
of X.

To avoid such pathological behavior:

Definition 6.48. A topological space is Hausdorff (or T2) if ∀x1 ̸= x2 ∈ X,
∃ neighborhoods U1 ∋ x1, U2 ∋ x2 such that U1 ∩ U2 = ∅.

Example 6.49.
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1. Any metric space is Hausdorff: given x1 ̸= x2, choose 0 ≤ ϵ < 1
2d(x1, x2)

then U − i = Bϵ(xi) disjoint neighborhoods of xi.

x1 x2

Bϵ(x1) Bϵ(x2)

2. The finite complement topology on R is not Hausdorff, since any two
non=empty open sets intersect (in infinitely many points).

3. The discrete topology is always Hausdorff (Ui = {xi} disjoint neighbor-
hoods of xi)

4. One can show: X Hausdorff, Y ⊂ X =⇒ the subspace topology is
Hausdorff, and X,Y Hausdorff =⇒ X ⊗ Y Hausdorff.

Theorem 6.50. If X is Hausdorff then every sequence in X converges to at
most one limit.

Proof. Assume x1, x2, ... converge to x ∈ X, and let y ̸= x. Choose Ux ∈ x, Uy ∈
y disjoint neighborhoods. Since xn → n, ∃N such that ∀n ≥ N, xn ∈ Ux. Hence
xn /∈ Uy for n ≥ N , so the sequence doesn’t converge to y.

Remark 6.51. There’s in fact a whole hierarchy of ”separation axioms”: eg.
a weaker one is: a topological spaces is T1 if ∀x ̸= y ∈ X,∃Uy ∈ y neighborhood
such that x /∈ Uy. Equivalently: X is T1 ⇐⇒ {x} is closed in X∀x ∈ X.
Hausdorff =⇒ T1, but eg. (R, finite complement topology) is T1 but not
Hausdorff.

Hausdorff spaces are fairly nice to work with, and ew will generally be working
with this assumption. There are more subtle reasons why not ever Hausdorff
topology comes from a metric, but one can give pretty good criteria for a topology
to be metrizable involving further separation conditions (”normal” or T4 + a
countability condition). We’ll see the Urysohn metrization theorem.

6.8 Manifolds and CW Complexes

Metric spaces are nice, but they can still be pretty nasty. (We’ll see condi-
tions such as local connectedness, local compactness, etc. come up). Algebraic
topologists like to focus on even nicer spaces.
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Definition 6.52. An n-dimensional topological manifold is a topological space
X such that every point p ∈ X has a neighborhood homeomorphic to Rn (or
equivalently, an open ball in Rn).

Example 6.53.

1. S1 ⊂ R2 is a 1d topological manifold.

2. Sphere and torus ⊂ R3 are 2d topological manifolds.

Example 6.54.

isn’t a topological manifold - but it is part of a more general class of spaces
called CW-complexes, built by attaching ”cells” (closed balls of dimension 0, 1,
...) onto each other inductively.

We’ll see more on this later when we get to algebraic topology. In decreasing
order of generality,

{manifold} ⊂ {CW-complexes} ⊂ {metrizable} ⊂ {Hausdorff} ⊂ {topological spaces}.

6.9 Topologies on Infinite Products

Given topological spaces Xi, i ∈ I index set. What is the natural topology on
X =

∏
i∈I X + i = {(pi)i∈I |pi ∈ Xi∀i ∈ I}?

First idea:

Definition 6.55. The box topology on
∏
i∈I Xi has basis {

∏
i∈I Ui|Ui ⊂

Ki open ∀i}.

This is a basis: box ∩ box = box, since (
∏
Ui) ∩ (

∏
Vi) =

∏
(Ui ∩ Vi).

This is actually too find for most purposes.

Example 6.56. Consider the diagonal map ∆ : R→ Rw = RN(= R0×R1× ...)
giving RN the box topology, ∆ is not continuous (unlike case of finite products).
Indeed, let U = (−1, 1)×(− 1

2 ,
1
2 )×(− 1

3 ,
1
3 )× ... open in box topology. ∆−1(U) =⋂

n≥1(−
1
n ,

1
n ) = {0} not open in R.

Here’s something better.

Definition 6.57. The product topology on X =
∏
Xi has basis {

∏
i∈I Ui|Ui ⊂

Xi open, and Ui = Xi for all but finitely many i}.

This is the same as the box topology if I is finite; for infinite I this is coarser.
Unless otherwise specified, the product topology is the one we’ll use on

∏
Xi.
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Theorem 6.58. f : Z → X =
∏
Xi, z 7→ (fi(z))i∈I is continuous ⇐⇒ each

component fi : Z → Xi is continuous.

Example 6.59. This implies the diagonal map ∆ : R → RN is continuous,
since each ∆i = id.

Proof.

• Projection pi : X → Xi to be the ith factor is continuous (∀U ⊂ Xi open,
p−1i (U) is open in the product topology). Hence, if f is continuous, so is
fi = pi ◦ f .

• Conversely, assume all fi’s are continuous, and consider basis element∏
Ui ⊂ X where Ui ⊂ Xi, for all but finitely many i, then f−1(

∏
Ui) =

{z ∈ Z|(fi(z))i∈I ∈
∏
Ui} =

⋂
i∈I f

−1
i (Ui). Each f−1i (U) ⊂ Z is open,

and all but finitely many are = f−1i (xi) = z, xo can be omitted from the
intersection. So f−1(

∏
Ui) is the intersection of finitely many open set in

Z, hence open.

Example 6.60. Given a set X and a topological space Y , let F = {functions X →
Y } = Y X with product topology. Then a sequence fn ∈ F converges f ∈ F if
and only if ∀x ∈ X, fn(x)→ f(x) in Y . So: the product topology is the topology
of pointwise convergence.

On products of metric spaces, there is another natural topology, finer than
product but coarser than box topology - the uniform topology. This works
similarly to the construction of d∞(x, y) = sup(|yi − xi|) on Rn, but for an
infinite product the sup might be infinite. So let’s replace the metric on (X, d) by
d(x, y) = min(d(x, y), 1), this is still a metric and induces the same topology as
of (same balls of radius ≤ 1). Now, given a metric space (Xi, di)i∈I , replace each
di by bounded metric di, and define a metric d∞(x, y) = sup{di(xi, yi)|i ∈ I}
on
∏
Xi, which is equal to sup{di(xi, yi)} if it’s ≤ 1, otherwise 1.

This is called the uniform metric and induces the uniform topology.

Example 6.61. On R× = {functions X → R} (with usual distance on R), this
is d∞(f, g) = supx∈X |f(x) − g(x)| if ≤ 1, else 1, so fn → f ⇐⇒ d∞(fn, f) →
0⇐⇒ supx∈X |fn(x)− f(x)| → 0 uniform convergence.

Remark 6.62. The ball of radius r ≤ 1 around x = (xi)i∈I is contained in
Pr(x) =

∏
i∈I Br(xi), but not equal to it (unless I is finite)! Indeed, d(xi, yi) <

r∀i ∈ I only implies d∞(x, y) = supi∈I{d(xi, yi)} ≤ r. The ball Br(x) only
contains these y for which the sup is < r. In fact: Br(x) =

⋃
0<r′<r Pr′(x) ⊂

Pr(x)... and Pr(x) is not open for d∞.

Theorem 6.63. The uniform topology on
∏
(Xi, di) is finer than the product

topology, and coarser than the box topology (strictly if I is infinite).
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Proof.

1. Let x = (xi) ⊂
∏
Xi and

∏
Ui ∋ x a basis element in the product topol-

ogy, then ∀i∃ϵ > 0 such that Bϵi(xi) ⊂ Ui. Without loss of generality,
we can assume ϵi ≤ 1∀i, and ϵi = 1 for all but finitely many i (whenever

Ui = Xi). So ϵ = inf(ϵi) > 0 and Bd∞ϵ ⊂ Pϵ(x) ⊂
∏
Bϵi(xi) ⊂

∏
Ui. So∏

Ui is open in uniform topology: τproduct = τuniform.

2. Bd∞r (x) =
⋃

0<r′<r Pr(x) =⇒ balls of uniform topology are open in box
topology, so τuniform = τbox.

Remark 6.64. On RN the product topology is actually metrizable, using a
clever modification of d∞ (see Munkres Thm. 20.5), while box isn’t metriz-
able (Munkres section 21). On uncountable products, neither box nor product
are metrizable.

The notion of uniform convergence is important in real analysis because it is
well behaved with respect to continuity and differentiability. For example:

Theorem 6.65. Given a topological space X, metric space Y , and a sequence
of functions fn : X → Y , if fn is continuous ∀n and fn → f uniformly then f
is continuous.

Proof. Let V ⊂ Y open, p ∈ f−1(V ). ∃ϵ > 0 such that Bϵ(f(x)) ⊂ V . Let N
be such that supq∈Xd(fN (q), f(q)) < ϵ

3 . Let U ∋ p open such that q ∈ U =⇒
d(fN (p), fN (q)) < ϵ

3 (continuity of fN ). Then using triangle inequality: ∀q ∈ U ,

d(f(p), f(q)) ≤ d(f(p), fN (p))+d(fN (p), fN (q))+d(fN (q), f(q)) <
ϵ

3
+
ϵ

3
+
ϵ

3
= ϵ.

So U ⊂ f−1(Bϵ(f(p))) ⊂ f−1(V ).

Corollary 6.66. {continuous f : X → Y } is a closed subspace of (F(X,Y ) =
Y X , uniform topology).

6.10 Connected Spaces

Definition 6.67. A topological space X is connected if it cannot be written as
X = U ∪ V where U, V are disjoint nonempty open sets. (such a decomposition
is called a separation of X).
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not connected

Proposition 6.68. [0, 1] ⊂ R (standard topology is connected).

Proof. Assume [0, 1] = U ∪ V separation. Without loss of generality, u ∈ U .
Let a = sup{x ∈ [0, 1] such that [0, x) ⊂ U}.0 ∈ U,U open =⇒ [0, ϵ) ⊂ U for
some ϵ > 0, so a > 0.

We cant have a ∈ V , since V is open this would imply (a−ϵ, a] ⊂ V for some ϵn >
0, hence [0, x) is not a subset of U for x?a − ϵ, hence sup{x such that [0, x) ⊂
U} ≤ a− ϵ, contradiction. So a ∈ U . But if a < 1, U open, U ∋ a =⇒ ∃ϵ > 0
such that (a−ϵ, a+ϵ) ⊂ U , and by definition of a,∃x > a−ϵ such that [0, x) ⊂ U .
Hence [0, a+ ϵ) ⊂ U , contradicting definition of a.

Hence a = 1 and since U is open, ∃ϵ > 0 such that (1 − ϵ, 1] ⊂ U , and by
definition of a, ∃x > 1 − ϵ such that [0, x) ⊂ U , hence U = [0, 1] and V = ∅,
contradiction.

Example 6.69. [0, 1) ∪ (1, 2] is not connected, since [0, 1) and (1, 2] are open
in subspace topology and provide a separation. More generally, x < y < z ∈ R,
x, z ∈ A, y /∈ A =⇒ A disconnected.

Theorem 6.70. f : X → Y continuous, X connected =⇒ f(X) ⊂ Y is
connected.

Proof. If U ∪ V is a separation of f(X), then f−1(U) ∪ f−1(V ) is a separation
of X, contradiction. (subspace topology: U = f(X) ∩ U ′ = ∅, U ′ open in
Y =⇒ f−1(U) = f−1(U ′) ̸= ∅ open in X; f−1(U)∩f−1(V ) = f−1(U∩V ) = ∅).

A corollary:

Theorem 6.71 (Intermediate Value Theorem). Let X be a topological space
with a function f : X → R continuous. If a, b ∈ X and r lies between f(a) and
f(b), then ∃c ∈ X such that f(c) = r.

Proof. Since X is connected, so is f(X). If r /∈ f(X) then U = (−∞, r)∩ f(X)
and V = (r,∞|

⋂
f(X) gives separation of f(X)) (one contains f(a) and the

other contains f(b)) - contradiction. So r ∈ f(X).
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Proposition 6.72. A,B ⊂ X connected (for subspace topology) does not imply
A ∩B connected.

Example 6.73. Take two halves of a torus and stick them together into a donut.

A B ⊆ R

But things are better for unions of connected sets, provided they overlap.

Theorem 6.74. Ai ⊂ X connected subspaces, all containing some point p ∈ X
(ie.

⋂
Ai ̸= ∅). Then Y =

⋃
Ai is connected.

Proof. Assume Y = U ∪ V disjoint, open in Y . Without loss of generality,
p ∈ U . Then U ∩Ai and V ∩Ai are disjoint, open in Ai. Since Ai is connected
and p ∈ U ∩ Ai, must have Ai ⊂ U∀i. Hence Y =

⋂
Ai ⊂ U (and V = ∅). So

Y is connected.

Corollary 6.75. R is connected; so are open, half-open, and closed intervals
in R.

Theorem 6.76. X,Y connected =⇒ X × Y is connected.

Proof. Fix (x0, y0) ∈ X × Y . Then ∀x ∈ X,Ax = (x × {y0}) ∪ ({x} × Y ) is
connected by previous theorem (both pieces contain (x, y0)) and now X × Y =⋃
x∈X Ax (all containing (x0, y0)) =⇒ X × Y is connected.

x

y

two paths x→ y

x

y0

x′
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In fact, more is true:

Theorem 6.77. Xi, i ∈ I connected =⇒
∏
i∈I Xi with product topology is

connected.

This is false for uniform and box topologies: eg. RI = { functions I → R}
for infinite I. Say f : I → R is bounded if f(I) ⊂ R bounded subset. Then
{bounded} ∪ {unbounded} is a separation of RI in uniform topology.

6.11 Path-connectedness

Definition 6.78. X topological space, x, y ∈ X, a path from x to y is a con-
tinuous map f : [a, b]→ X such that f(a) = x and f(b) = y.

Definition 6.79. X is path-connected if every pair of points in X can be
joined by a path.

x

y

two paths x→ y

Note: The relation x ∼ y =⇒ x and y can be connected by a path is an
equivalence relation:

1. x ∼ x (constant path f(t) = x).

2. x ∼ y ⇐⇒ y ∼ x (backwards path f(−t))

3. x ∼ y and y ∼ z =⇒ x ∼ z (concatenate paths)

The equivalence classes are called the path components of X - we will return
to this in algebraic topology.

Theorem 6.80. If X is path connected then X is connected.

Proof. Assume not, ie. X = U ⊔ V disjoint open, x ∈ U, y ∈ V . Pick a path
f : [a, b]→ X connecting x to y. Then [a, b] = f−1(U) ⊔ f−1(V ) open subsets.
This contradicts the connectedness of [a, b].

The converse is false in general, but true for nice enough spaces (eg. CW-
complexes).
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Example 6.81. The ”topologist’s sine curve”: let S = {(x, y)|y = sin
(
1
x

)
, x >

0}∪ {(0, 0)} ⊂ R2. The ”main” point of S0 is connected, since it’s the image of
R+ (connected) under the continuous map x 7→

(
x, 1x

)
.

1

−1

Hence, S is connected: if S = U ∪V disjoint open, then S0 = (U ∩S0)∪(V ∩S0)
disjoint and open =⇒ one of them (eg. V ∩S0) is empty. V ⊂ S−S0 = {(0, 0)}.
But {(0, 0)} is not open in S, so in fact V = ∅.

On the other hand, S is not path connected: there’s no path connecting
(
1
π , 0
)

to (0, 0). (We can prove this later using compactness: the image of such a path
is a closed subset of R2, but S isn’t: (0, 1) is a limit point of S not in S).

However, for nice enough spaces the two notions are equivalent.

Theorem 6.82. A ⊂ Rn open =⇒ A is connected if and only if A is path
connected.

Proof. Already seen: path connected =⇒ connected. We show: not path
connected =⇒ not connected.

Assume A open in Rn: then the path components of A are open. Indeed, if
x ∈ A then ∃r ∈ 0 such that Br(x) ⊂ A, and any two points of Br(x) can be
connected inside A by a straight line segment. So all of Br(x) is in the same
path component.

Now: ifA is not path connected thenA = (one path connected)∪(
⋃

all other path components)
gives a separation.

This implies similar results for other classes of spaces, eg. topological manifolds
and CW-complexes.

For these kinds of spaces, path-components are also connected components, ie.
they give a partition of X into disjoint connected open (and closed) subsets.
Such a partition only exists if X is ”locally connected” ie. the topology has
a basis consisting of connected open subsets. Counterexample: Q ⊂ R isn’t
locally connected. (each point of Q is its own path component, but these aren’t
open).

6.12 Compactness

Compactness is a ”finiteness/boundedness” property of nice topological spaces
such as closed bounded intervals [a, b] ⊂ R, or more generally, closed bounded
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subsets of Rn. Any continuous map f : K → R (where K is compact) achieves
its maximum and minimum. The definition isn’t very intuitive.

Definition 6.83. An open cover of a topological space X is a collection of
open subsets (Ui)i∈I such that

⋃
i∈I Ui = X.

Definition 6.84. X is compact if every open cover (Ui)i∈I of X admits a finite
subcover, ie. ∃i1, ..., in such that X = Ui1 ∪ ... ∪ Uin .

Showing a space is not compact is much easier than showing it is.

Example 6.85. R is not compact: the open cover R =
⋃
n∈N(n− 1, n+ 1) has

no finite subcover. Neither is (0, 1] with subspace topology (0, 1] =
⋃
n∈N(

1
n , 1]

has no finite subcover.

Example 6.86. X = {0} ∪ { 1n , n ∈ Z+} is compact: given any open cover
X =

⋃
i∈I Ui, let i0 be such that 0 ∈ Ui0 , then Ui0 also contains 1

n for large
n ≥ N , hence Ui0 , ..., UiN containing 1, 12 , ...,

1
N and Ui0 gives a finite subcover.

Theorem 6.87. If X is compact and f : X → Y is continuous, then f(X) ⊂ Y
is compact.

Proof. Let
⋃
i∈I Ui open cover of f(X). Then

⋃
i∈I f

−1(Ui) is an open cover
of X, hence ∃i1...in such that f−1(Ui1) ∪ ... ∪ f−1(Uin) = X. So ∀x ∈ X,
f(x) ∈ Ui1 ∪ ... ∪ Uin , ie. f(X) ⊂ Ui1 ∪ .. ∪ Uin finite subcover.

Remark 6.88. An open cover of f(X) ⊂ Y with subspace topology ⇐⇒ Ui ⊂ Y
open, f(X) ⊂

⋃
i∈I Ui.

Once we know subsets of Rn are compact if and only if closed and bounded,
taking Y = R, this gives the extreme value theorem. To get started on this
right away.

Theorem 6.89. [0, 1] (with subspace topology ⊂ R) is compact.

Proof. Let {Ui}i∈I open cover of [0, 1]. LetA = {x ∈ [0, 1]|∃ finite subcover Ui1∪
... ∪ Uin ⊃ [0, x]}. A ̸= ∅ (contains 0). We want to show 1 ∈ A. Let
a = sup(A) ∈ [0, 1].

First we show a ∈ A: ∃i0 such that a ∈ Ui0 ; since Ui0 is open, ∃ϵ > 0 such that
Bϵ(a) ⊂ Ui0 . On the other hand, a = supA, so ∃x ∈ A such that x > a− ϵ, and
a finite subcover [0, x] ⊂ Ui1 ∪ ... ∪ Uin . Therefore [0, a] ⊂ Ui1 ∪ ... ∪ Uin ∪ Ui0 ,
and a ∈ A.

Next, assume a < 1: since a ∈ A,∃i1, ..., in such that [0, a] ⊂ Ui1 ∪ ... ∪ Uin ,
which is open, so ∃ϵ > 0 such that Bϵ(a) ⊂ Ui1 ∪ ... ∪ Uin , hence Ui1 ∪ ... ∪ Uin
covers [0, x] for some x > a (eg. x = a+ ϵ

2 if ≤ 1, else 1), contradicts sup(A) = a.

So a = 1 ∈ A,∃ finite subcover.
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Uy3

Uy2

x

Uy1

y3

y2
y1

Vy1

Vy2

Vy3

K

Theorem 6.90. X compact, F ⊂ X closed =⇒ F is compact.

Proof. Given an open cover of F , ie. Ui ⊂ X open,
⋃
i∈I Ui ⊃ F , let V = X\F

open: then {Ui, i ∈ I} ∪ {V } is an open cover of X, hence ∃ finite subcover.
Discarding V , this gives a finite subcover for F .

The converse is true in Hausdorff spaces!

Theorem 6.91. X Hausdorff, K ⊂ X compact =⇒ K is closed in X.

Proof. We show that X\K is open. Let x ∈ X\K. Since X is Hausdorff,
∀y ∈ k∃Uy ∋ x, Vy ∋ y disjoint open subsets. Now K ⊂

⋃
y∈K Vy is an open

cover, so by compactness ∃y1, ..., yn such that K ⊂ Vy1 ∪ ... ∪ Vyn . Let U =
Uy1 ∪ ... ∪ Uyn ∋ x open. Then U ∩ (Vy1 ∪ ... ∪ Vyn) = ∅, so U ∩K = ∅. Hence
∀x ∈ X\K,∃U open ∋ x such that U ⊂ X\K.

Remark 6.92. We’ve actually shown more: X Hausdorff, K ⊂ X compact,
x ∈ X\K =⇒ ∃ disjoint open subsets U ∋ x, V ⊃ K,U ∪ V = ∅. Ie. can
separate points from compact subsets.

If we tried this for an arbitrary subset of X, we’d find that
⋃
y∈K Uy isn’t a

neighborhood of x anymore. Compactness lets us reduce on infinite process to
a finite one.

Example 6.93. When X isn’t Hausdorff, K ⊂ X compact does not imply K
closed in X: eg. X = R with finite complement topology: any subset K ⊂ X is
compact. Indeed, a nonempty open subset contains all but finitely many points,
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so given an open cover it is easy to find a finite subcover: take one nonempty
Ui, with finite complement {p1...pk}, then take Uij containing pj for j = 1, ..., k.

Another instance of compactness allowing us to intersect infinitely many opens
(or rather reduce to a finite intersection) is the tube lemma.

Proposition 6.94 (The Tube Lemma). Let X topological space, Y compact
topological space, x0 ∈ X, if N ⊂ X × Y is open and {x0} × Y ⊂ N , then there
exists a neighborhood U of x0 in X such that U × Y ⊂ N .

x0

N
Y

↔U

Proof. ∀y ∈ Y, (x0, y) ∈ N open, so ∃ basis open Uy × Vy (Uy neighborhood of
x0 in X, Vy neighborhood of y in Y ) such that (x0, y) ∈ Uy × Vy ⊂ N .

Now:
⋃
y∈Y Vy = Y open cover (Rmk:

Ä⋂
y∈Y Uy

ä
× Y ⊂ N , but

⋃
y∈Y Uy not

open!). Since Y is compact, ∃y1, ..., yn ∈ Y such that Y = Vy1 ∪ ... ∪ Vyn . Let
U = Uy1 ∩ ... ∩ Uyn . Then U is a neighborhood of x0 in X, and U × Y =⋃n
i=1 Uy1 × Vyi ⊂ N .

Theorem 6.95. X,Y compact =⇒ X × Y is compact.

Proof. Let {Aα} be an open cover of X × Y . For any given x ∈ X, {x} × Y is
compact so ∃ finite subcollection Ax,1, ..., Ax,n(x) which suffices to cover {x} or
Y . Ax,1 ∪ ... ∪ Ax,n(x) is open, so by the tube lemma ∃Ux ∋ x neighborhood in
X such that Ax,1 ∪ ... ∪ Ax,n(x) ⊃ Ux × Y . Now X is compact, and {Ux}x∈X
form an open cover, so ∃x1, ..., xk ∈ X such that X = Ux1

∪ ... ∪ Uxk
. Now

Axi,j , 1 ≤ i ≤ k, 1 ≤ j ≤ n(xi) is a finite subcover for X × Y .

Theorem 6.96. K ⊂ Rn is compact if and only if K is closed and bounded.

Proof.

• If K ⊂ Rn is compact then it is closed (by above thm: Rn Hausdorff) and
bounded: K ⊂

⋃
r>0Br(0) open cover =⇒ ∃ finite subcover =⇒ ∃R > 0

such that K ⊂ BR(0).
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• If K ⊂ Rn is closed and bounded, then it’s a closed subset of [−R,R]n for
some R > 0. [−R,R]n is a finite product of compact sets ([R,−R] ≃ [0, 1])
hence compact; a closed subset of a compact is compact.

Remark 6.97. Closed and bounded are necessary conditions for compactness
of a subspace of any metric space but in ”most” metric spaces, closed + bounded
does not imply compact. There are easy counterexamples.

More interesting: let V be any infinite-dimensional vector space with a norm,
d(v, v′) = ||v − v′||. Eg. F = C0([a, b],R) continuous functions with sup norm
d(f, g) = sup|f − g| (uniform topology). Then B = {v ∈ V | ||v|| ≤ 1} is closed
and bounded but never compact (proof uses sequential compactness).

We now look at applications of compactness. We saw earlier that

Theorem 6.98. If X is compact and f : X → Y is continuous, then f(X) ⊂ Y
is compact.

Corollary 6.99 (Extreme Value Theorem). X compact (nonempty), f : X → R
continuous =⇒ f attains its maximum and minimum.

Example 6.100. (X, d) metric space, A ⊂ X nonempty, x ∈ X =⇒ define
d(x,A) = inf{d(x, a)|a ∈ A} ≥ 0. If A is compact then the inf is always
achieved! (see Munkres 27.2). Similarly, the diameter of a bounded subset,
diam(A) = sup{d(x, y)|x, y ∈ A}. The sup is attained for A compact (d :
A×A→ R continuous, achieve its max).

Another corollary:

Corollary 6.101. If X is compact and Y is Hausdorff, then any continuous
bijection f : X → Y is a homeomorphism.

Proof. We need to check f−1 is continuous as well (so U ⊂ X open⇐⇒ f(U) ⊂
Y open) U ⊂ X open =⇒ X\U closed hence compact =⇒ f(X\U) = Y \f(U)
compact. Since Y is Hausdorff this implies Y \f(U) is closed, ie. f(U) open in
Y . (We’ve seen that with such assumptions a continuous bijection need not be
a homeomorphism, eg. [0, 2π)→ S1, t 7→ (cos t, sin t)).

In metric spaces, compactness implies uniform estimates.

Lemma 6.102 (Lebesgue Number Lemma). (X, d) compact metric space (Ui)i∈I
open cover of X =⇒ ∃δ > 0 such that any subset of diameter < δ is entirely
contained in a single open Ui.

Proof. By compactness, can assume (Ui) is a finite cover U1 ∪ ... ∪ Un. The
function f(x) = 1

n

∑n
i=1 d(x,X\Ui) is continuous so achieves its min, which is

therefore > 0 (∀x ∈ X∃i such that x ∈ Ui and then d(x,X\Ui) > 0). Hence
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∃δ > 0 such that f(x) ≥ δ∀x ∈ X. Thus ∀x ∈ X∃Ui such that d(x,X\Ui) ≥ δ,
ie. Bδ(x) ⊂ Ui. Since a subset of diameter < δ is contained in a ball of radius
δ, the result follows.

This is the magic of compactness!

Counterexamples: R =
⋃

intervals with overlaps of lengths → 0, eg.
⋃
n∈Z(n−

1, n+ 1+ ϵn) with ϵn → 0. For example, xy = 1 and y = 0 has distance → 0 as
x→∞.

THis only makes sense for metric spaces! No notion of uniform size of neigh-
borhood without a metric.

Definition 6.103. f : (X, dX) → (Y, dY ) is uniformly continuous if ∀ϵ >
0,∃δ > 0 such that ∀p, q ∈ X, dX(p, q) < ϵ =⇒ dy(f(p), f(q)) < ϵ.

Compare with continuity: the same δ must work for every p!

Theorem 6.104. If X and Y are metric spaces, f : X → Y continuous, and
X is compact, then f is uniformly continuous.

Proof. Take ϵ > 0 and consider open cover of Y by balls of radius ϵ
2 . (so if

f(p), f(q) land in same ball, they’re less than ϵ apart). X =
⋃
y∈Y f

−1(B ϵ
2
(y))

open cover, so by Lebesgue number lemma ∃δ > 0 such that if dX(p, q) < δ
then they lie in the same element of the cover, hence dY (f(p), f(q)) < ϵ.

6.13 Alternative Notions of Compactness

Definition 6.105.

• X is a limit point compact if every infinite subset of X has a limit
point.

• X is sequentially compact if every sequence {pn} in X has a convergent
subsequence.

Example 6.106. In R, { 1n , n ≥ 1} ∪Z+ has a limit point (0) and the sequence
1, 2, 12 , 3,

1
3 , ... has a convergent subsequence

(
1
2 ,

1
3 ,

1
4

)
so does 0, 1, 0, 1, 0, 1, ... (eg.

subsequence 0, 0, ...). But Z ⊂ R has no limit point and the sequence 1, 2, 3, ...
doesn’t have a convergent subsequence, so R is neither limit point compact nor
sequentially compact.

Theorem 6.107. X is compact =⇒ X is limit point compact.

Proof. Assume X is not limit point compact, ie. ∃A ⊂ X infinite with no limit
point. Since A contains all of its limit points (there are none), A is closed in X,
hence compact. However, ∀a ∈ A, a isn’t a limit point so ∃Ua ∋ a neighborhood
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of a such that Ua∩A = {a}. (Ua)a∈A is now an infinite open cover of A, without
any finite subcover since each a ∈ A only belongs to Ua and not to any other
element of the cover, contradiction.

Theorem 6.108. X sequentially compact =⇒ X limit point compact.

Proof. Given A ⊂ X infinite subset, pick a sequence of distinct points of A and
take a convergent subsequence =⇒ ∃{an} sequence in A, an ̸= am∀n ̸= m,
converging to some limit a ∈ X. Then every neighborhood of a contains an for
all large n, hence only many points of A, including some ̸= a. So a is a limit
point of A.

The converse implications don’t hold in general, but in metric spaces all three
notions coincide! (and hence also for subspaces of metric spaces...)

Theorem 6.109. For a metric space (X, d), X compact =⇒ X limit point
compact ⇐⇒ X sequentially compact.

Proof.

• Compact =⇒ limit point compact already done

• Limit point compact =⇒ sequentially compact: suppose X metric space
and limit point compact, and consider a sequence x1, x2, ... in X. If
{x1, x2, ...} finite, then ∃x ∈ X such that xn = x for infinitely many
n, which gives a subsequence that converges to x. Otherwise {x1, x2, ...}
is infinite, so has a limit point a. So: ∀r > 0∃n such that 0 < d(a, xn) < r.
First choose n1 ∈ N such that xn1

∈ B1(a), then inductively given
n1, .., nk−1, let σk = min{d(xi, a)|i ≤ nk−1 and xi ̸= a} > 0 and rk =
min

(
1
k , δk

)
. Then take nk such that 0 < d(a, xnk

) < rk. By construc-
tion: nk > nk−1 and d(a, xnk

) < 1
k =⇒ xn1

, xn2
, ... is a subsequence

converging to a.

• Sequentially compact =⇒ compact; this is the hardest part. First we
show:

Claim: IfX metric space is sequentially compact, then ∀ϵ > 0X can be covered
by finitely many open balls of radius ϵ.

(as we expect if X is to be compact: X =
⋃
x∈X Bϵ(x) should have a finite

subcover!)

Claim Proof. Assume not, and choose x1 ∈ X, then inductively choose xn ∈
X\
⋃n−1
i=1 Bϵ(xi) (if this isn’t possible then we’ve covered X by finitely many

balls). This yields a sequence in X, which by sequential compactness must have
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a convergent subsequence. But this is impossible since no two terms of the two
sequence are within ϵ of each other, contradiction.

Claim: If X metric space is sequentially compact then every open cover has a
Lebesgue number (∃ϵ > 0 such that any subset of diameter < δ is entirely in
one Ui).

(we’ve seen this hold for compact metric spaces, so it should hold!)

Claim Proof. Suppose ∃ open cover (Ui)i∈I with no Lebesgue number, ie. ∀n ≥
1,∃Cn ⊂ X with diameter < 1

n which isn’t contained in any single Ui. Take
xn ∈ Cn. By sequential compactness, ∃ subsequence (xnk

) of (xn) that converges
to some a ∈ X. Now a ∈ Ui0 for some i0 ∈ I and so ∃ϵ > 0 such that
Bϵ(a) ⊂ Ui0 . Take k sufficiently large so that 1

nk
< ϵ

2 and d(xnk
, a) < ϵ

2 . Since

cnk
has diameter < ϵ

2 , cnk
⊂ B ϵ

2
(xnk

) ⊂ Bϵ(a) ⊂ Ui0 , contradiction.

This proof illustrates how arguments using sequential compactness are often
more intuitive than those involving open covers: ”if some property fails to hold
uniformly, take a sequence of points where things get worse and worse, extract
a convergent subsequence, and see what goes wrong at the limit.”

Now we can finish proving sequentially compact =⇒ compact: Given an open
cover X =

⋃
i∈I Ui, by lemma 2, ∃ϵ > 0 such that every subset of diameter < δ

is entirely inside a single Ui. Fix ϵ ∈
(
0, δ2

)
: by lemma 1 X is covered by finitely

many ϵ-balls. Each of these has diameter ≤ 2ϵ < δ, so is contained in some Ui.
This gives a finite subcover, replacing each ϵ-ball by one Ui containing it (and
discarding the rest of the Ui’s).

Theorem 6.110. Every compact metric space (X, d) is complete, ie. every
Cauchy sequence converges.

Proof. Let (xn) Cauchy sequence, by sequential compactness ∃ subsequence
xnk
→ x ∈ X. Now ∀ϵ > 0∃N such that ∀m,n ≥ N, d(xm, xn) <

ϵ
2 . ∃nk ≥ N

such that d(xnk
, x) < ϵ

2 . Hence ∀n ≥ N, d(xn, x) ≤ d(xn, xnk
)+dim(xnk

, x) < ϵ.

Corollary 6.111. R,Rn (with usual distances) are complete.

Proof. Every Cauchy sequence is bounded, hence contained in a compact subset,
hence convergent.

Corollary 6.112. RX = {functions X → R} with uniform metric is complete.
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Proof. Given a Cauchy sequence {fn} (ie. ∀ϵ > 0∃N such that m,n ≥ N =⇒
sup|fn − fm| < ϵ). ∀x ∈ X, {fn(X)} is a Cauchy sequence in R. (|fn(x) −
fm(x)| ≤ sup|fn − fm| < ϵ) hence converges to some limit f(x) (ie. we have
a pointwise limit). Now: given ϵ > 0, take N such that m,n ≥ N =⇒
supx|fn(x)−fm(x)| < ϵ. Then ∀n ≥ N, ∀x ∈ X, |fn(x)−f(x)| = limm→∞ |fn(x)−
fm(x)| ≤ ϵ, ie. ∀n ≥ N, sup|fn − f | ≤ ϵ which implies fn → f uniformly.

When X is a topological space, we’ve seen that uniform limits of continu-
ous functions are continuous, so we also have completeness of C0(X,R) =
{continuous functions} ⊂ RX , uniform topology. More generally: closed subsets
of complete metric spaces are complete!

6.14 Compactification

Definition 6.113. A compactification of a (Hausdorff) topological space X
is a compact (Hausdorff) space Y with an inclusion i : X ↪→ Y which is an
embedding (ie. homeomorphism onto its image, ie. topology on X ≡ subspace
topology of i(X) ⊂ Y ), with X open and dense in Y (X = Y ).

Example 6.114. Rn → Rn ∪{∞} as in HW2; this is in fact homeomorphic to
Sn. This is not the only option: eg. (0, 1) ≃ R compactifies to [0, 1] of S1.

(0, 1)× (0, 1) ≃ R2: eg. [0, 1]× [0, 1], S2, torus ≃ S1 × S1.

The one-point compactification, if exists, is unique. Let Y = X ∪{∞} (add
a new point). The requirements of a compactification imply:

• a subset U ⊂ X is open in Y if and only if it is open in X (subspace
topology ≃ τX).

• a subset V containing ∞ is open in Y if and only if Y \V is closed, hence
compact (we want Y compact), and a subset of X (since ∞ ∈ V ).

Definition 6.115.

τY = {U ⊂ X open} ∪ {Y \K|K ⊂ X compact}

Theorem 6.116. τY is a topology on Y = X∪{∞}, and Y is a compactification
of X (in particular, Y is compact).

Proof.

• Axioms of topology: case by case for U ’s and (Y −K)’s. Arbitrary unions
and finite intersections of a single type of open are still of the same type
(note:

⋂
(Y − Ki) = Y − (

⋂
Ki), a finite union of compact subsets of

X is compact). Moreover, U ∩ (Y − K) = U ∩ (X − K) open ⊂ X,
U ∪ (Y −K) = Y − (K ∩ (X − U)) closed in K hence compact.
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• Y is compact: if (Ai)i∈I open cover of Y , then∞ ∈ Ai0 = Y −K for some
i0 ∈ I, and now the (Ai∩K) form an open cover of K =⇒ ∃i1, ..., in such
that Ai1 ∪ ...∪Ain ⊃ K. Thus Y = Ai0 ∪ (Ai1 ∪ ...∪Ain) finite subcover.

However, this Y is not always Hausdorff! One-point compactifications are only
useful if Hausdorff.

Definition 6.117. X is locally compact if ∀x ∈ X,∃K compact ⊂ X which
contains a neighborhood of x.

Example 6.118.

• R is locally compact (x ∈ R =⇒ x ∈ int([x − 1, x + 1])), so is Rn. R∞
isn’t (for any of usual topologies). Neither is Q with usual topology (⊂ R).

Theorem 6.119. The one-point compactification Y = X ∪ {∞} is Hausdorff
if and only if X is locally compact and Hausdorff.

Proof.

• X Hausdorff ⇐⇒ we can separate points of X ⊂ Y by open subsets (in
X or in Y ).

• X locally compact ⇐⇒ ∀x ∈ X∃ open U ∋ x, Y − K ∋ ∞ such that
U ⊂ K ie. U ∩ (Y − K) =⇐⇒ we can separate point of X from ∞ by
open subsets in Y .

6.15 Countability Axioms

Definition 6.120. X is first-countable if ∀x ∈ X,∃ countable basis of neigh-
borhoods at x, ie. ∃U1, U2, ... open ∋ x such that every neighborhood V ∋ x
contains one of the Un.

Example 6.121. Metric spaces are first-countable: at x ∈ X take Un = B 1
n
(x).

In a first-countable space, x ∈ A⇐⇒ ∃ sequence xn ∈ A, xn → x (else only⇐).

Definition 6.122. X is second-countable if its topology has a countable basis.

Example 6.123.

• Rn is second-countable, eg. basis {Br(x), x ∈ Qn, r ∈ Q+} or {
∏
(ai, bi)|ai, bi ∈

Q}. Rω product topology is second-countable (basis = products of finite
number of (ai, bi), ai < bi ∈ Q and all remaining factors are R), while
uniform topology isn’t (because ∃ uncountable many disjoint open subsets:
balls of radius 1

2 centered at {0, 1}ω).
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Second-countable =⇒ ∃ countable dense subset (eg. take one point in each
basis open!). The converse holds for metric spaces (take balls of radius 1

n around
points of the sense subset) but is false in general (Rℓ is first-countable, has
countable dense subset, but ∄ countable basis).

6.16 Regular and Normal Spaces

Now, we introduce some stronger separation axioms.

Definition 6.124.

Definition 6.125. Suppose that one-point subsets {x} ⊂ X are closed (i.e., T1
space). We then say:

• X is regular if for every point x ∈ X and every closed set B ⊂ X that
is disjoint from x, there exist disjoint open sets U containing x and V
containing B, i.e., x ∈ U and B ⊂ V .

• X is normal if for any two disjoint closed sets A,B ⊂ X, there exist
disjoint open sets U containing A and V containing B, i.e., A ⊂ U and
B ⊂ V .

A
U

B
V U

B

V
U

x

V

y
x

Normal Regular Hausdorff=⇒ =⇒ =⇒=⇒Metrizable (T4) (T3) (T2) T1

Example 6.126. The space Rℓ is normal but not metrizable. On the other
hand, R2

ℓ is regular but not normal. (For further details, see Munkres, section
31, which contains these examples and more.)

Theorem 6.127. • Regular + second-countable =⇒ normal

• Hausdorff + compact =⇒ normal

These results will not be proven here, but you can refer to Munkres, section 32,
for the proofs. However, when we proved that compact subsets of Hausdorff
spaces are closed, we established that compactness and Hausdorffness together
imply regularity. The result on normality was covered in Homework 2.

Theorem 6.128. Every metric space is normal.

Proof. Let A and B be disjoint closed sets in a metric space (X, d). For each
a ∈ A, there exists ϵa > 0 such that the open ball Bϵa(a) ⊂ X \ B. Similarly,
for each b ∈ B, there exists ϵb > 0 such that Bϵb(b) ⊂ X \A.
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ϵa

a

ϵb

b

Now, define the sets:

U =
⋃
a∈A

Bϵa/2(a) and V =
⋃
b∈B

Bϵb/2(b)

Clearly, both U and V are open sets, and we have A ⊂ U and B ⊂ V .

We claim that U ∩ V = ∅. Suppose, for the sake of contradiction, that z ∈
U ∩ V . Then there exist points a ∈ A and b ∈ B such that z ∈ Bϵa/2(a) and
z ∈ Bϵb/2(b). By the triangle inequality, we have:

d(a, b) ≤ d(a, z) + d(z, b) ≤ ϵa
2

+
ϵb
2
≤ max(ϵa, ϵb).

This contradicts the assumption that a and b are disjoint, since if d(a, b) < ϵa,
the ball Bϵa(a) would not be contained in X \ B (and similarly for Bϵb(b) not
being contained in X \A). Hence, U ∩ V = ∅, as required.

We can now explore which topological spaces are metrizable. We have already
established that metrizable spaces are first-countable and normal. However, the
converse does not hold, as the space Rℓ provides a counterexample.

Theorem 6.129 (Urysohn’s Metrization Theorem). If X is regular and has a
countable basis, then X is metrizable.

(Note: The first condition is necessary, while the second condition is stronger
than required. A sharper criterion is given by the Nagata-Smirnov theorem, but
it is more technical to state and prove.)

6.17 Urysohn’s Lemma

Urysohn’s Lemma plays a crucial role in the proof of the metrization theorem.

Theorem 6.130. Let X be a normal space, and let A and B be disjoint closed
subsets of X. Then, there exist continuous functions f : X → [0, 1] such that
f(x) = 0 for all x ∈ A and f(x) = 1 for all x ∈ B.

Idea:

1. Construct open sets Uq for each q ∈ [0, 1] ∩ Q such that A ⊂ U0 ⊂ · · · ⊂
U1 = X \B, with the additional property that for p < q, we have Up ⊂ Uq.
Also, set Uq = X for q > 1.
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2. Define f(x) = inf{q ∈ Q | x ∈ Uq}, and show that f is continuous.

Step 1 relies on the following reformulation of normality.

Lemma 6.131. Let X be normal. Then for any closed set A and any open set
U containing A, there exists an open set V such that A ⊂ V and V ⊂ U .

Proof. Let A and B = X \ U be disjoint closed sets. Since X is normal, there
exist open sets V ⊃ A and V ′ ⊃ B such that V ∩ V ′ = ∅. Moreover, since
X \ V ′ is closed, we have V ⊂ X \ V ′, so V ⊂ X \ V ′. Therefore, A ⊂ V ⊂ V ⊂
X \ V ′ ⊂ X \B = U .

A

V

U

Proof. Step 1. Let A and B be disjoint closed sets. Define U1 = X \ B and
choose an open set U0 such that A ⊂ U0 ⊂ U0 ⊂ U1. We now construct the open
sets Uq, where q ∈ (0, 1) ∩Q, by induction, ensuring that p < q =⇒ Up ⊂ Uq.

Label (0, 1)∩Q as {q0, q1, q2, . . . }, with q0 = 0 and q1 = 1, and proceed with the
induction. Suppose that Uq0 , . . . , Uqn have already been constructed. We now
construct Uqn+1

using the lemma above. Let qk = max({q0, . . . , qn} ∩ (0, qn+1])
and qℓ = min({q0, . . . , qn}∩ (qn+1, 1]), so that qk < qn+1 < qℓ, with no rationals
between them.

By the induction hypothesis, Uqk ⊂ Uqℓ , and using normality, there exists an
open set V such that Uqk ⊂ V ⊂ V ⊂ Uqℓ . Thus, we set Uqn+1 = V . By

induction, we can construct all the Uq’s, and the property p < q =⇒ Up ⊂ Uq
is satisfied. Set Uq = ∅ for q < 0 and Uq = X for q > 1, which still satisfies the
condition p < q =⇒ Up ⊂ Uq.
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A

U0
U1/3 U1/2 U2/3 U1 = X\B

Step 2. Define f(x) = inf Qx, where Qx = {q ∈ Q | x ∈ Uq}. Since U<0 = ∅
and U>1 = X, it follows that (1,∞) ⊂ Qx ⊂ [0,∞) for all x ∈ X, so f(x) ∈ [0, 1]
for all x ∈ X. Moreover, if x ∈ A ⊂ U0, then f(x) = 0, and if x ∈ B, then
x ∈ U1 = X \ B, so Qx = (1,∞) and f(x) = 1. It remains to show that
f : X → [0, 1] is continuous.

To prove continuity, observe the following:

• If x ∈ Uq, then f(x) ≤ q: if x ∈ Uq, then x ∈ Uq′ for all q′ > q, so
Qx ⊃ {q | q > q′}.

• If x /∈ Uq, then f(x) ≥ q: if x /∈ Uq, then Qx ⊂ {q | q ∈ (q,∞)}.

Now, for any open interval (c, d), we show that f−1((c, d)) is open in X. Assume
x0 ∈ f−1((c, d)), and let p, q ∈ Q such that c < p < f(x0) < q < d. By the
above observations, x0 ∈ Uq and x0 /∈ Up. Define V = Uq ∩ (X \ Up), which is
open and contains x0.

Uq
Uq

x0

Moreover, for x ∈ V :

• x /∈ Up implies f(x) ≥ p, so V ⊂ f−1([p, q]) ⊂ f−1((c, d)).
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• x ∈ Uq implies f(x) ≤ q, so f−1((c, d)) ⊃ V , establishing that f−1((c, d))
is open.

Next, we prove the metrization theorem, which states that ifX is a normal space
with a countable basis, then X is metrizable. We prove this by embedding X
as a subspace of a metric space, namely [0, 1]ω with the product topology (or
uniform topology, which is metrizable).

On the product topology, define the metric d on [0, 1]ω by

d((xn), (yn)) = sup
n

Å
1

n
|xn − yn|

ã
,

and the corresponding basis of open sets is Bϵ((xn)) =
∏
n(xn − nϵ, xn + nϵ).

Notably, for n > ϵ−1, this basis covers all of [0, 1].

Lemma 6.132 (Step 1). There exists a countable collection of continuous func-
tions fn : X → [0, 1] such that for every x0 ∈ X and every neighborhood U ∋ x0,
there exists some n such that fn(x0) > 0 and fn ≡ 0 on X \ U .

Proof. This result follows from Urysohn’s lemma, but we need to be careful to
ensure that countably many functions suffice. Let B = {Bn} be a countable
basis for the topology of X. If x0 ∈ U , where U is open, then there exists some
Bn ∈ B such that x0 ∈ Bn ⊂ U .

Since X is normal, there exists an open set V such that x0 ∈ V ⊂ V ⊂ Bn.
Additionally, there exists Bm ∈ B such that x0 ∈ Bm ⊂ V , which implies that
x0 ∈ Bm ⊂ Bn ⊂ U .

Now, for every pair (m,n) ∈ Z+ ×Z+ such that Bm ⊂ Bn, we apply Urysohn’s
lemma to obtain a continuous function gm,n : X → [0, 1] such that:

gm,n = 1 on Bm, gm,n = 0 on X \Bn.

The countable collection of functions {gm,n}(m,n)∈Z+×Z+
has the desired prop-

erties.

Lemma 6.133 (Step 2). Define F : X → [0, 1]ω by F (x) = (f1(x), f2(x), . . . ).
Then F is an embedding, i.e., it is continuous, injective, and X is homeomorphic
to F (X) ⊂ [0, 1]ω. This will show that the topology on X is the same as the
subspace topology induced from the metric on [0, 1]ω.

Proof. Continuity: The map F is continuous in the product topology because
each component fn is continuous fromX → [0, 1]. Since the product topology on
[0, 1]ω is the coarsest topology making all the coordinate projections continuous,
and each fn is continuous, it follows that F is continuous.
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Injectivity: We now show that F is injective. Suppose x ̸= y ∈ X. Since x
and y are distinct, there exist disjoint open sets U ∋ x and V ∋ y in X. By the
properties of the functions fn, we can find m,n such that:

• fn(x) > 0, and fn = 0 outside of U (hence at y),

• fm(y) > 0, and fm = 0 outside of V (hence at x).

Thus, F (x) ̸= F (y), proving that F is injective.

Homeomorphism: We now show that F is a homeomorphism from X onto
F (X) ⊂ [0, 1]ω. Since F is continuous and injective, it is a bijection between X
and F (X). It remains to prove that F is an open map, i.e., for every open set
U ⊂ X, the image F (U) ⊂ F (X) is open.

Let U ⊂ X be any open set and let x0 ∈ U . Then, there exists n such that
fn(x0) > 0 and fn = 0 outside of U . Define the open set in F (X) as:

Vn = π−1n ((0,∞)) ∩ F (X) = {z = (z1, z2, . . . ) ∈ F (X) | zn > 0}.

Since fn(x0) > 0, we have x0 ∈ F−1(Vn) ⊂ U , implying that F (x0) ∈ Vn ⊂
F (U).

This argument holds for all x0 ∈ U , which implies F (U) is open in F (X).
Therefore, F is an open map, and since it is a continuous bijection, it follows
that F is a homeomorphism.

Thus, X is homeomorphic to F (X) ⊂ [0, 1]ω, and since [0, 1]ω is metrizable, we
conclude that X is metrizable.

6.18 Gluing and Quotients

One effective way to construct interesting topological spaces is by ”gluing” to-
gether simpler spaces.

Example 6.134.

[0, 1]→ S1 → [0, 1]× [0, 1]→ [0, 1]× S1 → S1 × S1.

The construction underlying this process is the quotient topology.

Definition 6.135. Let X be a topological space, A a set, and f : X → A a
surjective map. The quotient topology on A is defined as follows: a subset
U ⊂ A is open if and only if f−1(U) ⊂ X is open.

Exercise 6.136. Verify that this indeed defines a topology on A, and that it is
the finest topology on A such that f is continuous.

Definition 6.137. A map f : X → Y between topological spaces is called a
quotient map if f is surjective, and a subset U ⊂ Y is open if and only if
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f−1(U) ⊂ X is open. In other words, the topology on Y is the quotient topology
induced by the map f : X → Y .

Typically, we start with an equivalence relation ∼ on X, define A = X/ ∼ to
be the set of equivalence classes, and define the map f : X → X/ ∼= A by
f(x) = [x]. Conversely, given any surjective map f : X → A, we can define an
equivalence relation on X by x ∼ x′ ⇐⇒ f(x) = f(x′), so that X/ ∼= A.

Example 6.138. Consider S1 ≃ [0, 1] with the endpoints 0 and 1 glued together.
This is done by setting 0 ∼ 1, so that the set {0, 1} forms a single equivalence
class (while every other point remains a singleton equivalence class). The quo-
tient map is given by f : [0, 1]→ S1, where

f(t) = (cos(2πt), sin(2πt)).

One should check that away from the endpoints, f is a homeomorphism. That
is, for t ∈ (0, 1), f(t) maps to S1 \ {(0, 1)}, so the only points that require
checking are at t = 0 and t = 1. Specifically, for any open set U ∋ (1, 0) in
S1, we have f−1(U) ⊃ {0, 1}, which is open in [0, 1]. This contrasts with the
map g = f |[0,1) : [0, 1) → S1, which is not a quotient map. For instance, if
V = g([0, ϵ)) is open in S1, then g−1(V ) = [0, ϵ) is open in [0, 1), but V is not
open in S1, which would contradict the requirements for g to be a quotient map.
However, for f , f−1(V ) = [0, ϵ) ∪ {1}, which is open in [0, 1].

Example 6.139. Let X1, . . . , Xn be topological spaces, each homeomorphic to
S1, and let xi ∈ Xi be a basepoint for each i. Let A be the quotient space of
the disjoint union

⊔n
i=1Xi by the equivalence relation xi ∼ xj for all i, j. This

space is called the wedge of n circles, often denoted
∨n
i=1 S

1, which is the result
of gluing the circles at their respective basepoints:

x1 x2 x3

A

There is a useful characterization of continuous maps from a quotient space.
Suppose A = X/ ∼ and f : X → Y is a map such that x ∼ x′ =⇒ f(x) = f(x′).
In this case, we can define a map f : X/ ∼→ Y by setting

f([x]) = f(x),

where [x] denotes the equivalence class of x in X/ ∼:

178



X/ ∼

X Y

fp

f

Theorem 6.140. If f : X → Y is a continuous map and x ∼ x′ =⇒ f(x) =
f(x′), then equipping X/ ∼ with the quotient topology, the map f : X/ ∼→ Y
is continuous.

Proof. Let p : X → X/ ∼, p(x) = [x], be the quotient map. Recall that
f([x]) = f(x) for any x ∈ [x], and hence f ◦ p = f .

Now, let U ⊂ Y be an open set. Since f is continuous, f−1(U) is open in X.
We have

f−1(U) = p−1(f
−1

(U)),

which is open in X. By the definition of the quotient topology, we know that
V ⊂ X/ ∼ is open if and only if p−1(V ) is open in X. Therefore, we conclude

that f
−1

(U) ⊂ X/ ∼ is open.

Thus, since p : X → X/ ∼ is continuous: f is continuous if and only if f = f ◦p
is continuous.

Example 6.141. Let X = Rn+1 \ {0}. Define an equivalence relation x ∼ y
if and only if x and y lie on the same line through the origin, i.e., x = αy for
some α ∈ R \ {0}. This defines an equivalence relation, and the quotient space
is the projective n-space RPn = X/ ∼, equipped with the quotient topology. This
space can be interpreted as the space of lines through the origin in Rn+1.

If Y is another topological space, then a continuous map f : RPn → Y is
equivalent to a continuous map f : Rn+1 \ {0} → Y that satisfies f(αx) = f(x)
for all α ∈ R \ {0} and x ∈ X. (More details about RPn can be found in the
homework.)

Example 6.142. Consider various quotients of the unit square X = [0, 1]2. Let
the edge A = {0} × [0, 1], and define equivalence relations involving the edges
A′, B, and B′, as follows:
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A A′

B

B′

1. Gluing A to A′ by (0, t) ∼ (1, t) results in a cylinder. A neighborhood of a
point on the gluing line corresponds to two neighborhoods: one in A near
(0, t) and one in A′ near (1, t) in X.

2. If instead, we glue A to A′ by (0, t) ∼ (1, 1 − t), we obtain a Möbius
band!

3. Gluing A to A′ via (0, t) ∼ (1, t) and B to B′ by (s, 0) ∼ (s, 1) gives a
torus.

4. Gluing (0, t) ∼ (1, t) and (s, 0) ∼ (1 − s, 1), however, gives the Klein
bottle, which cannot be embedded in R3 without self-intersection. We can
draw a picture of it, but it will necessarily be a self-intersecting diagram.
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5. Gluing (0, t) ∼ (1, 1 − t) and (s, 0) ∼ (1 − s, 1) is tricky to visualize, but
the resulting quotient space is actually homeomorphic to RP2.

Exercise 6.143. What happens if we glue (0, t) ∼ (t, 0) and (1, s) ∼ (s, 1)?
What shape does that form?
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7 Algebraic Topology

7.1 Homotopy

Homotopy is the notion of continuous deformation, parametrized by I = [0, 1].

Definition 7.1. f, g : X → Y two continuous maps. A homotopy between f
and g is a continuous map H : X × I → Y such that H(x, 0) = f(x), H(x, 1) =
g(x)∀x ∈ X. If this exists then say f and g are homotopic and write f ∼ g.
If f is homotopic to a constant map, we say it is nullhomotopic.

We want to study paths in topological spaces, ie. f : [0, 1] → X continuous,
f(0) = x0, f(1) = x1.

The above notion is not useful for paths if we don’t fix the end points x0 and
x1 (see HW4).

Better notion: homotopy of paths only considers homotopies which keep the
end points in place.

General notion: pairs (X,A), A ⊂ X subspace, maps of pairs (X,A) f
→ (Y,B) :

f(A) ⊂ B.

x0

x1
f

g

h

f ≃p g homotopic paths, h not homotopic to f and g

Definition 7.2. Two paths f, g : I → X from x0 to x1 are (path) homotopic
if ∃ continuous H : I × I → X such that H(s, 0) = f(s), H(s, 1) = g(s) (homo-
topy) and H(0, t) = x0, H(1, t) = x1 (fix end points: so ∀t ∈ [0, 1], ft = H|I×t
is a path from x0 to x1). Such H is a path homotopy, and we write f ∼p g.

Lemma 7.3. ≃w and ≃p are equivalence relations.

Proof.

• Clearly f ≃ f (constant homotopy H(x, t) = f(x))

• If f ≃ g with homotopy F (x, t), then the reverse homotopy G(x, t) =
F (x, 1− t) gives g ≃ f .
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• Assume f ≃ g with homotopy F (x, t), g ≃ h with homotopy G(x, t), then
the concatenation of these H : X × [0, 1]→ Y defined by

H(x, t) =

®
F (x, 2t) if t ∈ [0, 12 ]

G(x, 2t− 1) if t ∈ [ 12 , 1]
.

These two formulas agree at t = 1
2 (F (x, 1) = g(x) = G(x, 0)) so H is well-

defined and continuous (”pasting lemma” Thm 18.3) and gives a homotopy
f ≃ h.

• In the case of path homotopies, can check the above constructions preserve
the requirements F (0, t) = x0 and F (1, t) = x1, so yield path homotopies.

Example 7.4.

1. If f, g are paths in Rn (or any convex subset of Rn) from x0 to x1, we can
define the straight-line homotopy F (s, t) = (1− t)f(s) + tg(s).

x0

x1

g(s)

f(s)

t

For each s, this connects f(s) to g(s) by a straight line segment. We
conclude: f ≃p g always!

2. The punctured plane X = R2 − {(0, 0)}, let f, g be paths from (−1, 0) to
(1, 0) such that f stays in the upper half plane {(x, y)|y ≥ 0}, g stays in
the lower half plane {(x, y)|y ≤ 0}.

x0

x1

f

g

Then there is no homotopy between f and G in X (We’ll prove this rig-
orously later).
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Definition 7.5. Spaces X,Y are homotopy equivalent if ∃f : X → Y, g :
Y → X such that f ◦ g ≃ idU , g ◦ f ≃ idX homotopic (vs. exact inverse would
be homeomorphic).

Check: this is an equivalence relation.

Definition 7.6. X is contractible if X is homotopy equivalent to {point}.

Example 7.7. Rn (or a convex subset of Rn) is contractible: ie. {0} i
↪→ Rn, r :

x 7→ 0.

Check: i · r = zero map is homotopic to idRn by H(x, t) = tx.

Example 7.8. R2−{0} is not contractible, but homotopy equivalent to S1, via
r is a deformation retraction of X = R2 − {0} onto its subset A = S1 ⊂ X,
ie.

• r : X → A

• r|A = idA (ie. r ◦ i = idA)

• i ◦ r : X → A ⊂ X is ≃ idX .

S1

In this case, i ◦ r(x) = x
|x| homotopic to id by straight line homotopy. Deforma-

tion retraction is a useful special case of homotopy equivalence.

By the same argument, the cylinder S1 × I

and Möbius band
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deformation retract onto ”middle” S1 by sliding points of [0, 1] to midpoint.
(Check: this is consistent with the twisted gluing of I × I, (0, y) ∼ (1, 1 − y).)
Hence they are homotopy equivalent to S1 (and to each other and to R2−{0}).

Example 7.9. R2−{(p, q)} deformation retracts onto wedge of two S1’s (”figure
8” space).

p q

S1 ∨ S1

Or also on ”theta” graph” (homotopy equivalent to ∞, not homeomorphic!)

p q

7.2 The Fundamental Group

We now focus on paths and path homotopy as a way to define an algebraic
invariant of topological spaces (up to homotopy equivalence): the fundamental
group. A group needs a multiplication?

Definition 7.10. If f is a path from x to y and g is a path from y to z, define
a path f ∗ g from x to z running through first f then g (twice as fast):

(f ∗ g)(s) =
®
f(2s) if s ∈ [0, 12 ]

g(2s− 1) if s ∈ [ 12 , 1]
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x

y

zf

g

This product is well-defined on path-homotopy classes, as long as f(1) = g(0):
if f ≃p f ′ and g ≃p g′ then f ∗ g ≃p f ′ ∗ g′ using homotopy

(F ∗G)(s, t) =
®
F (2s, t) if s ≤ 1

2

G(2s− 1, t) if s ≥ 1
2

F G

f ′ g′

f g

t

s

So we define [f ] ∗ [g] = [f ∗ g].

Proposition 7.11. This operation is associative, and has identity and inverses.

There is also the ”fundamental groupoid” of X: the category with objects
= points of X and Mor(x, y) = {path homotopy classes of paths s→ y}.

Remark 7.12. Category: composition is associative and ∃ identity morphisms
x→ x.

Groupoid: all morphisms have inverses.

Now let’s prove the proposition.

Proof. Identity: given x ∈ X, consider the constant path ex : I → X, ex(s) =
x∀s, and let idx = [ex]. We claim that if f is any path from x to y, then
[f ] ∗ idy = idx ∗ [f ] = [f ]. Indeed, there are explicit homotopies f ≃p (f ∗ ey)
and similarly, (ex ∗ f) ≃p f .
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f

t

s

f

y

yx

f ∗ ey

This is through

F (s, t) =

{
f
(

s
1− t

2

)
if s ∈ [0, 1− t

2 ]

y if s ∈ [1− t
2 , 1]

Inverse: given a path f from x to y, define the reverse path f(s) = f(1 − s)
from y to x. [f ] is inverse to [f ], namely ex ≃p f ∗ f and ey ≃p f ∗ f . Indeed:

F (s, t) =

®
f (2ts) if s ∈ [0, t2 ]

f(2t(1− s)) if s ∈ [ t2 , 1]

For given t, this runs forward along f from f(x) = 0 to f(t) at s = 1
2 , then

backwards to f(0) = x at s = 1. For t = 0 get ex, for t = 1 get f ∗ f . (Similarly
for ey ≃p f ∗ f).

Associativity: Given paths f, g, h with f(1) = g(0) and g(1) = h(0), claim
(f ∗ g) ∗ h ≃p f ∗ (g ∗ h). Both run along f then g then h, but with different
parameterizations. The homotopy comes from adjusting for this:

f g h

0 1/4 1/2 3/4 1

(f ∗ g) ∗ h

f ∗ (g ∗ h)
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Let

F (s, t) =


f
Ä

4s
1+t

ä
if s ∈ [0, 1+t4 ]

g(4s− (1 + t)) if s ∈ [ 1+t4 , 2+t4 ]

h
Ä
4s−(2+t)

2−t

ä
if s ∈ [ 2+t4 , 1]

Now let’s finally talk about the fundamental group. Groups are much easier
to study than groupoids! We want to be able to multiply always, not worrying
whether end points match. THus we fix a base point x0 ∈ X and only consider
paths from x0 to itself - ie. loops (based at x0).

Definition 7.13. The set of path homotopy classes of loops based at x0, with
operation ∗ (concatenation), is called the fundamental group of X, denoted
πi(X,x0).

Example 7.14. In Rn (or a convex domain in Rn), every loop at x0 is path
homotopic to the identity (ie. the constant path at x0) by the straight-line ho-
motopy F (t, s) = (1− t)f(s) + tx0. So π1(Rn, x0) = {id}.

x0

f

Definition 7.15. X is simply-connected if X ̸= is path-connected, and for
x0 ∈ X,π1(X,x0) = {1}.

This definition is sensible because π1 is, up to isomorphism, independent of
choice of x0 inside a path component of X (we’ll see this next time).

Let’s discuss the dependence on the base point. If x0, x1 are in the same path-
component of X, let α be a path from x0 to x1. Then for any loop f based at
x0, we get a loop at x1 by taking α ∗ f ∗α and so we get a map α̂ : π1(X,x0)→
π1(X,x1), [f ] 7→ [α ∗ f ∗ α] = [α] ∗ [f ] ∗ [α]. (Recall that ∗ is well-defined on
path-homotopy classes).

α

α
x0

x1

f

Proposition 7.16. α̂ : π1(X,x0)→ π1(X,x1) is a group isomorphism.
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Proof.

• If a, b ∈ π1(X,x0) then

α̂(a ∗ b) = [α̂]−1 ∗ (a ∗ b) ∗ [α]
= [α] ∗ a ∗ [α] ∗ [α] ∗ b ∗ [α]
= α̂(a) ∗ α̂(b)
= α̂(a) ∗ α̂(b)

so α̂ is a group homomorphism.

• Let β = α̂ reverse path from x1 to x0. Then β̂ : π1(X,x1) → π1(X,x0).

We claim β̂ and α̂ are inverses of each other. Indeed: for a ∈ π1(X,x0),

β̂(α̂(a)) = β̂([α] ∗ a ∗ [α])
= [β] ∗ [α] ∗ a ∗ [α] ∗ [β]
= [α] ∗ [α] ∗ a ∗ [α] ∗ [α]
= a

Hence β̂ ◦ α̂ = id (and similarly α̂◦ β̂ = id as well), so α̂ is an isomorphism.

Corollary 7.17. If X is path-connected, then π1(X,x0) is independent of x0
up to isomorphism.

Remark 7.18. When α is a loop at x0, we get an automorphism α̂ of
π1(X,x0). This is in fact an inner automorphism = conjugation by [α]: a 7→
[α]−1 ∗ a ∗ [α].

Let’s consider π1 as a functor: Consider the category of pointed topological
spaces:

• Objects = topological space + choice of base point, (X,x0)

• Morphisms = continuous maps preserving base points: f : (X,x1) →
(Y, y0) means f : X → Y continuous and such that f(x0) = y0.

Proposition 7.19. A continuous map h : (X,x0) → (Y, y0) induces a group
homomorphism h∗ : π1(X,x0)→ π1(Y, y0) defined by h∗([f ]) = [h ◦ f ].

Check:

• If f ≃p f ′ via F then h ◦ f ≃p h ◦ f ′ via h ◦ F . So h∗ is well-defined.

• h ◦ (f ∗ g) = (h ◦ f) ∗ (h ◦ g) (composition with h compatible with concate-
nation). So h∗ is a group homomorphism, h∗([f ] ∗ [g]) = h∗([f ]) ∗ h∗([g]).
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Proposition 7.20. Given (X,x0) h
→ (Y, y0) k

→ (Z, z0), (k ◦ h)∗ = k∗ ◦ h∗ :
π1(X,x0) → π1(Z, z0). Hence π1 is a functor (maps composition k ◦ h to
composition k∗ ◦ h∗).

(This is just (k ◦ h) ◦ f = k ◦ (h ◦ f)). This implies the following:

Corollary 7.21. If h : (X,x0) → (Y, y0) is a homeomorphism, then h∗ is an
isomorphism.

But we can do better! Recall:

• A retraction of X onto a subset A ↪→ X is r : X → A such that
r|A = idA, ie. r◦ i = idA. Then, taking a base point a0 ∈ A, π1(A, a0)

i∗→
←r∗

π1(X, a0) and r∗ ◦ i∗ = id =⇒ Ker(i∗) = {1}, ie. i∗ injective.

• A deformation retraction = assume moreover that i ◦ r : X → X is
homotopic to idX by a homotopy that fixes A. Then we claim i∗, r∗ are
inverse isomorphisms, π1(A, a0) ≃ π1(X, a1).

Example 7.22.

p

S1 → p

constant map

S2 → S2
+

S2
+

(x, y, z) 7→ (x, y, |z|)

Retractions i ◦ r ̸≃ idX .

R− {0} → S1

x 7→ x/|x|
Mobius band → S1

are deformation retractions

More generally, recall a homotopy equivalence if X
f

X
←g

Y such that f ◦ g ≃
idY , g ◦ f ≃ idX .

Theorem 7.23. Homotopy equivalences induce isomorphisms π1(X,x0)

∼→
f∗ π1(Y, f(x0)).
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This follows from the fact that homotopic maps induce the same homeomor-
phisms on π1, namely:

Proposition 7.24. 1. Let h, k : X → Y homotopic via a homotopy H : X×
I → Y such that H(x0, t) = y0∀t. Then h∗ = k∗ : π1(X,x0)→ π1(Y, y0).

2. If the homotopy H doesn’t fix base points, let α be the path y0 → y1
defined by α(t) = H(x0, t) = yt. Then h∗ : π1(X,x0) → π1(Y, y0), k∗ :
π1(X,x0) → π1(Y, y1) (k∗ = α̂ ◦ h∗)are related by the isomorphism α̂ :
π1(Y, y0)→ π1(Y, y1).

Proof.

1. Given a loop f : I → X based at x0, I × I
f×id→ X × I

H→ Y, (s, t) 7→
(f(s), t) 7→ H(f(s), t). H ◦ (f × id) : I × I → Y gives a path homotopy
(based at y0) h ◦ f ≃p k ◦ f , hence h∗([f ]) = k∗([f ]).

2. Now consider I × I →F X × I defined by concatenating (path (x0, 1) →
(x0, t), loop f in X × {t}, path (x0, t) → (x0, 1)) then H ◦ F is a path
homotopy in (Y, y1) from α−1 ∗ (h ◦ f) ∗ α to e ∗ (k ◦ f) ∗ e.

(x0, 1)

(x0, 0)

X × I t

f

F path homotopy in(X × I, (x0, 1))

H

h ◦ fht ◦ f
k ◦ f

y0
α y1

Y

Now let’s prove the theorem.

Proof. If (X,x0)
f→ (Y, y0)

g→ (X,x1) homotopy inverses g ◦ f ≃ idX . By the
proposition,

π1(X,x0) π1(Y, y0) π1(X,x1) π1(Y, y1)
f∗

(g◦f)∗

g∗

(f◦g)∗

f1
∗

where (g ◦ f)∗ = α̂ for some path α : x0 → x1, which is an isomorphism. Hence
f∗ is injective and g∗ is surjective. Similarly, (f ◦ g)∗ isomorphic to π1(Y, y0)→
π1(Y, y1) =⇒ g∗ injective, f1∗ surjective. Hence g∗ is an isomorphism, and
f∗ = (g∗)

−1 ◦ α̂ is also an isomorphism
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7.3 Covering Spaces

At some point we’d like to show π1(S
1) ≡ Z. We’ll do this by introducing a key

tool for the study of π1: the notion of covering spaces.

Definition 7.25. Let p : E → B be a continuous surjective map. We say p
evenly covers an open subset U ⊂ B if p−1(U) =

⋃
α∈A Vα where Vα ⊂ E are

disjoint open subsets, and for each α ∈ A, p|Vα
: V |α → U is a homeomorphism.

The Vα are called slices.

Equivalently, there exists

p−1(U) U ×A

U

homeomorphism∼
φ

p|U pr1

under the discrete topology such that p|U = pr1 ◦ φ.

U

p

p−1(U)

Definition 7.26. If every open point of B has a neighborhood which is evenly
covered by p, we say E is a covering space of B and p is a covering map.
B is called the base of the covering.

Example 7.27. Define p : R→ S1, p(t) = (cos t, sin t). This is a covering map!
For instance consider (1, 0) ∈ S1 and the neighborhood U = {(x, y) ∈ S1|x > 0}.
Then p−1(U) =

⊔
n∈Z(2πn −

π
2 , 2πn + π

2 ) and p is a homeomorphism on each
slice.
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S1

p

Theorem 7.28. p : E → B, q : E′ → B′ covering maps =⇒ p× q : E × E′ →
B ×B′ is a covering map.

Proof. Given (b, b′) ∈ B × B′, let U ∋ b and U ′ ∋ b′ be neighborhoods such
that p−1(U) =

⊔
Va, q

−1(U ′) =
⊔
VB slices, then (p× q)−1(U ×U ′) = p−1(U)×

q−1(U ′) =
⊔
α,β Vα × V ′β union of open slices homeomorphic to U × U ′.

Example 7.29. Consider the torus S1 × S1 Since R covers S1, R2 covers
S1 × S1.

(0, 2π)

(0, 0) (2π, 0)

P × P

If p : E → B is a covering, and B0 ⊂ B is a subspace, then by restriction we
get a covering p−1(B0)→ B0.

Example 7.30. For b ∈ S1 base point on the circle, let B0 = (b×S1)∪(S1×b) ⊂
S1 × S1, the ”figure eight space.”

(b, b) ⊃
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Then we have a covering (p ◦ p−1)−1(B0) → B0, (p × p)−1(B0) = (R × 2πZ) ∪
(2πZ× R) ⊂ R2.

(0, 2π)

(0, 0) (2π, 0)

p ◦ p

where the horizontal lines map to the left circle and the vertical lines map to the
right circle.

Example 7.31. If X any topological space, A a set with discrete topology, then
p1 : X ×A(≃ ⊔α∈AX × {α})→ X is a covering map.

X

A

Example 7.32. Consider S1 = {z ∈ C| |z| = 1}, then p : S1 → S1, z 7→ zn (so
eiθ 7→ einθ) is an n-fold covering.

z 7→ z2

≃

7.4 Lifting

Definition 7.33. Given p : E → B continuous map, a lifting of a continuous

map f : X → B is a map
∼
f : X → E such that p◦

∼
f= f , ie.
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E

X B

p
f̃

f

commutes.

If p : E → B is a covering map, then we can locally life, namely if f(X) ⊂ U ⊂ B
and U is evenly covered, then we can lift f to one of the sheets.

Key point: if p : E → B covering then paths and path homotopies in B always
lift.

Example 7.34. Consider p : R2 → S1, p(x) = (cosx, sinx) and the path f(s) =
(cosπs, sinπs) : I → S1. This has infinitely many possible lifts to paths in R,
depending on where 0 gets lifted to.

0 1

p

f

f̃

S1

−2π −π 0 π 2π 3π... ...

R

Theorem 7.35. p : E → B covering map, f : [0, 1] → B a path starting at

f(0) = b, and e ∈ p−1(b), Then there exists a unique lift
∼
f : [0, 1] → E such

that
∼
f (0) = e.

Proof. Cover B by open sets Uα which are evenly covered by p. Then the
preimages f−1(Uα) are an open cover of [0, 1], which is compact, so ∃ Lebesgue
number δ > 0 such that ∀x, (x, x+ δ) ⊂ f−1(Uα) for some α. Hence we can find
a finite subdivision 0 = s0 < s1 < ... < sn = 1 such that each f([si, si+1]) lies
inside one of the Uα.

Define
∼
f (0) = e. Assume we have defined

∼
f (s) for s ∈ [0, si]. Then we define

∼
f (s) for s ∈ [si, si+1] as follows. Recall f([si, si+1]) ⊂ U for some U which is

evenly covered by p, p−1(U) =
⊔

slices. Let V be the slice which contains
∼
f (si).

The map p|V : V → U is a homeomorphism, so has a continuous inverse and we

can define
∼
f (s) = p−1|V (f(s)) for s ∈ [si, si+1], which extends

∼
f continuously

over [si, si+1]. Repeating the process, we obtain a continuous lift
∼
f : [0, 1]→ E.
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∼
f is unique since for each si there was a unique slice containing

∼
f (si) and a

unique way to lift f |[si,si+1] into it.

Theorem 7.36. Let F : I×I → B be continuous with F (0, 0) = b, p : E → B a

covering map, e ∈ p−1(b), then ∃ unique lift
∼
F : I×I → E such that

∼
F (0, 0) = e.

Proof. The proof is exactly the same, subdividing I × I into squares of side
lengths < δ which map into open subsets of B that are evenly covered, then

constructing the lift
∼
F one square at a time.

Observe: if F is a path-homotopy from f to g (in B), then
∼
F is a path-homotopy

(in E) from
∼
f to

∼
g . Indeed, if F (0, t) = b for all t, then

∼
F (0, t) ∈ p−1(b) which

is a discrete subset of E (one point in each slice), so we must have
∼
F (0, t) = e

for all t (always the same pint). Similarly for the other end point
∼
F (1, t).

On the other hand, loops don’t always lift to loops! But since path-lifting is
unique, given a starting point e0 ∈ p−1(b0), the end point is uniquely deter-
mined. This leads to a key notion:

Example 7.37. We have:

I

f

0 2π

e0 P

S1

b0<

Definition 7.38. The lifting correspondence φ : π1(B, b0) → p−1(b0) for a

covering (E, e0)
p→ (B, b0) defined by φ([f ]) =

∼
f (1), where

∼
f is the lift of f such

that
∼
f (0) = e0.

Question: Why is φ well-defined? (ie. independent of choice of f in its homotopy
class?)

Answer: if F is a path homotopy f ≃p g, then its lift
∼
F starting at e0 is a path

homotopy between
∼
f and

∼
g , so

∼
f (1) =

∼
g (1).
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Example 7.39. For the covering p : R→ S1. taking b0 = (1, 0), e0 = 0 ∈ R, if
f loops around the circle k times (counting counterclockwise) then its lift

∼
f ends

at φ([f ]) =
∼
f (1) = 2πk. This gives a map π1(S

1, (1, 0))→ 2πZ (surjective.)

Now we know, at last, that S1 isn’t simply connected?

Proposition 7.40. If E is path connected then φ : π1(B, b0) → p−1(b0) is
surjective.

Proof. Let e ∈ p−1(b0), g : I → E a path from e0 to e, then f = p ◦ g : I → B

is a loop at b0 whose lift starting at e0 is
∼
f= g. So φ([f ]) = e.

Recall the following property:

Proposition 7.41. If X is simply connected then any two paths f, g from x0
to x1 are path-homotopic.

Proof. f ∗ g is a loop at x0, so f ∗ g ≃p ex0
(X simply connected). Then

f ≃p f ∗ (g ∗ g) ≃p (f ∗ g) ∗ g ≃p ex0
∗ g ≃p g.

This implies the following theorem.

Theorem 7.42. If p : E → B is a covering and E is simply connected, then
φ : π1(B, b0)→ p−1(b0) is a bijection.

Proof. By the above, φ is surjective. If φ([f ]) = φ([g]), then
∼
f ,
∼
g are paths in

E starting at e0 and ending at the same point e1. Since E is simply connected,
∼
f≃p

∼
g . Hence p◦

∼
f≃p p◦

∼
g , ie. f ≃p g, so [f ] = [g]. So φ is injective.

Theorem 7.43.
π1(S

1) ≃ Z

Proof. Consider the covering map p : (R, 0)→ (S1, (1, 0)), p(x) = (cos 2πx, sin 2πx).
Since R is simply connected, by the above theorem the lifting correspondence

φ : π1(S
1, (1, 0))→ p−1((1, 0)) = Z

is a bijection. We just need to show it is a group homomorphism. Let [f ], [g] ∈
π1(S

1) and let φ([f ]) = n, φ([g]) = m, ie. the lifts
∼
f and

∼
g starting at 0 ending

at n and m. Define a new path h : I → R by h(s) = n+
∼
g (s): this is the lift of
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g starting at n =
∼
f (1). Then

∼
f ∗h is a well-defined path in R, from 0 to n+m,

and it is the lift of f ∗ g starting at 0. So φ([f ∗ g]) = n+m = φ([f ]) + φ([g]).

Remark 7.44. We can show similarly for a torus, π1(S
1×S1) ≃ Z×Z, using

covering p× p : R2 → S1 × S1.

7.5 The Brouwer Fixed Point Theorem

Let Bn denote the closed ball of radius 1 in Rn, with boundary the unit sphere
Sn−1. Recall that, if A ⊂ X, a retraction r : X → A is a continuous map such
that r(a) = a∀a ∈ A.

Theorem 7.45. There is no retraction of B2 onto S1.

B2 x0

S1

Proof. If r : B2 → S1 is a retraction, then i ◦ r = idS1 , so

π1(S
1, x0)

→
i∗ π1(B

2, x0)
→
r∗ π1(S

1, x0)

and we have i∗ ◦ r∗ = trivial homomorphism ̸= id : Z→ Z, contradiction.

Remark 7.46. The more elementary way to say this: given a nontrivial loop
f in S1, i ◦ f is nullhomotopic in B2, via some homotopy from f to ex0

. Then
r ◦ H is a path-homotopy r → ex0

in S1, contradiction. With more algebraic
topology, similarly ∄ retraction Bn → Sn−1∀n.

This implies the Brouwer fixed point theorem:

Theorem 7.47 (Brouwer Fixed Point Theorem). If f : B2 → B2 is continuous,
then ∃x ∈ B2 such that f(x) = x.

Remark 7.48. With more algebraic topology, the same holds for continuous
maps Bn → Bn∀n.
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Proof. Assume f : B2 → B2 continuous, f(x) ̸= x∀x ∈ B2. Then define
h : B2 → S1 by mapping each p ∈ B2 to the point where the ray from f(P ) to
P hits ∂B2 = S1.

h(q)

h(p)

f(q)

f(p)

p

q

Formula: h(p) = p + t(p − f(p)), where t > 0 such that ||h(p)||2 = 1. We can
solve this using the quadratic formula, so t does depend continuously on p.

This gives a continuous map h : B2 → S1, moreover if p ∈ S1 then h(p) = p, so
we get a retraction B2 → S1. Contradiction.

A loop in (X,x0) is defined as a map I → X such that {0, 1} → {x0}, but since
I/0 ∼ 1 is homeomorphic to S1, can also think of it as a map (S1, p0)

f→ (X,x0).
So π1(X,x0) tells us about homotopy classes of maps (S1, p0)→ (X,x0)... but
also S1 → X.

Lemma 7.49. Let h : S1 → X continuous, then the following are equivalent:

1. h is nullhomotopic

2. h extends to a continuous map k : B2 → X (k|∂B2=S1 = h)

3. h∗ : π1(S
1)→ π1(X) is the trivial homomorphism.

Proof. 1 =⇒ 2: the key observation is that S1 × I2 p→ B2, (x, t) 7→ t · x is a
quotient map, ie. B2 ≃ S2 × I/(x, 0)→ (x′, 0)∀x, x′.
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So: given a homotopy H : S2×I → X between a constant map and h : S′ → X,
H(x, 0) = H(x′, 0)∀x, x′ ∈ S1. It factors through the quotient

S1 × I B2 X
p

H

∃k

In other terms: we can define k : B2 → X by k(t · x) = H(x, t) despite angu-
lar coordinate x not being well-defined at t = 0, and k is continuous. So by
construction k|S′ = h.

2 =⇒ 3: if h = k|S′ then one can write h = k ◦ i where i : S1 → B2 is the
inclusion. By functoriality of π1, h∗ = k∗ ◦ i∗ :

π1(S
1) π1(B

2) π1(X)
i∗

h∗

k∗

but π1(B
2) = {1}, so h∗ is trivial and so is h∗.

3 =⇒ 1: h∗ : π1(S
1)→ π1(X) trivial =⇒ the loop f : I → X, s 7→ h(e2πis) (=

h◦ (standard loop going around S1)) represents the trivial element of π1(X,x0)
(x0 = h(1)) hence ∃ path-homotopy F : I × I → X from f to constant loop
at x0; note that F (0, t) = F (1, t) = x0∀t ∈ I. Recall I × I/(0, t) ∼ (1, t)∀t is
homeomorphic to S1 × I. This implies F factors through the quotient:

I × I S1 × I Xp

F

∃H

H gives a homotopy from h to constant map.

x0 x0F

constant loop

constant

x0

h

H

Exercise 7.50. The inclusion S1 ↪→ R2 − {0} and the identity map S1 → S1

aren’t nullhomotopic, using lemma and i∗ nontrivial on π1.
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Let’s look at another application: the fundamental theorem of algebra.

Theorem 7.51 (The Fundamental Theorem of Algebra). f(z) = zd+ad−1z
d−1+

...+ a0 complex polynomial of deg d > 0 =⇒ ∃z0 ∈ C such that f(z0) = 0.

Proof. For |z| = r > 0 the term zd dominates (as soon as rk > d|ad−k|∀1 ≤ k ≤
d) so that |ad−kzd−k| < 1

dr
d, so straight line segment f(z)→ zd doesn’t cross 0.

This implies F (z, t) = (1− t)f(z) + tzd has no zeroes on {|z| = r} × I. Hence:

the maps S1 → S1 defined by eiθ 7→ f(reiθ)
|f(reiθ) and eiθ 7→ eniθ are homotopic via

(eiθ, t) 7→ F (reiθ, t)/|F (reiθ, t)|. These are nontrival on π1(S
1) (in fact, map

generator 1 ∈ Z to d ∈ Z>0) hence don’t extend over B2. But if f had no roots,

z 7→ f(rz)
|f(rz)| would be such an extension.

Now, we’ll provide a short introduction to the Seifert-Van Kampen Theorem.

Question: Assume X = U ⊂ V , with U and V open subsets, and we know
π1(U) and π1(V ). Can we find π1(X)? Eg.

U

V

S2 = U ∪ V, π1(U) and π(V ) trivial, then

U

V
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figure 8 = U ∪ V , each of U and V has homotopy type of S1.

The Seifert-Van Kampen Theorem, which we’ll see soon, gives a general way to
calculate π1(X) in this situation. For now, we’ll just prove a weaker (and easier
version).

Theorem 7.52. Suppose X = U ∪ V , U and V open, U ∩ V path-connected,
x0 ∈ U ∩ V . Let i : U ↪→ X and j : V ↪→ X be the inclusion maps. Then the
images of i∗ : π1(U, x0) → π1(X,x0) and j∗ : π1(V, x0) → π1(X,x0) generate
π1(X,x0).

Ie: every element of π1(X,x0) can be expressed as a product of elements in
Im (i∗) and Im (j∗), or every loop in (X,x0) is path-homotopic to a composition
of loops entirely contained in either U or V .

Proof. Let f : I → X be a loop based at x0. [0, 1] = f−1(U) ∪ f−1(V ) open
cover, [0, 1] compact.

U

V

x0

f1

f3

f2

f(ai)

using the Lebesgue number lemma, we can subdivide [0, 1] into 0 = a0 < a1 <
... < an = 1 such that f([ai−1, ai]) is contained in either U or V . Eliminating
unnecessary ai from the list, we can assume U and V alternate along the way,
and in particular f(ai) ∈ U ∩V ∀i. Let fi = f |[ai−1,ai] so that [f ] = [f1]∗ ...∗ [fn].
For each i, choose path αi in U ∩ V from x0 to f(ai) (take α0 = αn = constant
path at x0). Then [f ] = [α0 ∗ f1 ∗ α−11 ] ∗ [α1 ∗ f2 ∗ α−12 ] ∗ ... ∗ [αn−1 ∗ fn ∗ α−1n ],
and we are done.

Corollary 7.53. X = U ∪ V with U and V open and simply-connected, U ∩ V
path-connected =⇒ X is simple-connected.
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Example 7.54. Let X = Sn, n ≥ 2, and U = Sn − (0, 0, ..., 0, 1), V = Sn −
(0, ..., 0,−1). Then U and V are homeomorphic to Rn via stereographic pro-
jection f : U → Rn mapping each point x ∈ U to the point where the line in
Rn+1 through N and x intersects the equatorial plane Rn × {0}

Rn+1

Rn × {0}

f(p)

p

N

f(q)

q

Sn

ie. f(x) = 1
1−xn+1

(x1, ..., xn) (change − to + for V
∼→ Rn). Hence: U and

V , homeomorphic to Rn are simply connected and U ∩ V homeomorphic to
Rn − {point} is path-connected (n ≥ 2)

Corollary 7.55. Sn is simply connected for n ≥ 2.

Corollary 7.56. An open subset in Rn∀n ≥ 3 cannot be homeomorphic to an
open subset in R2.

Indeed: U ⊂ Rn open, p ∈ U =⇒ ∃ open ball p ∈ Br(p) ⊂ U , and Br(p)− {p}
deformation retracts onto a sphere =⇒ Br(p) − {p} is simply connected.
Whereas q ∈ V ⊂ R2 open =⇒ ∀ open q ∈ N ⊂ V,N − {q} can’t be simply
connected (retracts to circle). The same argument for Rn for n ≥ 2 vs R is
easier, only uses connectedness.

Example 7.57. Recall from HW that the quotient of Sn by x ∼ −x, p : Sn →
Sn/ ∼≃ RPn is a degree 2 covering map. Also recall: lifting correspondence
π1(RPn, b0) → p−1(b0) = {2 points} surjective because Sn connected; injective

because Sn is simply connected if n ≥ 2. (If a loop in RPn lifts to a loop
∼
f in

Sn, then
∼
f is homotopic to constant loop in Sn, and projecting by p, p◦

∼
f= f

is homotopic to a constant loop in RPn.) For n ≥ 2, π1(RPn) is a group with 2
elements, hence isomorphic to Z/2Z.

Example 7.58. Let X be the figure 8 space oriented counterclockwise. We can
cover this by open sets U, V which have deformation retractions to S1, U ∩ V
connected. By theorem, π1(X) is generated by the images of two maps from Z,
ie. can express every loop in terms of powers of [a] and [b] (a, b loops around
each S1) generators of π1(U), π1(V ), ie. every element is a product of [a]±1’s
and [b]±1’s. But we don’t know the relations between [a] and [b]. We can show
that [a] and [b] don’t commute - [a] ∗ [b] ̸= [b] ∗ [a]. One way to do this is by
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looking at covering map

>

b b bb

> > > > >... ...
a a

a a a

>
>

>

>

>

>

a

a

a

a

>
>

...
...

e0

(0, 1)

(1, 0)

>

x0

>b a

p

X

>

The lift of a∗b starting at e0 ends at (1, 0) and the lift of b∗a starting at e0 ends
at (0, 1), hence [a] ∗ [b] ̸= [b] ∗ [a] so π1(X,x0) is not abelian. In fact, we’ll show
later that it is the free group generated by [a] and [b], ie. elements are arbitrary
words in [a]±1 and [b]±1 with no relations whatsoever (except [a]−1 ∗ [a] = 1,
etc.)

7.6 Equivalence and More About Covering Spaces

Question: Let p : (E, e0) → (B, b0) covering map. How are π1(E) and π1(B)
related? (Always assume E and B are path connected).

Theorem 7.59. p∗ : π1(E, e0)→ π1(B, b0) is an injective homomorphism.

Proof. If
∼
h is a loop at e0 and p∗([

∼
h]) = id, then ∃ path-homotopy H : I×I → B

from p◦
∼
h to the constant loop at b0. Its lift

∼
H: I× I → E starting at e0 is then

a path-homotopy from
∼
h to the constant loop, so [

∼
h] = id.

Hence, the covering p : E → B gives a subgroup H : Im (p∗) = π1(B, b0), with

π1(E, e0)
iso∼
→
p∗
H.

It turns out that:

1. The subgroup H ⊂ π1(B, b0) determines the covering p.

2. Assuming B is path-connected and ”sufficiently nice” (”semi-locally sim-
ply connected”), for each subgroup H of π1(B, b0),∃ covering p : E → B
such that p∗(π1(E)) = H.

Now let’s discuss equivalence of covering spaces.
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Definition 7.60. Let p : E → B, p′ : E′ → B coverings. p and p′ are equiva-
lent if ∃ homeomorphism h : E → E′ such that p = p′ ◦ h:

E E′

B

h

p p′

Then we say h is an equivalence of coverings.

∀b ∈ B, h gives a bijection p−1(b)
∼→ p′−1(b) between the sheets of p and p′.

By continuity, over a connected evenly covered subset U ⊂ B this looks like
p−1(U) ≃ U×a →

id×σ U×A′ ≃ p′−1(U), where σ : A→ A′ is a bijection between
sets of sheets.

Goal: if two coverings have same corresponding subgroups of π1(B) then they
are equivalent. For this we need a general lifting lemma.

Definition 7.61. A space X is locally path-connected if ∀x ∈ X,∀U ∋ x, ∃V ⊂
U path-connected neighborhood of x.

Counterexample: ({ 1n , n ≥ 1} ∪ {0}) × R ∪ R × 0 in R2 is path-connected but
not locally path-connected.

From now on, assume p : E → B covering, E and B path-connected and locally
path-connected.

Theorem 7.62 (Lifting Lemma for Loops). A loop f in (B, b0) lifts to a loop
in (E, e0) if and only if [f ] ∈ p∗(π1(E, e0)) ⊂ π1(B, b0).

Proof. If f can be lifted to
∼
f of f at e0 is a loop in E, then [f ] = [p◦

∼
f ] = p∗([

∼
f

]) ∈ p∗(π1(E)).

If [f ] = p∗([
∼
g ]) for some loop

∼
g in (E, e0) then p◦

∼
g is path-homotopic to f .

Lifting this path-homotopy to E, we get a path-homotopy in E between
∼
g and

the lift
∼
f of f . Since

∼
g is a loop, so is

∼
f .

Theorem 7.63 (General Lifting Lemma). Let p : E → B covering map,
p(e0) = b0. Let Y be path-connected and locally path-connected, and f : Y → B

continuous map such that f(y0) = b0. Then f can be lifted to
∼
f : Y → E with

∼
f (y0) = e0 if and only if f∗(π1(Y, y0)) ⊂ p∗(π1(E, e0)). If it exists, the lift is
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unique:

(E, e0)

(Y, y0) (B, b0)

p
f̃

f

Proof. If f can be lifted to
∼
f , then f = p◦

∼
f so

f∗(π1(Y, y0)) = p∗(
∼
f∗ (π1(Y, y0))) ⊂ p∗(π1(E, e0)).

Conversely, assume the condition holds, and let y1 ∈ Y . Choose a path α from

y0 to y1 in Y . Lift f ◦ α : I → B to a path in E starting at e0. Define
∼
f (y1) =

the end point of this path. (this is the only possibility for
∼
f (y1) if a continuous

lift exists, since the unique lift of f ◦ α will then be
∼
f ◦α). It remains to check

that
∼
f is well-defined and continuous.

Well-defined. Let β be a different path in Y from y0 to y1. Then α∗β is a loop
in (Y, y0), f◦(α∗β) loop in (B, b0), representing f∗[α∗β] ∈ Im f∗ ⊂ p∗(π1(E, e0))
so it lifts to a loop in E (by previous theorem). So f ◦ α lifts to a path from

e0 to
∼
f (y1) as defined above, and f◦

∼
β lifts to a path from

∼
f (y1) back to e0,

hence f ◦ β lifts to a path from e0 to
∼
f (y1). Thus

∼
f (y1) is independent of the

choice of path y0 → y1.

Continuity of
∼
f : enough to check on a neighborhood of y1. Let V ⊂ B be an

evenly covered neighborhood of f(y1), and using a local path-connectedness of
Y , can find U ⊂ f−1(V ) path-connected neighborhood of y1 in Y . Let W ⊂
p−1(V ) ⊂ E be the slice containing

∼
f (y1); p|W = π :W

∼→ V homeomorphic.
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Y

y0

α γ
y1

y

U

e0

flf ◦ α
f̃(y)

y1

W

B
b0

f ◦ α
f(y1) f(y)

V

f̃(γ1) E

≃ πP

f

f̃

For y ∈ Y,∃ path γ in U from y1 to y, and π−1 ◦ f ◦ γ is a lift of f ◦ γ to

W ⊂ E starting at
∼
f (y1). And so the lift of f ◦ (α ∗ γ) to E starting at e0 is

composition of
∼

f ◦ α (from e0 to
∼
f (y1)) and π

−1◦f ◦γ from
∼
f (y1) = π−1(f(y1))

to π−1(f(y)). Hence
∼
f (y) = π−1(f(y)). So

∼
f |U = π−1 ◦ f |U is continuous, and

hence
∼
f is continuous.

Now we can tell when two coverings are equivalent, as long as all maps preserve
base points!

Theorem 7.64. Let p : E → B, p′ : E′ → B covering maps with p(e0) =
p′(e′0) = b0. There is an equivalence h : E

∼→ E′ such that h(e0) = e′0 if and
only if the subgroups H = p∗(π1(E, e0)) and H ′ = p′∗(π1(E

′, e′0)) are equal (the
same subgroup of π1(B, b0)). Moreover, if h exists it is unique.

Proof. =⇒ : ifH : E → E′ is an equivalence with h(e0) = e′0, then h∗(π1(E, e0)) =
π1(E

′, e′0). The conclusion then follows from p′∗ ◦ h∗ = p∗.

⇐⇒: assume H = H ′. Then by lifting lemma, ∃ unique base point preserving
lifts

E′

E B

p′
h

p
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E

E′ B

ph′

p′

so p′ ◦ h = p and p ◦ h′ = p′. Now p ◦ h′ ◦ h = p′ ◦ h = p, so h′ ◦ h : E → E is a
lifting

E

E B

ph′◦h

p

But so is idE . By uniqueness of lifting, we get h′◦h = idE . Similarly h◦h′ = idE′ .
So h is a homeomorphism such that p′◦h = p, hence an equivalence of coverings.

Example 7.65. These are all subgroups of Z, so every connected covering of
S1 is equivalent to exactly one of these.

• pk : S1 → S1, z 7→ zk, (pk)∗ : π1(S
1, b0) → π1(S

1, b0) multiplication by
k =⇒ H = kZ ⊂ Z.

• p0 : R→ S1, x 7→ (cosx, sinx), (p0)∗(π1(R)) = {0}.

What if we consider equivalence h : E → E′ that don’t map e0 to e′0?

Then the corresponding subgroups of π1(B, b0) are conjugate.

Indeed, if we change the base point in a (path-connected) covering spae p :

E → B... if e0, e1 ∈ p−1(b0) and
∼
α is a path from e0 to e1, recall π1(E, e0)

∼→
π1(E, e1), [h] 7→ [α−1 ∗ h∗ ∼α]. Then α = p◦ ∼α is a loop in (B, b0), so whenever
[p ◦ h] = p∗([h]) ∈ H0 = p∗(π1(E, e0)) =⇒ [α]−1 ∗ [p ◦ h] ∗ [α] ∈ H1 =
p∗(π1(E, e1)).
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E

h

e0 α̃

e1

B

h

p ◦ h

αb0

>

>

>

>

So [α]−1H0[α] ⊂ H1 and similarly in the reverse direction [α]H1[α]
−1 ⊂ H0,

hence equal.

Conversely, if H0, H1 are conjugate subgroups of π1(B, b0), ie. ∃[α] such that

H1 = [α]−1HU [α] and H0 = p∗(π1(E, e0)) then let
∼
α= lift of α to a path in E

starting at e0, and let e1 =
∼
α (1), then H1 = p∗(π1(E, e1)).

This implies the following theorem:

Theorem 7.66. p : E → B, p′ : E′ → B covering maps, p(e0) = p′(e′0) =
b0. Then p and p′ are equivalent ⇐⇒ the subgroups H = p∗(π1(E, e0)), H

′ =
p′∗(π1(E

′, e′0)) of π1(B, b0) are conjugate.

7.7 Universal Enveloping Space

Definition 7.67. Let p0 : E0 → B covering and E0 is simply connected, say
E0 is a universal covering of B.

Note: this corresponds to the trivial subgroup p0∗(π1(E0)) = {1} ⊂ π1(B),
unique up to equivalence by the above.

Example 7.68.

• p : R→ S1, p× p : R2 → S1 × S1 = torus

• Infinite tree →∞, (horizontal edges → a, vertical edges → b)
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Theorem 7.69. Let p0 : E0 → B universal covering, p′ : E′ → B any path-
connected covering, then ∃ covering map q0 : E0 → E′ such that p′ ◦ q0 = p0
and q0 is the universal covering of E′

q0 is constructed by lifting:

E′

E0 B

p′
q0

p0

∃ since p0∗(π1(E0)) = {1} ⊂ p′∗(π1(E
′)) and can show that it’s a covering map

as well.

So in fact, if B has a universal covering, all other coverings can then be obtained
as quotients.

Some spaces have no universal coverings!

Example 7.70.

• Hawaiian earrings =
⋃
n≥1 Cn circles of radius 1

n called
(
1
n , 0
)
inside R2.

0 c2

c1

Any covering space must evenly over a neighborhood of the origin, which presents
it from being simply connected. (for n sufficiently large, loop around Cn lifts to
a loop).

If one avoids such pathological examples - assuming B is (semi) locally simply
connected, can build universal cover as space of pairs (b, γ) where b ∈ B, γ =
homotopy class of path b0 → b.

This has a preferred topology for which any simply connected neighborhood
U ∋ b is evenly covered: if b′ ∈ U , adding a path b → b′ inside U on its
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inverse gives a preferred bijection {homotopy classes of paths b0 → b} ⇐⇒
{homotopy classes of paths b0 → b′} independent of choice of path b→ b′ inside
U since U is simply connected.

7.8 Free Products

Given X = U ∪ V , U, V, U ∩ V ⊂ X open and path connected, this describes
π1(X) in terms of π1(U) and π1(V ). We’ve already seen a simple statement:

π(X) is generated by the images of π1(U)
i∗→ π1(X), π1(V )

j∗→ π1(X)

To formulate the theorem, we need to discuss the notion of free product of
groups.

Assume G is a group, G1, ..., Gn subgroups of G which generate G, ie. any
x ∈ G can be written as x = x1...xm where each xi is in some Gj . Also assume
Gj ∩Gk = {1}∀j ̸= k, (x1, ..., xm) is called a word of length m that represents
x.

Say (x1...xm) is reduced word if no Gj contains two consecutive elements
xi, xi+1. (in particular if m ≥ 2, no xi can be = 1). (else can reduce to a
shorter word (x1, ..., xi, xi+1, ..., xm)).

Definition 7.71. G is the free product of the subgroups G1, ..., Gn, denoted
G = G1 ∗ ... ∗ Gn if Gi generate G, Gi ∩ Gj = {1}, and every element of G is
represented by a unique reduced word.

Example 7.72. Z2 is not the free product of its two factors: denoting by a and
b the two generators (a = (1, 0), b = (0, 1)), ab = ba is represented by reduced
words (a, b), (b, a), (a2, b, a−1), ...

Alternative characterization (universal property): G is the free product of sub-
group Gj ’s iff, for any group H and any homomorphisms hj : Gj → H,∃ unique
homomorphism h : G→ H such that

Gj G H

hj

h

commutes ∀j.

The point is: uniqueness of expression allows us to defined h(x1, ..., xm) =
hj1(xi)...hjm(xm).

Definition 7.73. The external free product of groups is the group G plus in-

jective homomorphisms Gj
ij→ G such that G is the free product of the subgroups

ij(Gj).

Proposition 7.74. The external free product always exists and is unique up to
isomorphism. It can be constructed as set of reduced words in Gj’s (with product
= concatenate and reduce) and satisfies universal property.
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In particular the free group on the elements {aj} is defined to be the external
free product of cyclic groups Gj = {anj |n ∈ Z}(≃ Z).

7.9 Seifert-Van Kampen

Let X = U ∪V , U and V open in X, U ∩V path-connected ∋ x0. The inclusions

U

U ∩ V X

V

j1i1

i2 j2

induce homomorphisms of π1.

By the universal property of free products, ∃ unique homomorphism h such that

π1(U, x0)

π1(U, x0)× π1(V, x0) π1(X,x0)

π1(V, x0)

j1∗

h

j2∗

commutes.

(Define h on words in elements of π1(U, x0) and π1(V, x0) using j1∗ and j2∗ on
each component of the word!)

Theorem 7.75 (Seifert-Van Kampen). The homomorphism h defined above
is surjective, and its kernel N is the smallest normal subgroup of π1(U, x0) ∗
π1(V, x0) which contains all elements of the form i1∗(g)

−1∗i2∗(g)∀π1(U ∩V, x0),
ie. π1(X,x0) ∼= π1(U, x0) ∗ π1(V, x0)/N .

Corollary 7.76. If U ∩ V is simply connected then π1(X,x0) ∼= π1(U, x0) ∗
π1(V, x0)

Corollary 7.77. If V is simply connected then π1(X,x0) ∼= π1(U, x0)/N where
N is the smallest normal subgroup containing the image of i1∗ : π1(U ∩V, x0)→
π1(U, x0).

Example 7.78. Figure 8 =⇒ U, V deformation retract onto circles, U ∩
V contractible. Hence π1(X,x0) ∼= π1(U, x0) ∗ π1(V, x0) ∼= Z × Z free group
generated by loops around the two circles.
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Example 7.79. By induction, wedge of n circles:

X =
⋃n
i=1 Si, Si homeomorphic to S1∀i, Si ∩ Sj = {x0} =⇒ π1(X,x0) = free

group on n generators ai = loops generating π1(Si, x0). (Similarly for a finite
graph with n loops).

7.10 Fundamental Groups of Surfaces

We can also calculate these using Van Kampen!

Example 7.80. Let’s calculate π1 of a torus (easiest is still R2 −→
p×p T for an

universal cover T ). T ≃ I × I/(x, 0) ∼ (x, 1)∀x, (0, y) ∼ (1, y)∀y.

p

Let U = T\{p}, V = open ball of radius < 1
2 around p.

U deformation retracts onto wedge of two circles

/ ∼

, V is simply connected, and U ∩ V ≃ D2-point has boundary type of S1.

Using corollary 2 above: π1(T ) ≃ π1(U)/N , where N is the normal subgroup
generated by the image of the loop f which generates π1(U ∩ V ) (and its conju-
gates).

π1(U) is a free group on generators a, b; and then the image of [f ] under
the inclusion U ∩ V ↪→ U is aba−1b−1. So we set aba−1b−1 = 1, ie. ab =
(aba−1b−1)ba = ba, get abelian group ≃ Z2. So

π1(T ) ∼= ⟨a, b|ab = ba⟩ ∼= Z× Z.

Example 7.81. Similarly for π1(RP2), using RP2 ≃ S2/x ∼ −x, sphere ≃
B2/ ∼ with x ∼ −x∀x ∈ S1 = ∂B2. Now write RP2 = U ∪ V,U = RP2 −
{p}, V = disc centered at p.

U deformation retracts onto the boundary S1/x ∼ −x
∼
−→
z 7→z2

S1 so π1(U) ∼= Z
with generator c. V is simply connected: U ∩ V ∼= D2-point has homotopy type
of S1.
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π1(RP2) ∼= π1(U)/N , N normal subgroup generated by image of generator [f ] ∈
π1(U ∩ V ) under inclusion, which is c2. So

π1(RP2) = ⟨c|c2 = 1⟩ ≃ Z/2Z.

Example 7.82. Klein bottle: recall K = I × I/ ∼, (x, 0) ∼ (x, 1), (0, y) ∼
(1, 1− y).

p

f

Again write K = U ∪ V,U = K − {p}, V = disc centered at p =⇒ π1(K) ∼=
π1(U)/N .

U retracts on the boundary ∼= figure 8 space so π1(U) ≃ free group on generators
a, b.

U ∩ V has homotopy type of S1, and the generator [f ] ∈ π1(U ∩ V ) ∼= Z maps
under inclusion to aba−1b.

So π1(K) ∼= ⟨a, b|aba−1b = 1⟩ which is not abelian (ab = b−1a, not ba) ie
aba−1 = b−1 so b is conjugate to its inverse.

But this contains an index 2 subgroup H generated by az and b, which com-
mute! (aba−1 = b−1 =⇒ taking inverses, ab−1a−1 = b, so a2ba−2 =
a(aba−1)a−1ab−1a−1 = b =⇒ a2b = ba2 so the subgroup H ∼= Z2).

We can show, by rearranging letters via ab = b−1a, this contains all words with
even number of a’s so it is an index 2 subgroup.

This subgroup corresponds to a degree 2 covering map by the torus, T → K!

→ K
T

Ie. map (x, y) ∈ I × I/ ∼T to (2x, y) if x ≤ 1
2 and (2x − 1, 1 − y) if x ≥ 1

2 in
I × I/ ∼K .
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Remark 7.83. Cool fact that this relates to: if you coat a Klein bottle in paint
all over, the paint forms a torus.
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8 Real Analysis

8.1 Review: Real Functions

Recall that the basic object of real analysis are functions f : R→ R (or a subset
of R, the domain of f) and their continuity, differentiability, integrals... plus
sequences and series of functions:

Definition 8.1. We say that a function f is continuous at a point x if

∀ϵ > 0,∃δ > 0 such that for all y, |x− y| < δ =⇒ |f(x)− f(y)| < ϵ.

This is equivalent to
lim
t→x

f(t) = f(x).

More general limits include:

lim
x→∞

f(x), lim
t→x,t<x

f(t), . . .

Infinite limits and limits at infinity can be understood as taking place in the
compactification R ∪ {±∞}. For example,

lim
x→0,x>0

f(x) =∞

means

∀M > 0,∃δ > 0 such that for all x, 0 < x < δ =⇒ f(x) > M.

Using compactness and connectedness of [a, b] ⊂ R, we’ve already seen:

Definition 8.2. A function f : [a, b]→ R is uniformly continuous if

∀ϵ > 0,∃δ > 0 such that for all x, y ∈ [a, b], |x− y| < δ =⇒ |f(x)− f(y)| < ϵ.

This means that the same δ works for all x ∈ [a, b].

Theorem 8.3 (The Intermediate Value Theorem). If f([a, b]) is connected,
then it contains all reals between f(a) and f(b)

Theorem 8.4 (The Extreme Value Theorem). If f([a, b]) is compact, then it
is bounded and contains its inf and sup.

We have considered two topologies on spaces of functions so far (e.g., for
R→ R, and similarly for Rn → Rm):

• Pointwise topology: A sequence of functions fn → f pointwise if for
every x ∈ R, fn(x)→ f(x).

• Uniform topology: A sequence of functions fn → f uniformly if ∥fn −
f∥∞ := supx |fn(x)− f(x)| → 0.
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We have also seen that if fn is continuous and fn → f uniformly, then f is
continuous. Furthermore, spaces of functions such as R → R or [a, b] → R (or
Rn → Rm) with the uniform topology are complete metric spaces. The space
of continuous functions, C0, is a closed subspace and hence complete as well.
However, unless we restrict to bounded functions, sup |f − g| does not quite
form a metric.

Analysis often involves various spaces of functions (e.g., bounded, integrable,
continuous, differentiable) and different topologies (often, but not always, met-
rics) defined on them.

Beyond polynomials and a few other explicit examples, many functions are
defined as limits of sequences or series. A key example (also relevant for complex
analysis) is the power series, which takes the form

f(x) =

∞∑
n=0

anx
n,

where an ∈ R are coefficients. (Simply writing this expression does not guar-
antee that the series converges for any x ̸= 0.) We will need to understand
convergence (pointwise, uniformly over certain subsets of R, etc.), so basic facts
about real sequences and series in R will come in handy.

8.2 Review: Sequences and Series in R
Since R is complete:

Proposition 8.5. A sequence in R converges if and only if it is Cauchy.

Since [−M,M ] is compact:

Proposition 8.6. Any bounded sequence in R has convergent subsequences.

Proposition 8.7. A monotonic sequence (e.g., an ≤ an+1) converges if and
only if it is bounded. In this case,

lim
n→∞

an = sup{an}.

Sometimes we write an → ±∞; this can be interpreted as convergence in the
compactification R ∪ {±∞}. Such a sequence is still said to diverge.

Definition 8.8. If (an) is bounded, then Mn = sup{ak : k ≥ n} is decreasing.
We define the limsup

lim sup an := lim
n→∞

Mn

which is the largest limit of a convergent subsequence of (an).

We can do the same in the other direction:
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Definition 8.9. If (an) is bounded, then mn = inf{ak : k ≥ n} is increasing.
We define the liminf

lim inf an := lim
n→∞

mn

which is the smallest limit of a convergent subsequence of (an).

Example 8.10. The sequences

an = sin
(√
nπ
)

and

an = (−1)n
Å
1 +

1

n

ã
both have lim sup an = 1 and lim inf an = −1.

Recall:

Proposition 8.11. A series
∑
an converges if and only if its partial sums

sn =
∑n
k=1 ak form a convergent sequence. In this case, we write limn→∞ an

for the limit of the sequence.

Proposition 8.12. If
∑
an converges, then an → 0. However, the converse is

not true: for example, the series
∑

1
n diverges, even though 1

n → 0.

Proof. Follows from the Cauchy criterion for the sequence (Sn): |sn−sn−1| → 0
as n→∞.

Proposition 8.13. For an ≥ 0, the series
∑
an converges if and only if the

partial sums are bounded (since sn is increasing).

Proposition 8.14 (Comparison Criterion). If 0 ≤ an ≤ bn and
∑
bn converges,

then
∑
an converges. Conversely, if

∑
an diverges, then

∑
bn must also diverge.

Proposition 8.15. The geometric series
∑∞
n=0 x

n = 1
1−x converges if and only

if |x| < 1. It does not converge if |x| ≥ 1, because the terms do not tend to 0.

Theorem 8.16. The series
∑∞
n=1

1
nα converges if and only if α > 1.

Proof. The proof follows from a comparison argument:

2k

2(k+1)α
≤

2k+1∑
n=2k+1

1

nα
≤ 2k

(2k)α
,

which simplifies to the following inequality for the sum:

2−α
m∑
k=0

2(1−α)k ≤
2m+1∑
n=2

1

nα
≤

m∑
k=0

2(1−α)k.

This forms a geometric series, and the partial sums are bounded if and only if
21−α < 1, which occurs when α > 1.
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Proposition 8.17. The number e is defined as

e := lim
n→∞

Å
1 +

1

n

ãn
=

∞∑
k=0

1

k!
.

Proof. This equality comes from applying the binomial theorem to
(
1 + 1

n

)n
,

and showing that for fixed k, the binomial coefficient
(
n
k

) (
1
n

)k
increases with n,

while 1
k! remains constant as n→∞.

Proposition 8.18. e is irrational.

Proof. Denote the partial sum by
∑n
k=0

1
k! =

pn
n! . Then,

e− pn
n!
∈
Å
0,

1

n!

ã
,

which implies that e cannot be a rational multiple of 1
n! for any n, and thus e

is irrational.

Definition 8.19. A series is said to be absolutely convergent if
∑
|an| con-

verges.

Proposition 8.20. If
∑
|an| converges, then

∑
an also converges. This can be

shown using the Cauchy criterion:

|sn − sm| =
∣∣∣∣∣
n∑

m+1

ak

∣∣∣∣∣ ≤
n∑

m+1

|ak|.

The converse is not true.

Proposition 8.21. Consider an alternating series: if an has the same sign
as (−1)n, |an| is decreasing with n, and an → 0, then

∑
an converges.

Proof. Proved by showing that the odd and even partial sums increase and
decrease towards a common limit.

Example 8.22.

1− 1

2
+

1

3
− 1

4
+

1

5
− ... log 2, 1− 1

3
+

1

5
− 1

7
+

1

9
− ... = arctan(1) =

π

4
.

In general, absolutely convergent series can be safely rearranged (
∑
aφ(n) =∑

an), multiplied, etc.; others, not always.

Proposition 8.23 (The Root Test). If lim sup |an|
1
n < 1, then the series

∑
an

converges absolutely (comparison with a geometric series). If lim sup |an|
1
n > 1,

then the series
∑
an diverges (since an does not approach 0).
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This test is particularly useful for power series!

Definition 8.24. The radius of convergence of the power series
∑
anx

n is given
by:

R =
1

lim sup |an|
1
n

∈ [0,∞].

Theorem 8.25.

• The power series
∑
anx

n converges pointwise for all x ∈ C such that
|x| < R.

• The series converges uniformly on the closed disk Br(0) = {x ∈ C : |x| ≤
r} for all r < R (but not necessarily on the open disk Br(0)).

• Therefore, the function f(x) =
∑
anx

n is continuous on BR(0) = {x ∈
C : |x| < R}.

• The series diverges for |x| > R; at |x| = R, the series may either converge
or diverge.

Proof.

• By the root test, we have:

lim sup |anxn|
1
n = |x| lim sup |an|

1
n =

|x|
R
.

Hence, the series converges for |x| < R and diverges for |x| > R.

• Uniform convergence: If |x| ≤ r, then:

|f(x)−
n∑
k=0

akx
k| =

∣∣∣∣∣∣
∞∑

k=n+1

akx
k

∣∣∣∣∣∣ ≤
∞∑

k=n+1

|ak|rk.

The series
∑
|an|rn converges by the root test, so ϵn → 0. Therefore, the

supremum of the partial sums satisfies:

sup
|x|≤r

∣∣∣∣∣f(x)−
n∑
k=0

akx
k

∣∣∣∣∣ ≤ ϵn → 0,

implying uniform convergence.

• Since the partial sums are continuous and the series converges uniformly,
the function f(x) is continuous on the closed disk {|x| ≤ r} for all r < R.
Thus, f(x) is continuous on

⋃
r<RBr(0) = BR(0).

Example 8.26.
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• The series
∑∞
n=1(−1)n+1 xn

n represents the function log(1 + x) for |x| < 1.

Since limn→∞ n
1
n = 1, the radius of convergence is R = 1. The series

converges at x = 1 (by the alternating series test) and diverges at x = −1.

• The series
∑∞
n=0

xn

n! represents the exponential function exp(x) and con-
verges everywhere. The radius of convergence is R =∞. Indeed, we have

n! >
(
n
2

)n
2 , so (n!)

1
n >

(
n
2

) 1
2 →∞.

Remark 8.27. Power series form a ring (they can be added and multiplied).
Properties of sums and products of numerical series imply that, where the series
converge, the sum and product of the series are equal to the sum and product of
the corresponding functions.

8.3 Differentiation in One Variable

Definition 8.28. A function f : [a, b]→ R is differentiable at x if the limit

lim
t→x

f(t)− f(x)
t− x

= f ′(x)

exists. That is, for every ϵ > 0, there exists a δ > 0 such that for all t satisfying
0 < |t− x| < δ, we have ∣∣∣∣f(t)− f(x)t− x

− f ′(x)
∣∣∣∣ < ϵ.

Proposition 8.29. If f is differentiable at x, then f is continuous at x.

Proof. We have

f(t)− f(x) = f(t)− f(x)
t− x

· (t− x).

As t→ x, we know that f(t)−f(x)t−x → f ′(x), and (t−x)→ 0. Since multiplication
is continuous, it follows that

f(t)− f(x)→ f ′(x) · 0 = 0.

Hence, f(t)→ f(x) as t→ x, proving continuity.

Remark 8.30. The converse is false. For example, the function f(x) = |x| is
continuous at 0, but not differentiable there.

The usual rules of differentiation hold: (f + g)′ = f ′ + g′, fg = f ′g + fg′, and
(f ◦ g)′(x) = f ′(g(x))g′(x).

Example 8.31.
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• f(x) = x sin
(
1
x

)
for x ̸= 0, f(0) = 0. For x ̸= 0, we have

f ′(x) = sin

Å
1

x

ã
− 1

x
cos

Å
1

x

ã
.

This function is continuous but not differentiable at 0, since limx→0
f(x)
x

does not exist.

• g(x) = x2 sin
(
1
x

)
, with g(0) = 0, is differentiable at 0 (with g′(0) = 0),

but g′ is not continuous at 0.

• f(x) =
∑∞
n=1

1
n2 sin(n!x) is continuous (since the series converges uni-

formly, as
∑

1
n2 converges), but nowhere differentiable.

Theorem 8.32 (Mean Value Theorem). If f : [a, b]→ R is differentiable, then
there exists a c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

Proof. This follows logically from earlier results:

1. If f : [a, b] → R has a local maximum (or minimum) at x ∈ (a, b), then

f ′(x) = 0 (since f(t)−f(x)
t−x ≥ 0 for t ∈ (x − δ, x), and f(t)−f(x)

t−x ≤ 0 for
t ∈ (x, x+ δ), implying the limit from both sides is 0).

2. If f : [a, b] → R is differentiable and f(a) = f(b), then there exists a
c ∈ (a, b) such that f ′(c) = 0. This is clear if f is constant; otherwise,
apply result (1) to the maximum or minimum of f on [a, b].

3. The Mean Value Theorem can be derived by applying (2) to the function

g(x) = f(x)− f(b)−f(a)
b−a x.

Corollary 8.33 (Mean Value Inequality). If m ≤ f ′(x) ≤M for all x ∈ (a, b),
then

m(b− a) ≤ f(b)− f(a) ≤M(b− a).

Now, let’s generalize:

Theorem 8.34 (Taylor’s Theorem). If f : [a, b]→ R is n-times differentiable,
then the degree (n− 1) Taylor polynomial of f at a is

P (x) =

n−1∑
k=0

f (k)(a)

k!
(x− a)k.

Moreover, there exists a c ∈ (a, b) such that

f(b) = P (b) +
f (n)(c)

n!
(b− a)n.
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Proof. Subtracting P (x) from both sides, we reduce the problem to the case
where f(a) = f ′(a) = · · · = f (n−1)(a) = 0, and P (x) = 0.

Let g(x) = f(x)−f(b) (x−a)
n

(b−a)n , so that g(a) = g(b) = 0, and g′(a) = g′(b) = 0, and

so on up to g(n−1)(a) = 0. Applying the Mean Value Theorem to g, we find that
there exists a c1 ∈ (a, b) such that g′(c1) = 0. Similarly, there exists c2 ∈ (a, c1)
such that g′′(c2) = 0, and continuing this process, we find a cn ∈ (a, cn−1) such
that g(n)(cn) = 0. This implies that

f (n)(cn)−
n!f(b)

(b− a)n
= 0.

Remark 8.35. We can compare f(x) to P (x) by applying the theorem to the
interval [a, x] instead. As with the Mean Value Inequality, if we have a bound
|f (n)(x)| ≤M , then we obtain the bound

|f(x)− P (x)| ≤ M(x− a)n

n!

for x ∈ [a, b].

Remark 8.36. There exist nonzero functions whose Taylor polynomials are all
zero! For example, the function

f(x) = exp

Å
− 1

x2

ã
, f(0) = 0,

is infinitely differentiable (f ∈ C∞), and f (k)(0) = 0 for all k. The Taylor
series of f at 0 converges to 0, but f(x) ̸= 0 for x ̸= 0. Most C∞ functions are
not analytic, i.e., they cannot be written as power series.

Let Ck([a, b],R) = {f | f (k) is continuous}, with the norm

∥f∥Ck =

k∑
j=0

∥f (j)∥∞.

Theorem 8.37. If fn ∈ C1, fn → f pointwise, and f ′n → g uniformly, then
f ∈ C1 and f ′ = g (and fn → f uniformly).

Proof. Fix x ̸= y ∈ [a, b]. By the Mean Value Theorem, we have

fn(y)− fn(x)
y − x

= f ′n(cn)

for some cn ∈ [x, y] (or [y, x]). The left-hand side converges to f(y)−f(x)
y−x as

n → ∞. For the right-hand side, there is a subsequence (cnk
) that converges
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to some c ∈ [x, y]. Since f ′n is continuous and f ′n → g uniformly, we claim that
f ′nk

(cnk
)→ g(c).

Indeed, fix ϵ > 0. Let δ > 0 be such that |t− c| < δ =⇒ |g(t)− g(c)| < ϵ
2 . Let

N be such that for n ≥ N , we have sup |f ′n − g| < ϵ
2 , and for nk ≥ N , we have

|cnk
− c| < δ. Then for nk ≥ N ,

|f ′nk
(cnk

)− g(c)| < ϵ.

Thus, taking the limit as n→∞ in the equation fn(y)−fn(x)
y−x = f ′n(cn), we find

that there exists c ∈ [x, y] such that

f(y)− f(x)
y − x

= g(c).

Taking the limit as y → x, the right-hand side converges to g(x) by the conti-
nuity of g, and since |c− x| ≤ |y − x|, we conclude that f is differentiable at x
and f ′(x) = g(x). Since g is continuous, it follows that f ∈ C1.

Finally, the Mean Value Inequality implies that |fn(a)−f(a)|+ |x−a| sup |f ′n−
f ′| ≤ b− a, which gives a uniform bound, so sup |fn − f | → 0 uniformly.

Corollary 8.38. Ck([a, b],R) is a complete metric space.

Proof. Using the completeness of C0 (uniform topology), if (fn) is Cauchy in
C1, then fn and f ′n are Cauchy in C0, so there exist uniform limits f, g ∈ C0

such that f ∈ C1 and f ′ = g. Therefore, fn → f in C1, proving the case k = 1.
The same argument applies for higher derivatives when k > 1.

Corollary 8.39. If f(x) =
∑
anx

n is a power series with radius of convergence
R =∞, then f(x) is C∞ over (−R,R) and its derivative is given by

f ′(x) =
∑

nanx
n−1.

Proof. Both f(x) =
∑
anx

n and its derivative g(x) =
∑
nanx

n−1 have the
same radius of convergence. Since the partial sums for both series converge
uniformly over compact subsets of (−R,R), we have f ∈ C1 and f ′ = g. This
argument can be repeated for successive derivatives to show f ∈ C∞.

8.4 Riemann Integration

The definite integral of continuous functions is a linear operator:∫ b

a

(f + g) dx =

∫ b

a

f dx+

∫ b

a

g dx,

∫ b

a

cf dx = c

∫ b

a

f dx.
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Define the map

Iba : C0([a, b])→ R, f 7→ Iba(f) =

∫ b

a

f dx,

for each a < b ∈ R, which satisfies the following axioms:

1. If f ≥ 0, then
∫ b
a
f dx ≥ 0 (i.e., if f ≥ g, then

∫ b
a
f dx ≥

∫ b
a
g dx),

2. If a < c < b, then
∫ b
a
f dx =

∫ c
a
f dx+

∫ b
c
f dx,

3.
∫ b
a
1 dx = b− a.

In fact, such a linear map is unique; the difference between different theories of
integration lies in how general a class of functions we allow ourselves to integrate.

The Riemann integral is built starting with step functions:

s(x) : [a, b]→ R,

such that there exist points a = x0 < x1 < · · · < xn = b where s(x) is constant
on each interval (xi−1, xi), with s(x) = si. (The values of s(x) at xi do not
matter.) Then, using (2) and (3), we define the integral of s(x) as:

I(s) =

∫ b

a

s(x) dx =

n∑
i=1

si(xi − xi−1).

This definition satisfies the required axioms. Next, if s ≤ f ≤ S for step
functions s and S, then ∫ b

a

s dx ≤
∫ b

a

f dx ≤
∫ b

a

S dx.

In particular, if f : [a, b]→ R is bounded, we can fix a = x0 < x1 < · · · < xn =
b, and take si = inf f([xi−1, xi]) and Si = sup f([xi−1, xi]), giving the lower
and upper Riemann sums of f for the given partition of [a, b]. Refining (i.e.,
subdividing further) the partition provides better bounds on f .

Lower and upper Riemann integrals are defined as:

I−(f) = sup

®∫ b

a

s dx | s ≤ f on [a, b], s step function

´
,

I+(f) = sup

®∫ b

a

S dx | S ≥ f on [a, b], S step function

´
.

For all bounded f : [a, b]→ R, we have I−(f) ≤ I+(f).

Definition 8.40. f is Riemann integrable, f ∈ R([a, b]), if I+(f) = I−(f).

We set
∫ b
a
f dx = I±(f).
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Theorem 8.41. Continuous functions are Riemann integrable.

Proof. The key ingredient is uniform continuity: for all ϵ > 0, there exists δ
such that for x, y ∈ [a, b], |x− y| < δ =⇒ |f(x)− f(y)| < ϵ. This is proved by
applying the Lebesgue number lemma to the open cover [a, b] ⊂

⋃
c∈R f

−1((c, c+
δ)), where there exists δ > 0 such that for |x− y| = diam({x, y}) < δ, we have
{x, y} ⊂ f−1((c, c+ ϵ)).

Thus, given ϵ > 0, take δ as in the uniform continuity definition, and split
a = x0 < x1 < · · · < xn = b such that xi+1 − xi < δ for all i. Then let si =
min f([xi, xi+1]) and Si = max f([xi, xi+1]) (attained), which satisfy Si− si < ϵ
for all i, and si ≤ f ≤ Si on [xi, xi+1]. Let ∆ and S be the step functions
taking values ∆i and Si on [xi, xi+1), respectively. We have s ≤ f ≤ S on
[a, b], so I(∆) ≤ I−(f) and I(S) ≥ I+(f); moreover, Si − si < ϵ for all i, so
I(S) − I(∆) < ϵ(b − a). Hence, we conclude that I+(f) − I−(f) < ϵ(b − a) for
all ϵ > 0, which implies I+(f) = I−(f) and thus f ∈ R([a, b]).

Remark 8.42. Piecewise continuous functions are also integrable, and some
more unusual functions are as well. However, for example, the function

f(x) =

®
1 if x ∈ Q,
0 if x /∈ Q

is not Riemann integrable because I−(f) = 0 and I+(f) = b− a. The Lebesgue
integral allows more general decompositions into ”measurable” subsets (rather
than just sub-intervals) and can handle more general functions, including un-
bounded functions, which are never Riemann integrable. For example, for Rie-
mann integration,

∫ x
0

1√
t
dt = 1

2

√
x only makes sense as an ”improper integral”

(i.e., limϵ→0

∫ x
ϵ
), whereas the Lebesgue integral can handle this and even worse

cases.

In fact, Lebesgue gave a characterization of exactly which functions are Riemann
integrable: f ∈ R([a, b]) if and only if f is bounded on [a, b] and the set of
points where f is discontinuous has Lebesgue measure 0. This means that for
all ϵ > 0, there exists an at most countable collection of open intervals Ii such
that E ⊂

⋃
Ii and

∑
length(Ii) < ϵ.

It is easy to check (do it!) that R([a, b]) is a vector space, and the map I :
R([a, b])→ R is linear and satisfies the above axioms.

Theorem 8.43 (Fundamental Theorem of Calculus). If f is continuous on
[a, b], then F (x) =

∫ x
a
f(t) dt is differentiable, and F ′ = f .

Proof. We compute

1

h
(F (x+ h)− F (x)) = 1

h

∫ x+h

x

f(t) dt→ f(x) as h→ 0,
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using the continuity of f at x to estimate the integral for small h.

Theorem 8.44. I : C0([a, b]) → R is continuous with respect to the uniform

topology: if fn → f uniformly then
∫ b
a
fn dx→

∫ b
a
f dx. In fact,

∣∣∫ f dx− ∫ g dx∣∣ ≤∫
|f − g| dx ≤ (b− a) sup |f − g|.

On the other hand, pointwise convergence isn’t enough: Let fn be the isosce-
les triangle with base length 1

n and height 2n. Then fn → 0 pointwise, but∫ 1

0
fn dx = 1 does not imply

∫ 1

0
0 dx = 0.

Besides the L∞ norm, ||f ||∞ = sup |f |, we have other norms on the vector space
C0([a, b],R), namely:

||f ||1 =

∫ b

a

|f(x)| dx,

and for p ≥ 1,

||f ||p =
Ç∫ b

a

|f(x)|p dx
å 1

p

.

(Triangle inequality follows from Hölder’s inequality, see homework.) These are

called Lp norms. Since ||f ||p ≤ (b− a)
1
p ||f ||∞, the balls for || · ||p contain balls

for || · ||∞, and the topologies defined by these metrics are coarser than the
uniform topology. Also, (C0([a, b]), || · ||p) isn’t complete; its completion is the
Lebesgue space Lp([a, b]) (see Math 114).

Example 8.45. The function

fn =


0 if x ≤ 0,
1
nx if 0 < x ≤ 1

n ,

1 if x > 1
n

is Cauchy in the L1 norm, and in fact converges in L1 to its pointwise limit

f =

®
0 if x ≤ 0,

1 if x > 0.

We have ∫ 1

0

|fn − f | dx =
1

2n
→ 0,

but f /∈ C0.

The L1 norm is quite natural, but so is the L2 norm, which comes from the
inner product

⟨f, g⟩L2 =

∫ b

a

f(x)g(x) dx,
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so that ||f ||L2 =
√
⟨f, f⟩. (Cauchy-Schwarz: ⟨f, g⟩ = ||f ||L2 ||g||L2 is a special

case of Hölder’s inequality.)

We now return to the || · ||∞ (uniform topology) and various results about
C0([a, b]).

Closed and bounded subsets of (C0([a, b]), || · ||∞) are not compact. In fact, the
closed unit ball of an infinite-dimensional normed vector space is never compact,
by Riesz’s theorem.

Example 8.46. The function

fn =


0 if x ≤ 0,
1
nx if 0 < x ≤ 1

n ,

1 if x > 1
n

has ||fn||∞, but there does not exist a uniformly convergent subsequence. Even
worse, fn = sin(nx) doesn’t even have a pointwise convergent subsequence on
any interval.

So, what kinds of subsets of (C0([a, b]), || · ||∞) are compact (i.e., sequentially
compact)? The Ascoli-Arzelà theorem gives the answer: the family {fn} needs
to be uniformly bounded and equicontinuous.

Definition 8.47. A family of functions F ⊂ C0(K), where K is a compact
metric space (e.g., [a, b]), is equicontinuous if for every ϵ > 0, there exists
δ > 0 such that for all f ∈ F and all x, y ∈ K,

d(x, y) < δ =⇒ d(f(x), f(y)) < ϵ.

Proposition 8.48. If fn → f ∈ C0(K) uniformly, then {fn} is bounded in
||·||∞ (i.e., there exists M such that for all n, ||fn||∞ ≤M) and equicontinuous.

Proof. Given ϵ > 0, there exists N such that for all n ≥ N , ||fn − f ||∞ < ϵ
3 .

Since f is uniformly continuous (because K is compact), there exists δ > 0 such
that if d(x, y) < δ, then |f(x)− f(y)| < ϵ

3 .

Thus, for all n ≥ N , if d(x, y) < δ, we have

|fn(x)−fn(y)| ≤ |fn(x)−f(x)|+ |f(x)−f(y)|+ |fn(y)−f(y)| <
ϵ

3
+
ϵ

3
+
ϵ

3
= ϵ.

Since f1, . . . , fN are also uniformly continuous, we can ensure that this holds
for n < N by choosing a sufficiently small δ. Hence, the family {fn} is equicon-
tinuous.

Thus, equicontinuity is necessary for the sequential compactness of subsets of
(C0(K), || · ||∞).
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Theorem 8.49. If a sequence {fn} ⊂ C0(K) is uniformly bounded and equicon-
tinuous, then it has a uniformly convergent subsequence. Hence, a subset of
(C0(K), || · ||∞) is compact if and only if it is closed, bounded, and equicontin-
uous.

Proof. Let K be a compact metric space. By the result of the previous proposi-
tion, the sequence {fn} is bounded and equicontinuous. We apply the diagonal
process to obtain a uniformly convergent subsequence.

Since K is compact, it has a countable dense subset A = {x1, x2, . . . } ⊂ K (we
can cover K with finitely many 1

n -balls for all n and take all centers). There
exists a subsequence of {fn} that converges pointwise at x1, another subsequence
that converges pointwise at x2, and so on. By the diagonal process, we obtain
a subsequence {fnk

} that converges pointwise at all points of A.

We now show that {fnk
} is uniformly Cauchy (and hence uniformly convergent)

using equicontinuity. Given ϵ > 0, there exists δ > 0 such that for all nk1 , nk2
and all x, y ∈ K with |x− y| < δ, we have |fnk

(x)− fnk
(y)| < ϵ

3 .

Let A′ ⊂ A be a finite subset such that
⋃
xi∈A′ Bδ(xi) ⊃ K (the compactness

of K ensures this). There exists N such that for all nk, nl ≥ N , we have
|fnk

(xi)− fnl
(xi)| < ϵ

3 for all xi ∈ A′.

Since A′ is finite and {fnk
} is pointwise Cauchy, we can ensure that for all

x ∈ K, there exists some xi ∈ A′ such that d(xi, x) < δ. Therefore, for all
nk, nl ≥ N , we have

|fnk
(x)− fnl

(x)| < ϵ.

Thus, {fnk
} is uniformly Cauchy and converges uniformly.

Example 8.50. If (fn) ∈ C1([a, b]) is a bounded sequence in the C1-norm
(i.e., sup |fn| ≤ M and sup |f ′n| ≤ M), then the sequence is equicontinuous (by
the mean value inequality). This implies that there exists a subsequence that
converges in C0. The unit ball for the C0-norm is not compact in C0, and
the unit ball for the C1-norm is not compact in C1, but the C0-closure of the
C1-unit ball is compact in C0.

8.5 Stone-Weierstrass Theorem

Theorem 8.51 (Weierstrass). Polynomials are dense in C0([a, b]), i.e., for
every f ∈ C0([a, b]), there exists a sequence of polynomials {Pn} such that
Pn → f uniformly on [a, b].

Proof. The proof uses convolution and its ability to approximate smooth func-
tions.

Definition 8.52. The convolution of two functions is defined by
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(f ∗ g)(x) =
∫
s+t=x

f(s)g(t) dt =

∫ ∞
−∞

f(x− t)g(t) dt =
∫ ∞
−∞

f(s)g(x− s) ds.

This is well-defined if, for example, f and g are (piecewise) continuous, and one
of them is compactly supported (i.e., f or g is zero outside some interval
[−M,M ]). This condition avoids improper integrals.

Principle: The function f ∗ g inherits the best properties of both f and g.
Specifically, we have

||f ∗ g||∞ ≤ ||f ||L1 ||g||∞,

and thus

|(f ∗ g)(x+ h)− (f ∗ g)(x)| =
∫
f(x− t)(g(t+ h)− g(t)) dt ≤ ||f ||L1 ||gh − g||∞,

which we will refer to as the (⋆) equation, where gh(t) := g(t+ h).

• If g is continuous, then by uniform continuity (on a compact interval,
|g(t+h)−g(t)| < ϵ for all t when |h| < δ), we have limh→0 ||gh−g||∞ = 0,
implying that f ∗ g is continuous.

• If g is continuously differentiable, i.e., g ∈ C1, then dividing (⋆) by h and
applying the Mean Value Theorem, along with the uniform continuity of
g′, shows that f ∗ g is continuously differentiable and (f ∗ g)′ = f ∗ g′.

• If g is a polynomial of degree d, then f ∗ g is also a polynomial! This is
because g(d+1) = 0, so (f ∗ g)(d+1) = f ∗ g(d+1) = 0, or more directly:

g(x) =
∑d
k=0 akx

k implies

(f∗g)(x) =
d∑
k=0

ak

∫
f(t)(x−t)k dt =

d∑
k=0

k∑
l=0

(−1)l
Ç
k

l

å
akx

k−l
∫
f(t)t0 dt,

which is clearly a polynomial in x, since
∫
f(t)t0 dt is constant.

Now we can examine approximate identities.

Definition 8.53. A sequence of functions Kn ≥ 0 is called an approximate
identity if∫

Kn dx = 1 and ∀δ > 0,

∫
|x|≥δ

Kn dx→ 0 as n→∞.

Theorem 8.54. If f is compactly supported and continuous, and Kn is an
approximate identity, then f ∗Kn → f uniformly.
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Proof. We have

(f ∗Kn)(x)− f(x) =
∫
(f(x− t)− f(x))Kn(t) dt =

∫
|t|≤δ

+

∫
|t|≥δ

.

We estimate each term as follows:

Given ϵ > 0, by uniform continuity of f on its support, there exists a δ (inde-
pendent of x) such that for |t| < δ, we have

|f(x− t)− f(x)| < ϵ

2
.

Therefore,

∣∣∣∣∣
∫ δ

−δ
(f(x− t)− f(x))Kn(t) dt

∣∣∣∣∣ ≤ ϵ

2

∫ δ

−δ
Kn(t) dt ≤

ϵ

2
.

For the second term,

∣∣∣∣∣
∫
|t|≥δ

(f(x− t)− f(x))Kn(t) dt

∣∣∣∣∣ ≤ 2||f ||∞
∫
|t|≥δ

Kn(t) dt→ 0 as n→∞,

since

2||f ||∞
∫
|t|≥δ

Kn(t) dt <
ϵ

2
for sufficiently large n.

This shows that there exists N such that for all n ≥ N , we have

|(f ∗Kn)(x)− f(x)| < ϵ for all x.

Thus, f ∗Kn → f uniformly.

Example 8.55. Let

Kn(x) = cn(1− x2)n for |x| ≤ 1, 0 elsewhere,

where cn > 0 is chosen such that
∫ 1

−1Kn dx = 1.

Claim: Kn is an approximate identity.

Proof:
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• For |x| < 1√
2n

, we have (1− x2)n ≥ 1− nx2 ≥ 1
2 , so∫ 1

−1
(1− x2)n dx ≥

∫ 1√
2n

− 1√
2n

(1− x2)n dx ≥ 1√
2n
,

which implies that cn ≤
√
2n.

• For |x| ≥ δ, we have (1− x2)n ≤ (1− δ2)n, so∫
|x|≥δ

Kn dx ≤ 2cn(1− δ2)n ≤ 2
√
2n(1− δ2)n → 0 as n→∞.

This implies the following theorem:

This leads to the following theorem:

Theorem 8.56 (Weierstrass). For every f ∈ C0([a, b]), there exists a sequence
of polynomials {Pn} such that Pn → f uniformly.

Proof. By a linear change of variables, we can assume [a, b] = [0, 1]. Subtracting
a degree 1 polynomial from f , we can assume f(0) = f(1) = 0. Then extend f
to R by setting f(x) = 0 for x /∈ [0, 1]. Let Kn(x) be as defined above, and let
pn = f ∗Kn. Since Kn is an approximate identity and f is compactly supported
and continuous, we have pn → f uniformly. Moreover, pn is a polynomial
of degree 2n on [0, 1] because, given that f = 0 outside [0, 1], the formula
(f ∗Kn)(x) =

∫
f(x− t)Kn(t) dt for x ∈ [0, 1] does not involve the values of Kn

outside [−1, 1], and Kn|[−1,1] is a polynomial.

Stone’s Theorem generalizes this to other families of functions:

Definition 8.57. A ⊂ C0(K) is an algebra if for all f, g ∈ A, we have f+g ∈
A, cf ∈ A, and fg ∈ A. Additionally, A is said to separate points if for all
a ̸= b ∈ K, there exist f, g ∈ A such that f(a) = 1, f(b) = 0, g(a) = 0, and
g(b) = 1.

Remark 8.58. The values 0 and 1 are arbitrary. This is equivalent to saying
that the map A → R2 defined by f 7→ (f(a), f(b)) is surjective for all a ̸= b.

For complex-valued functions, further assume that A is conjugation-invariant,
i.e., if f ∈ A, then f ∈ A (equivalently, Re(f) ∈ A and Im(f) ∈ A).

Theorem 8.59 (Stone’s Theorem). Let K be a compact metric space and let
A ⊂ C0(K) be an algebra that separates points (and is conjugation-invariant in
the complex case). Then A is dense in (C0(K), || · ||∞).

Remark 8.60. Weierstrass’ theorem is a special case where K = [a, b] and A
consists of polynomials.
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Proof. The uniform closure of A, denoted A, is an algebra (since for fn → f
and gn → g, we have f + g = lim(fn + gn) and fg = lim(fngn)). Thus, it is
sufficient to show that if A is closed, then A = C0(K).

Given f ∈ A, we know that A is an algebra and closed, so any polynomial P (f)
such that P (0) = 0 must be in A. By Weierstrass’ theorem, |x| is a uniform
limit of polynomials on [−M,M ], so |f | ∈ A = A.

Therefore, for any f, g ∈ A, we have max(f, g) = f+g+|f−g|
2 ∈ A, and similarly

for min(f, g).

Now, given f ∈ C0(K) and ϵ > 0, we want to show that there exists h ∈ A
such that sup |h − f | ≤ ϵ. For any x ∈ K, there exists y ̸= x such that
A separates points, so there exist functions gy ∈ A such that gy(x) = f(x)
and gy(y) = f(y). By covering K with open sets Uy1 , . . . , Uyn , we can find
hx := max(gy1 , . . . , gyn) ∈ A that satisfies hx > f − ϵ and hx(x) = f(x).

By the same reasoning, we can find h ∈ A such that |h − f | < ϵ everywhere.
This completes the proof that A is dense in C0(K).

8.6 Fourier Series

We consider continuous 2π-periodic functions f : R → C, or equivalently func-
tions on S1 = R/2πZ, with the L2 inner product

⟨f, g⟩ = 1

2π

∫ 2π

0

f(x)g(x) dx.

The complex exponentials en(x) = einx, for n ∈ Z, satisfy the orthonormality
condition

⟨ei, ej⟩ = δij .

Definition 8.61. The Fourier coefficients of f are given by

cn(f) = ⟨en, f⟩ =
1

2π

∫ 2π

0

einxf(x) dx.

This implies that the Fourier series of f is

∑
n∈Z

cnen =

∞∑
n=−∞

cn(f)e
inx.

Question (Fourier, Dirichlet, Féjer): Does the Fourier series accurately
represent f? In other words, does it converge to f?

Definition 8.62. The space of trigonometric polynomials is the vector space
of finite linear combinations of en.
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Clearly, this is an algebra, complex conjugate-invariant, and separates points of
S1, which is compact. Hence, by the Stone-Weierstrass theorem, trigonometric
polynomials are dense in (C0(S1), ∥ · ∥∞). Consequently, they are also dense in
the L2-norm, where

∥f∥L2 =

Ç
1

2π

∫ 2π

0

|f(x)|2 dx
å1/2

≤ sup |f |.

The n-th Fourier partial sum of f , denoted by fn = sn(f), is given by

fn =

n∑
k=−n

cke
ikx =

n∑
k=−n

⟨ek, f⟩ek,

which is the orthogonal projection of f onto the subspace Vn = span(e−n, . . . , en)
with respect to the inner product ⟨·, ·⟩.

Indeed, we have

⟨ej , fn⟩ =
n∑

k=−n

ck⟨ej , ek⟩ = cj = ⟨ej , f⟩,

so that ⟨ej , f − fn⟩ = 0 for all −n ≤ j ≤ n.

Thus, for any g ∈ Vn, we have

∥f − fn∥L2 ≤ ∥f − g∥L2 .

This shows that fn is the point in Vn closest to f in the L2-norm. The result
follows from the fact that (f − fn) ⊥ Vn, which implies

∥f − g∥2 = ∥f − fn∥2 + ∥fn − g∥2 ≥ ∥f − fn∥2.

Theorem 8.63 (Parseval’s Theorem). Let f ∈ C0(S1), and let cn = ⟨en, f⟩ be
the Fourier coefficients of f . Denote by fn =

∑n
k=−n ckek the partial sums of

the Fourier series of f . Then:

1. fn → f in L2, i.e.,

∥fn − f∥2L2 =
1

2π

∫ 2π

0

|f(x)− fn(x)|2 dx→ 0 as n→∞.

2.
∑
n∈Z |cn|2 = ∥f∥2L2 = 1

2π

∫ 2π

0
|f(x)|2 dx (in particular,

∑
n∈Z |cn|2 con-

verges, so cn → 0 as |n| → ∞).

Proof.
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1. Since trigonometric polynomials are dense in (C0(S1), ∥ · ∥L2), for any
ϵ > 0, there exists N such that for some g ∈ VN with ∥f − g∥L2 < ϵ. For
n ≥ N , we have g ∈ VN ⊂ Vn, and since fn is the closest point to f in Vn,
we have ∥f − fn∥L2 ≤ ∥f − g∥L2 < ϵ. This shows that fn → f in L2.

2. Since fn ∈ Vn and f − fn ∈ V ⊥n , we have

∥f∥2L2 = ∥fn∥2L2 + ∥f − fn∥2L2 .

Also, ∥fn∥2L2 =
∥∥∑n

k=−n ckek
∥∥2 =

∑n
k=−n |ck|2 by orthonormality. Since

∥f − fn∥2L2 → 0 by part (1), we conclude that
∑
n∈Z |cn|2 = ∥f∥2L2 .

Corollary 8.64. If f, g ∈ C0(S1) have the same Fourier series, then

1

2π

∫ 2π

0

|f(x)− g(x)|2 dx =
∑
n∈Z
|cn(f)− cn(g)|2 = 0,

hence f = g.

The fact that fn → f in L2 is the best approximation (in the L2-norm) of
f by trigonometric polynomials. Additionally, since trigonometric polynomials
are dense in the ∥ · ∥∞-norm (i.e., uniformly), one might hope that fn → f
uniformly or at least pointwise. However, this does not always hold.

Proposition 8.65. There exists f ∈ C0(S1) such that the Fourier series of f
does not converge (e.g., sn(f)(0) is unbounded).

However, constructing such an example is quite difficult.

Theorem 8.66 (Dirichlet’s Theorem). If f is C1, then the Fourier partial sums
sn(f)→ f uniformly.

The proof uses convolution. For periodic functions, the convolution of f and g
is defined by

(f ∗ g)(x) = 1

2π

∫ 2π

0

f(t)g(x− t) dt.

Note that

cnen(x) =
1

2π

Å∫
f(t)eint dt

ã
einx = (f ∗ en)(x).

Thus, the n-th partial sum of the Fourier series is

sn(f) =

n∑
k=−n

ckek = f ∗

(
n∑

k=−n

ek

)
= f ∗Dn,

where

Dn(x) =

n∑
k=−n

eikx =
sin
((
n+ 1

2

)
x
)

sin
(
x
2

)
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is the Dirichlet kernel. Dirichlet’s proof studies this convolution for f ∈ C1 to
prove uniform convergence. The fact that convergence can sometimes fail makes
it remarkable that for all f ∈ C0, f can still be recovered from the partial sums
sn(f) = fn =

∑n
k=−n cke

ikx.

Theorem 8.67 (Féjer’s Theorem). If f ∈ C0(S1), then

s0(f) + · · ·+ sn−1(f)

n

converges uniformly to f .

The reason is that this process amounts to convolution with the Féjer kernel

Fn(x) =
D0 + · · ·+Dn−1

n
,

which approximates the identity (in the sense described above), unlike the
Dirichlet kernel Dn.

8.7 Differentiation in Several Variables

Definition 8.68. Let U ⊂ Rn be open, and let f : U → Rm. We say that f is
differentiable at x ∈ U if there exists a linear map L : Rn → Rm such that

lim
v→0

|f(x+ v)− f(x)− Lv|
|v|

= 0.

The differential of f at x is then Df(x) = L ∈ Hom(Rn,Rm).

Remark 8.69. We can also write the approximation

f(x+ v) = f(x) + Lv + o(|v|),

where o(|v|) denotes a term that is much smaller than |v|, i.e., o(|v|)
|v| → 0 as

v → 0.

Conceptually, the input of Df(x) is a tangent vector to U at x, and the
output, Df(x)v, is a tangent vector at f(x).

The natural norm on Hom(Rn,Rm) is the operator norm:

∥L∥ = sup
v ̸=0

|Lv|
|v|

= sup

ß |Lv|
|v|
| v ̸= 0

™
.

We say that f ∈ C1(U,Rm) if f is differentiable at every point of U , and the
map Df : U → Hom(Rn,Rm) is continuous.

As a matrix, the entries ofDf(x) are the partial derivatives
∂fj
∂xj

, which represent

the derivatives of fi with respect to xj (while keeping the other xk constant).
Then, the differential Df(x)v is given by

(Df(x)v)i =
∑
j

∂fi
∂xj

vj .
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(Proof: Take v = ej in the definition of the differential.)

Theorem 8.70. f ∈ C1(U,Rm) if and only if for all i, j, the partial derivatives
∂fi
∂xj

exist and are continuous.

The implication =⇒ is clear, but the reverse implication ⇐= is more subtle.
The existence of ∂fi

∂xj
does not necessarily imply the differentiability or even the

continuity of f !

Example 8.71. Consider the function f(x, y) = x3

x2+y2 with f(0, 0) = 0. We
have

f(x, 0) = x, f(0, y) = 0,
∂f

∂x
(0, 0) = 1,

∂f

∂y
(0, 0) = 0.

Thus, if Df(0) exists, it maps (v1, v2) 7→ v1. However, along the path f(t, t) =
t
2 , which is not of the form t+ o(|t|).

Proof. We will only prove the ⇐= direction. It is sufficient to consider each
component of f , i.e., f = fi : U → R, one at a time. Applying the mean value
theorem successively, for x ∈ U and v ∈ Rn such that the ball B|v|(x) ⊂ U :

f(x1+v1, . . . , xn+vn) = f(x1+v1, . . . , xn−1+vn−1, xn)+
∂f

∂xn
(x1+v1, . . . , xn−1+vn−1, yn)vn

= f(x1, . . . , xn) +

n∑
j=1

∂f

∂xj
(x1 + v1, . . . , xj−1 + vj−1, yj , xj+1, . . . , xn) · vj .

Here, the first line uses the mean value theorem for ∂f
∂xn

, and the second line

applies the mean value theorem successively to ∂f
∂xn−1

, . . . , ∂f∂xi
.

All of these points are within distance |v| of x, and since the partial derivatives
∂f
∂xj

are continuous, for |v| → 0, this expression is well-approximated (within

o(|v|)) by

f(x) +
∑
j

∂f

∂xj
(x)vj .

Thus, f is differentiable, and Df(x) =
Ä
∂f
∂x1

, . . . , ∂f∂xn

ä
, which depends continu-

ously on x.

The usual rules of differentiation hold. In particular:

Theorem 8.72 (The Chain Rule). If g is differentiable at x ∈ Rn and f is
differentiable at g(x) ∈ Rm, then f ◦ g is differentiable at x, and

D(f ◦ g)(x) = Df(g(x)) ◦Dg(x).
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Proof. We have
g(x+ v) = g(x) +Dg(x)v + r(v),

where r(v) = o(|v|) (i.e., limv→0
|r(v)|
|v| = 0). Thus,

(f ◦ g)(x+ v) = f(g(x) + w) = f(g(x)) +Df(g(x))w + o(|w|).

Substituting w = Dg(x)v, we get

(f ◦ g)(x+ v) = f(g(x)) +Df(g(x)) ·Dg(x)v + o(|v|).

This completes the proof.

Note that the mean value theorem does not always hold. For example, for the
function f : R → R2, defined by f(t) = (cos t, sin t), we have f(2n) = f(0),
but f(0) + 2πf ′(t) does not hold for all t ∈ [0, 2π]. However, we do have the
following mean value inequality:

Theorem 8.73 (Mean Value Inequality). If f : U → Rm is differentiable at
every point of the line segment

[a, b] = {tb+ (1− t)a | t ∈ [0, 1]},

then
|f(b)− f(a)| ≤ |b− a| sup

x∈[a,b]
∥Df(x)∥.

Proof. Let u be the unit vector in the direction of f(b)− f(a), and let v be the
unit vector in the direction of b− a. Define g(t) = ⟨u, f(a+ tv)⟩. Then

g′(t) = ⟨u,Df(a+ tv)v⟩,

so that
|g′(t)| ≤ ∥Df(a+ tv)∥.

The result then follows from the single-variable mean value inequality for g on
the interval [0, |b− a|].

Now, let us discuss higher-order derivatives. We say that f is C2 if Df : U →
Hom(Rn,Rm) ≃ Rn×m is C1, and so on. The main important fact about higher
partial derivatives is:

Proposition 8.74. If the second partial derivatives ∂2f
∂xi∂xj

exist and are con-

tinuous, then
∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
.
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Proof. It is enough to consider the case of f(x, y). For small h and k ̸= 0,
consider

1

hk
(f(x+ h, y + k)− f(x+ h, y)− f(x, y + k) + f(x, y)) .

Writing this in terms of g(x, y) = f(x,y+k)−f(x,y)
k , we have

1

h
(g(x+ h, y)− g(x, y)) .

By the mean value theorem for ∂g
∂x , there exists h1 ∈ (0, h) such that this is

equal to

∂g

∂x
(x+ h, y) =

1

k

Å
∂f

∂x
(x+ h1, y + k)− ∂f

∂x
(x+ h1, y)

ã
.

By applying the mean value theorem for ∂
∂y

Ä
∂f
∂x

ä
, there exists k1 ∈ (0, k) such

that this is equal to
∂

∂y

Å
∂f

∂x

ã
(x+ h1, y + k1).

By reversing the order of differentiation, we obtain the same result with h2 ∈
(0, h) and k2 ∈ (0, k). Since the second derivatives are continuous by assump-
tion, taking limits as h, k → 0 gives the result.

Hence, the Hessian matrix H =
Ä

∂2f
∂xi∂xj

ä
is symmetric and can be interpreted

as a symmetric bilinear form on tangent vectors. If f ∈ C2, then

f(x+ v) = f(x) +Df(x) · v + 1

2
H(x)(v, v) + o(|v|2).

8.8 Inverse Function Theorem

Because of the local approximation

f(x+ v) = f(x) +Df(x)v + r(v),

the behavior of Df(x) governs that of f near x. In particular:

• If Df(x) is injective, then f is injective on a sufficiently small neighbor-
hood of x.

• If Df(x) is surjective, then f maps a neighborhood of x surjectively onto
a neighborhood of f(x).

When both conditions hold, f is a local diffeomorphism, by the Inverse Func-
tion Theorem.

Definition 8.75. A map f : U → V between open subsets of Rn is a diffeo-
morphism if it is a homeomorphism and both f and f−1 are C1.
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Theorem 8.76 (Inverse Function Theorem). Let p ∈ E ⊂ Rn be open, and
let f : E → Rn be C1. Suppose Df(p) : Rn → Rn is an isomorphism (i.e.,
detDf(p) ̸= 0). Then f is a local diffeomorphism at p, i.e., there exists a
neighborhood U of p such that f is a diffeomorphism between U ⊂ E and f(U) ⊂
Rn.

The proof uses two main ingredients:

1. The mean value inequality: if sup ||Df || ≤M , then

|f(b)− f(a)| ≤M |b− a|.

2. The Contraction Mapping Principle: if X is a complete metric space and
φ : X → X is a contraction, i.e.,

d(φ(x), φ(y)) ≤ αd(x, y) for some α < 1,

then φ has a unique fixed point.

For the proof of the contraction mapping principle, suppose x0 ∈ X and define
the sequence xn+1 = φ(xn). Then

d(xn, xn+1) ≤ αd(xn−1, xn),

so
d(xn, xn+1) ≤ αnd(x0, x1),

which implies (xn) is a Cauchy sequence and thus converges to some x ∈ X.
Moreover, since xn+1 = φ(xn), we have limn→∞ xn+1 = limn→∞ xn = x, so
φ(x) = x. Uniqueness: if φ(x) = x and φ(y) = y, then

d(φ(x), φ(y)) = d(x, y) ≤ αd(x, y),

so x = y.

Now, we prove the inverse function theorem.

Proof. After a linear change of variables, we can assume p = 0, f(0) = 0, and
Df(0) = Id. Since f ∈ C1 and Df is continuous, there exists a ball Br(0) such
that ||Df(x)− I|| < 1

2 for |x| ≤ r.

Now, given y0 ∈ Rn, define the map φ(x) = x+(y0−f(x)). The key observation
is that φ(x) = x if and only if f(x) = y0. For |x| ≤ r, we have

||Dφ(x)|| = ||I −Df(x)|| ≤ 1

2
.

Assume |y0| < r
2 . Since φ(0) = y0 and ||Dφ|| ≤ 1

2 for |x| ≤ r, the mean value
inequality gives

|φ(x1)− φ(x2)| ≤
1

2
|x1 − x2|,
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and also

|φ(x)| ≤ |y0|+
|x|
2
< r,

which we will call the (⋆) equation. Therefore, φ is a contracting map from
Br(0) to itself, so by the Contraction Mapping Principle, there exists a unique
fixed point x0 ∈ Br(0) such that φ(x0) = x0. Hence, for all y0 ∈ B r

2
(0), there

exists a unique x0 ∈ Br(0) such that f(x0) = y0, which we will call (⋆⋆).

Now, let V = B r
2
(0) and U = f−1(V ) ∩ Br(0), where U and V are open sets

(since f is continuous). By (⋆⋆), the map f |U : U → V is a bijection. Let
g : V → U be the inverse map.

Claim: g is differentiable and Dg(y) = Df(x)−1 where x = g(y) (y = f(x)).

Proof : Fix y0 ∈ V and x0 = g(y0) ∈ U . Let φ(x) = x + (y0 − f(x)), as
before, with φ(x0) = x0. For small w ∈ Rn (so that |y0 + w| < r

2 ), write
g(y0 + w) = x0 + v, so f(x0 + v) = y0 + w. Then

φ(x0 + v) = (x0 + v) + (y0 − (y0 + w)) = x0 + v − w,

where φ(x0) = x0. Since φ is contracting, we have

|φ(x0 + v)− φ(x0)| = |v − w| ≤
1

2
|v|.

Thus, |w| ≥ 1
2 |v| by the triangle inequality, implying |v| ≤ 2|w|. Given ϵ > 0,

there exists δ such that for |w| < δ
2 ,

|(y0 + w)− y0 −Df(x0)v| <
ϵ

2
|v| ≤ ϵ|w|.

Applying Df(x0)
−1, we get

|Df(x0)−1w − v| ≤ ||Df(x0)−1|| · |w −Df(x0)v| < ϵ||Df(x0)−1|| · |w|.

Recalling that v = g(y0 + w)− g(y0), this yields

g(y0 + w) = g(y0) +Df(x0)
−1w + o(|w|).

Thus, g is differentiable and Dg = Df(x0)
−1.

Now, let’s discuss the implicit function theorem.

Theorem 8.77 (Implicit Function Theorem). Let E ⊂ Rn × Rm be open, and
let f : E → Rm be differentiable, where (x, y) 7→ f(x, y). Write the derivative
of f at (x, y) as Df(x, y) : Rn ⊕ Rm → Rm and decompose it as Df(x, y) =
(Dfx, Dfy), where Dfx : Rn → Rm corresponds to the first n variables, and
Dfy : Rm → Rm corresponds to the last m variables.
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Assume that f(x0, y0) = 0 and that Dfy is invertible, i.e., detDfy ̸= 0, at
(x0, y0) ∈ E. Then, there exist open neighborhoods U ⊂ Rn of x0 and V ⊂ Rm
of y0 such that for all x ∈ U , there exists a unique y = g(x) ∈ V such that
f(x, y) = 0. Moreover, the map g : U → V defined by f(x, g(x)) = 0 for all
x ∈ U is differentiable, and the derivative of g is given by

Dg = −(Dfy)−1Dfx.

This result follows from the Inverse Function Theorem by considering the map
F : Rn+m ⊃ E → Rn+m defined by F (x, y) = (x, f(x, y)). The Jacobian matrix
of F at (x0, y0) is

DF (x0, y0) =

Å
I 0

Dfx Dfy

ã
,

which is invertible. Therefore, F has an inverse G in a neighborhood of (x0, y0).
Near (x0, y0), we have f(x, y) = 0 ⇐⇒ F (x, y) = (x, 0) ⇐⇒ (x, y) = G(x, 0).
Thus, we define g(x) as the second component of G(x, 0).

Given a differentiable map f : Rn+m → Rm and a point at which Df is surjec-
tive, we can always find a subset of coordinates (xi)i∈I , where I ⊂ {1, . . . , n+m}
and |I| = m, such that the corresponding part of Df is invertible. This allows
us to apply the Implicit Function Theorem to describe the zero set of f by
equations of the form

(xi)i∈I = g(xj), for j /∈ I.

In particular, a hypersurface S ⊂ Rn is a closed subset that is locally the zero
set of a differentiable real-valued function f with Df ̸= 0. Using the Implicit
Function Theorem, S can be locally described as the graph of some differentiable
function xj = g(xi) for i ̸= j. For example, a differentiable curve in R2 can be
locally described as the graph of a function x = f(y) or y = f(x).

8.9 Iterated and Riemann Integrals in Several Variables

Let f be a continuous function on an n-cell D = [a1, b1] × · · · × [an, bn] ⊂ Rn.
Then, we can define the integral of f over D as:∫

D

f =

∫
D

f dx1 dx2 · · · dxn =

∫
D

f |dx|.

Why the notation dx? This will become clearer once we discuss differential
forms.

There are two ways to express this integral:

• As an iterated integral:∫ b1

a1

Ç∫ b2

a2

· · ·
Ç∫ bn

an

f(x1, . . . , xn) dxn

å
· · · dx2

å
dx1,

which can be written in any order.
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• As a Riemann integral: We divide D into small cubes Qi and bound
f between two piecewise constant functions: ∆ = ∆i = min f(Qi) on
int(Qi), and S = Si = max f(Qi) on int(Qi). We can estimate the integral
by: ∑

∆i vol(Qi) ≤
∫
D

f |dx| ≤
∑

Si vol(Qi).

If f is continuous (and hence uniformly continuous), then sup |S−∆| → 0
as diam(Qi)→ 0, which defines the integral uniquely.

Theorem 8.78 (Fubini’s Theorem). For a continuous function f , the iterated
integrals for different orders of integration are all equal.

If f is only piecewise continuous, integrability still holds if the regions ofD where
f is continuous are sufficiently regular, e.g., delimited by smooth hypersurfaces.
Specifically, when decomposing D into small cubes Qi, we require that:∑

f |Qi
not C0

vol(Qi)→ 0 as one subdivides further.

In such cases, (Si − ∆i) does not tend to 0 as the step size tends to 0, but if
vol(Qi)→ 0, we still have:∫

D

(S −∆)|dx| =
∑

(Si −∆i)vol(Qi)→ 0.

Thus, we can define integrals over regions of Rn delimited by hypersurfaces by
either:

• Extending f by 0 outside the given region, and integrating the resulting
piecewise continuous function.

• Using a change of coordinates (via the implicit function theorem) to make
the region of integration an n-cell. This requires a change of variables.

Theorem 8.79. Let φ : U → V be a diffeomorphism, and let f be continuous
on V . Then, ∫

V

f(y)|dy| =
∫
U

f(φ(x)) |detDφ(x)| d|x|.

We will not prove this here. The geometric intuition is that if Qi is a small cube
containing x, then φ(Qi) is approximately a small parallelepiped containing
φ(x), with vol(φ(Qi)) ∼ |detDφ(x)| · vol(Qi).

We also consider path integrals. Given a path γ ∈ C1([0, 1],R2), where γ(t) =
(x(t), y(t)), and a differential 1-form ω = p(x, y) dx+ q(x, y) dy with p, q contin-
uous, the path integral is defined as:∫

γ

ω =

∫
γ

p dx+ q dy =

∫ 1

0

(p(γ(t))x′(t) + q(γ(t))y′(t)) dt.
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This integral is independent of the parameterization of the path, due to a change
of variables and the chain rule. If we reverse the path, i.e., (−γ)(t) = γ(1− t),
then: ∫

−γ
ω = −

∫
γ

ω.

For a function f ∈ C1(R2,R), we define the differential df = ∂f
∂x dx + ∂f

∂y dy.
Then, the path integral of df is:∫

γ

df = f(γ(1))− f(γ(0)).

This result generalizes to arbitrary dimensions using the language of differen-
tiable forms.

8.10 Differential Forms

On Rn, the symbols dx1, . . . , dxn can be viewed as the differentials of the
coordinate functions x1, . . . , xn; they form a basis of T ∗ = Hom(Rn,R), the
space of linear forms on the tangent space T ≃ Rn (i.e., dxi(v) = vi, the i

th

component of the vector v). Differential forms are therefore functions that take
values in T ∗.

We now consider the exterior powers
∧k

T ∗, which is the vector space with
a basis { dxi1 ∧ · · · ∧ dxik | i1 < · · · < ik}, consisting of elements of the exterior
algebra generated by T ∗. This is the quotient of the tensor algebra by the
relation dxi∧ dxj = − dxj∧ dxi (with

∧0
= R). This implies that α∧β = −β∧α

and α ∧ α = 0 for all 1-forms.

Definition 8.80. A k-form on an open subset U ⊂ Rn is a function with
values in

∧k
T ∗:

ω =
∑

i1<···<ik

Pi1,...,ik(x) dxi1 ∧ · · · ∧ dxik

(also denoted
∑
|I|=k PI dxI).

The space of smooth k-forms on U ⊂ Rn is denoted by Ωk(U) = C∞(U,
∧k

T ∗).
We can multiply k-forms by functions or take exterior products, where:

(f dxi1∧· · ·∧ dxik)∧(g dxj1∧· · ·∧ dxjl) = (fg) dxi1∧· · ·∧ dxik∧dxj1∧· · ·∧ dxjl

This is zero if I ∩ J = ∅ and equals ±(fg) dxI⊔J if I ∩ J = ∅.

Definition 8.81. The exterior derivative d : Ωk → Ωk+1 is defined by:

d

(∑
I

pI dxI

)
=
∑
I,j

∂pI
∂xj

dxj ∧ dxI .
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Example 8.82.

• For k = 0 to k = 1: df =
∑ ∂f

∂xi
dxi.

• For Ω1(R2)→ Ω2(R2): d(p dx+ q dy) =
Ä
− ∂p∂y + ∂q

∂x

ä
dx ∧ dy.

Proposition 8.83. d2 = 0, i.e., for all ω ∈ Ωk, d(dω) = 0. This follows from

the symmetry of mixed second partial derivatives, ∂2pI
∂xj∂xk

= ∂2pI
∂xk∂xj

, and the

antisymmetry of the wedge product: dxj ∧ dxk + dxk ∧ dxj = 0.

We say that ω is closed if dω = 0, and exact if ω = dα for some α ∈ Ωk−1.
The above proposition implies that exact forms are closed.

Theorem 8.84 (Poincaré Lemma). For a convex open subset U ⊂ Rn, a k-form
ω ∈ Ωk is exact if and only if ω is closed, for 1 ≤ k ≤ n.

Remark 8.85. This result leads to the concept of de Rham cohomology, a key
invariant in differential topology. The de Rham cohomology groups are defined
by:

Hk
dR(U) :=

Ker(d : Ωk(U)→ Ωk+1(U))

Im(d : Ωk−1(U)→ Ωk(U))
= {closed k-forms}/{exact forms}.

The Poincaré Lemma implies that Hk
dR(U) = 0 for a convex U ⊂ Rn and

k ≥ 1. However, H1
dR(R2 −{0}) ̸= 0, which detects that R2 −{0} is not simply

connected.

Next, let us discuss the pullback of differential forms. If φ : U → V is a
smooth map, where U ⊂ Rn and V ⊂ Rm, then we define the pullback map
φ∗ : Ωk(V )→ Ωk(U), which satisfies the following properties:

1. For functions (k = 0), φ∗(f) = f ◦ φ.

2. φ∗(α ∧ β) = φ∗α ∧ φ∗β.

3. φ∗(dα) = d(φ∗α).

In coordinates, let (xi) be the coordinates on U and (yj) the coordinates on V .
The pullback of a 1-form is given by:

φ∗(dyj) = d(yj ◦ φ) =
∑
i

∂φj
∂xi

dxi.

For a general k-form, the pullback is:

φ∗

(∑
J

pJ(y) dyj1 ∧ · · · ∧ dyjk

)
=
∑
J

pJ(φ(x)) dφj1 ∧ · · · ∧ dφjk

=
∑
I

det

Å
∂(φj1 , . . . , φjk)

∂(xi1 , . . . , xik)

ã
dxI .
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Specifically, for φ : Rn → Rn and k = n:

φ∗(dy1 ∧ · · · ∧ dyn) = (detDφ) dx1 ∧ · · · ∧ dxn.

Let us now discuss the integration of differential forms. Given ω =
∑
I(x)pI(x) dxI ∈

Ωk(U), we can integrate ω over a k-dimensional submanifold M ⊂ U param-
eterized by a smooth map from a k-cell D ⊂ Rk to U ⊂ Rn (or any other
sufficiently nice domain for integration). Specifically, let φ : D ↪→ U be such
that M = φ(D), where t 7→ (φ1(t), . . . , φn(t)). Then, the integral is given by:∫

M

ω =

∫
D

∑
I

pI(φ(t)) det

ÇÅ
∂φi
∂tj

ã
1≤j≤k

å
i∈I

d|t|.

We can verify that for 1-forms, this expression agrees with the path integral
formula: ∫

γ

pi dxi =

∫
pi(γ(t))

dxi
dt

dt.

What this formula means is the following:

• For n-forms on D ⊂ U ⊂ Rn, we have:∫
D

f dx1 ∧ · · · ∧ dxn =

∫
D

f |dx|.

• For a general map φ : Dk → U ⊂ Rn, we have:∫
φ(D)

ω =

∫
D

φ∗ω,

where ω is the k-form on D ⊂ Rk, and the right-hand side gives the usual
integral.

We can similarly integrate k-forms over a finite union of parameterized pieces.

Theorem 8.86 (Pullback Formula). Given a smooth map φ : U ⊂ Rm → V ⊂
Rn, where ω ∈ Ωk(V ) and Mk ⊂ U , we have:∫

φ(M)

ω =

∫
M

φ∗ω.

This formula is essentially equivalent to the change of variables formula for the
usual integral

∫
D
f |dx|, and it implies that the integral

∫
M
ω is independent of

the way we parameterize M as the image of a map φ : D → U (or a union
of pieces), provided all representations are orientation-preserving (i.e., we
compare φ : D → U with a diffeomorphism g : D′ → D, where D,D′ ⊂ Rk,
such that det(Dg) > 0 everywhere).
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Example 8.87. Let ω = x dy−y dx
x2+y2 on R2−{0}, and let Cr be the circle of radius

r oriented counterclockwise (parametrized by (r, 0) → (r, 0)). Pulling back via
φ : (r, θ) 7→ (r cos θ, r sin θ) (polar coordinates), we have:

φ∗ω =
(r cos θ)(r cos θ dθ)− (r sin θ)(−r sin θ dθ)

r2
= dθ.

Thus, we obtain: ∫
Cr

ω =

∫
{r}×[0,2π]

φ∗ω =

∫ 2π

0

dθ,

which is independent of r.

Note that dω = 0 (either by direct calculation or using the fact that φ∗(dω) =
d(φ∗ω) = d(dθ) = 0), meaning ω is closed, but not exact. If there exists a
function f(x, y) on R2 − {0} such that df = ω, then the path integral:∫

Cr

ω =

∫
Cr

df = f(r, 0)− f(r, 0) = 0.

However, the path integral is independent of the radius r, which is a manifes-
tation of the fact that H1

dR(R2 − {0}) ̸= 0.

This result is a consequence of Stokes’ Theorem. For a submanifold M ⊂ Rn
parameterized as φ(D), where D ⊂ Rk is a k-cell (or another nice domain), we
define the boundary ∂M = (k− 1)-dimensional boundary φ(∂D). For example,
if D =

∏
[ai, bi] is a k-cell, then the boundary consists of 2k pieces, each with a

suitable orientation.

Theorem 8.88 (Stokes’ Theorem). For all w ∈ Ωk−1, we have:∫
M

dω =

∫
∂M

ω.

Thus, for example, if ω is a closed 1-form on a simply connected domain U ⊂ Rn,
the path integral

∫
γ
ω is independent of the choice of path γ from a base point

x0 to x.

Indeed, path-independence follows from Stokes’ Theorem for the surface S
traced by a path homotopy. Specifically, if dω = 0, then:

0 =

∫
S

dω =

∫
∂S=γ−γ′

ω =

∫
γ

ω −
∫
γ′
ω.

Thus, we can define a function f(x) =
∫
γ
ω for any path γ : x0 → x. By Stokes’

Theorem (which is the fundamental theorem of calculus for differential forms),
we have: ∫

γ

df = f(x)− f(x0) =
∫
γ

ω ∀ path γ.

Therefore, we find that ω = df is exact, which leads to the Poincaré Lemma.
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Remark 8.89. Stokes’ Theorem for differential forms in R2 and R3 specializes
to the classical theorems of multivariable calculus:

• k = 0: The fundamental theorem of calculus for path integrals.

• k = 1: Green’s Theorem in R2 and the curl in R3.

• k = 2 in R3: Gauss’ (Divergence) Theorem.

The most useful case for complex analysis is when D ⊂ R2 and we have:∫
∂D

p dx+ q dy =

∫
D

Å
∂q

∂x
− ∂p

∂y

ã
dx ∧ dy.

Let’s sketch a proof:

Proof. Both sides of Stokes’ Theorem obey the pullback formula (using φ∗(dω) =
d(φ∗ω), and ∂φ(M) = φ(∂M)), so we can change coordinates or perform the
pullback by parameterizing M . We can decompose the integral into pieces, ei-
ther by writing ω as a sum of forms with support contained in subsets that
have a single parameterization, or by observing that if M = M1 ∪ M2 with
M1 ∩M2 = N ⊂ ∂Mi, then ∂M1 and ∂M2 contain N with opposite orienta-
tions. Thus, we have:∫

M

dω =

∫
M1

dω +

∫
M2

dω and

∫
∂M

ω =

∫
∂M1

ω +

∫
∂M2

ω.

Over a k-cell, we consider each component of ω ∈ Ωk−1 separately. For example,
for D =

∏k
i=1[ai, bi] = D′ × [ak, bk], we have:

ω = f dx1 ∧ · · · ∧ dxk−1 =⇒ dω = (−1)k−1 ∂f
∂xk

dx1 ∧ · · · ∧ dxk−1 ∧ dxk.

Thus,∫
D

dω =

∫
D

(−1)k−1 ∂f
∂xk
|dx|

=

∫
D′

Ç∫ bk

ak

(−1)k−1 ∂f
∂xk

dx1 . . . dxk−1

å
= (−1)k−1

∫
D′

[f(x1, . . . , xk−1, bk)− f(x1, . . . , xk−1, ak)] dx1 . . . dxk−1.

Thus, we find: ∫
D

dω = (−1)k−1
Ç∫

D′×{bk}
ω −

∫
D′×{ak}

ω

å
.

248



Therefore, we conclude that: ∫
∂D

ω =

∫
D

dω.

249



9 Complex Analysis I

9.1 Complex Differentiability

We study functions f : U ⊂ C, z 7→ f(z) where U ⊂ C is open. Writing
z = x + iy, these are instances of functions from R2 to R2, and the notion
of continuity is the same. However, we introduce a different (more restrictive)
notion of differentiability.

Definition 9.1. The complex derivative of f at z ∈ U (if it exists) is

f ′(z) = lim
h→0

f(z + h)− f(z)
h

that is, f(z + h) = f(z) + hf ′(z) + o(|h|).

The key point is that the limit must hold as h→ 0 in the complex plane C.

Definition 9.2. We say that f : U → C is analytic (or holomorphic) if
f ′(z) exists for all z ∈ U .

Example 9.3. Assume f only takes real values, i.e., f(z) ∈ R for all z ∈ C. In
this case, the numerator in the definition of the derivative is always real. When
h is real, we get f ′(z) ∈ R, while when h is purely imaginary, we get f ′(z) ∈ iR.
Therefore, the complex derivative of a function that takes only real values either
does not exist or is equal to zero.

We can treat f : U → C as a function of two real variables, x + iy. If f ′(z)
exists, we can consider limits as h is real or purely imaginary. Specifically, we
have:

f ′(z) = lim
h→0,h∈R

f((x+ h) + iy)− f(x+ iy)

h
=
∂f

∂x
,

f ′(z) = lim
ih→0,ih∈iR

f(x+ i(y + h))− f(x+ iy)

ih
= −i∂f

∂y
.

This leads to the Cauchy-Riemann equations:

∂f

∂x
= −∂f

∂y
.

Equivalently, writing f = u + iv for real-valued functions u = Re(f) and v =
Im(f), the Cauchy-Riemann equations become:

∂u

∂x
=
∂v

∂y
,

∂v

∂x
= −∂u

∂y
.
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In other words, the differential Df(z) : R2 → R2 is of the formÅ
a b
c d

ã
.

This is the matrix representation of complex multiplication by f ′(z) = a + ib,
viewed as an R-linear transformation on R⊕ iR ≃ C.

In the language of differentials, the complex-valued 1-form df = du + idv on
U ⊂ R2 can be written in terms of dz = dx+ idy and dz = dx− idy as:

df =
∂f

∂x
dx+

∂f

∂y
dy

=
1

2

Å
∂f

∂x
− i∂f

∂y

ã
(dx+ idy) +

1

2

Å
∂f

∂x
+ i

∂f

∂y

ã
(dx− idy)

=
∂f

∂z
dz +

∂f

∂z
dz.

Thus, if f ′(z) exists, we have:

∂f

∂z
=

1

2

Å
∂f

∂x
+ i

∂f

∂y

ã
(dx+ idy) = 0,

∂f

∂z
=

1

2

Å
∂f

∂x
− i∂f

∂y

ã
(dx+ idy) = f ′(z).

Conversely, if f is real-differentiable at z, then

f(z + h) = f(z) +Df(z) + o(|h|) = f(z) +
∂f

∂z
h+

∂f

∂z
h+ o(|h|),

so the complex derivative exists if and only if ∂f∂z = 0.

Proposition 9.4. The following are equivalent:

f is analytic ⇐⇒ f is differentiable and Df ∈
ßÅ

a −b
b a

ã
| a, b ∈ R

™
= R2 · SO(2) ⊂M2×2(R),

⇐⇒ ∂f

∂z
= 0,

⇐⇒ ∂f

∂x
+ i

∂f

∂y
= 0.

Remark 9.5. Rescaling and rotating: conformal transformations. Geometri-
cally, conformal transformations of the plane preserve angles between vectors
(and orientation). Thus, analytic functions in one variable are conformal map-
pings (differentiable in two real variables). If you draw a square grid in the
plane and map it by f , the resulting curves will meet at right angles everywhere.
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The miracle: Even though analyticity only requires the existence of a complex
derivative, it has many far-reaching consequences, which we will explore and
prove in the coming classes. Among these:

1. If f : U → C is analytic, then it has derivatives of all orders! (In contrast

to the real case, where, for example, f(x) = x
7
3 is only C2, not C∞.)

2. The Taylor series expansion of f at any point z0 ∈ U is convergent and
equal to f over a disk Br(z0) ⊂ U ; in particular, f(z0+h) can be expressed
as a power series in h (unlike f(x) = exp

(
− 1
x2

)
, which has all derivatives

zero at x = 0, so its Taylor series converges to 0, not f).

3. Local determination: If f, g : U → C are analytic and U is connected,
then f = g on U if f = g on any subset of U that has a limit point (e.g.,
a small ball, or a small real interval, or ...).

And much more! But first, let’s look at examples and work out some basic
properties.

Polynomials P (z) ∈ C[z]: A polynomial P (z) =
∑n
k=0 akz

k = an
∏n
i=1(z − xi)

is analytic, and its complex derivative is simply the usual derivative (this follows
from the usual rules of differentiation, which also hold in the complex case). By
contrast, a polynomial in two variables P (x, y) can be rewritten as a polynomial
in z and z (set x = z+z

2 , y = z−z
2i ), so C[x, y] ≃ C[z, z]. To check:

∂

∂z
(zkzl) = kzk−1zl,

∂

∂z
(zkzl) = lzkzl−1,

so such a polynomial is analytic if and only if it does not contain z.

9.2 Rational Functions

A rational function f ∈ C(z) is of the form

f(z) =
P (z)

Q(z)
= c

∏
(z − αi)∏
(z − βj)

,

where P (z) and Q(z) are polynomials, and we assume that the zeros αi and
poles βj are distinct, i.e., αi ̸= βj for all i, j. The zeros of f are located at
the αi’s, and the poles are located at the βj ’s. The order of a zero or pole
corresponds to the multiplicity of the root αi or βj in the polynomials P or Q.
Rational functions are analytic on their domain, which is the set C− {poles}.

Rational functions can also be viewed as functions on the Riemann sphere
S = C ∪ {∞}, the one-point compactification of C. Specifically, for a rational

function f(z) = P (z)
Q(z) , there is a unique continuous extension to a map from S

to S, where:

• Poles map to ∞,

• ∞ maps to limz→∞
P (z)
Q(z) ∈ C ∪ {∞}.
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At z =∞, the function has a pole of order deg(Q)−deg(P ) if deg(Q) > deg(P ),
and a zero of order deg(P ) − deg(Q) if deg(P ) > deg(Q). This implies that
as a map S → S, the number of poles equals the number of zeros (counting
multiplicities), and is equal to max(deg(P ),deg(Q)) = deg(f).

Note: For any c ∈ S, the equation f(z) = c has exactly deg(f) solutions, count-
ing multiplicities. This follows because for c ∈ C, the degree of the polynomial
f(z)− c is deg(f).

Example 9.6.

• f(z) = z2 has a zero of order 2 at z = 0 and a pole of order 2 at z =∞.

• f(z) = z
z2−1 has zeros of order 1 at z = 0 and z =∞, and poles of order

1 at z = ±1.

The fact that rational functions are analytic maps S → S can be understood
near z = ∞ by a change of coordinates, z = 1

w . The function f(z) is analytic
near z = ∞ if f

(
1
w

)
is analytic near w = 0. Similarly, near poles (infinite

values), one can consider the function 1
f(z) .

In more advanced language, S is a Riemann surface, which has an open cover
by two subsets:

• S − {∞} ≃ C, and

• S − {0} ≃ C.

The change of coordinates z = 1
w is analytic, so we can define analytic func-

tions S → S as functions whose expressions in these coordinates are analytic.
However, one does not need this level of abstraction to study rational functions.

Another perspective (hence the term ”sphere”) is that we can identify S with
the unit sphere in R3 by stereographic projection:

S2 → C ∪∞ : (x, y, z) 7→ x+ iy

1− z
,

for z < 1, and (0, 0, 1) 7→ ∞.

Proposition 9.7. The map described above is a conformal map from S2 →
C ∪∞, meaning it preserves angles.

Thus, rational functions f(z) = P (z)
Q(z) define conformal maps S2 → S2, which

are analytic functions S → S of degree deg(f), and all conformal maps S → S
are given by rational functions. This result will be proved later.

The special case deg(f) = 1 is of particular interest. These are the fractional
linear transformations, or Möbius transformations, of the form

f(z) =
az + b

cz + d
, det

Å
a b
c d

ã
̸= 0.
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These transformations are homeomorphisms of S to itself, and they form a
group under composition. This group corresponds to the automorphisms of the
Riemann sphere, and it is isomorphic to PSL(2,C).

Example 9.8.

• f(z) = 1
z maps 0 ↔ ∞, and S1 is mapped onto itself by eiθ 7→ e−iθ

(swapping the hemispheres of S2).

• f(z) = i 1−z1+z maps the unit disk D = {|z| < 1} conformally to the upper

half-plane H = {Im(z) > 0}, and maps S1 onto R ∪ ∞. The analytic
isomorphism D ≃ H is important and useful in various areas of geometry.

One way to understand the relation between z 7→ az+b
cz+d and the matrix

Å
a b
c d

ã
is to note that CP1 = (C2 − {0})/(z1, z2) ∼ (λz1, λz2) for all λ ∈ C∗. This
can be mapped to S, the set of one-dimensional subspaces of C2, by the map
[z1, z2] 7→ z1

z2
. The point z ∈ C maps to [z, 1], and ∞ maps to [1, 0]. The matrixÅ

a b
c d

ã
acts by [z, 1] 7→ [az + b, cz + d].

Since λ · Id acts trivially, we find that the automorphism group of the Riemann
sphere is

Aut(S) = PGL(2,C) ≃ SL(2,C)/± I.
This group acts simply transitively on triples of distinct points in S. Specifically,
for any distinct points a1, a2, a3 ∈ S and b1, b2, b3 ∈ S, there exists a unique
f ∈ Aut(S) such that f(ai) = bi for all i.

9.3 Power Series

Consider the power series f(z) =
∑∞
n=0 anz

n (centered at z = 0, or more
generally,

∑∞
n=0 an(z− z0)n centered at z0). Recall the radius of convergence is

given by
1

R
= lim sup

n→∞
|an|1/n,

where R ∈ [0,∞].

For |z| < R, the series converges (absolutely:
∑
|an||z|n converges) by the root

test. Specifically, we have

lim sup
n→∞

|anzn|1/n =
|z|
R

< 1,

which implies that the series behaves similarly to a geometric series. For |z| > R,
the series diverges, and for |z| = R, the behavior depends on the specific series.

The convergence is uniform on any smaller disk Dr = {|z| ≤ r} for r < R. This
can be shown using the Weierstrass M-test:

sup
z∈Dr

|anzn| = |an|rn,
∑
|an|rn converges for r < R.
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Thus,
∑
anz

n converges uniformly on Dr. By the Cauchy criterion for partial
sums sn =

∑n
k=0 akz

k, for n > m ≤ N , we have

sup
z∈Dr

|sn(z)− sm(z)| = sup
Dr

∣∣∣∣∣∣
n∑

k=m+1

akz
k

∣∣∣∣∣∣ ≤
∞∑

k=N+1

|ak|rk.

As N →∞, we conclude that f(z) =
∑∞
n=0 anz

n is continuous on Dr.

The series g(z) =
∑∞
n=0 nanz

n−1 has the same radius of convergence as f . The
partial sums sn(z) are analytic, and the partial sums converge uniformly to f ,
with s′n(z)→ g(z) uniformly on Dr for all r < R.

Theorem 9.9. Let f(z) =
∑∞
n=0 anz

n. Then f is analytic on Dr, and its
derivative is given by

f ′(z) = g(z) =

∞∑
n=0

nanz
n−1.

Proof. We work on the smaller disk Dr with r < R, where uniform convergence
holds. From the theory of real functions, we know that if the partial sums
sn → f uniformly, then s′n(z) → g(z) uniformly, which implies f ′(z) = g(z).
For power series, there is an easier proof using mean value inequalities. Since
s′′n(z) also converges uniformly on Dr, we have a uniform bound on |s′′n(z)| < M
for all n and for all z ∈ Dr. Therefore, for z and z + h ∈ Dr, mean value
inequalities yield

|sn(z + h)− sn(z)− s′n(z)h| ≤
1

2
M |h|2.

Taking the limit as n→∞, we obtain

|f(z + h)− f(z)− g(z)h| ≤ 1

2
M |h|2,

which shows that f ′(z) = g(z).

Example 9.10. Consider the power series

∞∑
n=0

zn =
1

1− z
,

which has radius of convergence R = 1. For |z| = 1, the series diverges since
the terms do not tend to zero, but the right-hand side makes sense for z ̸= 1.
In fact, power series expansions can be obtained around any disk that does not
contain the pole at z = 1. For example:
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• Around z0 = −1, we have

1

1− z
=

1

2− (z + 1)
=

∞∑
n=0

(z + 1)n

2n+1
,

so R = 2.

• Around z0 = 2, we have

1

1− z
=

−1
1 + (z − 2)

=

∞∑
n=0

(−1)n+1(z − 2)n,

so R = 1.

• Around ∞, we have

1

1− z
=
−1/z
1− 1/z

= −
∞∑
n=1

Å
1

z

ãn
.

The process of extending a series beyond its radius of convergence is called
analytic continuation. For example, here it yields a rational function defined
on C \ {1}. This technique works for all rational functions (e.g., using partial
fractions or the case of 1

(z−a)k ).

Example 9.11. Consider the partition generating function∑
p(n)zn,

where p(n) denotes the number of partitions of n (the number of ways of writing
n as a sum of positive integers). This is given by:

f(z) =
∑

p(n)zn = (1 + z + z2 + · · · )(1 + z2 + z4 + · · · )(1 + z3 + z6 + · · · ) · · ·

which simplifies to

f(z) =

∞∏
k=1

1

1− zk
.

This series converges for |z| < 1, and since there are poles at all complex roots
of unity, the series cannot be extended past the unit circle.

Example 9.12. The exponential function exp(z) =
∑∞
n=0

zn

n! has radius of
convergence R =∞, so it converges for all z ∈ C.

By algebraic manipulation, we have the identity exp(z + w) = exp(z) exp(w).
In particular,

e−z =
1

ez
, ez ̸= 0 for all z ∈ C.

For z = x+ iy, we have ez = exeiy, where |ez| = ex and arg(ez) = y.
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The functions cos(z) and sin(z) can be defined as

cos(z) =
eiz + e−iz

2
, sin(z) =

eiz − e−iz

2i
.

These are given by the usual series expansions:

cos(z) = 1− z2

2!
+
z4

4!
− · · · , sin(z) = z − z3

3!
+
z5

5!
− · · · .

Note that cos(iy) = cosh(y) for purely imaginary arguments.

Since exp′(z) = exp(z) ̸= 0, the exponential function is a local diffeomorphism
at each point. Globally, exp is the universal covering map from C to C∗.

What about the logarithm? For w ∈ C, we want to define log(w) = z such that
ez = w. Such a z exists, but it is not unique, as we can add integer multiples of
2πi. The real part of log(w) is well-defined and equal to log |w| (for the usual
logarithm on R+).

In general, the expression log(w) = log |w|+i arg(w) is not well-defined and con-
tinuous on C∗. However, it is well-defined and continuous on simply connected
subsets of C∗. Thus, we cannot define arg(w) continuously around 0.

This situation is consistent with the lifting problem for the diagram:

C

U C×
exp

i

The same issue arises when defining za for a /∈ Z: we would like to define
za = exp(a log z), but this only works on suitable domains. For example,

√
z

is multivalued (±
√
z), and we cannot define a continuous function on a domain

that encloses the origin.

However, there are still power series expressions away from the origin. For
example:

log(1 + z) = z − z2

2
+
z3

3
− · · · ,

√
1 + z = 1 +

z

2
− z2

8
+ · · · R = 1.

9.4 Cauchy’s Theorem and Integral Formula

We now consider path integrals of complex 1-forms ω = f(z) dz: given a con-
tinuous function f : U → C and a (piecewise) differentiable path γ : [0, 1]→ C,
the path integral is given by∫

γ

f(z) dz =

∫ 1

0

f(γ(t))γ′(t) dt.
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Alternatively, we can choose points zi = γ(ti) along the path, with diam(γ([ti, ti+1])) <
ϵ, then the integral is∫

γ

f(z) dz = lim
ϵ→0

∑
i

f(zi)(zi+1 − zi).

Example 9.13. For a path γ from a to b,∫
γ

zn dz =

∫ 1

0

γ(t)nγ′(t) dt =
1

n

(
bn+1 − an+1

)
.

For a power series, f(z) =
∑
anz

n, if γ is entirely contained within the disc of
convergence, it follows that∫

γ

f(z) dz = F (b)− F (a),

where F (z) =
∑ an

n+1z
n+1: indeed, F ′(z) = f(z), and the equality follows from

the fundamental theorem of calculus.

In general, a 1-form on R2 does not need to be exact, and their path integrals
need not be path-independent. However, things are much simpler in the analytic
setting:

Theorem 9.14 (Cauchy’s Theorem). Let D ⊂ C be a bounded region with a
piecewise smooth boundary, and let f(z) be analytic on an open set U containing
D. Then, ∫

∂D

f(z) dz = 0.

Proof. Assume f ′ is continuous: the 1-form ω = f(z) dz is C1, and dω =
df ∧ dz = f ′(z)dz ∧ dz = 0. By Stokes’ theorem, we have∫

∂D

ω =

∫
D

dω = 0.

We’ll later show that f analytic implies that f ′ is continuous. In the meantime,
we add the continuity of f ′ to our working assumptions.

This result holds not only for a simply connected region bounded by a simple
closed curve, but also for regions D with holes (e.g., around points where f isn’t
defined).

Example 9.15. Let f be analytic on U − {z0}, and let γ be a path enclosing
z0 but minus a circle of radius r centered at z0. Then,∫

γ

f(z) dz =

∫
Cr

f(z) dz,
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where Cr = S1(z0, r) is a circle of radius r centered at z0, by Cauchy’s theorem.

Now assume f is analytic on U − {z0}, and limz→z0(z − z0)f(z) = 0, i.e., f is
bounded near z0. Then,∣∣∣∣∫
Cr

f(z) dz

∣∣∣∣ ≤ sup
z∈Cr

|f(z)|·length(Cr) = 2πr sup
z∈Cr

|f(z)| = 2π sup
z∈Cr

|(z−z0)f(z)|.

Since this quantity tends to zero as r → 0, and the path integral is independent
of r, we obtain:

Theorem 9.16 (Improved Cauchy). Cauchy’s theorem remains true under the
weaker assumption that f is defined and analytic in D−{z0}, with z0 ∈ int(D),
and limz→z0(z − z0)f(z) = 0.

However, we cannot completely eliminate the assumptions about the behavior
of f at z0.

Example 9.17. Consider∫
S1(z0,r)

(z − z0)n dz =
∫ 2π

0

(
reiθ

)
ireiθ dθ =

®
0 if n ̸= 1,

2πi if n = −1.

Using this, we derive Cauchy’s integral formula:

Theorem 9.18 (Cauchy’s Integral Formula). Let D ⊂ C be a bounded region
with a piecewise smooth boundary γ, and let f(z) be analytic on an open domain
containing D. If z0 ∈ int(D), then

f(z0) =
1

2πi

∫
γ

f(z) dz

z − z0
.

Proof. Since
∫
γ

dz
z−z0 = 2πi, the formula is equivalent to

1

2πi

∫
γ

f(z)− f(z0)
z − z0

dz = 0.

The differentiability of f at z0 implies that as z → z0, we have f(z)−f(z0)
z−z0 →

f ′(z0), and in particular (z − z0) f(z)−f(z0)z−z0 → 0 (and f is analytic for z ̸= z0).
The result follows from the improved Cauchy theorem.

This is a remarkable result: the values of f at every point inside a closed curve
can be determined by evaluating path integrals on γ (assuming f is defined and
analytic everywhere in the enclosed region). To emphasize the ability to vary
the point of evaluation, Cauchy’s integral formula is often written as

f(z) =
1

2πi

∫
γ

f(w) dw

w − z
.
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Even more generally:

f (n)(z)

n!
=

1

2πi

∫
γ

f(w) dw

(w − z)n+1
, ∀z ∈ int(D), ∂D = γ,

which implies that all derivatives exist!

Remark 9.19. If f is given by a power series near z0, i.e., f(z) =
∑∞
k=0 ak(z−

z0)
k with ak = f(k)(z0)

k! , then for γ = S1(z0, r) (a small circle with r less than
the radius of convergence), uniform convergence of the series implies

1

2πi

∫
S1(z0,r)

f(w) dw

(w − z0)n+1
=

∞∑
k=0

ak
2πi

∫
S1(z0,r)

(w − z0)k

(w − z0)n+1
dw = an =

f (n)(z0)

n!
.

Thus, Cauchy’s formula implies that
∫
γ
=
∫
S1(z0,r)

.

However, we haven’t yet shown that analytic functions are power series! In fact,
the proof of this result uses Cauchy’s formula, so we need to work further.

Proposition 9.20. Suppose φ(w) is continuous on γ = ∂D. Then, for all

n ≥ 1, the function gn(z) =
∫
γ
φ(w) dw
(w−z)n is analytic in the interior of D, and its

derivative is given by

g′n(z) = n

∫
γ

φ(w) dw

(w − z)n+1
= ngn+1(z).

Proof. We first prove that gn is continuous on int(D). Fix z0 ∈ int(D), with
B2δ(z0) ⊂ D, and let z ∈ Bδ(z0) (so that z and z0 are at least δ away from all
points of γ). We calculate:

1

(w − z)n
− 1

(w − z0)n
=

n∑
k=1

1

(w − z)n−k(w − z0)k−1

Å
1

w − z
− 1

w − z0

ã
=

n∑
k=1

z − z0
(w − z)n+1−k(w − z0)k

.

Thus,

gn(z)− gn(z0) =
∫
γ

φ(w)

Å
1

(w − z)n
− 1

(w − z0)n

ã
dw

= (z − z0)
∫
γ

φ(w)

(
n∑
k=1

1

(w − z)n+1−k(w − z0)k

)
dw.

Since each term in the sum satisfies | · | ≤ 1
δn+1 , it follows that:

|gn(z)− gn(z0)| ≤ |z − z0| ·
Ç
sup
w∈γ
|φ(w)|

å
· n

δn+1
· length(γ).
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Taking z → z0, this inequality shows that gn is continuous at z0. Thus, gn is
continuous on int(D). Moreover,

gn(z)− gn(z0)
z − z0

=

n∑
k=1

∫
γ

φ(w)

(w − z)n+1−k(w − z0)k
dw (⋆).

The continuity result, when applied to ∂
∂w

Ä
1

(w−z0)k
ä
, shows that the terms on

the right-hand side (RHS) are continuous functions of z ∈ int(D). Therefore,

the RHS of (⋆) is continuous, and its limit as z → z0 equals n
∫
γ

φ(w)
(w−z0)n+1 dw =

ngn+1(z0). This gives the existence of:

g′n(z0) = lim
z→z0

gn(z)− gn(z0)
z − z0

= lim
z→z0

(RHS of (⋆)) = ngn+1(z0).

This holds for all z0 ∈ int(D), so gn is analytic as claimed, and g′n(z) = ngn+1(z).

Now, if f is analytic in U ⊃ D, then by Cauchy’s integral formula, we have:

2πif(z) =

∫
γ

f(w) dw

w − z
,

which is the expression denoted g1(z) in the proposition, with φ = f |γ . The
proposition then shows that f is infinitely differentiable, all its derivatives are
analytic, and:

2πif (n)(z) = n!gn+1(z),

i.e.,
f (n)(z)

n!
=

1

2πi

∫
γ

f(w) dw

(w − z)n+1
.

This also allows us to lift the extra assumption we’ve made so far in all proofs
using Cauchy’s theorem, namely, that f ′ is continuous.

Proposition 9.21. If f is analytic, then f ′ is continuous.

Proof. If f is analytic in a disc D ∋ z0, define F (z) =
∫ z
z0
f(w) dw, where we

choose a path consisting of horizontal and vertical line segments. We don’t have
the full strength of Stokes’ theorem (as we do not yet know if f ′ is continuous),
but we claim it holds for rectangles:

∫
∂R

f(w) dw = 0.

Given this, our definition of F makes sense and is path-independent. We now
claim that F is analytic, and F ′ = f . Indeed, for F (z+h)−F (z) =

∫
γ
f(w) dw
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where γ is the bottom-right corner path, using the continuity of f , as h → 0,
we have:

sup
γ∈w
|f(w)− f(z)| → 0.

Thus,

F (z + h)− F (z) = hf(z) + o(|h|),

which implies that F ′(z) = f(z).

So F is analytic with continuous derivative F ′ = f . We can now apply Cauchy’s
integral formula to F , so F has derivatives to all orders. In particular, F ′′(z) =
f ′(z) is continuous.

Here’s a proof of Cauchy’s theorem on rectangles, without assuming f ′ contin-
uous.

Proof. Here is a proof of Cauchy’s theorem on rectangles, without assuming f ′

is continuous.

Assume R = R0 is a rectangle, f is analytic, and
∫
∂R
f(z) dz ̸= 0. Cut R into

4 equal rectangles. Then,

∫
∂R

f(z) =
∑

of 4 path integrals.

Thus, there exists R1 ⊂ R0 with diam(R1) =
diam(R0)

2 such that:

∣∣∣∣∫
∂R1

f(z) dz

∣∣∣∣ ≥ 1

4
|I|.

We can repeat this process, with R0 ⊃ R1 ⊃ · · · and diam(Rn) =
diam(R0)

2n , and:

∣∣∣∣∫
∂Rn

f(z) dz

∣∣∣∣ ≥ 1

4n
|I|.

Taking the intersection
⋂
n∈NRn = {z0} (a decreasing sequence of non-empty

closed subsets in a compact space has a non-empty intersection), we now have:

f(z) = f(z0) + f ′(z0)(z − z0) + r(z),

where r(z) = o(|z − z0|). Thus,
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∣∣∣∣∫
∂Rn

f(z) dz

∣∣∣∣ = ∣∣∣∣∫
∂Rn

r(z) dz

∣∣∣∣ ≤ length(∂Rn) · sup
∂Rn

|r(z)| = o

Å
1

4n

ã
,

which gives a contradiction.

Returning to Cauchy’s integral formula for derivatives.

Theorem 9.22 (Cauchy’s Integral Formula for Derivatives). Let f(z) be ana-
lytic on U ⊂ C. Then f has derivatives to all orders in U , all derivatives are
analytic, and for z ∈ int(D) ⊂ D ⊂ U ,

f (n)(z)

n!
=

1

2πi

∫
∂D

f(w) dw

(w − z)n+1
.

We now explore consequences of this formula. First, by bounding the integral
on the RHS, we obtain:

Theorem 9.23 (Cauchy’s Bound). If f is analytic in U ⊃ Br(z0), then∣∣∣∣∣f (n)(z0)n!

∣∣∣∣∣ ≤ 1

Rn
sup

w∈S1(z,R)

|f(w)|.

By considering r < R and taking r → R, the result still holds under the weaker
assumption that f is continuous on Br(z0) and analytic in BR(z0).

Cauchy’s bound has important consequences for entire functions, i.e., func-
tions that are analytic on all of C.

Corollary 9.24. If f is analytic on all of C (”entire function”) and bounded,
then f is constant.

Proof. Apply Cauchy’s bound with R→∞ to obtain f ′ = 0.

Corollary 9.25. A nonconstant entire function f : C→ C has a dense image,
i.e., f(C) = C.

Proof. If c ∈ f(C), then there exists ϵ > 0 such that |f(z)− c| ≥ ϵ for all z ∈ C,
and thus 1

f(z)−c is a bounded entire function and hence constant.

There are even more important consequences for Taylor series of analytic func-
tions.

Corollary 9.26. The power series
∑∞
n=0

f(n)(z0)
n! (z− z0)n (the Taylor series of

f at z0) has radius of convergence ≥ R, if f is analytic in BR(z0).
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Proof. Since Cauchy’s bound implies that
∣∣∣ f(n)(z0)

n!

∣∣∣ ≤ c(r)1/n

r for all r < R, we

have lim sup ≤ 1
r =⇒ ≤ 1

R .

Theorem 9.27. If f is analytic in BR(z0), then f(z) =
∑∞
n=0 an(z − z0)

n,

where an = f(n)(z0)
n! , for z ∈ BR(z0).

Proof. By a change of variables, assume z0 = 0. We prove the equality over
slightly smaller discs Br = {|z| < r} for all r < R; the Taylor series converges
by the previous corollary. For z ∈ Br, write:

f(z) =
1

2πi

∫
S1(r)

f(w) dw

w − z
,

and note that 1
w−z = 1

w(1−z/w) = 1
w

∑∞
n=0

(
z
w

)n
. For fixed z ∈ Br, this series

converges uniformly (by the Weierstrass M-test, as
∑ Ä |z|

r

än
converges since

|z| < r). Thus,

1

2πi

∫
S1(r)

f(w)

w − z
dw =

∞∑
n=0

1

2πi

∫
S1(r)

f(w)zn

wn+1
dw =

∞∑
n=0

f (n)(0)

n!
zn.

Corollary 9.28. If f(z) =
∑
anz

n has radius of convergence R, then it has a
singularity (where it cannot be analytically continued) on the circle {|z| = R}.

Proof. If there exists an analytic function extending f on an open set U ⊃
BR(0), then there exists ϵ > 0 such that BR+ϵ(0) ⊂ U , and thus the radius of
convergence would be ≥ R+ ϵ.

9.5 Zeroes of Analytic Functions

Corollary 9.29. Let f : U → C be analytic on a connected open set U , and
let z0 ∈ U . If f (n)(z0) = 0 for all n, then f(z) = 0 on U . Similarly, if
f (n)(z0) = g(n)(z0) for all n, then f = g on U .

Proof. Let V = {z ∈ U | f (n)(z) = 0∀n}. By the result on Taylor series, if
z ∈ V and Br(z) ⊂ U , then f equals its Taylor series at z. This implies that
for z ∈ V and Br(z) ⊂ U , f(z) is identically zero on Br(z), so f

(n)(z) = 0 for
all n on Br(z). Hence, V is open.

Now, let W = {z ∈ U | ∃n such that f (n)(z) ̸= 0}, which is the union of sets
where some derivative is nonzero. Since W is open, we have U = V ⊔W . Since
U is connected and V = ∅, it follows that V = U and thus f = 0 on U .
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The key point is that at a point where f(z0) = 0, the function f vanishes to
a finite order (unless f ≡ 0), unlike real functions where it may vanish to an
infinite or fractional order.

Corollary 9.30. Let f : U → C be analytic on a connected open set U , and
suppose f is not identically zero. Then the zeros of f are isolated, i.e., the set
f−1(0) has no limit points.

Proof. If f(z0) = 0, then we can write f(z) =
∑
an(z − z0)n, where not all an

are zero. Let k = min{n | an ̸= 0} (the smallest n for which an ̸= 0). Thus,
we have f(z) = (z − z0)kg(z), where g(z) =

∑
n≥0 ak+n(z − z0)n is analytic in

B(z0, R) ⊂ U and g(z0) = ak ̸= 0. By continuity, there exists an ϵ > 0 such
that if |z − z0| < ϵ, then g(z) ̸= 0. Therefore, for 0 < |z − z0| < ϵ, we have
f(z) ̸= 0, so z0 is an isolated zero of f .

Remark 9.31. In the real C∞ world, there are nonzero functions with noniso-
lated zeros, such as f(x) = exp

(
− 1
x2

)
sin
(
1
k

)
for x ̸= 0, with f(0) = 0.

Corollary 9.32 (Uniqueness of Analytic Continuation). Let f, g : U → C be
analytic on a connected open set U . If f = g on a nonempty open subset of U ,
or on any subset of U that has a limit point, then f = g on all of U .

Let’s take a look at some other consequences of Cauchy formula, for the space
of analytic functions with the uniform topology.

Theorem 9.33. Let fn(z) be a sequence of analytic functions on a set U . If
fn → f locally uniformly (i.e., for each z ∈ U , there exists r > 0 such that
Br(z) ⊂ U and fn → f uniformly on Br(z)), then f is analytic on U .

Proof. Given a closed disk B ⊂ U where fn → f uniformly, and z ∈ int(B), we
have:

f(z) = lim
n→∞

fn(z) = lim
n→∞

1

2πi

∫
∂B

fn(w)

w − z
dw =

1

2πi

∫
∂B

f(w)

w − z
dw.

Thus,

∫
∂B

fn(w)− f(w)
w − z

dw → 0 as n→∞.

Therefore, f is analytic on U .

Theorem 9.34. If fn is a sequence of analytic functions on U that converges
locally uniformly to f , then the sequence of derivatives f ′n converges locally uni-
formly to f ′ and this holds for higher derivatives as well.

Proof. The proof follows from the same reasoning as the previous theorem,
applying the Cauchy formula and the uniform convergence of the functions.
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Theorem 9.35. Any uniformly bounded sequence of analytic functions fn on
U has a subsequence that converges uniformly on compact sets to an analytic
function g.

Proof. Let K ⊂ U be compact. There exists r > 0 such that the distance from
K to the boundary of U is greater than r. For each z ∈ K,

|f ′n(z)| =
∣∣∣∣∣ 1

2πi

∫
S1(z,r)

fn(w)

(w − z)2
dw

∣∣∣∣∣ ≤ 1

2πr
sup
n
|fn|.

Since (fn) is uniformly bounded, this gives a uniform bound on |f ′n| on K.
Thus, (fn) is uniformly equicontinuous on K, and by the Ascoli-Arzelà theorem,
there exists a subsequence that converges uniformly on K. We can ensure
uniform convergence on all compact sets by considering a sequence of compact
sets Kn such that

⋃
nKn = U , and using a diagonalization argument to obtain

a subsequence that converges uniformly on all of them.

In real analysis, a standard example of a sequence of continuous functions that
is not equicontinuous over [−a, a] for all a > 0 is given by

fn(x) =
1

1 + n2x2
.

This sequence has no uniformly convergent subsequence because its pointwise
limit is not continuous. These functions can be extended to analytic functions
fn(z) =

1
1+n2z2 , but the theorem above does not apply near 0 because fn has

poles at z = ± 1
n , and thus the sequence is not uniformly bounded on any fixed

neighborhood of 0.

Besides the powerful results (such as derivatives to all orders, Cauchy’s formula,
and convergence of Taylor series), there are also more fundamental concepts
from real analysis that carry over to the complex case, such as antiderivatives
and inverse functions. However, these results come with certain caveats.

Theorem 9.36. If f(z) is analytic on a simply connected open set U ⊂ C, then
there exists an analytic function F : U → C such that F ′(z) = f(z).

Proof. This is because we can define F (z) =
∫ z
z0
f(z) dz. Cauchy’s theorem im-

plies that the choice of path does not matter: given any piecewise differentiable
closed loop γ in U , we have ∫

γ

f(z) dz = 0.

In fact, over discs Br(z0) ⊂ U , we can define F by term-by-term integration of
the power series expression for f .
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Note that the condition of being simply connected is necessary. For example, the
function f(z) = 1

z on C∗ = C \ {0} can only be integrated to F (z) = log z over
a simply connected subset (i.e., a domain that does not allow paths enclosing
0).

Theorem 9.37. If f is analytic near a, with f(a) = b and f ′(a) = 0, then there
exists an analytic inverse function g defined on a neighborhood of b, such that
g(b) = a and g′(b) = 1

f ′(a) .

Proof. This result is a direct consequence of the inverse function theorem for
f : R2 → R2, along with the observation that if f ′(a) ̸= 0, then the derivative
Df(a) is invertible, and its inverse is also complex linear.

Remark 9.38. For real functions of one real variable, this result holds on any
connected interval where f ′(x) ̸= 0 (implying that f is injective). However,
in the complex world, this is not necessarily true, even on simply connected
domains. For instance, the logarithm function log(z) is the inverse function of
the exponential function exp(z), but it is only defined on suitable domains that
avoid enclosing 0. Similarly, n

√
z is the inverse function of zn, but it is defined

only on specific domains.

The inverse function theorem gives us that for exp′(z) = ez, we have log′(z) =
1
z , and the derivative of z1/n is 1

nz
−(n−1)/n. The corresponding power series

expansions are:

log(1 + z) =

∫
dz

1 + z
= z − z2

2
+
z3

3
− . . .

with radius of convergence R = 1, and

(1 + z)α = 1 + αz +
α(α− 1)

2
z2 +

α(α− 1)(α− 2)

3!
z3 + . . .

These functions exhibit singularities at z = 0—referred to as “branch singu-
larities”—not poles. We will soon study the behavior of analytic functions at
isolated singularities, that is, when f is defined on U \ {z0}, where z0 is an
isolated point of U . However, this analysis will not cover functions like log(z)
or zα, which are not analytic on the entire domain D∗(r) = D(r) \ {0}.

We will now study the behavior of analytic functions at isolated singularities,
where f is defined on U \ {z0}, with z0 ∈ int(U). However, this analysis will
not handle functions such as log(z) or zα, which are not analytic on the entire
domain D∗(r) = D(r) \ {0}.

9.6 Laurent Series

Laurent series are power series with both positive and negative exponents:
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f(z) =

∞∑
n=−∞

anz
n.

The convergence of a Laurent series is best understood by splitting it into two
parts: the sum of the non-negative powers of z and the sum of the negative
powers of z: ∑

n≥0

anz
n

which converges when |z| < R2, where

R2 =
1

lim supn→∞ |an|1/n
.

and ∑
n<0

anz
n

which converges when |z| > R1, where

R1 = lim sup
n→−∞

|an|1/n.

This implies that the Laurent series converges in an annulus, specifically for
R1 < |z| < R2.

It is important to note that the general formal Laurent series does not form a
ring. The issue arises because the coefficient of zn in the product

(∑
akz

k
) (∑

bkz
k
)

should be
∑
k∈Z akbn−k, which may not result in a convergent series. However,

things work well when the annuli of convergence intersect non-trivially. A better-
behaved class of Laurent series consists of those with only finitely many negative
powers of z, i.e.,

∑∞
n=−N anz

n (which is essentially 1
zN
· (a power series)). These

series actually form a field, known as the field of fractions of the ring of power
series.

Theorem 9.39. If f(z) is analytic in the annulus AR1,R2 = {R1 < |z| < R2},
then f(z) can be expressed as a Laurent series:

f(z) =

∞∑
n=−∞

anz
n,

which converges in the annulus AR1,R2 .

Proof. We will prove this result for slightly smaller annuli {r1 ≤ |z| ≤ r2},
where R1 < r1 < r2 < R2. Then, using Cauchy’s formula for the annulus Ar1,r2
and its boundary S1(r2)− S1(r1), we have:

f(z) =
1

2πi

∫
S1(r2)

f(w) dw

w − z
− 1

2πi

∫
S1(r1)

f(w) dw

w − z
,

268



for r1 < |z| < r2. On S1(r2) with |z/w| < 1, we have:

1

w − z
=

w−1

1− z/w
=

∞∑
n=0

zn

wn+1
,

which converges uniformly. On S1(r1) with |w/z| < 1, we have:

1

z − w
=

z−1

1− w/z
=

∞∑
n=0

wn

zn+1
=
∑
n≤−1

zn

wn+1
,

which also converges uniformly. Uniform convergence allows us to interchange
the sum and the integral, yielding:

f(z) =
∑
n≥0

1

2πi
zn
∫
S1(r2)

f(w) dw

wn+1
+
∑
n≤−1

1

2πi
zn
∫
S1(r1)

f(w) dw

wn+1
.

This simplifies to:

f(z) =
∑
n∈Z

anz
n,

where an = 1
2πi

∫
S1(r)

f(w) dw
wn+1 , for any r ∈ (R1, R2), since this is independent of

r by Cauchy’s theorem.

Corollary 9.40. Any analytic function on the annulus {R1 < |z| < R2} can
be written as the sum of an analytic function on {|z| < R2} and an analytic
function on {|z| > R1}.

9.7 Singularities and Removability

Let f be analytic on D∗(R) = D(R) \ {0}, and express it as a Laurent series:

f(z) =
∑
n∈Z

anz
n.

Let N = inf{n ∈ Z | an ̸= 0}, provided this infimum exists.

1. If N ≥ 0 (i.e., an = 0 for all n < 0), then f is a power series, and the
singularity at 0 is removable. In other words, f can be extended to an
analytic function on D(R), including at 0.

• If N =∞ (i.e., an = 0 for all n), then f ≡ 0.

• If N > 0, then f(z) = zN (aN + . . . ), so f has an isolated zero of order N
at 0.

• If N = 0, then f(0) = a0 ̸= 0.
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1. If N < 0 is finite (i.e., there are finitely many negative powers of z in the
series), then

f(z) =
1

z|N |
(aN + . . . ) =

g(z)

z|N |
,

where g(z) is analytic with g(0) = aN ̸= 0. We say that f has a pole of
order |N | at 0.

2. If N = −∞ (i.e., the negative part of the series has infinitely many terms),
then f has an essential singularity at 0 (a non-removable singularity
other than a pole). For example, exp(1/z) =

∑∞
n=0

1
n!z
−n has an essential

singularity at 0.

The qualitative differences between the three cases can also be understood with-
out using Laurent series.

Theorem 9.41. Let f be analytic on D∗(R):

1. The singularity at 0 is removable if and only if f(z) is bounded on a
neighborhood of 0.

2. f has a pole at 0 if and only if |f(z)| → ∞ as z → 0.

3. f has an essential singularity if and only if for every ϵ > 0, f(D∗(ϵ)) is
dense in C (equivalently: for every y ∈ C ∪ {∞}, there exists a sequence
zn → 0 such that f(zn)→ y).

Proof. We will prove these results without using Laurent series.

1. Assume that f is bounded on D∗(r) for some r > 0. Since f is continuous
on S1(r), we know that the function

g(z) =
1

2πi

∫
S1(r)

f(w) dw

w − z

is analytic in D(r). By Cauchy’s formula, if 0 < ϵ < |z|
2 , then:

1

2πi

∫
∂D

f(w) dw

w − z
=

1

2πi

Ç∫
S1(r)

−
∫
S1(z,ϵ)

−
∫
S1(0,ϵ)

å
= g(z)− f(z)− 1

2πi

∫
S1(0,ϵ)

f(w) dw

w − z
.

The last integral tends to 0 as ϵ → 0 because the integrand is bounded
and the length of S1(ϵ) tends to 0. Therefore, g(z) is analytic in D(r),
and g(z) = f(z) for all z ∈ D(r) \ {0}. This shows that the singularity
at 0 is removable. Conversely, if the singularity is removable, f must be
bounded near 0.

2. Assume that |f(z)| → ∞ as z → 0. Let h(z) = 1
f(z) , which is analytic and

bounded in a neighborhood of 0, and hence has a removable singularity
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at 0. Thus, h(z) can be extended analytically over 0. Since |h(z)| → 0
as z → 0, h has an isolated zero at z = 0, which vanishes to finite order.
Therefore, there exists n ≥ 1 and an analytic function k(z) with k(0) ̸=
0 such that h(z) = znk(z). Consequently, f(z) = 1

h(z) = g(z)
zn , where

g(z) = 1
k(z) is analytic in a neighborhood of 0. Thus, f has a pole of order

n. Conversely, if f(z) = g(z)
zn for some n ≥ 1, where g is analytic and

g(0) ̸= 0, then there exists a constant c > 0 such that |g(z)| ≥ c > 0 in a
neighborhood of 0, and |f(z)| ≥ c

|z|n → ∞ as z → 0. Therefore, f has a

pole of order n.

3. If f(D∗(ϵ)) is not dense in C, then there exists a constant c such that
h(z) = 1

f(z)−c is bounded near 0, and hence h has a removable singularity.

Let the extension of h over 0 be denoted again by h. If h(0) = 0, then, as
in the previous case, h has a zero of finite order n ≥ 1, and 1

h(z) has a pole

of order n. Therefore, f(z) = c+ 1
h(z) has a pole of order n. If h(0) ̸= 0,

then f(z) = c + 1
h(z) extends analytically over 0, and the singularity is

removable. Thus, if f has an essential singularity, then f(D∗(ϵ)) is dense
in C for all ϵ > 0. Conversely, if f(D∗(ϵ)) is dense in C, then f cannot be
bounded and cannot have a pole, so it must have an essential singularity.

9.8 Meromorphic Functions

Definition 9.42. A function f is said to be meromorphic in a domain U if
it is analytic on U \ {p1, . . . , pn} and has poles at the points p1, . . . , pn (i.e., no
essential singularities).

If f : U \{pi} → C is meromorphic with poles at pi, then |f(z)| → ∞ as z → pi.
Thus, 1

f has a removable singularity at each pi, where it has a zero of order equal

to the pole order of f . Hence, f extends to a function f̂ : U → S = C ∪ {∞}
on the Riemann sphere by setting f̂(pi) =∞. The function f̂ is continuous and
analytic in the sense that:

• Away from the poles {pi} = f̂−1(∞), f̂ takes values in C and is analytic.

• Away from the zeros of f̂ , 1
f̂(z)

is analytic (this is the analytic extension

of 1
f over the removable singularity at pi).

From these considerations, we deduce the following facts:

• The zeros and poles of a non-identically zero meromorphic function are
isolated.

• If f and g are analytic on U , and g is not identically zero, then f
g is

meromorphic on U . If f and g have no common zeros, the zeros of f
g

coincide with the zeros of f , and the poles of fg coincide with the zeros of
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g. If there is a common zero, the highest order zero (or pole) dominates,
and we factor out powers of (z − z0).

• Another perspective: Laurent series with a finite negative part correspond
to the field of fractions of power series. Specifically, a power series a0 +
a1z + . . . has an inverse in C[[z]] if and only if a0 ̸= 0, and otherwise
(anz

n + . . . )−1 = 1
anzn

(1 + . . . ). Therefore, a ratio of two non-trivial
power series gives a Laurent series, which defines a meromorphic function.

• The converse is also true (though we will not prove it here): every mero-
morphic function is the quotient of two analytic functions. Thus, the
meromorphic functions form the field of fractions of the ring of analytic
functions.

Assume f is meromorphic on all of C (i.e., f is analytic on C \ {pi}, with poles
at pi). If |f(z)| is either bounded or tends to infinity as |z| → ∞, then the
function g(w) = f

(
1
w

)
has a removable singularity or a pole at w = 0, so it

is meromorphic near 0. This implies that f̂ can be extended to the Riemann
sphere by setting f̂(∞) = ĝ(0). Therefore, if f(z) and f

(
1
z

)
are meromorphic,

we can extend f to an analytic function f̂ : S → S on the entire Riemann
sphere.

In fact, such an extension f̂ is necessarily a rational function. Indeed, we have
the following result:

Theorem 9.43. If f is an entire function (i.e., analytic on all of C) and
satisfies |f(z)| ≤ M |z|n for some constants M,n > 0 as |z| → ∞, then f is a
polynomial of degree at most n.

This follows from Cauchy’s bound for derivatives: f (n)(z) is a bounded entire
function and hence must be constant.

Corollary 9.44. If f : S → S is analytic (i.e., both f(z) and f
(
1
z

)
are mero-

morphic), then f is a rational function.

Proof. The fact that g(w) = f(w)f
(
1
w

)
is meromorphic near w = 0 gives a

bound of the form |g(w)| ≤ c
|w|n as w → 0, implying that |f(z)| ≤ c|z|n for

z ∈ C as z →∞.

Although f is not an entire function (it has poles), it has only finitely many
poles. The poles of f correspond to the zeros of 1

f , which are isolated, and since
S is compact, the set of poles of f is finite.

Thus, there exists a polynomial P (z) =
∏
(z − pi)ni , where pi are the poles of

f and ni are their orders, such that P (z)f(z) extends to an entire function on
C, and this function satisfies the bound |P (z)f(z)| ≤ C ′|z|n+deg P as z → ∞.
By the previous theorem, P (z)f(z) must be a polynomial.
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9.9 Local Behavior of Analytic Functions

Cauchy’s integral formula can be viewed as a mean value theorem.

Theorem 9.45. If f is analytic on U ⊃ Br(z), then f(z) is the average value
of f on the circle S1(z, r).

Proof. By Cauchy’s integral formula, we have:

f(z) =
1

2πi

∫
S1(z,r)

f(w)

w − z
dw =

1

2πi

∫ 2π

0

f(z + reiθ)

reiθ
d(reiθ) =

1

2π

∫ 2π

0

f(z+reiθ) dθ.

Theorem 9.46 (The Maximum Principle). If f is analytic on an open, con-
nected set U ⊂ C and non-constant, then |f | does not achieve its maximum
value anywhere in U . In particular, if f is analytic on U and continuous on U ,
where U is compact, then the maximum of |f | on U is achieved on the boundary
of U .

Proof. Let z0 ∈ U and let r > 0 be small enough so that Br(z0) ⊂ U . Then,

|f(z0)| =
∣∣∣∣∣ 12π

∫ 2π

0

f(z0 + reiθ) dθ

∣∣∣∣∣ ≤ 1

2π

∫ 2π

0

|f(z0 + reiθ)| dθ ≤ max
S1(z0,r)

|f |.

If |f | has a local maximum at z0, then maxS1(z0,r) |f | = |f(z0)|, and the in-
equalities above become equalities. This implies that |f(z)| = |f(z0)| for all
z ∈ S1(z0, r).

In fact, f(z) = f(z0): if arg(f(z)) varies, then the first inequality becomes strict
(for instance, rescale so that f(z0) = 1). In this case, |f(z)| ≤ 1, so Re(f(z)) ≤ 1
for all z ∈ S1(z0, r), and equality implies that Re(f(z)) = 1 for all z ∈ S1(z0, r).
Since |f(z)| ≤ 1, we conclude that f(z) = 1 for all z ∈ S1(z0, r).

Since f is analytic, we have f(z)− f(z0) = 0 for all z ∈ S1(z0, r), which implies
that the zeros of f(z)−f(z0) are not isolated (as the zeros of nontrivial analytic
functions are isolated). Thus, f(z) − f(z0) = 0 on U , and hence f is constant
on U .

Remark 9.47. This also implies the maximum principle for Re(f), since |ef | =
eRe(f) has no local maximum.

One nice (non-local) consequence is a contraction principle:

Theorem 9.48 (The Schwarz Lemma). Let f be analytic on the unit disk
D = {z : |z| < 1}, and suppose |f(z)| < 1 for all z ∈ D (i.e., f : D → D), and
f(0) = 0. Then:

• |f ′(0)| ≤ 1.
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• |f(z)| < |z| for all z ∈ D \ {0}.

Moreover, if equality holds in either of these inequalities, then f(z) = eiθz for
some eiθ ∈ S1.

Proof. Write f(z) =
∑∞
n=1 anz

n = zF (z), where F (z) =
∑∞
n=0 an+1z

n is ana-

lytic. For |z| = r ∈ (0, 1), we have |F (z)| =
∣∣∣ f(z)z ∣∣∣ ≤ 1

r . Hence, by the maximum

principle, |F (z)| ≤ 1
r whenever |z| ≤ r. Taking r → 1, we get |F (z)| ≤ 1 for all

z ∈ D.

Thus, the bound on f ′(0) = F (0) follows. Moreover, if |F (z)| = 1 is achieved
anywhere inside D, then F must be constant, and hence f(z) = eiθz.

Remark 9.49.

• The bound on |f ′(0)| is the same as the bound one obtains from Cauchy’s
integral formula. The Schwarz Lemma is a strengthening of this result,
providing a pointwise bound |f(z)| ≤ |z| globally on the disk.

• By composing f with fractional linear transformations, we can obtain
Schwarz-type bounds in various other situations, such as when f maps
a disk to a half-plane, etc.

We can also deduce a stronger local result:

Theorem 9.50 (The Open Mapping Principle). A non-constant analytic func-
tion is an open mapping, i.e., if U is open, then f(U) is open.

In other words, if f is non-constant and analytic at z0, then for all r > 0,
there exists ϵ > 0 such that f(Br(z0)) ⊃ Bϵ(f(z0)). This implies that |f(z)|,
Re(f(z)), and similar functions cannot have a local maximum.

First, we prove:

Proposition 9.51. If f(z) has an isolated zero at z = z0, then there exists an
analytic function g defined near z0, with g(z0) = 0, g′(z0) ̸= 0, and n ≥ 1 such
that f(z) = g(z)n.

Proof. Let n be the order of the zero of f , i.e., write f(z) =
∑∞
k=n ak(z−z0)k =

an(z − z0)
n(1 + h(z)) with h(z0) = 0. There exists a neighborhood V of z0

such that |h(z)| < 1 for all z ∈ V . Over V , we can define g(z) = a
1/n
n (z −

z0)(1 + h(z))1/n, where (1+ h(z))1/n = exp
(
1
n log(1 + h(z))

)
is well-defined for

|h(z)| < 1.

Now, we prove the following theorem:

Theorem 9.52. For z0 ∈ U , if f(z)−f(z0) = g(z)n for some n ≥ 1 and g(z0) =
0, g′(z0) ̸= 0, then by the inverse function theorem, g is a local diffeomorphism
at z0 (since g′(z0) ̸= 0), hence an open mapping near z0. This implies that
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there exists an open neighborhood V ⊂ U such that g(V ) ∋ 0 contains some ball
Bϵ(0), and hence, taking the nth power, we have f(V ) ⊃ B(f(z0), ϵ

n).

9.10 Harmonic Functions

Another important class of functions that satisfy the mean value and maximum
principles is the class of harmonic functions:

Definition 9.53. A C2 function f : U(⊂ Rn) → R is harmonic if ∆f =∑n
i=1

∂2f
∂x2

i
= 0.

Remark 9.54. This is of significant physical importance! For example, electric
and gravitational potentials in a vacuum are harmonic, as is the temperature
distribution at thermal equilibrium, and so on.

Real analysis provides general methods for studying harmonic functions, but in
the case of two real variables f(x, y), the situation is closely related to complex
analysis.

Proposition 9.55. Let u : U ⊂ C→ R be a C2 function. Then u is harmonic

if ∆u = ∂2u
∂x2 + ∂2u

∂y2 = 4 ∂2u
∂z∂z = 0.

Proof. Since ∂2u
∂x∂y = ∂2u

∂y∂x , we haveÅ
∂

∂x
+ i

∂

∂y

ãÅ
∂

∂x
− i ∂

∂y

ã
u =

∂2u

∂x2
+
∂2u

∂y2
.

Theorem 9.56. If f = u + iv is analytic, then u = Re f and v = Im f are
harmonic.

Proof. Two proofs:

1. Cauchy-Riemann equations: ∂u
∂x = ∂v

∂y and ∂u
∂y = − ∂v

∂x , we can compute

∆u =
∂

∂x

Å
∂u

∂x

ã
+

∂

∂y

Å
∂u

∂y

ã
=

∂

∂x

Å
∂v

∂y

ã
− ∂

∂y

Å
∂v

∂x

ã
= 0.

2. Complex variables: Since u = 1
2

(
f + f

)
, we have ∆f = 4 ∂

∂z

Ä
∂f
∂z

ä
= 0,

and similarly, ∆(f) = 4 ∂
∂z

(
∂f
∂z

)
= 0.

What is unique about harmonic functions in two variables is that there is a
converse:
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Theorem 9.57. If u is harmonic on a simply-connected open set U ⊂ C, then
there exists an analytic function f : U → C such that u = Re f , i.e., there exists
a harmonic function v : U → R such that u+ iv is analytic.

Example 9.58. Consider u = log |z| = Re(log z) on a domain that does not
enclose the origin. Here, v = arg(z). This example demonstrates that the
assumption on U is necessary, as v is not single-valued on C∗.

Proof. Given that u is harmonic, define the complex-valued 1-form α = 2∂u∂z dz =Ä
∂u
∂x − i

∂u
∂y

ä
(dx + idy). Then α is closed because dα = 2∂

∂z

(
∂u
∂z

)
dz dz and

2 ∂2u
∂z∂z = 1

2∆u = 0. In real differential terms, Re(α) = ∂u
∂x dx + ∂u

∂y dy = du,

so Re(α) is exact and hence closed. Similarly, Im(α) = ∂u
∂x dy −

∂u
∂y dx is closed,

using the fact that ∆u = 0.

Since U is simply connected, closed 1-forms on U are exact. Therefore, there
exists a function f : U → C such that df = α. We can construct f by integration:
f(z) =

∫ z
z0
α, which is path-independent by Stokes’ theorem since dα = 0 and

U is simply connected.

Now, df = ∂f
∂z dz + ∂f

∂z dz = 2∂u∂z dz, which implies that ∂f
∂z = 0, i.e., f is

analytic. Since d(Ref) = Re(α) = du, we can ensure that Re(f) = u by adding
a constant.

Now that we know harmonic functions are secretly parts of analytic functions,
we obtain the following corollary:

Corollary 9.59. • Any C2 harmonic function is actually C∞.

• Harmonic functions satisfy the mean value theorem:

u(z) =
1

2π

∫ 2π

0

u(z + reiθ) dθ.

Another pair of deep results (which we won’t prove here) concern the existence
of analytic mappings and harmonic functions.

Theorem 9.60 (The Riemann Mapping Theorem). If U ⊂ C is a non-empty
simply connected open subset with U ̸= C, then there exists a biholomorphism
φ : U

∼→ D = {|z| < 1}, i.e., an analytic bijection with an analytic inverse.

Example 9.61. Can you find an explicit biholomorphism between a quarter
disk, half disk, (−∞, 0) × (0, 1), or the unit disk and the upper half-plane R ×
(0, 1)?

The existence of solutions to Dirichlet’s problem (harmonic functions with pre-
scribed values at the boundary of a domain) can be thought of as an analogue
for harmonic functions.
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Theorem 9.62. If U ⊂ C is a simply connected bounded open set with a suffi-
ciently nice boundary (e.g., ∂U is piecewise smooth), and f ∈ C0(∂U,R) is any
continuous function, then there exists a unique function u ∈ C0(U,R) such that
u|∂U = f and u is harmonic inside U .

Remark 9.63. Uniqueness follows easily from the maximum principle: if u −
v = 0 on ∂U and u− v is harmonic, then u− v = 0 everywhere in U .

One way to prove this theorem is to first establish it for the unit disk, using
Fourier series to reduce to trigonometric polynomials;

∑
cne

inθ →
∑
n≥0 cnz

n+∑
n>0 cnz

|n|. Then, we use the Riemann mapping theorem to map U
φ∼−−→ D,

where u is harmonic if and only if u ◦ φ is.

9.11 Open Mapping Principle

Consider analytic functions. There is a stronger local result known as the open
mapping theorem.

Theorem 9.64 (The Open Mapping Theorem). If f is a nonconstant analytic
function, then f is an open mapping. That is, if U is open, then f(U) is open.

In other words, if f is nonconstant and analytic at z0, then for every r > 0,
there exists an ϵ > 0 such that

f(Br(z0)) ⊃ Bϵ(f(z0)),

where Br(z0) denotes the ball of radius r around z0, and Bϵ(f(z0)) denotes the
ball of radius ϵ around f(z0). This implies that |f(z)|, Re(f(z)), and other
similar quantities cannot have a local maximum.

We first prove the following result:

Proposition 9.65. If f(z) has an isolated zero at z0, then there exists an
analytic function g defined near z0 such that g(z0) = 0, g′(z0) ̸= 0, and for
some n ≥ 1, we have f(z) = g(z)n.

Proof. Let n be the order of the zero of f at z0. We can express f(z) as

f(z) =

∞∑
k=n

ak(z − z0)k = an(z − z0)n(1 + h(z)),

where h(z) is analytic, and h(z0) = 0. Furthermore, there exists a neighborhood
V of z0 such that |h(z)| < 1 for all z ∈ V . Over this neighborhood V , we can
define the function g(z) as

g(z) = a1/nn (z − z0) (1 + h(z))
1/n

,

where the expression (1 + h(z))1/n is well-defined for |h(z)| < 1, and it can be
written as

(1 + h(z))1/n = exp

Å
1

n
log(1 + h(z))

ã
,

277



which is analytic on V .

Thus, we have f(z) = g(z)n, and the function g(z) satisfies the required condi-
tions.

Now, we can proceed to prove the open mapping theorem.

Proof. Let z0 ∈ U , where U is open. From the previous proposition, we know
that there exists a function g(z) such that f(z)− f(z0) = g(z)n for some n ≥ 1,
with g(z0) = 0 and g′(z0) ̸= 0. By the inverse function theorem, since g′(z0) ̸= 0,
the function g is a local diffeomorphism at z0. This implies that g is an open
mapping near z0, and that g has a continuous, in fact analytic, inverse in some
neighborhood of z0.

Hence, for every open set V containing z0 (which is contained in the domain of
g), the image g(V ) contains a ball Bϵ(0) centered at 0. Consequently, for the
function f , we have

f(V ) = g(V )n ⊃ B(f(z0), ϵ
n),

which shows that f(V ) contains an open set around f(z0).

Thus, f is an open mapping, completing the proof.
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10 Complex Analysis II

10.1 Residue Calculus

Instead of using Cauchy’s integral formula to study the behavior of analytic
functions, we now use it to evaluate integrals.

Assume we want to evaluate the integral
∫
γ
f(z) dz, where γ = ∂D and f is

analytic in a neighborhood U ⊃ D − {p1, . . . , pn} (or later, a definite integral
whose value can be related to

∫
γ
).

Definition 10.1. The residue of a function f at a point p is given by

Resp(f) =
1

2πi

∫
S1(p,ϵ)

f(z) dz,

where ϵ > 0 is small enough so that f is analytic in the punctured disk D∗(p, ϵ) =
D(p, ϵ)− {p}.

If we express f as a Laurent series

f(z) =

∞∑
n=−∞

an(z − p)n

in the region D∗(p, ϵ), then the residue of f at p is the coefficient of the −1 term
in this Laurent series, i.e.,

Resp(f) = a−1.

Thus, the residue is easiest to calculate if f has a simple pole (i.e., pole of order
1) at p. In this case, the residue is given by

Resp(f) = lim
z→p

(z − p)f(z).

Otherwise, it may be necessary to compute the residue by determining part of
the Laurent series for f . For example, in the case of rational functions, partial
fraction decomposition can help achieve this.

Now, applying Cauchy’s theorem to the domain D −
⋃
D(p, ϵ), we obtain the

following result.

Theorem 10.2 (Residue Theorem). Let D be a compact domain with piecewise
smooth boundary γ = ∂D, and let P ⊂ int(D) be a finite set of points. If f is
analytic on U ⊃ D − P , then

1

2πi

∫
γ

f(z) dz =
∑
p∈P

Resp(f).

We now explore how to use this theorem to evaluate various definite integrals.
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Example 10.3. Evaluate the integral
∫ 2π

0
R(sin θ, cos θ) dθ (or R(eiθ)), where

R is a rational function with no poles on S1. For instance, consider the integral∫ 2π

0

dθ

a+ cos θ
, a > 1.

To convert this into a path integral on the unit circle, let z = eiθ, so that dθ = dz
iz

and cos θ = z+z−1

2 . This gives:∫ 2π

0

dθ

a+ cos θ
=

∫
S1

dz

i (z2 + 2az + 1)
.

The poles of the integrand are at p± = −a ±
√
a2 − 1, and only p+ = −a +√

a2 − 1 lies inside the unit circle.

We calculate the residue at p+. Using partial fractions, we express the integrand
as

f(z) =
1

(z − p+)(z − p−)

Å
1

z − p+
− 1

z − p−

ã
.

The residue at p+ is given by

Resp+(f) =
1

2
√
a2 − 1

.

Since this is a simple pole, we also find that

Resp+(f) = lim
z→p+

(z − p+)f(z) =
1

p+ − p−
=

1

2
√
a2 − 1

.

Thus, the value of the integral is∫ 2π

0

dθ

a+ cos θ
= 4πResp+(f) =

2π√
a2 − 1

.

Example 10.4. Consider the integral
∫∞
−∞ f(x) dx, where f is a rational func-

tion P (x)
Q(x) . Assume that Q(x) has no real roots and that degQ ≥ degP + 2, so

the integral converges.

We use the fact that ∫ ∞
−∞

f(x) dx = lim
R→∞

∫ R

−R
f(x) dx,

and we complete the segment [−R,R] to a closed curve in the upper half-plane
by adding a semicircle of radius R. This gives∫ R

−R
f(x) dx+

∫
CR

f(z) dz = 2πi
∑

Im(p)>0,|p|<R

Resp(f).
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Now, since f = P
Q with degQ ≥ degP + 2, we have |f(z)| ≤ c

|z|2 , so

lim
R→∞

∫
CR

f(z) dz = 0.

Hence, as R→∞, we get∫ ∞
−∞

f(x) dx = 2πi
∑

Im(p)>0

Resp(f).

We can use limz→p(z − p)f(z) to compute the residues if all poles are simple;
otherwise, partial fractions can be used.

For example, consider the integral∫ ∞
−∞

dx

x2 + 1
.

Using the residue theorem, we get∫ ∞
−∞

dx

x2 + 1
= 2πiResz=i

Å
1

z2 + 1

ã
= π.

Example 10.5. Consider the integral of a mixed rational and exponential func-
tion: ∫ ∞

−∞

eiz

1 + z2
dz.

We apply the residue theorem by closing the contour in the upper half-plane.
Since |eiz| = e−Im(z) ≤ 1 in the upper half-plane, the integral along the semicir-
cle tends to 0 as the radius increases.

The residue at z = i is computed as follows:

Resz=i

Å
eiz

1 + z2

ã
= e−1Resz=i

Å
1

1 + z2

ã
=

1

2ie
.

Thus, the integral evaluates to∫ ∞
−∞

eiz

1 + z2
dz =

π

e
.

By separating the real and imaginary parts, we obtain:∫ ∞
−∞

cosx

1 + x2
dx =

π

e
,

∫ ∞
−∞

sinx

1 + x2
dx = 0.

Example 10.6. Next, consider the integral∫ ∞
−∞

sinx

x
dx,
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which appears in G.H. Hardy’s note in the Mathematical Gazette (1909), where
various methods for evaluating it are discussed. This integral converges, though

not absolutely. The function sin z
z = 1 − z2

3! +
z4

5! + · · · is analytic in the entire
complex plane, so there are no residues to compute. However, when expressed

as sin z
z = eiz−e−iz

2iz , the function tends to infinity both in the upper and lower
half-planes. Thus, we cannot simply close the contour to a half-disc in the usual
way.

Nevertheless, we can proceed by writing sin x
x as the limit

sinx

x
= lim
a→∞

x sinx

a2 + x2
,

and, after a careful discussion of the convergence as a→∞ and the interchange
of limits, we find that taking a→ 0 is legitimate.

It is more instructive, however, to adjust the previous argument to handle a = 0.

The issue lies in the fact that for x ∈ R, we have sin x
x = Im

Ä
eix

x

ä
, but eiz

z has

a pole at z = 0, which lies on the path of integration. In fact, the integral∫ ∞
0

eix

x
dx

is divergent at 0.

The solution is to modify the contour of integration to avoid 0 by carving out a
small disc from the large semicircle on the rectangle. Specifically, we have the
following steps:

• First, we write the integral as∫ ∞
−∞

sinx

x
dx = lim

R→∞,ϵ→0

∫
[−R,−ϵ]∪[ϵ,R]

sinx

x
dx = lim

R→∞,ϵ→0
Im

∫
[−R,−ϵ]∪[ϵ,R]

eiz

z
dz.

• The integral along the boundary of the small disc DR,ϵ satisfies∫
∂DR,ϵ

eiz

z
dz = 0

by Cauchy’s theorem, as there are no poles inside the region DR,ϵ.

• The integral on the semicircle of radius R tends to 0 as R→∞, as before.
This follows from the fact that∣∣∣∣eizz

∣∣∣∣ = e−Im(z)

R
,

which decays exponentially, and we can separate the regions where Im(z) <
A and Im(z) > A for large A.
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• On the small semicircle of radius ϵ, the residue at z = 0 is

Res0

Å
eiz

z

ã
= 1.

Thus, we can write eiz

z = 1
z + g(z), where g(z) is analytic near z = 0

(specifically, g(z) = eiz−1
z ). Since g(z) is bounded, we have∫
Cϵ

g(z) dz → 0 as ϵ→ 0,

whereas ∫
Cϵ

1

z
dz = iπ.

Combining these results, we find that

lim
ϵ→0,R→∞

∫
[−R,−ϵ]∪[ϵ,R]

eiz

z
dz = iπ.

Thus, we conclude ∫ ∞
−∞

sinx

x
dx = π.

Example 10.7. Finally, consider the class of integrals involving non-integer
powers of z. For example, we consider the integral

I(α) =

∫ ∞
0

xα

1 + x2
dx,

for 0 < α < 1, which converges at x = ∞. If α = p
q ∈ Q, we can evaluate

the integral by substitution x = u1, which transforms the integral into a rational
function. However, for a more general approach, we proceed as follows.

The function zα

1+z2 is not single-valued and analytic on the entire complex plane,
so we must be cautious when using residues.

We proceed by using a ”keyhole” contour, where the region of integration is
0 ≤ |z| ≤ R with a slit along the positive real axis. In this case, the two portions
along [ϵ, R] do not cancel out, since the values of zα

1+z2 on either side of the real
axis are not the same.

To handle this, we define
zα = eα log z,

where Im(log z) ∈ (0, 2π). When going around the origin, log x → log x + 2πi,
so xα is multiplied by e2πiα. Thus, the contour integral is∫
∂D

zα

1 + z2
dz =

∫ R

ϵ

xα

1 + x2
dx+

∫
CR

zα

1 + z2
dz−

∫ R

ϵ

e2πiαxα

1 + x2
dx−

∫
Cϵ

zα

1 + z2
dz.
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The integrals on the large and small semicircles CR and Cϵ tend to zero as
R→∞ and ϵ→ 0. Thus, we have

lim
ϵ→0,R→∞

∫
∂D

zα

1 + z2
dz = (1− e2πiα)

∫ ∞
0

xα

1 + x2
dx.

On the other hand, applying the residue theorem gives∫
∂D

zα

1 + z2
dz = 2πi

Å
Resz=i

Å
zα

1 + z2

ã
+ Resz=−i

Å
zα

1 + z2

ãã
.

We compute the residues as follows:

• At z = i, we have

Resz=i

Å
zα

1 + z2

ã
=

1

2i
eα log i =

1

2i
ei

π
2 α.

• At z = −i, we similarly get

Resz=−i

Å
zα

1 + z2

ã
= − 1

2i
e3i

π
2 α.

Therefore, we conclude that∫ ∞
0

xα

1 + x2
dx = π

eiπα/2 − e3iπα/2

1− e2πiα
=
π sin

(
πα
2

)
sin(πα)

=
π

2 cos
(
πα
2

) .
10.2 Infinite Sum and Product Expansions

We have seen that if f is analytic in the annulus {R1 < |z| < R2}, then it has
a Laurent series expansion

f(z) =

∞∑
n=−∞

anz
n,

which may or may not have a finite negative part.

If the inner radius is R1 = 0, then a finite negative part corresponds to a pole
at z = 0, while an infinite negative part corresponds to an essential singularity.
However, if R1 > 0, this is not necessarily the case!

Example 10.8. Consider the function 1
1−z , which has a pole at z = 1. We can

express this function using two different Laurent series:

• For |z| < 1, we have

1

1− z
= 1 + z + z2 + · · · (R2 = 1).
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• For |z| > 1, we can write

1

1− z
=

−1
z
(
1− 1

z

) = −z−1 − z−2 − z−3 − · · · (R1 = 1).

OIn this example, and for most rational functions, Laurent series are not the
best representation. Instead, partial fractions or product expansions are more
suitable.

• Products: If R(z) = P (z)
Q(z) , we can factor R(z) = c

∏k
i=1(z−ai)

ni∏l
i=1(z−bi)mi

.

• Sums (partial fractions): If the poles are simple, we can write

R(z) =
c1

z − b1
+ · · ·+ cl

z − bl
+ S(z),

where ci ∈ C and S(z) is a polynomial. More generally, we can express

R(z) =
C1(z)

(z − b1)m1
+ · · ·+ Cl(z)

(z − bl)ml
+ S(z),

where C1(z), . . . , Cl(z) are polynomials with deg(Ci) ≤ mi − 1.

We will explore how to find similar infinite sum or product expansions for general
meromorphic functions.

Starting point: If f(z) is meromorphic with a pole of order m at b ∈ C, then
we can write

f(z) =
g(z)

(z − b)m
,

where g(z) is analytic in a neighborhood of b. Expanding g(z) as a power series
in (z − b), we have

g(z) =

∞∑
n=0

an(z − b)n.

Thus, the Laurent series for f has a finite negative part, as shown earlier:

f(z) =

ï
a0

(z − b)m
+

a1
(z − b)m−1

+ · · ·+ am−1
z − b

ò
+ h(z),

where the bracketed portion is the polar part of f at z = b, and h(z) =∑∞
n=0 am+n(z − b)n is analytic near b.

This resembles partial fractions, and in fact, for rational functions, it is partial
fractions. If f is meromorphic with finitely many poles b1, . . . , bl, by induction
on the number of poles (note that the remainder h(z) has one fewer pole than
f), we obtain

f(z) =
P (z)

Q(z)
=⇒ c1(z)

(z − b1)m1
+ · · ·+ cl(z)

(z − bl)ml
+ g(z),
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where Ci(z) are polynomials of degree less than mi, and g(z) is analytic every-
where.

What if there are infinitely many poles?

Given that f(z) is meromorphic on all of C, with infinitely many isolated poles
b1, b2, . . . , we consider the polar part near each bj , which takes the form

Pj

Å
1

z − bj

ã
=

a−m
(z − bj)m

+ · · ·+ a−1
z − bj

,

a polynomial without a constant term in the variable 1
z−bj . We hope to express

f(z) =

∞∑
j=1

Pj

Å
1

z − bj

ã
+ g(z),

where g(z) is an entire function, i.e., it has no poles.

Problem 10.9.

• When do these sums converge? Can they converge uniformly?

• What meromorphic functions can be represented in such a way?

• Existence: Given a discrete set of poles bj and orders mj, does there
exist a meromorphic function with exactly these poles? Can we prescribe

the polar parts Pj
Ä

1
z−bj

ä
arbitrarily?

An apparent problem: the expression
∑
n∈Z

1
z−n does not seem to make sense.

Example 10.10. Consider the function f(z) = π2

sin2(πz)
, which has poles (of

order 2) exactly at the integers.

The polar part at z = 0 can be found by expanding sin(πz) = πz − π3

6 z
3 + · · · ,

which gives

sin2(πz) = π2z2 − π4

3
z4 + · · ·

= π2z2
Å
1− π2

3
z2 + · · ·

ã
.

Thus, we have
π2

sin2(πz)
=

1

z2

Å
1 +

π2

3
z2 + · · ·

ã
,

which implies the polar part at z = 0 is simply 1
z2 . Since f is periodic (f(z+1) =

f(z)), the polar part at z = n ∈ Z is 1
(z−n)2 .

Now, consider the sum

h(z) =
∑
n∈Z

1

(z − n)2
,
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which is convergent for all z ∈ C\Z, and the convergence is uniform on compact
subsets of C \ Z (this can be proven using the M-test). The sum defines an
analytic function on C \ Z, which can be checked to have the correct behavior
(pole of order 2 with polar part 1

(z−n)2 at each n ∈ Z).

Hence, we can write

π2

sin2(πz)
=
∑
n∈Z

1

(z − n)2
+ g(z),

where g(z) is an entire function. Since the polar parts cancel at each z = n, we
conclude that g(z) is an entire, periodic function: g(z + 1) = g(z). What is g?

Observe that for Im(z)→ +∞, we have

|eiπz| = e−πIm(z) ≪ eπIm(z) = |e−iπz|,

so

|f(z)| ≈ 4π2

e2πIm(z)
→ 0 as Im(z)→ ±∞.

For h(z), if z = x+ iy with y → +∞, we have∣∣∣∣ 1

(z − n)2

∣∣∣∣ = 1

|z − n|2
=

1

(n− x)2 + y2
,

which implies the terms with |n| < y are ≤ 1
y2 , and those with |n| > y are

≤ 1
(n−1)2 , so

|h(z)| ≤ C

y
.

This shows that g(z) is an entire function, periodic, and bounded, hence con-
stant. Since g(z)→ 0 as y →∞, we conclude that g(z) = 0.

Thus, we find
π2

sin2(πz)
=
∑
n∈Z

1

(z − n)2
.

Problem 10.11. Can we find a meromorphic function with simple poles at all
integers and residue 1 at each? And can we express it as a partial fraction sum?

The natural guess is ∑
n∈Z

1

z − n
,

but this series does not converge.
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Solution. To achieve convergence, we subtract the value of each term at z = 0,
i.e., subtract 1

n from each term:

f(z) =
1

z
+

∑
n∈Z,n̸=0

Å
1

z − n
+

1

n

ã
=

1

z
+
∑
n ̸=0

z

n(z − n)
.

This series now converges for all z ∈ C \ Z, uniformly on compact subsets, and
has the desired polar part at each integer.

Problem 10.12. Can we use a similar trick to build meromorphic functions
with arbitrary poles and polar parts at each pole?

Solution. The answer is yes, but we may need to add more complicated counter-
terms to ensure convergence.

Theorem 10.13. Let {bj} be an arbitrary set of complex numbers with no limit
points, and let Pj be an arbitrary polynomial without constant term for each j.
Then there exists a meromorphic function f(z) on all of C, analytic on C\{bj},
and whose polar part at bj is Pj

Ä
1

z−bj

ä
for all j.

Proof. The proof uses the same idea as above. To ensure convergence, we sub-

tract from each Pj
Ä

1
z−bj

ä
(for bj ̸= 0) a polynomial in z. Given mj ≥ 0 as an

integer, let qj(z) be the sum of the terms of degree ≤ mj in the Taylor series

of Pj
Ä

1
z−bj

ä
at z = 0. The point (see Ahlfors 5.2.1) is that we can choose the

mj ’s so that the series

f(z) =
∑
j

Å
Pj

Å
1

z − bj

ã
− qj(z)

ã
converges on C \ {bj}.

How does one show this? First observe that if {bj} has no limit points, then
the set {bj} is discrete and |bj | → ∞. Next, we need explicit bounds on the

remainder Pj
Ä

1
z−bj

ä
− qj(z) from the Taylor series of Pj

Ä
1

z−bj

ä
.

For the base case, we have

1

z − bj
= − 1

bj

1

1− z
bj

= − 1

bj

Ç
1 +

z

bj
+

Å
z

bj

ã2
+ · · ·

å
,

with remainder Å
z

bj

ãmj+1 1

z − bj
.

Thus, we can estimate ∣∣∣∣Pj Å 1

z − bj

ã
− qj(z)

∣∣∣∣ ≤ 1

j2
.
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Since |bj | → ∞, this implies uniform convergence over compact subsets of C, as
all but finitely many terms of the series are bounded by

∑
1
j2 .

Back to our function with simple poles at all integers:

f(z) =
1

z
+
∑
n ̸=0

Å
1

z − n
+

1

n

ã
=

1

z
+
∑
n̸=0

z

n(z − n)
.

Since the series converges uniformly on compact subsets of C \Z, we can differ-
entiate term by term. Recall that if fn is analytic and fn → f uniformly, then
f ′n → f ′ uniformly on compact subsets.

Thus, we find the derivative of f(z):

f ′(z) = −
∑
n∈Z

1

(z − n)2
=

−π2

sin2(πz)
.

Next, recall that the cotangent function, cot(t) = cos(t)
sin(t) , has the derivative:

cot′(t) = − 1

sin2(t)
.

Therefore, we have:
f(z) = π cot(πz) + C.

Since both sides are odd functions of z (f(−z) = −f(z)), we must have C = 0.
Thus, we obtain:

π cot(πz) =
1

z
+
∑
n ̸=0

Å
1

z − n
+

1

n

ã
.

Remark 10.14. There is an alternative way to achieve convergence in this
case, rather than using the general method of polynomial counter-terms. We
can combine the terms for ±n:

1

z − n
+

1

z + n
=

2z

z2 − n2
.

This results in a convergent series (while the terms 1
n −

1
n cancel out). Hence,

we can rewrite the sum as:

π cot(πz) =
1

z
+
∑
n≥1

2z

z2 − n2
.
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10.3 Infinite Product Expansions

After studying infinite sum formulas in the spirit of partial fractions, we now
turn our attention to infinite products. The convention/definition we adopt for
infinite products is as follows:

Definition 10.15. Let
∏∞
i=1 pi be an infinite product. It converges if:

1. At most finitely many terms pi are zero, and

2. The product of the nonzero terms
∏

1≤i≤n,pi ̸=0 pi converges to a nonzero
limit as n→∞.

This definition may feel somewhat awkward and less natural than the obvious
alternative (where

∏n
i=1 pi converges to a limit, which may be zero), but it is

more suitable for expressing analytic functions as infinite products.

The requirements ensure the following:

• Adding or removing finitely many factors does not affect the convergence
of the product.

• When a convergent product of analytic functions vanishes, it does so to a
finite order (i.e., the sum of the orders of the factors that equal zero), and
we can factor out the zeroes. (Note that a convergent product of nonzero
factors is nonzero by definition!)

• For nonzero products, the convergence of
∏
pi is equivalent to the conver-

gence of
∑

log pi.

Since convergence forces log(pi) → 0, i.e., pi → 1, it is customary to write
infinite products in the form

∏∞
n=1(1 + an). Convergence of the product is

equivalent to the convergence of
∑

log(1 + an) (with an → 0). We select the
principal branch of the logarithm such that |Im(log)| < π.

Moreover,
∑

log(1 + an) converges absolutely if and only if
∑
an converges

absolutely. This can be shown using a comparison argument, as either condi-

tion implies an → 0. For sufficiently large n, we have the inequality |an|2 ≤
| log(1 + an)| ≤ 2|an|. When this occurs, we say the product converges abso-
lutely. However, non-absolute convergence may involve more subtle cancella-
tions, and cannot be reduced to the convergence of

∑
an.

The goal is to express a given entire analytic function f(z) as a product that
reveals the zeroes of f , just as we write a polynomial in the form c

∏
(z− bi)mi .

Since an infinite product of (z − bi)’s does not converge, we aim for a product

of factors of the form
∏∞
i=1

Ä
1− z

bi

ämi

(for bi ̸= 0). If f has a zero at z = 0, we

include the factor zm0 .

If the infinite product converges for all z, and if the convergence is uniform on

compact subsets of C−{bi} (which, by definition, means that
∑
mi log

Ä
1− z

bi

ä
converges uniformly), then it defines an analytic function with the same zeroes
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as f . Consequently, the ratio of f(z) and this function is an entire function
with no zeroes, and can therefore be written as eg(z) for some entire analytic
function g(z).

In summary, our goal is to express f(z) as:

f(z) = zm0eg(z)
∞∏
i=1

Å
1− z

bi

ãmi

.

As in the case of sums, the following questions arise:

• Can we represent given functions in this way?

• When do these expressions converge?

• Given a set {bi} ⊂ C with no limit points (i.e., bi → ∞), can we find an
entire function with zeroes of prescribed orders at bi?

The answers to these questions are analogous to the case of partial fractions.
To begin, we look at an example: the function sin(πz).

Example 10.16. Since sin(πz) has zeroes exactly at the integers, a naive guess
for its infinite product representation is:

z
∏
n ̸=0

(
1− z

n

)
.

Unfortunately, the series
∑

log
(
1− z

n

)
diverges (just as

∑
1
n does). To handle

this, we cancel the divergence by subtracting the beginning of the Taylor series
for each term.

Here, we have:

log
(
1− z

n

)
= − z

n
− z2

2n2
− · · · ,

so we can consider: ∑((
1− z

n

)
+
z

n

)
,

which converges (since
∑

z2

n2 converges). This gives the product:

z
∏
n ̸=0

((
1− z

n

)
e

z
n

)
,

which converges (by the convergence of
∑

log(· · ·)). Thus, we can write:

sin(πz) = zeg(z)
∏
n̸=0

((
1− z

n

)
e

z
n

)
for some analytic function g(z).
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How do we find g(z)? The answer is to compare the logarithmic derivatives of
both sides. For z ∈ C− Z, the logarithmic derivative of a product is the sum of
the logarithmic derivatives of the individual factors. Thus, we have:

sin(πz) −→ π cos(πz)

sin(πz)
= π cot(πz),

z −→ 1

z
,∏

n ̸=0

((
1− z

n

)
e

z
n

)
−→

∑
n ̸=0

Å −1/n
1− z/n

+
1

n

ã
=
∑
n ̸=0

Å
1

z − n
+

1

n

ã
,

eg(z) −→ g′(z).

Thus, we obtain:

π cot(πz) =
1

z
+ g′(z) +

∑
n ̸=0

Å
1

z − n
+

1

n

ã
.

Using the previously derived formulas, we find that g′(z) = 0, so eg(z) is a
constant. To determine this constant c, we divide both sides by z and evaluate
at z = 0:

lim
z→0

sin(πz)

z
= c.

Thus, c = π, and we conclude:

sin(πz) = πz
∏
n̸=0

((
1− z

n

)
e

z
n

)
.

By grouping terms corresponding to +n and −n, we can also write:

sin(πz) = πz
∏
n≥1

Å
1− z2

n2

ã
.

Remark 10.17. Earlier and now, the series
∑
n ̸=0

1
z−n and

∑
n ̸=0 log

(
1− z

n

)
are considered divergent because we must think of

∑
n ̸=0 =

∑
n>0 +

∑
n<0,

and both series are divergent. The simpler rewriting by grouping ±n together
amounts to the observation that for these specific divergent series, there is a
convergent rearrangement:

lim
N→∞

Ñ
N∑

n=−N,n̸=0

an

é
= lim
N→∞

(
N∑
n=1

(an + a−n)

)
.

This series a1 + a−1 + a2 + a−2 + · · · converges non-absolutely. However, rear-
ranging non-absolutely convergent series is not a benign operation; it can change
the value of the sum. In fact, for series of real numbers, you can make the sum
take any value you wish! (See Rudin’s Theorem 3.54)
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Theorem 10.18 (The General Existence Theorem). Given a subset {b1, b2, . . . } ⊂
C with |bj | → ∞ (i.e., no limit points) and multiplicities mj ≥ 1, there exists
an entire analytic function f(z) with zeroes exactly at the points bj, with order
mj at each.

The proof follows the same steps as for partial fractions: we want to modify

the sum
∑
mj log

Ä
1− z

bj

ä
to achieve convergence. As before, we do this by

subtracting part of the Taylor series expansion (⋆):

log

Å
1− z

bj

ã
= − z

bj
− z2

2b2j
− · · · ,

and stopping at some degree dj . We then consider the infinite product:

zm0

∏
j

ïÅ
1− z

bj

ã
e

z
bj

+ 1
2

(
z
bj

)2
+···+ 1

dj

(
z
bj

)dj òmj

.

As with partial fractions, the appropriate choice of dj ’s ensures that the remain-
ders in (⋆) form a series such that

∑
mjrj(z) converges uniformly on compact

subsets. Thus, the infinite product converges (uniformly).

Corollary 10.19. Every meromorphic function on C is the quotient of two
entire analytic functions.

Proof. Suppose f has poles at {bj} with orders mj . By the General Existence
Theorem, there exists an entire function g(z) with zeroes precisely at bj , with
order mj at each. Thus, the function h(z) = g(z)f(z) is analytic everywhere

(the zeroes of g cancel the poles of f), and we can write f(z) = h(z)
g(z) .

10.4 Gamma and Zeta Functions

This section explores an application of infinite sums and products: constructing
new functions.

Warm-up: the partition generating function. Let p(n) denote the number
of partitions of n, i.e., the number of ways to express n as an unordered sum of
positive integers (with the convention p(0) = 1).

1, p(1) = 1

2 = 1 + 1, p(2) = 2

3 = 2 + 1 = 1 + 1 + 1, p(3) = 3

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1, p(4) = 5

and so on.
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This function has many remarkable properties, such as those related to arith-
metic (e.g., Ramanujan’s result: p(5k + 4) ≡ 0 (mod 5)). However, our main
goal here is to examine the growth rate of p(n): Is it polynomial or exponential?

One way to approach this is to introduce the generating function

P (z) =

∞∑
n=0

p(n)zn

and investigate its properties (such as the radius of convergence). The key
formula for this function is its product expansion (Euler, 1753):

P (z) =
∞∑
n=0

p(n)zn =

∞∏
n=1

1

1− zn
.

To understand this, we express the product as the infinite series:

(1 + z + z2 + . . . )(1 + z2 + z4 + . . . )(1 + z3 + z6 + . . . ) . . .

A partition of n as a sum of a1 ones, a2 twos, etc., corresponds to the contribu-
tion to the coefficient of zn from multiplying za1 in the first factor, z2a2 in the
second, and so on. Therefore, the total coefficient of zn is indeed p(n).

This infinite product expansion, and the comparison between
∑

log(1− zn) and∑
zn, shows that P (z) is well-defined and analytic in the unit disk D = {z |

|z| < 1}. However, we also observe that since the factors have poles at all roots
of unity (which form a dense subset of the unit circle, e2πiα, where α ∈ Q), there
is no way to extend P (z) beyond the unit disk. This tells us that the radius of
convergence is 1, but a much more detailed analysis of P (z) provides additional

information: specifically, p(n) ∼ 1
4n
√
3
exp

(
π
»

2n
3

)
(Hardy-Ramanujan, 1918).

Next, let us discuss the Gamma function.

Question 1: Does there exist a meromorphic function that generalizes n! to
non-negative integers?

Since n! = n × (n − 1)!, the functional identity we would hope for is F (z) =
zF (z− 1). This cannot be a polynomial, however, because comparing the zeros
on both sides of the identity reveals that the zeros of F (z) are those of F (z− 1)
(i.e., the zeros of F shifted by 1) plus one additional zero at z = 0. This implies
that if F is an entire function, it must have zeros at all non-negative integers,
which is inconsistent with the goal of generalizing n!. A better approach is to
seek a meromorphic function with poles at the negative integers (and no zeros).

Question 2: Is there an entire function whose zeros are exactly the negative
integers?
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Yes, we can construct such a function:

G(z) =

∞∏
n=1

((
1 +

z

n

)
e−z/n

)

This ensures convergence of the series
∑
n≥1

(
log
(
1 + z

n

)
− z

n

)
. Note that zG(z)G(−z) =

1
π sin(πz), as previously established.

What functional equation does G satisfy? We observe that G(z − 1) has zeros
at z = 0,−1,−2, . . . , which are the same as the zeros of zG(z). Hence, the

function G(z−1)
zG(z) is entire and has no poles at its zeros, implying that it must be

of the form eγ(z) for some entire function γ(z).

Thus, we have the equation

G(z − 1) = zG(z)eγ(z).

To find γ(z), we take the logarithmic derivative of both sides:

G′(z)

G(z)
=

1

z
+
G′(z)

G(z)
+ γ′(z) =⇒ γ′(z) = 0 =⇒ γ(z) = constant.

This constant is known as Euler’s constant:

G(0) = 1 = G(1)eγ =⇒ γ = − logG(1) =

∞∑
n=1

Å
1

n
− log

Å
n+ 1

n

ãã
= lim
n→∞

Å
1 +

1

2
+ · · ·+ 1

n
− log(n)

ã
≈ 0.57722.

To eliminate the factor eγ , we define a new function H(z) = eγzG(z). This
yields the equation:

H(z − 1) = eγze−γG(z − 1) = eγzzG(z) = zH(z).

Thus, we have

H(z) = eγz
∞∏
n=1

((
1 +

z

n

)
e−z/n

)
=

∞∏
n=1

(
1 +

z

n

)Å
1 +

1

n

ã−z
.

Finally, we define the Gamma function.

Definition 10.20. The Gamma function is defined as

Γ(z) =
1

zH(z)
:=

1

H(z − 1)
.

Here are some properties of the Gamma function:
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Proposition 10.21. • Γ(z) is a meromorphic function with simple poles at
z = 0,−1,−2, . . . and no zeros.

• The functional form of Γ(z) is given by

Γ(z) =
e−γz

z

∞∏
n=1

(
1 +

z

n

)−1
ez/n =

1

z

∞∏
n=1

Å
1 +

1

n

ãz (
1 +

z

n

)−1
.

• The functional equation Γ(z + 1) = zΓ(z) holds.

• Since Γ(1) = 1, we have Γ(n) = (n− 1)! for all n ∈ Z>0.

• From the identity πzG(z)G(−z) = sin(πz), we derive the reflection for-
mula

Γ(z)Γ(1− z) = π

sin(πz)
.

Theorem 10.22 (Stirling’s Formula).

Γ(z) ∼
√
2πzz−

1
2 e−z as Re(z)→∞.

Remark 10.23. We will skip the proof as it is quite involved. For a detailed
explanation, refer to Ahlfors 5.2.5.

This approximation implies that n! ∼
√
2πnnne−(n+1), as seen in Homework 7.

Next, consider the integral representation of Γ(z):

Γ(z) =

∫ ∞
0

tz−1e−t dt for Re(z) > 0.

Integration by parts shows that this integral satisfies the same functional identity
as Γ(z). The ratio of the two is 1-periodic and entire, and Stirling’s formula
implies that this function is bounded, hence constant (equal to 1 when evaluated
at positive integers).

Many other fascinating formulas exist for the Gamma function, such as Legen-
dre’s duplication formula:

√
πΓ(2z) = 22z−1Γ(z)Γ

Å
z +

1

2

ã
.

(See Ahlfors for more details.)

Let us now turn our discussion to the Riemann zeta function. We have seen
how to encode a sequence of numbers an into a generating function, specifically
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a power series
∑
anz

n. However, one can also try a different approach: the
Dirichlet series, given by

f(s) =

∞∑
n=1

an
ns

(where, for traditional reasons, the variable is denoted by s rather than z).

The simplest such series is the Riemann zeta function defined as

ζ(s) =

∞∑
n=1

1

ns
.

This series converges absolutely for Re(s) > 1 and uniformly on the set {Re(s) ≥
1+ ϵ} for any ϵ > 0. Consequently, ζ(s) is an analytic function on {Re(s) > 1}.

Proposition 10.24. Although the series does not converge for Re(s) < 1, the
function ζ(s) can be extended to a meromorphic function on the entire complex
plane, with a pole at s = 1.

The primary questions about ζ(s) concern its behavior in regions of the complex
plane where the series diverges. For example, its number-theoretic significance
is given by the Euler product:

ζ(s) =
∏

p prime

1

1− p−s
,

where we use the identity 1
1−p−s = 1 + 1

ps + 1
p2s + · · · , along with the prime

factorization.

Because of this representation, the behavior of ζ(s) as a complex analytic func-
tion reflects the properties of the primes.

Example 10.25. The fact that
∑

1
n diverges is equivalent to the following three

statements:

⇐⇒ poles of ζ(s) at s = 1⇐⇒ there are infinitely many primes p,

and the series ∑
log

Å
1

1− p−1

ã
∼
∑ 1

p

diverges.

However, there are much deeper facts. The location of the zeros of ζ(s) implies
estimates on the error term in the classical approximation for the prime counting
function:

π(x) ∼ #{primes p ≤ x} ∼ x

log x
+O

Å
x

log2 x

ã
,

which is the Prime Number Theorem. This is the subject of the Riemann
Hypothesis.
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Returning to complex analysis: the function ζ(s) is intimately related to the
Gamma function Γ(s), since

Γ(z) =

∫ ∞
0

tz−1e−t dt,

and

n−sΓ(s) =

∫ ∞
0

ts−1e−nt dt.

This follows by a change of variables nt, where tz−1dt→ nztz−1dt.

Summing over n ≥ 1, we obtain for Re(s) > 1:

ζ(s)Γ(s) =

∫ ∞
0

ts−1

et − 1
dt,

since
∞∑
n=1

e−nt =
e−t

1− e−t
=

1

et − 1
.

This allows us to re-express ζ(s) as a path integral: (−z)s−1

ez−1 has branching
behavior at z = 0 and poles at 2πin, n ∈ Z. So, we have:∫

C

(−z)s−1

ez − 1
= −

∫ ∞
0

xs−1e−iπ(s−1)

ex − 1
dx+

∫ ∞
0

xs−1eiπ(s−1)

ex − 1
dx,

which simplifies to:
= 2i sin(π(s− 1))ζ(s)Γ(s).

(Cauchy’s theorem implies the integral is independent of ϵ ∈ (0, 2π) and for
Re(s) > 1, we have limϵ>0

∫
S1(ϵ)

= 0.)

Since Γ(s)Γ(1− s) = π
sin(πs) , we get:

ζ(s) = −Γ(1− s)
2iπ

∫
C

(−z)s−1

ez − 1
dz (⋆)

The point is: the right-hand side is defined and meromorphic for all s ∈ C! The
integral converges at infinity because ez in the denominator grows much faster
than |z|s−1. Analytic dependence on s follows from our usual tricks for integral
formulas (such as differentiating under the integral).

Since Γ(1 − s) has poles at 1 − s ∈ {0,−1,−2, . . . }, i.e., at s = {1, 2, 3, . . . },
the only possible poles of ζ(s) are at s = 1, 2, 3, . . . . However, for s ≥ 2, the
series

∑
1
ns converges, so the pole of Γ(1 − s) is canceled by the vanishing of

the integral (no branching behavior for s ∈ Z).

Corollary 10.26. ζ(s) extends to an entire meromorphic function, whose only
pole is a simple pole at s = 1.
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Further consideration of the integral formula (⋆) yields the ”functional equation”
for ζ(s):

Theorem 10.27.
ζ(s) = 2sπs−1Γ(1− s)ζ(1− s).

Remark 10.28. This is proved by further manipulation of the integral (⋆), and
by closing the path in C, see Ahlfors 5.4.3.

This is important: we know that ζ(s) has no zeros in the half-plane Re(s) > 1
(as seen from the product expansion ζ(s) =

∏
p

1
1−p−s , which converges for

Re(s) > 1), so this equation determines the behavior of ζ in the half-plane
Re(s) < 0. Specifically, it has simple zeros at s = −2,−4,−6, . . . and no other
zeros.

The remaining zeros lie in the ”critical strip” 0 < Re(s) < 1; the Riemann
Hypothesis states that these zeros all lie on the line Re(s) = 1

2 . This has
been verified experimentally for the first few million zeros (starting with 1

2 ±
14.134725 · · · i, 12 ±21.022039 · · · i, etc.) and is widely believed to be true (which
has implications for the distribution of prime numbers), but a proof remains
elusive. (The Clay Mathematics Institute offers a $1 million prize for a proof or
disproof.)

10.5 Abelian Integrals and Elliptic Functions

Riemann surfaces were historically introduced to handle the multivalued nature
of certain algebraic functions and their integrals. For example, consider the
integral

I =

∫ z1

z0

dz√
z2 + 1

.

One might evaluate this integral using trigonometric substitutions, such as z =
sinh(w), but a more elegant approach is to interpret it as a path integral on
a Riemann surface. This is because the function

√
z2 + 1 is multivalued:

there are two possible values whenever z /∈ {±i}. Its graph forms a three-
sheeted covering space over the complex plane excluding the points ±i, with
w = ±

√
z2 − 1. If we vary z along a path, say a circle around one of ±i, the

lift of this path to the covering space changes sheets. Starting at a point w, the
path eventually returns to −w.

Thus, we introduce the set

Σ = {(z, w) ∈ C2 | w2 = z2 + 1},

and now view z and w as single-valued analytic functions on Σ, rather than as
multivalued functions on C. The set Σ is an example of a complex manifold.
Around each point of Σ, we can use either w or z as a local coordinate and
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express all functions as analytic functions of it. In particular, the integral is
now best understood as ∫ p1

p0

dz

w
,

where p0 = (z0, w0) and p1 = (z1, w1) are points on Σ.

While this may seem like an unnecessary complication if you already have a clear
idea of how to evaluate the integral, it can often provide considerable insight
into the problem.

The remarkable fact here is that Σ is biholomorphic to a domain in the complex
plane. Explicitly, in terms of the Riemann sphere S = C ∪ {∞}, we have the
following inverse analytic bijections:

S − {±1}
∼=→ Σ = {(z, w) | w2 = z2 + 1}

λ 7→
Å

2λ

1− λ2
,
1 + λ2

1− λ2

ã
(z, w) 7→ w − 1

z
.

Therefore, we can transform our path integral on Σ into one on S − {±1} by
making the change of variables

w =
1 + λ2

1− λ2
, dz =

2(1 + λ2)

(1− λ2)2
dλ.

Thus, the integral ∫ p1

p0

dz

w

becomes ∫ λ1

λ0

2 dλ

1− λ2
,

which is easier to handle using partial fractions.

What is the geometric interpretation of this change of variables? The set Σ =
{(z, w) ∈ C2 | w2 = z2 + 1} is defined by an algebraic equation of degree
2. The intersection of Σ with a complex line in C2 typically consists of two
points. Therefore, we can project Σ along the family of lines through a fixed
point p0 ∈ Σ (e.g., (0, 1)). Each of these lines intersects Σ at the point p0 and
typically one other point. This idea is conceptually similar to stereographic
projection of the sphere S2 ⊂ R3, where degree-2 equations come into play.
However, in this case, we are working in C2 rather than R3.
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p0 = (0, 1)

Ä
2λ

1−λ2 ,
1+λ2

1−λ2

ä

w

Σ ω2 = z2 + 1

The line with slope λ through p0 has the equation w = λz + 1. Substituting
this into the equation w2 = z2 + 1 results in a degree-2 equation in z (with
coefficients depending on λ), which always has z = 0 as one of its roots. This
makes it especially easy to find the other root.

(λz + 1)2 = z2 + 1

⇝(λ2 − 1)z2 + 2λz = 0

⇝z = 0 or z =
2λ

1− λ2

Additionally, every point p ∈ Σ (p ̸= p0) arises from this construction by taking
the line (p0p). Special cases include:

• For λ = 0, the line Lλ is tangent to Σ at p0, resulting in a double root
z = 0.

• For λ = ±1, the other intersection of Lλ and Σ disappears (”at ∞”).

• To obtain the point (0,−1) ∈ Σ, we must allow λ =∞.

This construction provides a biholomorphism

S − {finite set} ∼→ Σ

given by rational functions (assuming Σ is a rational curve; the term ”curve”
refers to it being complex 1-dimensional), even though Σ appears as a surface
in real 2-dimensions.

This process allows us to evaluate path integrals on algebraic curves Σ ⊂ C2

defined by any quadratic polynomial Q(z, w) = 0; however, complications arise
when we try to extend this method.
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Question: Calculate the arc length of a portion of the ellipse x2 + y2

2 = 1

between (x0, y0) and (x1, y1). If we write y = ±
√
2(1− x2) and use∫ x1

x0

 
1 +

Å
dy

dx

ã2
dx,

we arrive at an integral of the form∫ x1

x0

 
1 + x2

1− x2
dx.

Alternatively, using parametric length, we obtain∫ θ1

θ0

»
1 + cos2(θ) dθ.

By manipulating this further, we can reduce it to an expression like∫
dx√
1− x4

.

However, none of these ”elliptic integrals” can be expressed in terms of known
functions. Early 19th-century mathematicians were at an impasse until Rie-
mann, Abel, and others provided the right perspective. Riemann surfaces are
necessary to make sense of these integrals. (This is a topic at the intersection
of complex analysis, topology, and algebraic geometry!) Thus, we now consider
the graph of

√
1− z4, given by the equation

Σ = {(z, w) ∈ C2 | w2 = z4 − 1}.

Claim: The reason this case differs from the previous one is that Σ is not an
open subset of the Riemann sphere, but rather an open subset of a torus (an
”elliptic curve”—the term comes from the problem of elliptic integrals and the
associated challenges).

To understand this, we project onto the z-coordinate: (z, w) 7→ z. This map is
a ”branched covering”—a two-sheeted covering map—after we remove the roots
pi of the polynomial z4−1 (which are ±1 and ±i) from C, and the corresponding
points qi = (pi, 0) from Σ. Hence, the map

Σ− {qi}
π→ C− {pi}, (z, w) 7→ z,

is a 2:1 covering.

The points pi are the branch points: the lift of a small circle around pi is a
path that ends up on the opposite sheet of where it started (i.e., w 7→ −w). In
general, a loop in C − {pi} lifts to a loop in Σ − {qi} if and only if the sum of
its winding numbers around p1, p2, p3, p4 is even.

302



p1
p2

p3 p4

V

U

π|V

Consider two arcs γ and γ′ in C, connecting p1 to p2 and p3 to p4 (for example),
and let U = C−(γ∪γ′). Then, any loop in U has an even total winding number,
so it lifts to a loop in Σ.

Hence, the restricted covering map from V = π−1(U) to U is trivial. Specifically,
V decomposes as V = V+ ⊔V−, and the map π|V± : V±

∼→ U is a bijection. This
makes the slits in these planes more visible: by adding back the missing arcs
γ ∪ γ′, the lift of a path in C jumps between the two sheets V± each time it
crosses γ ∪ γ′.

Thus, Σ is obtained from V by attaching one side of each slit in each sheet to
the other side of the same slit in the other plane.

∼= →
/˜

V ∼=

∼=

torus minus 2 points

It is possible to compactify C to the sphere S and Σ to a torus Σ by adding two
preimages of ∞.

The implication for complex analysis is that, since Σ is not simply connected,
path integrals on it depend on the path of integration.
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Returning to our integral ∫
dz

w

on Σ = {w2 = z4 − 1} (or another polynomial of degree 3 or 4 with simple
roots), we make the following observations:

• The expression dz
w is an analytic 1-form on Σ, with no poles or zeroes.

Specifically, at (z, w) = (pi, 0), the local coordinate on Σ is actually w,
not z. Since w2 = P (z), we have 2w dw = P ′(z) dz, which implies

dz

w
=

2 dw

P ′(z)
,

and thus there is no pole.

• The integral
∫ p1
p0

dz
w is invariant under path homotopy (by the Cauchy

theorem), but it depends on the homotopy class. If we choose loops α1, α2

that generate π1
(
Σ
)
≃ Z2, a change in the homotopy class modifies the

value of the integral by an integer linear combination of the periods w1 =∫
α1

dz
w and w2 =

∫
α2

dz
w . Given two paths γ and γ′ from p0 to p1, we have

[γ − γ′] = m1[α1] +m2[α2]

for some m1,m2 ∈ Z, which implies∫
γ

−
∫
γ′

= m1w1 +m2w2.

• The function ∫ p

p0

dz

w
= F (p)

defines an analytic mapping

F : Σ→ C/Zw1 ⊕ Zw2,

which has the following properties:

– It cannot be expressed in terms of elementary functions.

– It has everywhere a nonzero derivative, so F is a local homeomor-
phism, and in fact, a covering map.

– By winding number arguments (for complex analysts) or by studying
the map on fundamental groups (for topologists), we can show that
|F−1(c)| = 1 for all c, meaning that F is a biholomorphism.

Problem 10.29. What is the inverse of F?

Solution. The inverse of F is a doubly periodic function, which is approximately
the Weierstrass ℘-function.
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10.6 The Weierstrass ℘-function

Consider double-periodic functions f(z+w1) = f(z+w2) = f(z). If f is analytic,
then it must be bounded and hence constant. Therefore, the only interesting
such functions are meromorphic. The residue formula for integrating around a
large parallelogram implies that the sum of residues in the fundamental domain
must be zero (since the path integral is linear in N , while the sum of residues is
quadratic in N). This leads to the conclusion that we cannot have just a single
pole of order 1 in the fundamental domain.

The simplest such functions either have one pole of order 2 or two poles of order
1 in the parallelogram defined by w1 and w2. Weierstrass’ starting point has a
pole of order 2, with vanishing residue. Up to translation, we can place the pole
at z = 0 with the polar part 1

z2 . Following our study of infinite sums and how
to achieve convergence, we obtain the Weierstrass ℘-function:

℘(z) =
1

z2
+
∑
w ̸=0

Å
1

(z − w)2
− 1

w2

ã
where w = n1w1 + n2w2 and (n1, n2) ∈ Z2 − {(0, 0)}.

This series converges uniformly on compact sets, since the series
∑
w ̸=0

1
|w|3

converges. The derivative ℘′(z) = −2
∑
w

1
(z−w)3 is obviously periodic, so P (z+

w1)−℘(z) and ℘(z+w2)−℘(z) are both constant. Since ℘(z) is an even function
(℘(−z) = ℘(z)), we can evaluate it at z = w1

2 and z = w2

2 to conclude that ℘(z)
is periodic.

Next, working on the Laurent expansions at z = 0, we find:

℘(z) =
1

z2
+
g2
20
z2 +

g3
28
z4 + . . .

for some constants g2, g3 ∈ C (depending on w1, w2). Notice that the constant
term vanishes, and the odd terms vanish because ℘ is even. Thus, we have:

℘′(z) =
−2
z3

+
g2
10
z +

g3
7
z3 + . . .

=⇒ ℘′(z)2 =
4

z6
+

3g2
5z2

+
3g3
7

+ . . .

=⇒ ℘′(z)2 = 4℘(z)3 − g2℘(z)− g3.

The polar parts match, so we equate the entire expressions up to a constant,
and the constant terms match as well. The outcome is that the map z 7→
(℘(z), ℘′(z)) gives a biholomorphism:

C/Zw1 + Zw2
∼→ {(x, y) ∈ C2 | y2 = 4x3 − g2x− g3} ∪ {∞},
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which is another elliptic curve.

Additionally, we have d℘(z) = ℘′(z) dz, which gives dz = d℘(z)
℘′(z) = dx

y . Thus, the

inverse function is given by:

∫
dx

y
=

∫
dx√

4x3 − g2x− g3
.

This is almost the same as the previous example, except this one has one of
the four branch points at ∞, unlike our previous example where all four poles
pi ∈ C. Simple coordinate transformations by rational functions allow us to
switch between the two cases.

Finally, consider a polynomial f(x, y) ∈ Q[x, y] with rational coefficients.

Problem 10.30. How many rational solutions {(x, y) ∈ Z | f(x, y) = 0} are
there?

Solution. In fact, the answer is governed by the topology of the Riemann surface
Σ obtained by compactifying Σ = {(x, y) ∈ C2 | f(x, y) = 0}, specifically by
its genus g. If g = 0 (a rational curve, isomorphic to S = C ∪ {∞}) or g = 1
(an elliptic curve, isomorphic to C/Zw1+Zw2), then algebraic operations (e.g.,
addition in an elliptic curve) yield new rational solutions from known ones. In
this case, the number of solutions over Q can be infinite.

Theorem 10.31 (Faltings). If g ≥ 2, then there are only finitely many rational
solutions.

At this point, we have brought together algebra, analysis, topology, geometry,
and number theory! This is a good place to end Math 55.

306


	Group Theory I
	Groups and Their Examples
	Products of Groups
	Subgroups
	Homomorphisms
	Interlude: Set Theory
	Classification of Finite Groups
	Interlude: Equivalence Relations and Partitions
	Cosets and Normal Subgroups
	Exact Sequences
	More About Symmetric Groups
	Free Groups

	Linear Algebra I
	Rings and Fields
	Vector Spaces
	Linear Maps
	Basis and Dimension
	Direct Sums and Products
	Rank and the Dimension Formula
	Quotient and Dual Spaces
	Annihilators and Transposes
	Linear Operators and Invariant Subspaces
	Eigenvectors and Eigenvalues
	Generalized Eigenvectors
	Nilpotent Operators
	Characteristic Polynomial

	Linear Algebra II
	Real Operators
	Interlude: Category Theory
	Bilinear Forms
	Inner Product Spaces
	Orthogonal and Self-Adjoint Operators
	Hermitian Inner Products
	Tensor Products: Definition and Basic Properties
	Symmetric and Exterior Algebra
	Volume and Determinant

	Group Theory II
	Modules
	Classification of Finitely Generated Abelian Groups
	Group Actions
	Finite Subgroups of SO(3)
	Conjugacy Classes in the Symmetric Group Sn
	The Alternating Group
	The Sylow Theorems
	(Semi)Direct Products
	Proofs of Sylow Theorems
	Generators, Presentations, and Cayley Graph
	Braids

	Representation Theory
	Representations
	Irreducibility and Representations of S3
	Symmetric Polynomials and Characters
	S4
	A4
	The Representation Ring of G
	S5
	A5
	Induced Representations
	Frobenius Reciprocity
	Group Algebra
	Real Representations
	Quaternionic Representations

	Point Set Topology
	Metric Spaces
	Topological Spaces
	Bases
	Subspaces and Products
	Interior and Closure
	Closed Sets and Limit Points
	Hausdorff Spaces
	Manifolds and CW Complexes
	Topologies on Infinite Products
	Connected Spaces
	Path-connectedness
	Compactness
	Alternative Notions of Compactness
	Compactification
	Countability Axioms
	Regular and Normal Spaces
	Urysohn's Lemma
	Gluing and Quotients

	Algebraic Topology
	Homotopy
	The Fundamental Group
	Covering Spaces
	Lifting
	The Brouwer Fixed Point Theorem
	Equivalence and More About Covering Spaces
	Universal Enveloping Space
	Free Products
	Seifert-Van Kampen
	Fundamental Groups of Surfaces

	Real Analysis
	Review: Real Functions
	Review: Sequences and Series in R
	Differentiation in One Variable
	Riemann Integration
	Stone-Weierstrass Theorem
	Fourier Series
	Differentiation in Several Variables
	Inverse Function Theorem
	Iterated and Riemann Integrals in Several Variables
	Differential Forms

	Complex Analysis I
	Complex Differentiability
	Rational Functions
	Power Series
	Cauchy's Theorem and Integral Formula
	Zeroes of Analytic Functions
	Laurent Series
	Singularities and Removability
	Meromorphic Functions
	Local Behavior of Analytic Functions
	Harmonic Functions
	Open Mapping Principle

	Complex Analysis II
	Residue Calculus
	Infinite Sum and Product Expansions
	Infinite Product Expansions
	Gamma and Zeta Functions
	Abelian Integrals and Elliptic Functions
	The Weierstrass -function


