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1 Foundations of Lie Algebras

1.1 Basic Definitions, Solvable and Nilpotent Lie Algebras

1.2 Overview

The main reference is Humphrey’s Introduction to Lie Algebras and Represen-
tation Theory. Some other books are listed on the website.

Today, we’ll see the basic definitions, some important examples, and frame the
guiding classification problems.

For some very brief motivation: the most interesting groups in physics, ge-
ometry, etc. are Lie groups, which are groups that are also manifolds in a
compatible way. For example, the general linear group, the special linear group,
the orthogonal group, the symplectic group, etc. The most important features
in geometry/representation theory of Lie groups are controlled by the tangent
space at the identity element. This tangent space has more structure than just
being a vector space - namely, it is what we call a Lie algebra.

1.3 What Is A Lie Algebra

Let’s start with a constructive definition. Let F be some field (e.g., R,C,Q,Fp,
etc.). Let n be a positive integer and define

gln(F) = {n× n matrices over F}

For X,Y ∈ gln(F) let [X,Y ] = XY − Y X.

Definition 1.1. A (finite-dimensional) Lie algebra is a subspace L ⊆ gln(F)
such that [X,Y ] ∈ L∀X,Y ∈ L.

Example 1.2.

1. L = gln(F), the general linear Lie algebra.

2. L = {diagonal matrices in gln(F)}, called dn(F).

3. L = {upper triangular matrices in gln(F)}, called tn(F).

4. L = {strictly upper triangular matrices in gln(F)}, called Nn(F).

In fact, any subalgebra L ⊆ gln(F) (a subspace of matrices closed under multi-
plication) is a Lie algebra. Since if X,Y ∈ L then [X,Y ] = XY − Y X ∈ L.

But there are more interesting examples.

Example 1.3. Here are the classical Lie algebras.

1. Aℓ: sln(F) = {x ∈ gln(F)|tr(x) = 0}, the special linear Lie algebra.
Note that this is not an algebra.

2. Cℓ: Suppose n = 2m is even. We define
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spn(F) = {X =

ï
M N
P −MT

ò
|M,N,P ∈ glm(F), N = NT , P = PT }

to be the symplectic Lie algebra.

1. Dℓ: Suppose n = 2m is even. We define

On(F) = {X =

ï
M N
P −MT

ò
|M,N,P ∈ glm(F), NT = −N,PT = −P}

to be the even orthogonal Lie algebra.

1. Bℓ: Suppose n = 2m+ 1 is odd. We define

On(F) = {X =

 0 A B
−AT M N
−BT P −MT

 |A,B are 1×m vectors,M,N, P ∈ glm(F), NT = −N,PT = −P}

to be the odd orthogonal Lie algebra.

It’s not entirely clear what the motivation is yet, but we will see this soon. Later
today, we will give ”basis independent” definitions.

We call [·, ·] the Lie bracket. Here are it’s properties:

1. The Lie bracket is bilinear: [a1X1+a2X2, b1Y1+b2Y2] =
∑2

i,j=1 aibj [Xi, Yj ]∀ai, bi ∈
F, Xi, Yi ∈ gln(F).

2. The Lie bracket is alternating: [X,X] = 0∀X.

3. Properties 1 and 2 imply that the bracket is skew-symmetric: [X,Y ] =
−[Y,X].

4. Let adX denote the map gln(F) → gln(F), (adX)(Y ) = [X,Y ]. Then, it
holds that ad[X,Y ] = [adX, adY ]∀X,Y .

How do we know that (4) is true? For any vector space V , let gl(V ) be the space
of linear maps V → V . For any f, g ∈ gl(V ), define [f, g] = f ◦g−g◦f = fg−gf .
Then

(ad[X,Y ])(Z) = [[X,Y ], Z]

= [XY − Y X,Z]

= XY Z − Y XZ − ZXY + ZY X

and
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[adX, adY ](Z) = adX(adY (Z))− adY (adX(Z))

= X(Y Z − ZY )− (Y Z − ZY )X − Y (XZ − ZX) + (XZ − ZX)Y

which are equal after cancellation. Thus, the two are equal as linear maps
gln(F) → gln(F). In words: ad commutes with the Lie bracket, or ad is a
homomorphism gln(F) → gl(gln(F)). But this is circular without an abstract
definition of Lie algebras (and homomorphisms), which brings us to our next
topic: defining Lie algebras abstractly.

Suppose L is an F-vector space with a map [·, ·] : L × L → L, called the Lie
bracket.

Definition 1.4. L is a Lie algebra with respect to [·, ·] if the following condi-
tions hold:

1. The bracket is bilinear.

2. The bracket is alternating

3. ad[X,Y ] = adXadY − adY adX := [adX , adY ] for all X,Y ∈ L.

Remark 1.5. 1. L may be infinite dimensional but we will rarely conside
this case, the theory is much more involved. Unless stated explicitly, all
Lie algebraw L are assumed to have dim(L) <∞.

2. Axioms 1 and 2 imply that the Lie bracket is always skew-symmetric. It
might seem more natural to replace the second xiom with skew-symmetry,
but this leads to problems when char(F) = 2.

3. Axioms 3 is called the Jacobi identity and is equivalent to

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0∀X,Y, Z ∈ L

Usually, given a vector space has only one natural Lie algebra structure and so
we reuse the symbol [·, ·] to denote the Lie bracket for any Lie algebra.

1.4 Lie Subalgebras and Morphisms

Definition 1.6. A Lie subalgebra of a Lie algebra L is a subspace K ⊆ L
with [X,Y ] ∈ K∀X,Y ∈ K a linear map ϕ : L1 → L2 between Lie algebras is a
(Lie algebra) morphism if ϕ([X,Y ]) = [ϕ(X), ϕ(Y )]∀X,Y .

Example 1.7. Let V be an F-vector space. Then gl(V ) is a Lie algebra for
the bracket [f, g] = fg − gf . The Jacobi identity says that ad : L → gl(L) is a
morphism.

Definition 1.8. A Lie algebra isomorphism if a morphism that is a bijection.
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If dim(V ) = n <∞ then choosing a basis for V defines a isomorphism gl(V )
∼→

gln(F).

Here are some more abstract examples.

Example 1.9.

1. The trace of X ∈ gl(V ) is well0defined whenever dim(V ) < ∞, indepen-
dent of the choice of basis. So we can define sl(V ) = {X ∈ gl(V )|tr(X) =
0} that is a Lie subalgebra of gl(V ) by the same argument as earlier.

2. Suppose B : V × V → V is some bilinear form. Example: if V = Fn then
every B has formula B(x, y) = xTMy for some fixed n × n matrix M .
Then the subspace

L = {X ∈ gl(V )|B(Xu, v) = −B(u,Xv)∀u, v ∈ V }

is a Lie subalgebra of gl(V ). This is because if X,Y ∈ L then B([X,Y ]u, v) =
B(XY u, v)−B(Y Xu, v) = −B(Y u,Xv)+B(Xu, Y v) = B(u, Y Xv)−B(u,XY v) =
B(u, [X,Y ]v)∀u, v ∈ V so [X,Y ] ∈ L.

Assume dim(V ) < ∞. If B is symmetric and nondegenerate then L ∼= On(F).
The explicit construction of On(F) earlier corresponds to taking B(u, v) =

uTMv for the matricesM =

ï
0 Im
Im 0

ò
if n = 2m is even andM =

1 0 0
0 0 Im
0 Im 0


if n = 2m+ 1 is odd.

If B is skew-symmetric and nondegenerate, then n = 2m has to be even and
L ∼= sln(F). The explicit construction earlier had B(u, v) = uTMv for M =ï

0 Im
−Im 0

ò
.

1. Suppose A is an F-algebra, not necessarily associative. (A is just a vector
space with a bilinear multiplication). We have seen that gl(A) is a Lie
algebra with bracket [X,Y ] = XY − Y X. Let Der(A) = { linear mapsδ :
A→ A withδ(ab) = aδ(b)+δ(a)b∀a, b}. Call elements δ ∈ Der(A) deriva-
tions. It’s easy to check that Der is a subalgebra of gl(V ).

Should also mention: If A Is an associative algebra, then A can be viewed as a
Lie algebra for the bracket [X,Y ] = XY − Y X. The fact that this satisfies the
Jacobi identity does require associativity of the algebra.

Next: a laundry list of analogies with group theory.

1.5 Lie Algebras vs. Groups

Notation: adX : Y 7→ [X,Y ] for X,Y in a Lie algebra L, Adg : h 7→ g−1hg for
g, h in a group G.
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Lie Algebras L — Groups G — — — An ideal of L, I ⊆ L, satisfies
(adX)(I) ⊆ I for all X ∈ L. — A normal subgroup of G, H ⊆ G, satisfies
(adg)(H) ⊆ H for all g ∈ G. The center of L, Z(L) = {Y ∈ L | (adX)(Y ) =
0 for all X ∈ L}. — The center ofG, Z(G) = {h ∈ G | (adg)(h) = h for all g ∈
G}. The quotient Lie algebra L/I = {X+I | X ∈ L} with bracket [X+I, Y +
I] = [X,Y ] + I for X,Y ∈ L. — The quotient group G/N = {gN | g ∈ G}
is formed with the usual set product. The derived Lie algebra [L,L] =
span({[X,Y ] | X,Y ∈ L}). — The derived subgroup [G,G] is generated by
{ghg−1h−1 | g, h ∈ G}. L is abelian if L = Z(L) or [L,L] = 0. — G is abelian
if G = Z(G) or [G,G] = {1}. L is simple if L is non-abelian and has no proper,
nonzero ideals. — G is simple if G has no proper, nontrivial normal subgroups.

Some other terminology:

• The normalizer of a Lie subalgebraK ⊆ L isNL(K) = {x ∈ L|(adX)(K) ⊆
K}. This is a Lie subalgebra, the largest one such that K ⊆ NL(K) is an
ideal.

• The centralizer of a subspaceK ⊆ L is CL(k) = {X ∈ L|(adX)(K) = 0}.
This is another Lie subalgebra.

Example 1.10. Suppose that L = sl2(F). Assume char(F) ̸= 2. A basis is

X =

ï
0 1
0 0

ò
, Y =

ï
0 0
1 0

ò
, H =

ï
1 0
0 −1

ò
. The Lie brackets are:

• [X,X] = [Y, Y ] = [H,H] = 0

• [X,Y ] = −[Y,X] = H

• [H,X] = −[X,H] = 2X

• [H,Y ] = −[Y,H] = −2Y

Note: adH : Z 7→ [H,Z] has eigenvalues −2, 0, 2 with eigenvectors Y,H,X. So
adH is diagonalizable.

The claim is that L = sl2(F) is simple when char(F) = neq2.

Suppose 0 ̸= g := aX + bY + cH for a, b, c ∈ F belongs to an ideal I ⊆ L. Then

[X, [X, g]] = [X, bH − 2cX] = −2bX ∈ I

[Y, [Y, g]] = [Y, aH − 2cY ] = −2aY ∈ I

If a ̸= 0 then Y ∈ I, but then H ∈ I, so S ∈ I = L. If b ̸= 0 then X ∈ I, then
H ∈ I, so Y ∈ I = L. If a = b = 0 then H ∈ I, so X,Y ∈ I = L. Thus, I = L.

Now, we’ll review some basic facts about quotients.

1. If ϕ : L → K is a surjective Lie algebra morphism, then the kernel is
an ideal of L and L/Ker(ϕ) ∼= K. via the map X + Ker(ϕ) 7→ ϕ(X) for
X ∈ L.
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2. If I, J ⊆ L are ideals and I ⊆ J , then J/I is an ideal of L/I and

(L/I)/(J/I)
∼=→ L/J, (X + I) + J/I 7→ X + J as Lie algebras.

3. If I, J ⊆ L are ideals then (I + J)/J ∼= I/(I ∩ J), (i+ j) + J 7→ i+ I ∩ J .

Some more terminology:

Definition 1.11. A representation of a Lie algebra L is a Lie algebra mor-
phism ϕ : L → gl(V ) for some (not necessarily finite dimensional vector space
V ).

Example 1.12. The adjoint representation ad : L → gl(V ) is a represen-
tation.

The most interesting Lie algberas arise as subalgebras of gl(V ).

Proposition 1.13. Any simple Lie algebra is isomorphic to a subalgebra of a
general linear Lie algebra.

Proof. More generally, if Z(L) := {X ∈ L|[X,Y ] = 0∀Y } then Z(L) = Ker(ad)
so L/Z(L) = L/Ker(ad) ∼= ad(L) ⊆ gl(L). Therefore L ∼= subalgebra of gl(V )
whenever Z(L) = 0. The center is an ideal so it must be zero if L is simple.

1.6 Solvable and Nilpotent Lie Algebras

Derived series of a Lie algebra L: L(0) = L,L(n+1) = [L(n), L(n)]. Recall if
I, J ⊆ L then [I, J ] is the span of {[X,Y ]|X ∈ I, Y ∈ J}.

Definition 1.14. L is solvable if L(n) = 0 for some n > 0.

Example 1.15. One can check that tn(F)(1) = Nn(F), tn(F)(k) ⊆ span(Eij |j −
i ≥ 2k−1) so tn(F)(k) = 0 if 2k−1 > n− 1 so tn(F) is solvable.

Proposition 1.16. L is a Lie algebra. If L is solvable then so are all subalgebras
and homomorphic images of L.

Proof. If K ⊆ L then K(n) ⊆ L(n) and ϕ(L)(n) = ϕ(L(n)) if ϕ is a morphism.

Proposition 1.17. If I ⊆ L is a solvable ideal and L/I is solvable then L is
solvable.

Proof. In this case L(n) ⊆ I for some n > 0 and I(m) = 0 for some m > 0 so
L(m+n) = 0.

Proposition 1.18. If I, J ⊆ L are both solvable ideals then so is I + J .
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Proof. (I + J)/J ∼= I/I ∩ J is solvable, as is J .

Corollary 1.19. Any Lie algebra L has a unique maximal solvable ideal (which
is equal to L if and only if L is solvable).

Proof. If S is a maximal solvable ideal of L and I ⊆ L is any solvalbe ideal then
S+ I is solvable and contains S, so it must be equal to S. Thus if I is maximal
then S = S + I = I.

We denote the unique maximal solvable ideal of a Lie algebra L by Rad(L), call
it the radical.

Definition 1.20. L is semisimple if Rad(L) = 0. That is, if L has no nonzero
solvable ideals.

Later we will see that semisimple ⇐⇒ ”direct sum of simple”.

Proposition 1.21. L/Rad(K) is semisimple.

Proof. Preimage of any nonzero ideal in L/Rad(K) is an ideal I ⊆ L containing
Rad(L) so is not solvable. So by propositions, I/Rad(L) is not solvable.

Proposition 1.22. Any simple L is semisimple.

Proof. If L is simmple then 0 ̸= [L,L] = L so L is not solvable, so Rad(L) is a
proper ideal so it must be zero.

Lower/descending central series: L0 = L,Ln+1 = [L,Ln].

Definition 1.23. The lower/descending central series is defined recursively as
L0 = L,Ln+1 = [L,Ln]. L is nilpotent if Ln = 0 for some n > 0.

Note that nilpotent (strictly upper triangular matrces) → solvable (upper tri-
angular matrices) but the reverse does not hold.

We can show that tn(F) has tn(F)k = Nn(F) for all k ≥ 1. So tn(F) is solvalbe
but not nilpotent. But Nn(F) is nilpotent.

Next time: a little more discussion of nilpotent Lie algebras and Engel’s theorem.
Then we will discuss the problem of classifying semisimple Lie algebras.
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1.7 Engel’s and Lie’s Theorem, Jordan Decomposition

1.8 Engel’s Theorem

Proposition 1.24. If L is nilpotent, then so are all of its subalgebras and
homomorphic images.

Proof. If K ⊆ L then Kn ⊆ Ln and if φ : L → K is a morphism then ϕ(L)n =
ϕ(Ln).

Proposition 1.25. If L/Z(L) is nilpotent then L is nilpotent.

Proof. In this case, Ln ⊆ Z(L) for some n > 0 and then Ln+1 ⊆ [L,Z(L)] = 0.

Proposition 1.26. If L is nilpotent and L ̸= 0 then Z(L) ̸= 0.

Proof. If Ln ̸= 0 and Ln+1 = 0 then 0 ̸= Ln ⊆ Z(L).

Proposition 1.27. L is nilpotent if and only if there is some n > 0 such that
adX1adX2...adXn = 0 (as a map L→ L) for all X1, X2, ..., Xn ∈ L.

Proof. Ln is spanned by elements of (adX1adX2...adXn)(Y ) = [X1, [X2, [X3, ..., [Xn, Y ]...]]]
for Xi, Y ∈ L

We say that X ∈ L is ad-nilpotent if adX is a nilpotent linear transformation
L→ L, i.e. (adX)n = 0 for some n.

Corollary 1.28. If L is nilpotent then every X ∈ L is ad-nilpotent.

Our first big theorem is Engel’s theorem, which is the converse to this corollary.

Theorem 1.29 (Engel’s Theorem). L is nilpotent if and only if every element
X ∈ L is ad-nilpotent.

In other words, L is nilpotent if and only if the image adL ⊆ gl(L) is a set of
nilpotent transformations.

Now let’s try to prove Engel’s Theorem.

Lemma 1.30. If X ∈ gl(V ) is nilpotent then ad(x) is nilpotent (as an element
of gl(gl(V ))).
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Proof. Let λX(Y ) = XY and ρX(Y ) = Y X. Then λX and ρX are commuting
nilpotent elements of gl(gl(V )). Since λXρX(Y ) = ρXλX(Y ) = XYX. If
Xn = 0 then ρnX = λnX = 0 so (adX)2n = (λX −ρX)2n =

∑
k

(
2n
k

)
λkXρ

2n−k
X = 0.

Theorem 1.31. Suppose L ⊆ gl(V ) is a Lie subalgebra and 0 ̸= dim(V ) <∞.
Assume that every X ∈ L is nilpotent (so Xn = 0 for some n > 0 depending on
X). Then, there exists 0 ̸= v ∈ V with Xv = 0 for all X ∈ L.

Proof. Any nilpotent linear transformation has zero as an eigenvector with
eigenvalue zero: take any nonzero column of Xn ̸= 0 if Xn+1 = 0. If dim(L) ≤ 1
then we can just take v ∈ V to be any 0-eigenvector of some 0 ̸= X ∈ L. Suppose
dim(L) > 1 and let K be a maximal proper Lie subalgebra. By induction (with
K and L/K replacing L and V ), there is a vector X ∈ L−K with [Y,X] ∈ K
for all Y ∈ K. This means that K ⊊ NL(K) because NL(K) ∋ X /∈ K.
Since K ⊆ L is a maximal proper subalgebra, we must have L = NL(K) so
K ⊆ L is actually an ideal. Since K is an ideal, the direct sum K ⊕ FZ is a
Lie subalgebra of L for any Z ∈ L−K. Therefore, we must have L = K ⊕ FZ
for any Z ∈ L − K and dim(L) = dim(K) + 1. By induction on dim(L), the
subspace W = v ∈ V |Y v = 0∀Y ∈ K is nonzero and we have LW ⊆ W since
if X ∈ L, Y ∈ K,w ∈ W then Y Xw = XYw − [X,Y ]w = 0. Any Z ∈ L − K
acts as a nilpotent linear map W →W so have a 0-eigenvector 0 ̸= v ∈W with
Zv = 0. This vector is then a 0-eigenvector for every element X ∈ K⊕FZ = L.

Now, we have a pretty simple of Engel’s theorem.

Proof. Assume every X ∈ L is ad-nilpotent. Then adL ⊆ gl(L) satisfies condi-
tions of the previous theorem. So exists 0 ̸= X ∈ L with (adY )(X) = [Y,X] =
0∀Y ∈ L which means that Z(L) ̸= 0. But now L/Z(L) has smaller dimension
with all elements still ad-nilpotent, so by induction L/Z(L) is nilpotent. Hence,
by the earlier lemma, L is also nilpotent.

Here are some interesting corollaries.

Corollary 1.32. If dim(V ) = n < ∞ and L ⊆ gl(V ) is nilpotent then there
exists a flag of vector spaces 0 = V0 ⊆ V1 ⊆ V2 ⊆ ... ⊆ Vn = V such that
XVi ⊆ Vi−1 for all i and all X ∈ L. Equivalently, there exists a basis of V
relative to which the matrices of all elements X ∈ L are strictly upper-triangular.

Proof. Set V1 = Fv where 0 ̸= v ∈ V has Lv = 0. Then apply induction to
image of L in gl(V/V1).
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Corollary 1.33. If L is nilpotent and K ⊆ L is a nonzero ideal then Z(L)∩K ̸=
0.

Proof. L acts on K by adjoint representation so theorem above implies that
there exists 0 ̸= X ∈ K with (adY )(X) = [Y,X] = 0∀Y ∈ L, i.e. X is an
nonzero element of Z(L) ∩K.

1.9 Semisimple Lie Algebras

From now on: F is an algebraically closed field of characteristic zero.

L is always a Lie algebra over F of finite-dimension.

Theorem 1.34. Assume L ⊆ gl(V ) is solvable, where 0 < dim(V ) <∞. Then
there exists 0 ̸= v ∈ V that is an eigenvector of every X ∈ L. That is, such that
Xv = λ(X)v∀X ∈ L for some linear map λ : X → F.

Proof. Mimic the proof of the theorem above. Here is the proof outline:

1. Find an ideal K ⊆ L with dim(L) = dim(K) + 1. As L is solvable,
[L,L] ⊊ L, so the quotient L/[L,L] is nonzero and abelian, so any subspace
of this quotient is an ideal. DefineK to be the preimage in L of any codim-
1 subspace of L/[L,L]. Then K is a solvable ideal of L with dim(L) =
dim(K) + 1.

2. By induction, V has a common eigenvector for K. Because F is alge-
braically closed, the theorem definitely holds if dim(L) ≤ 1. If we assume
dim(L) ≥ 2, then by induction, there is a linear map λ : K → F and
0 ̸= v ∈ V with Xv = λ(X)v for all X ∈ K. Define W = {w ∈ V |Xw =
λ(X)w for all X ∈ K} ≠ 0.

3. Check that L stabilizes this common K-eigenspace Fv. We need to show
L preserves W . Equivalently, we want to check that if X ∈ L, Y ∈ K,w ∈
W , then Y Xw = λ(Y )Xw. But all we know now is that Y Xw = XY w−
[X,Y ]w = λ(Y )Xw−λ([X,Y ])w, so it suffices to check that λ([X,Y ]) = 0
for all X ∈ L, Y ∈ K. Fix w ∈ W . Let n > 0 be minimal with
w,Xw,X2w, ...,Xnw linearly dependent. Define wi = Fspan{w,Xw,X2w, ...,Xi−1w}
so that w0 = 0 and dim(Wi) = min(i, n). Claim that Y Xiw ∈ λ(Y )Xiw+
Wi. This is clear if i = 0, and if i > 0, then Y Xiw = Y XXi−1w =
XYXi−1w − [X,Y ]Xi−1w ∈ λ(Y )Xix +Wi. Conclude that relative to
the basis w,Xw,X2w, ...,Xi−1w, the matrix of Y isλ(Y ) ∗

. . .

0 λ(Y )


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and thus trWn(Y ) = nλ(Y ) but also trWn([X,Y ]) = nλ([X,Y ]). Since
X and Y preserve Wn, the products XY and Y X also preserve Wn, so
trWn

([X,Y ]) = 0.

4. Show that some Z ∈ L − K has an eigenvector in Fv (noting that L =
K⊕FZ) as then we can conclude that v is an eigenvector of every X ∈ L.
Write L = K ⊕ FZ for some Z ∈ L −K. Since F is algebraically closed,
Z has an eigenvector 0 ̸= v0 ∈W . But v0 is then an eigenvector for every
X ∈ L = K ⊕ FZ.

Now we state Lie’s theorem.

Theorem 1.35 (Lie’s Theorem). Suppose L ⊆ gl(V ) is a solvable Lie algebra
where dim(V ) = n < ∞. Then there is some basis of V relative to which the
matrices of all elements of L are upper triangular.

Proof. Choose 0 ̸= v1 ∈ V with Xv1 = λ(X)v1∀X ∈ L for some linear map
λ : L → F. Set V1 = Fv1 and apply the theorem by induction to V/V1. This
gives a basis v2 + V1, v3 + V1, ..., vn + V1 for V/V1 and the desired basis is then
v1, v2, ..., vn.

Two corollaries:

Corollary 1.36. Suppose L is solvable with n = dim(L)(< ∞). There there
exists a chain of ideals

0 = L0 ⊂ L1 ⊂ L2 ⊂ ... ⊂ Ln = L

with dim(Li) = i.

Proof. Apply Lie’s theorem to Lie algebra ad(L) ⊆ gl(L) to get a basis v1, v2, ..., vn ∈
L such that (adX)vi ∈ F − span[v1, ..., vi]∀X ∈ L∀i which means that Li :=
F− span[v1, ..., vi] is an ideal.

Corollary 1.37. Suppose L is solvable. Then [L,L] is nilpotent.

Proof. Choose a basis of L such that the matrices of adX ∈ gl(L) for every
X ∈ L are upper-triangular. The matrix of ad[X,Y ] = [adX, adY ] is then
strictly upper triangular ∀X,Y ∈ L, so adZ is nilpotent for all Z ∈ [L,L].
Engel’s theorem then implies that [L,L] is nilpotent.

13



1.10 Jordan-Chevalley Decomposition

Let V be a finite-dimensional vector space. We say that X ∈ gl(V ) is semisim-
ple if X is diagonalizable (meaning V has a basis of eigenvectors for X). When
F is not algebraically closed, semieimple means that the roots of the minimal
polynomial of X are distinct.

Some quick facts that are quick to check.

Proposition 1.38. 1. If X and Y commute and are both semisimple, then
all linear combinations aX + bY (a, b ∈ F) are semisimple.

2. If X is semisimple and X preserves W ⊆ V , then X|W is semisimple.

Proposition 1.39. Consider some element X ∈ gl(V ).

1. There are unique elements Xs, Xn ∈ gl(V ) with Xs semisimple, Xn nilpo-
tent, XsXn = XnXs and Xs + Xn = X. Call the last part the Jordan-
Chevalley decomposition of X.

2. There are polynomials p(T ), q(T ) in a variable T with no constant term
(so p(T ), q(T ) ∈ TF[T ]) such that Xs = p(X) and Xn = q(X) =⇒ Xs

and Xn commute with any Y ∈ gl(V ) that has XY = Y X.

3. If A ⊆ B ⊆ V are subspaces with XB ⊆ A then XsB ⊆ A and XnB ⊆ A

We will omit the proof since it’s just standard linear algebra. The idea for the
first part is that if V = Fn and the Jordan canonical form of the matrix of X
has blocks


a 1 0 0

0 a
. . . 0

0 0
. . . 1

0 0 0 a


then the Jordan canonical forms of Xs and Xn are

a 0 0

0
. . . 0

0 0 a

 and


0 1 0 0

0 0
. . . 0

0 0 0 1
0 0 0 0


respectively.

One proposition that uses this fact is the following:

Proposition 1.40. Suppose V has a dim(V ) <∞ and X ∈ gl(V ).

1. If X is nilpotent then so is adX ∈ gl(gl(V )).
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2. If X is semisimple then so is adX.

Proof. If v1, v2, ..., vn is a basis of V consisting of eigenvectors for X, so Xvi =
aivi for some ai ∈ F, and eij is the corresponding basis of gl(V ) so that eij is
the linear map with

vk 7→
®
vi if j = k,

0 if j ̸= k.

then (adX)(eij) = (ai− aj)eij since (adX)(eij)(vk) = [X, eij ](vk) = Xeij(vk)−
eijXvk = (ai − aj)eijvk.

One more lemma to mention before we finish.

Lemma 1.41. Let X ∈ gl(V ), dim(V ) < ∞ and the Jordan decomposition of
X is X = Xs +Xn, then the Jordan decomposition of adX is

adX = adXs + adXn

Proof. [adXs, adXn] = ad[Xs, Xn] = 0 and we already saw that adXs is semisim-
ple and adXn is nilpotent.

Next time: criteria for solvability and semisimplicity.

1.11 Cartan criterion, Killing form, Semisimplicity

1.12 Cartan’s Criterion

Lemma 1.42. Let A ⊆ B be two subspaces of gl(V ), where dim(V ) < ∞.
Define

M = {X ∈ gl(V )|[X,B] ⊆ A}

and suppose X ∈M has tr(XY ) = 0∀Y ∈M . Then X is nilpotent.

Proof. Write the Jordan decomposition of X as X = Xs + Xn. Let v1, ..., vn
be a basis for V such that Xsvi = aivi for some ai ∈ F. Define E = Q-
span{a1, ..., an} ⊂ F to be a rational vector space. We want to show that Xs = 0
as then X = Xn is nilpotent. This holds if and only if a1 = a2 = ... = an =
0 ⇐⇒ E = 0. Let E∗ = {Q-linear maps E → Q}. Since dimQ(E) ≤ n ≤ ∞, it
holds that dimQ(E

∗) = dimQ(E) so it suffices to show that E∗ = 0.
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Suppose that f ∈ E∗. Let Y ∈ gl(V ) have the matrix


f(a1)

f(a2)
. . .

f(an)


in basis v1, . . . , vn for V . Then Y vi = f(ai)vi for all i. If eij ∈ gl(V ): vk 7→®
vi if j = k

0 if j ̸= k
, then (ad(Xs))eij = (ai−aj)eij and (adY )eij = (f(ai)−f(aj))eij .

Claim: We can find a polynomial r(T ) ∈ Q[T ] such that r(ai − aj) = f(ai) −
f(aj) = f(ai − aj) for all i, j. (The polynomial r(T ) passes through the points
(x, y) = (ai−aj , f(ai−aj)) for all i, j. This is clear by polynomial interpolation.)

We then have r(0) = f(0) = f(ai − ai) = 0, so r(T ) has no constant term,
r(T ) ∈ TQ[T ]. Also, we have ad(Y ) = r(ad(Xs)) since both sides give the
same result applied to each eij . Finally, by the earlier factors, ad(Xs) is the
semisimple part of adX, so ad(Xs) = p(adX) for some polynomial without a
constant term.

We assume (ad(X))(B) ⊆ A, so (ad(Y ))(B) = r(ad(Xs))(B) = r(p(adX))(B) ⊆
A. This implies that Y ∈M = {z ∈ gl(V )|[Z,B] ⊆ A}. Hence, by assumption,
tr(XY ) = 0. But tr(XY ) =

∑∞
i=1 aif(ai) ∈ E = Q-span[a1, . . . , an]. Thus,

0 = f(0) = f(tr(XY )) =
∑n

i=1 f(ai)
2, which can only hold if f = 0. Thus,

E∗ = 0.

Proposition 1.43. If X,Y, Z ∈ gl(V ), dim(V ) <∞, then

tr([X,Y ]Z) = tr(X[Y,Z])

Proof.
tr(XY Z)− tr(Y XZ) = tr(XY Z)− tr(XZY )

Proposition 1.44 (Cartan’s Criterion). Let L ⊆ gl(V ) where dim(V ) <∞. If
tr(XY ) = 0 for all X ∈ [L,L], Y ∈ L, then L is solvable.

Proof. To show that L is solvable, it is enough to check that [L,L] is nilpotent,
and for this, it suffices to check that every X ∈ [L,L] is nilpotent as an element
of gl(V ). This will imply that adX is nilpotent, so we can use Engel’s theorem.
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Let A = [L,L] ⊆ B = L and M = {X ∈ gl(V )|[X,L] ⊆ [L,L]}. Suppose
X ∈ [L,L] and note that [L,L] ⊆ M . If we can show that tr[XY ] = 0 for all
Y ∈ M , then the lemma implies that it is nilpotent. We assume tr(XY ) = 0
for all Y ∈ L. Note that Y ⊆ M . But X is a linear combination of elements
[X1, X2] for Xi ∈ L, so if Y ∈M then

tr([X1, X2]Y ) = tr(X, [X2, Y ]) = tr([X2, Y ]X1) = 0.

Corollary 1.45. If L is a Lie algebra such that tr(adXadY ) = 0 for all X ∈
[L,L], Y ∈ L, then L is solvable.

Proof. Apply Cartan’s criterion to adL ⊆ gl(L). As ad[L,L] = [adL, adL], we
find that adL is solvable. But kerad = Z(L) is solvable, so L is solvable since
L/Z(L) ∼= adL.

1.13 The Killing Form

Let L be a Lie algebra.

Definition 1.46. The bilinear form κ : L× L→ L defined by

κ(X,Y ) := tr(adXadY )

for X,Y ∈ L is called the Killing form of L.

Proposition 1.47. κ is symmetric and associative.

To compute κ(X,Y ) need to pick a basis of L and write down the matrices of
adX and adY , doesn’t matter which basis you choose.

Lemma 1.48. Let I ⊆ L be an ideal. Then the Killing form κI of I is the
restriction of the Killing form κ = κL of L. Thus κI(X,Y ) = κL(X,Y )∀X,Y ∈
I.

Proof. If ϕ : V → W ⊆ V is a linear map then trV (ϕ) = trW (ϕ|W ) because if
w1, ..., wk is a basis of W and wk+1, ..., wn extends this to a basis of V then the
matrix of ϕ is 0 for the bottom n−k rows and the k×k entries in the top left is
a matrix of ϕ|W . To prove lemma, apply this observation with V = L,W = I.

Definition 1.49. The radical of any symmetric billinear form κ : L× L→ L
is
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S = {X ∈ L|κ(X,Y ) = 0∀Y ∈ L} = {Y ∈ L|κ(X,Y ) = 0∀X ∈ L}

which is ⊃ Z(L) since adX = 0∀X ∈ Z(L).

Definition 1.50. The form κ is non-degenerate if S = 0. This happens iff

1. κ(X, ·) : L→ L is zero map if and only if X = 0, or

2. The n×n matrix [κ(Xi, Xj)]1≤i,j≤n is invertible for same/any basis x1x2...xn ∈
L.

Example 1.51. Suppose L = sl2(F). Then

adE =

0 −2 0
0 0 1
0 0 0

 , adH =

2 0 0
0 0 0
0 0 −2

 , adE =

 0 0 0
−1 0 0
0 2 0


so we have [κ(xi, xj)]1≤i,j≤3 =

0 0 4
0 8 0
4 0 0

 where x1 = E, x2 = H,x3 = F ,

which is invertible assuming char(F) ̸= 2.

Theorem 1.52. L is semisimple if and only if the killing form κ is nondegen-
erate.

Thus, to check if L is semisimple, just need to pick a basis x1, ..., xn for L and
check if the matrix [κ(xi, xj)]1≤i,j≤n nas nonzero determinant.

Proof. Here is the proof that RadL = 0 if and only if radical S of κ is zero. The
radical S of Killing form is an ideal of L. In fact, adLS is a solvable ideal of
adL by Cartan’s criterion:

tr(adXadY ) = κ(X,Y ) = 0∀X ∈ S ⊃ [S, S],∀Y ∈ L ⊃ S

The center Z(S) is abelian, hence solvable. As adLS ∼= S/Z(S) we conclude
that S is solvable. Thus if radL = 0 then S = 0 as S ⊂ RadL.

Suppose conversely that S = 0. Want now to show that S = 0 implies that
RadL = 0. It suffices to check that I ⊂ L is any abelian ideal then I ⊂ S.
This is because if I a nonzero solvable ideal, then I(n) is abelian for n such that
I(n) ̸= 0 = I(n+1) (so if there are no nonzero abelian ideals, there are also no
nonzero solvable ideals). Assume I Is an abelian ideal. If X ∈ I, Y ∈ L then
adXadY is a map L → L → I so (adXadY )2 is a map L → [I, I] = 0. Thus
adXadY is nilpotent so it must have zero trace, meaning that κ(X,Y ) = 0 =⇒
I abelian ⊂ S.
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1.14 Simple and Semisimple Ideals

A Lie algebra L is a direct sum of ideals I1, ..., In if L = I1 ⊕ ... ⊕ In. This
would mean that each X ∈ L has a unique expression as x = x1 + ...+ xn with
xj ∈ Ij . Uniqueness here implies that Ij ∩ Ik = 0∀j ̸= k. Since each Ij is an
ideal, we must also have [Ij , Ik] = 0∀j ̸= k.

Theorem 1.53. Suppose L is a semisimple Lie algebra. There there exists
ideals L1, ..., Ln ⊆ L such that

1. Each Li is simple.

2. L = L1 ⊕ ...⊕ Ln.

3. Any simple ideal of L is equal to some Li.

4. The Killing form of Li is just the restriction of the Killing form of L.

Proof. Let I be any ideal of L and define I⊥ = {x ∈ L|κ(X,Y ) = 0∀Y ∈ I}.

First claim is to show is that I⊥ is an ideal and L = I ⊕ I⊥.

1. To see that I⊥ is an ideal, let X ∈ L, Y ∈ I⊥, Z ∈ I. Then κ([X,Y ], Z) =
−κ([Y,X], Z) = −κ(Y, [X,Z]) = 0. So we conclude that [X,Y ] ∈ I⊥.

2. Because L is semisimple, its center Z(L) is zero, so ad is injective. Cartan’s
criterion applied to I∩I⊥ ∼= adI∩I⊥ ⊆ gl(L) implies that I∩I⊥ is solvable:
∀X ∈ [I∩I⊥, I∩I⊥],∀Y ∈ I∩Iperp, we have tr(adXadY ) = κ(X,Y ) = 0.
Thus I ∩ I⊥ = 0 as RadL = 0, and L = I ⊕ I⊥.

So our claims both hold. Now proceed by induction on dimL. If L has no
nonzero proper ideals then L is simple. Otherwise we can find a minimal proper
nonzero ideal L1 ⊂ L. Any ideal of L1 is an ideal of L = L1⊕L⊥

1 so L1 must be
simple itself. Likewise, L⊥

1 must be asemisimple since any of its solvable ideals
are solvable ideals of L. Thus by induction we can write L⊥

1 = L2 ⊕ ...⊕Ln for
simple ideals Li and then L = L1 ⊕ ... ⊕ Ln. This proves parts 1 and 2, 4 is
already known by the lemma.

We still have to prove that if I is any simple ideal of L then I = Li for some
i ∈ {1, 2, ..., n}. To prove this, we observe that [I, L] = span([X,Y ]|X ∈ I, Y ∈
L) is also an ideal of L since if X ∈ L, Y ∈ I, Z ∈ L then

[X, [Y, Z]] = adX[Y, Z] = [[X,Y ], [X,Z]] ∈ [I, L]

If [I, L] = 0 then I ⊆ Z(L) = 0. As I ̸= 0 is simple, we must have I = [I, L].
But [I, L] =

⊕
j [I, Lj ] = I means that [I, Lj ] must be zero for all but one j and

I = Lj .
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Our original definition of semisimple was the property of having no nonzero
sovlable ideals. Now we have a more intuitive characterization.

Corollary 1.54. L is semisimple if and only if L is a direct sum of simple Lie
algebras.

Proof. Only if direction: Previous theorem.

If direction: If L = L1 ⊕ ...⊕ Ln with Li simple then the radical of the Killing
form κ of L is

⊕n
i=1 Rad(κ|Li×Li

) since L⊥
i =

⊕
j ̸=i Lj . But each simple Li is

semisimple so Rad(κ|Li×Ki
) = 0.

Corollary 1.55. If L is semisimple then L = [L,L] and all ideals and homo-
morphic images of L are also semisimple.

Proof. If L =
⊕

i Li, each Li simple, then [Li, Li] = Li∀i and [Li, Lj ] = 0∀i ̸= j
so [L,L] =

⊕
i,j [Li, Lj ] =

⊕
i Li = L. If I ⊆ L is an ideal then I is semisimple

as any of its solvable ideals are also ideals of L. Final claim about homomorphic
images is left as an exercise.

1.15 Modules, Casimir Element, Weyl’s Theorem, and
Abstract Jordan Decomposition

1.16 Goals

1. Basic concepts in the representation theory of Lie algebras

2. Discuss Casimir element as a tool for proving Weyl’s theorem: finite di-
mensional representations of a semisimple L are ”completely reducible”

3. Some consequences for Jordan decomposition

1.17 Representation Theory

Terminology: Throughout, L is a semisimple Lie algebra.

Definition 1.56. An L-representation is a Lie algebra morphism ϕ : L →
gl(V ) for some vector space V .

Definition 1.57. An L-module is a vector space V with a bilinear operation
L×V → L such that (X, v) 7→ X ·v with [X,Y ]·v = X ·(Y ·v)−y ·(X ·v)∀X,Y ∈
L, v ∈ V .

L-representations and L-modules are ”equivalent” notions, just different syntax.
Equivalently in this sense:
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Proposition 1.58. If ϕ : L→ gl(V ) is an L-rep then V is an L-module for the
action X · v := ϕ(x)(v) for X ∈ L, v ∈ V .

Proof. The action is bilinear and we have

X · (Y · v)− Y · (X · v) = ϕ(X)(ϕ(Y )(v))− ϕ(Y )(ϕ(X)(v))

= (ϕ(X)ϕ(Y )− ϕ(Y )ϕ(X))(v) = [ϕ(X), ϕ(Y )](v) = ϕ([X,Y ])(v) = [X,Y ] · v

∀X,Y ∈ L, v ∈ V .

Proposition 1.59. If v is an L-module then the map ϕ : L→ gl(V ) is defined
by ϕ(x) : v 7→ X · v for v ∈ V is an L-rep.

Proof. Similar straightforward algebra.

Suppose V is an L-module.

Definition 1.60. A submodule of V is a subspace U ⊆ V such that X · u ∈
U∀X ∈ L,∀u ∈ U .

Definition 1.61. A morphism of two L-modules V and W is a linear map
f : V →W such that

f(X · v) = X · f(v)∀v ∈ V,X ∈ L.

Definition 1.62. The kernel of a morphism f : V → W is the submodule
Ker(f) := {v ∈ V |f(v) = 0}.

Definition 1.63. If an L-module morphism f : V → W is a bijection then f
is a isomorphism.

Definition 1.64. An L-module V is irreducible if its only submodules are 0
and V ̸= 0 (meaning V has exactly two submodules).

Zero modules are not considered irreducible because we want a unique direct
sum decomposition into irreducible submodules.

Definition 1.65. V is completely reducible if there are irreducible submod-
ules Vi ⊆ V such that V =

⊕
i Vi.

Here ⊕ refers to the obvious notion of direct sum for L-modules.

The fundamental result (stale without proof) is Schur’s lemma.
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Lemma 1.66 (Schur’s Lemma). Suppose ϕ : L→ gl(V ) is an irreducible L-repn
(meaning that the associated L-module structure on V is irreducible). Then the
only linear maps f : V → V with f ◦ ϕ(X) = ϕ(X) ◦ f for all X ∈ L are the
scalar maps fc : V → V , v 7→ cv for fixed c ∈ F.

Remark 1.67. We require F to be algebraically closed with characteristic zero.

Now let’s talk about the dual/contragradient of an L-module. Suppose V is an
L-module. Define V ∗ = {linear maps V → F}.

Proposition 1.68. V ∗ is an L-module for the action

X · f = {the linear map V → F sending v 7→ f(X · v)}

for f ∈ V ∗.

Proof. For X,Y ∈ L, f ∈ V ∗, v ∈ V , we have

([X,Y ] · f)(v) = −f([X,Y ] · v)
= −f(X · Y · v − Y ·X · v)
= −f(X · Y · v) + f(Y ·X · v)
= (X · f)(Y · v)− (Y · f)(X · v)
= −(Y ·X · f)(v) + (X · Y · f)(v)
= (X · Y · f − Y ·X · f)(v)

Now, let’s talk about tensor products of L-modules. Suppose V and W are
L-modules, say with bases [vi]i∈I and [wj ]j∈J .

Definition 1.69. The tensor product V ⊗W is the vector space spanned by
all tensors v ⊗ w (v ∈ V,w ∈ W ), where (v + v′) ⊗ w = v ⊗ w + v′ ⊗ w and
v ⊗ (w + w′) = v ⊗ w + v ⊗ w′ and (av) ⊗ w = v ⊗ (aw) for a ∈ F, v, v′ ∈ V ,
w,w′ ∈W , with basis {vi ⊗ wj}(i,j)∈I×J .

Proposition 1.70. V ⊗W is an L-module for the action

X · (v ⊗ w) = (X · v)⊗ w + v ⊗ (X · w)

for X ∈ L, v ∈ V , w ∈W .

Proof.

[X,Y ] · (v ⊗ w) = ([X,Y ] · v)⊗ w + v ⊗ ([X,Y ] · w)
= X · (Y · v)⊗ w − Y · (X · v)⊗ w + v ⊗X · (Y · w)− v ⊗ Y · (X · w)
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But we also have

X ·Y ·(v⊗w)−Y ·(X ·(v⊗w)) = X ·(Y v⊗w+v⊗Y w)−Y ·(Xv⊗w+v⊗Xw)

which are equal on the right-hand side, and after some cancellation, this is the
same as above.

Proposition 1.71. The linear map V ∗⊗V → gl(V ), f⊗w 7→ {the linear map V →
V sending v → f(v)w}, is an isomorphism of vector spaces if dim(V ) < ∞.
The L-module structure on gl(V ) making this map a module isomorphism is
X · f = {the linear map V → V sending v → X · f(v)− f(X · v)}.

1.18 Casimir Element

Definition 1.72. An L-rep ϕ : L → gl(V ) is faithful if Ker(ϕ) = 0, meaning
ϕ is injective.

Assume ϕ : L → gl(V ) is a faithful L-rep. Define β : L × L → F, (X,Y ) 7→
β(X,Y ) := trV (ϕ(X)ϕ(Y )). This bilinear form is symmetric and associative.
The Killing form of L is β for ϕ = ad : L→ gl(L).

Definition 1.73. The radical of β is the ideal S = {X ∈ L|β(X,Y ) = 0∀Y ∈
L}.

In fact, S is a solvable ideal of L, since S ∼= ϕ(S) (by faithfulness of ϕ) and
Cartan’s criterion for ϕ(S) (tr(XY ) = 0∀X ∈ ϕ([S, S]∀Y ∈ ϕ(S))).

We are assuming that L is semisimple, so we can conclude that

Proposition 1.74. The form

β(X,Y ) = tr(ϕ(X)ϕ(Y ))

is nondegenerate (ie. S = 0)

Conversely, assume β : L×L→ F is any symmetric, associative, nondegenerate
billinear form. Choose a basis X1, ..., Xn for L and define Y1, ..., Yn to the
(unique) dual basis with

β(Xi, Yj) =

®
1 if i = j

0 if i ̸= j

Fix Z ∈ L and define aij , bij ∈ F such that [Z,Xi] =
∑

j aijXj and [Z, Yi] =∑
j bijYj .

23



Lemma 1.75.
aik = −bki∀i, k

Proof.

aik =
∑
j

β(Xj , Xk)aij

= β([Z,Xi], Yk)

= β(Xi,−[Z, Yk])

=
∑
j

β(Xi, Yj)bkj

= −bki

Suppose ϕ : L → gl(V ) is an L-rep. Define cϕ(β) := ϕ(Xi)ϕ(Yi) ∈ gl(V ) where
ϕ(Xi), ϕ(Yi) are dual bases defined with respect to β. This definition looks like
it depends on the choice of these bases, but this is in fact not true.

Proposition 1.76. Then [ϕ(Z), cϕ(β)] = 0∀Z ∈ L. So (multiplication by)
cϕ(β) is a linear map V → V that commutes with the action of L via ϕ.

Proof.

[ϕ(Z), cϕ(β)] =
∑
i

[ϕ(Z), ϕ(Xi)]ϕ(Yi)+Ziϕ(Xi)[ϕ(Z), ϕ(Yi)] =
∑
i,j

(aij+bij)ϕ(Xi)ϕ(Yj) = 0

Definition 1.77. When ϕ : L → gl(V ) is a faithful L-rep we define the
Casimir element to be cϕ = cϕ(β) ∈ gl(V ) for the form β(X,Y ) = tr(ϕ(X)ϕ(Y )).

This makes sense because we already checked that this form is nondegenerate
and associative.

Two key facts:

Proposition 1.78.
tr(cϕ) = dim(L)

Proof.

tr(cϕ) =
∑
i

tr(ϕ(Xi)ϕ(Yi)) = Ziβ(Xi, Yi) dim(L)

Proposition 1.79. If ϕ is irreducible then cϕ = dim(L)
dim(V ) ∈ F ∈ gl(V )
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Proof. If ϕ is irreducible then Schur’s lemma implies that cϕ is a scalar since
[ϕ(X), cϕ] = 0∀x ∈ L.

Example 1.80. Let L = sl2 with basis X =

ï
0 1
0 0

ò
, H =

ï
1 0
0 −1

ò
, Y =ï

0 0
1 0

ò
. Suppose V = F2 and ϕ : L → gl(V ) is the identity map. The basis

dual to X,H, Y in trace form is Y, 12H,X (β(A,B) = tr(AB) since ϕ = id), so

XY + 1
2H

2 + Y X =

ï
3
2 0
0 3

2

ò
Definition 1.81. When L is semisimple but ϕ : L → gl(V ) is not faithful, we
define cϕ ∈ gl(V ) to be the Casimir element of the faithful rep ϕ : L/Ker(ϕ) →
gl(V ).

Lemma 1.82. Let ϕ : L→ gl(V ) be an L-rep with L semisimple. Then ϕ(L) ⊆
sl(V ) ⊆ gl(V ). Thus if dim(V ) = 1, then ϕ(L) = 0 as sl(V ) = 0.

Proof. We have L = [L,L] by semisimplicity so

ϕ(L) = ϕ([L,L]) = [ϕ(L), ϕ(L)] ⊆ [gl(V ), gl(V )] = sl(V ).

Now, we can finally state Weyl’s theorem.

1.19 Weyl’s Theorem

Theorem 1.83. Suppose ϕ : L→ gl(V ) is an L-rep. As usual, we assume L is
semisimple and dim(V ) < ∞. Then ϕ is completely reducible, meaning that
there are irreducible L-submodules V1, V2, ..., Vn ⊆ V such that

V = V1 ⊕ V2 ⊕ ...⊕ Vn.

1.20 Proof of Weyl’s Theorem

By replacing L to L/Ker(ϕ), we may assume that ϕ is faithful. Suppose W ⊆ V
is a proper L-submodule. By induction on dimension, we just need to show that
there is a complementary L-submodule U with V = W ⊕ U . (We can find a
subspace such that direct sum holds as vector spaces, but the hard part is to
find a submodule.)

Three steps for the proof.
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Part 1. Assume W is irreducible and dim(V ) = dim(W ) + 1 so V = W ⊕ F
as vector spaces. Let c = cϕ be the Casimir element. Then v 7→ cv is an
L-module endomorphism as c commuts with ϕ(L). Thus cW ⊆ W (because
W is a submodule and c ∈ ϕ(L)) and Ker(c) := {v ∈ V |cv = 0} is an L-
submodule (because c commutes with ϕ(L)). L acts trivially on V/W = F
because all 1-dim representations of semisimple Lie algebras are trivial. This
means c(V/W ) = 0 =⇒ cV ⊆ W . Therefore dim(Ker(c)) ≥ 1, since otherwise
cV = V . But c acts on W as a scalar by Schur’s lemma, and this scalar cannot
be zero since trW (c) = trV (c) = dim(L) ̸= 0. Therefore Ker(c) ∩W = 0 since c
acts as a nonzero scalar onW . As dim(Ker(c))+dim(W ) ≥ dim(V ) we conclude
that V =W ⊕Ker(c).

Part 2. Suppose V =W ⊕F as vector spaces (so dim(V ) = dim(W +1)) butW
is not irreducible as an L-module. Then there is a nonzero submodule W ′ ⊂W
and by induction V/W ′ =W/W ′⊕‹U for some L-submodule ‹U ⊂ V/W ′. Define

U to be the preimage of ‹U under the quotient map V → V/W ′. Then U is

an L-submodule containing W ′ (so ‹U = U/W ′). By induction, U = W ′ ⊕W ′′

for some L-module W ′′ (as L-modules) and then V =W ⊕W ′′ (as L-modules)
since dim(W ) + dim(W ′′) = dim(V ) and W ∩W ′′ = 0 (as W ∩W ′′ ⊆ W ′ but
W ′ ∩W ′′ = 0).

Part 3. Finally, suppose W is arbitrary and dim(V/W ) ≥ 1. Let Hom(V,W )
be the L-module of linear maps f : V → W with L acting as X · f : v 7→
X · f(v) − f(X · v). Let A = {f ∈ Hom(V,W )|f |w is a scalar map} and B =
{f ∈ Hom(V,W )|f |w = 0}. Then A and B are L-submodules with L · A ⊆ B
since if f(w) = aW∀w ∈W where a ∈ F then

(X · f)(w) = X · f(w)− f(X · w) = aX · a− aX · w = 0.

But dim(A) = dim(B) + 1 since if f, g ∈ A then af + bg ∈ B for some a, b ∈ F.
Therefore A = B ⊕ C for some L-submodule C with dim(C) = 1. Suppose
C = F-span{h} for some h : V → W . We may assume h|W = id (after
rescaling). The main claim is as follows:

Lemma 1.84. Ker(h) = {v ∈ V |h(v) = 0} is an L-submodule and V = W ⊕
Ker(h) as L-modules.

Proof. If h(v) = 0 and X ∈ L then h(X · v) = −(X · h)(v) +X · h(v) = 0. Now
observe V = Im (h)⊕Ker(h) =W ⊕Ker(h).

This finishes the proof.
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1.21 Abstract Jordan Decomposition

Assume L is semisimple. Then Z(L) = 0 so the adjoint rep ad : L → gl(L) is
faithful.

Definition 1.85. The abstract Jordan decomposition of X ∈ L to be X =
Xs + Xn where Xs, Xn ∈ L are the unique elements with ad(Xs) = (ad(X))s
and ad(Xn) = (ad(X))n.

This definition is ambiguous if it already holds L ⊆ gl(V ) for some V .

Theorem 1.86. If L ⊆ gl(V ) then the components Xs and Xn of the usual
Jordan decomposition of X ∈ L are both contained in L, and they coincide with
the components of the abstract Jordan decomposition of X.

Remark 1.87. The second claim is a consequence of the first, via the properties
defining both decompositions. The first claim is nontrivial because although we
know Xs and Xn are polynomials in X, L is not a subalgebra of gl(V ).

Proof. V is an L-submodule since L ⊆ gl(V ). For each L-submodule W ⊆ V
define LW = {Y ∈ gl(V )|YW ⊆ W and trW (Y ) = 0}. Since L = [L,L] we
have L ⊆ LW . Define L′ :=

⋂
W submodule V LW ∩Ngl(V )(L) where Ngl(V )(L) :=

{Y ∈ gl(V )|[Y,L] ⊆ L}.

Fix X ∈ L, and let Xs, Xn be the Jordan decomposition of X which are in
gl(V ). Since Xs and Xn are polynomials in L, and as (ad(X))(L) ⊆ L, we
have Xs, Xn ∈ Ngl(V )(L). Also Xs, Xn ∈ LW for all W . So it suffices to show
L = L′, which is a consequence of Weyl’s theorem.

Corollary 1.88. If L is semisimple and ϕ : L → gl(V ) is an L-rep with
dim(V ) < ∞, then for any X ∈ L with abstract Jordan decomposition X =
Xs + Xn the usual Jordan decomposition of ϕ(X) is ϕ(X) = ϕ(Xs) + ϕ(Xn).
We say this earlier for ϕ = ad.

We’ll continue looking at this next class.

2 Root Spaces

2.1 Special Linear Representations and Root Space De-
compositions

2.2 Special Linear Representations

Today we’ll look at the representations of sl2(F).

Consider an arbitrary sl2(F)-module of finite dimension. Since H is semisimple
= (diagonalizable in adjoint rep), the theorem just proved says that V must
have a basis of eigenvectors for H.
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This property relies on F being algebraically closed, so that all eigenvalues for
H are present.

Key takeaway: we may decompose

V =
⊕

eigenvalues λ for H

Vλ

where Vλ = {v ∈ V |Hv = λv}.

Note that our definition of Vλ makes sense even when λ is not an eigenvalue for
H, but in that case Vλ = 0.

Definition 2.1. We refer to the eigenvalues of H as weights and the nonzero
subspaces Vλ as weight spaces.

Lemma 2.2. If v ∈ Vλ and Xv ∈ Vλ+2 and Y v = Vλ−2.

Proof. HXv = [H,x]v + XHv = 2Xv + Xλv = (λ + 2)Xv. Argument show
HY x = (λ− 2)YV is similar.

Assume our sl2(F)-module V has 0 < dim(V ) < ∞. There must exist at least
one λ ∈ F with Vλ ̸= 0 = Vλ+2. For this λ, we have Xv = 0∀v ∈ Vλ.

Definition 2.3. We call the nonzero elements of this Vλ maximal weight
vectors of V with weight λ.

Lemma 2.4. Assume V is irreducible sl2(F)-module. Choose a maximal weight
vector v0 ∈ Vλ. Define v−1 = 0 and vk = 1

k!Y
kv0. Then:

1. Hvi = (λ− 2i)vi.

2. Y vi = (i+ 1)vi+1.

3. Xv = (λ− i+ 1)vi−1.

Proof.

1. Apply previous lemma since vi ∈ Vλ−2i.

2. By definition.

3. By induction using formulas for Lie brackets and parts a and b.

Continue to assume V is irreducible dim(V ) < ∞. Since the nonzero vk’s are
H-eigenvectors with distinct eigenvalues, they are linearly independent.
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There exists a smallest m with vm ̸= 0 = vm+1 = vm+2 = .... Then umst have
V = F − span{v0, v1, ..., vm}. In the basis v0, v1, ..., vm for V the matrices of
H,X, Y are diagonal, strictly upper triangular and strictly lower triangular.

Moreover: 0 = Xvm+1 = (λ−m)vm.

Corollary 2.5. Thus λ = m ∈ Z≥0 and the weight of any highest weight vector
in an irreducible finite dimension sl2(F)-module is a nonnegative integers, called
the highest weight.

Theorem 2.6. Let V be an irreducible sl2(F)-rep with dim(V ) = m+ 1 <∞.

1. Then V = V−m⊕V−m+2⊕V−m+4⊕ ...⊕Vm−2⊕Vm where each Vi = {v ∈
V |Hv = iv} ≠ 0.

2. V has a unique highest weight space of weight m.

3. For each m ≥ 0, there exists exactly one irreducible sl2(F)-module of di-
mension m+ 1 up to isomorphism.

Proof. Check that the formulas for the action of X,Y,H in the previous lemma
define an sl2(F)-module.

Note that if m = dim(V )− 1 is odd then V looks like

V−m → V−m+2 → ...→ V−2 → V0 → V2 → ...→ Vm−2 → Vm

while if m is even, V looks like

V−m → V−m+2 → ...→ V−3 → V−1 → V1 → V3 → ...→ Vm−2 → Vm

so exactly one of V0 or V1 is nonzero when V is irreducible.

Corollary 2.7. If V is any finite dimensional sl2(F)-module then the eigenval-
ues for H ∈ sl2(F) acting on V are integers and if λ is one of these eigenvalues
then so is −λ. Also, if Vi = {v ∈ V |Hv = iv} then the number of summands is
any irreducible of V is dim(V0) + dim(V1).

Proof. sl2(F) is semisimple so just apply Weyl’s theorem.
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2.3 Root Space Decomposition

This will generalize the weight space decomposition we just saw for sl2-modules.

Suppose L is any finite-dimensional nonzero semisimple Lie algebra.

Definition 2.8. A subalgebra of L is toral if all of its elements are semisimple
(that is, if X ∈ T has abstract Jordan decomposition X = Xs +Xn then X =
Xs, Xn = 0).

Equivalently: X ∈ T if and only if L has a basis consisting of eigenvectors for
adX.

Lemma 2.9. Any total subalgebra T ⊆ L is abelian: [X,Y ] = 0∀X,Y ∈ T .

Proof. Assume T ⊆ L is toral. Suffices to show adT (X) := (adX)|T is zero
∀X ∈ T . Since ad(X) is diagonalizable, preserves T , and F is algebraically
closed, we can prove that adT (X) has no nonzero eigenvalues (it is an easy
exercise to show that T is spanned by eigenvectors for adT (X)).

Argue by contradiction. Assyme [X,Y ] = aY for some Y ∈ T, 0 ̸= a ∈ F.
Then (adTY )(X) = [Y,X] = −[X,Y ] = −aY ̸= 0 is an eigenvector for adT (Y )
with eigenvalue zero (since adT (Y )(−aY ) = −a[Y, Y ] = 0). But X is a linear
combination of eigenvectors for ad(Y ) (since Y ∈ T ) and also for adT (Y ) (since
X,Y ∈ T ). If we write X =

∑
λ∈F cλXλ where [Y,Xλ] = λXλ then [Y,X] =∑

λ ̸=0 cλλXλ and [Y, [Y,X]] =
∑

λ̸=0 cλλ
2Xλ ̸= 0 contradicting [Y, [Y,X]] =

−a[Y, Y ] = 0. Thus [X,Y ] = 0∀X,Y ∈ T .

Choose a maximal toral subalgebra H ⊆ L.

Example 2.10. If L = sln(F) then one choice for H is the subalgebra of (trace-
less) diagonal matrices.

L is never abelian (since L is semisimple, Z(L) = 0) so any toral subalgebra
T ⊆ L has T ̸= L and is never an ideal.

H is abelian so adL(H) is a family of commuting diagonalizable/semisimple lin-
ear maps L → L. Therefore adL(H) is simultaneously diagonalizable, meaning
there is a decomposition

L =
⊕
α∈H∗

Lα

where H∗ = linear maps H → F and

Lα = {X ∈ L|[h, x] = α(h)X∀h ∈ H}.
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1. If Lα ̸= 0 and 0 ̸= α ∈ H∗ then α is called a root. Let Φ be the set of all
roots: this is a finite subset of H∗\0.

2. We call L = CL(H)⊕
⊕

α∈Φ Lα a Cartan/root space decomposition of L.

We have L = CL(H)⊕
⊕

α∈Φ Lα, Lα = {X ∈ L|[h,X] = α(h)X∀h ∈ H}.

Proposition 2.11. For all α, β ∈ H∗, [Lα, Lβ ] ⊆ Lα+β.

Proof. Jacobi identity for h ∈ H,X ∈ Lα, Y ∈ Lβ =⇒

[h, [X,Y ]] = −[X, [Y, h]]− [Y, [h,X]]

= [X, [h, Y ]] + [[h,X], Y ]

= (α(h) + β(h))[X,Y ]

Proposition 2.12. If X ∈ Lα and 0 ̸= α ∈ H∗ then ad(X) is nilpotent.

Proof. (ad(X))n(Y ) ∈ Lnα+β for any Y ∈ Lβ , and if n >> 0 then Lnα+β = 0
since dim(L) < ∞. Since L =

⊕
β∈H∗ Lβ it follows that (ad(X))n = 0 for

n >> 0.

Proposition 2.13. If α, β ∈ H∗ with α+β ̸= 0 and κ(X,Y ) = 0∀X ∈ Lα, Y ∈
Lβ. Thus Lα and Lβ are orthogonal with respect to κ if α+ β ̸= 0.

Proof. Since α+β ̸= 0, there is h ∈ H with (α+β)(h) ̸= 0. LetX ∈ Lα, Y ∈ Lβ .
Then

κ([h,X], Y ) = −κ([X,h], Y ) = −κ(X, [h, Y ])

which implies (α+ β)(h)κ(X,Y ) = 0∀κ(X,Y ) = 0.

Corollary 2.14. Killing form κ of L restricts to a nondegenerate form on
L0 = CL(H) = {x ∈ L|[X,h] = 0∀h ∈ H}.

Proof. Let 0 ̸= X ∈ L0. Since κ(X,Y ) = 0 for all Y ∈
⊕

α∈Φ Lα by previous
property, we must have κ(X,Y ) ̸= 0 for some Y ∈ L0 since otherwise κ : L×L→
F would be degenerate with κ(X, ·) = 0 ∈ L∗.
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Easy fact from linear algebra: IfX,Y ∈ gl(V ) with dim(V ) <∞ andXY = Y X
and Y is nilpotent, then XY is also nilpotent and tr(XY ) = tr(Y ) = 0.

Theorem 2.15. Suppose H is a maximal toral subalgebra of a semisimple Lie
algebra L with dim(L) <∞. Then

H = CL(H) = {x ∈ L|[X,h] = 0∀h ∈ H}.

So the Cartan decomposition of L with respect to H is just

L = H ⊕
⊕
α∈Φ

Lα.

Proof. Let C = CL(H). We proceed with a series of claims.

Claim 1: If X ∈ C then Xs ∈ C and Xn ∈ C.

If X ∈ C then ad(X) maps H → 0. Since (adX)s and (adX)n are polynomials
in adX with zero constant term, they also map H → 0. But ad(Xs) and
(adX)n = ad(Xn) so this means that Xs, Xn ∈ C.

Claim 2: If X = Xs ∈ C then X ∈ H.

Suppose X = Xs ∈ C. Then H + Fx is a toral subalgebra so must be equal to
H, so X ∈ H.

Claim 3: κ|H×H is nondegenerate.

Suppose κ(h,H) = 0 for some h ∈ H. Want to show that h = 0. Consider
some X ∈ C. By claims 1 and 2, we have Xn ∈ C and Xs ∈ H ⊆ C. So
κ(h,X) = κ(h,Xn) = tr(adh adXn) = 0 therefore κ(h,C) = 0. But this
contradicts since we already shown that κ|C×C is nondegenerate, as H ⊆ C
unless h = 0 as desired.

Claim 4: C is nilpotent, ie. adC(X) is nilpotent ∀X ∈ C.

If X = Xs ∈ C then X ∈ H so adC(X) = 0 (which is clearly nilpotent).
If X = Xn ∈ C then adCXn is nilpotent by definition. For general, X =
XS + Xn ∈ C, we have Xn, Xs ∈ C and adCXs commutes with adCXn, so
ad(X) = ad(Xs) + ad(Xn) is nilpotent.

Claim 5: H ∩ [C,C] = 0.

κ(H, [C,C]) = κ([H,C], C) = κ(0, C) = 0.

Since κ|H×H is nondegenerate, this means no nonzero X ∈ H is in [C,C].

Claim 6: C is abelian, meaniing [C,C] = 0.
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Suppose [C,C] ̸= 0. This is a nonzero ideal of C, which is nilpotent by claim 4.
So, by theorem proved to show Engel’s theorem, ad(C) acts on [C,C] as nilpo-
tent linear transforms, which in the same basis are all strictly upper-triangular
matrices. In other words, there is some 0 ̸= Z ∈ [C,C] with [X,Z] = 0 for all
X ∈ C. This element is evidently in [C,C] ∩ Z(C). It cannot be semisimple
as then we would have 0 ̸= Z = Zs ∈ H ∩ [C,C] = 0. Thus we must have
0 ̸= Zn ∈ C. But ad(Zn) is polynomial in ad(Z) without constant term, so
Zn ∈ Z(C). But then κ(Zn, C) = 0 contradicting that κ|C×C is nondegenerate.

Claim 7: C = H.

If C ̸= H then there exists a nilpotent nonzero element 0 ̸= X = Xn ∈ C. But
at Z(C) = C by claim 6, the argument just given implies that κ(X,C) = 0
contradicting κ|C×C is nondegenerate.

2.4 Properties of Root Spaces, Abstract Root Systems

2.5 Root Space Decomposition (Continued)

Example 2.16 (sl3(F)). Take H to be the maximal toral subalgebra. Let
ϵi : H → F by ϵi(M) = Mii. Each ϵi ∈ H∗, but ϵ1, ϵ2, ϵ3 are not a basis as
dim(H∗) = 2. Then we have

L = H⊕F

0 1 0
0 0 0
0 0 0

⊕F

0 0 0
1 0 0
0 0 0

⊕F

0 0 1
0 0 0
0 0 0

⊕F

0 0 0
0 0 0
1 0 0

⊕F

0 0 0
0 0 1
0 0 0

⊕F

0 0 0
0 0 0
0 1 0

 .
We have Φ = {ϵi − ϵj |1 ≤ i, j ≤ 3, i ̸= j}. Recall we have a root space decompo-
sition

L = H ⊕
⊕
α∈Φ

Lα.

Because κ|H×H is nondegenerate, for each α ∈ H∗, there is a unique element
ta ∈ H such that α(h) = κ(tα, h)∀h ∈ H.

Theorem 2.17 (Orthogonality properties). 1. H∗ = F-span {α ∈ Φ} =
FΦ.

2. If α ∈ Φ then −α ∈ Φ.

3. If α ∈ Φ, x ∈ Lα, Y ∈ L−α then [X,Y ] = κ(X,Y )tα.

Proof.
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1. Otherwise there is some 0 ̸= h ∈ H with α(h) = 0∀a ∈ Φ and then
[h, Lα] = α(h)Lα = 0∀α ∈ Φ and also [h,H] = 0 =⇒ [h, L] = 0 =⇒ 0 ̸=
h ∈ Z(L) = 0, contradiction.

2. By a prop last time, κ(Lα, Lβ) = 0 if α, β ∈ Φ and α + β = 0 and
κ(Lα, H) = 0. So if α ∈ Φ,−α ∈ Φ then it would follow that κ(Lα, L) = 0,
contradicting nondegeneracy of κ.

3. If h ∈ H then κ(h, [X,Y ]) = κ([h,X], Y ) = α(h)κ(X,Y ) = κ(ta, h)κ(X,Y ) =
κ(h, κ(X,Y )tα) =⇒ κ(h, [X,Y ]− κ(X,Y )tα) = 0∀h ∈ H =⇒ [X,Y ] =
κ(X,Y )tα by non degeneracy of κH×H .

Example 2.18. If L = ∼⋖3(F) where every root has form α = ϵi − ϵj(i ̸= j)
and every root space is Lϵi−ϵj = FEij it follows that

t(ϵi − ϵj) =
1

κ(Eij , Eji)
[Eij , Eji] =

1

4
(Eii − Ejj).

This works if L = ∼⋖n(F) for any n.

Here are two more properties of root space decomposition:

Theorem 2.19.

1. If α ∈ Φ then [Lα, L−α] = F-span {tα} ≠ 0.

2. α(tα) which by definition is κ(tα, tα) is nonzero for all α ∈ Φ.

3. If α ∈ Φ and xα ∈ Lα is nonzero then there is some Yα ∈ L−α such that
F-span {Xα, Yα, Hα} ∼= ∼⋖2(F) (where Hα := [Xα, Yα]) via the obvious

map Xα 7→
ï
0 1
0 0

ò
, Yα 7→

ï
0 0
1 0

ò
, Hα 7→

ï
1 0
0 −1

ò
4. In the setup of the previous statement, we have Hα = 2+α

κ(tα,tα) = −H−α.

Proof.

1. Just need to show [Lα, L−α] ̸= 0 given part 3 from the previous theorem.
If 0 ̸= X ∈ Lα and κ(X,L−α) = 0 then κ(X,L) = 0 which is impossible
as κ is nondegenerate.

2. We can find X ∈ Lα, Y ∈ L−α which [X,Y ] = tα so by part 1 if α(tα) = 0
then [tα, X] = [tα, Y ] = 0. In this case adtα is nilpotent and semisimple
so adtα = 0 =⇒ 0 ̸= tα ∈ Z(L) = 0, contradiction.

3. Define Yα such that κ(Xα, Yα) =
2

κ(tα,tα) and then do some checking.

4. Straight forward.
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Theorem 2.20 (Integrality Properties of Φ). 1. dim(Lα) = 1∀α ∈ Φ.

2. If α ∈ Φ then Fα ∩ Φ = {−α, α}

Proof. Let α ∈ Φ. Let Sα = F-span {Xα, Yα, Hα = [Xα, Yα]} ∼= ∼⋖2(F) where
0 ̸= Xα ∈ Lα, 0 ̸= Yα ∈ L−α. LetM =

⊕
c Lcα⊕H = H⊕Lα⊕L−α⊕ (possibly

other root spaces, but we will prove that this is zero). M is an Sα-module with

weights 0 and 2c since cα(Hα) = c ·α
Ä

2+α
α(tα)

ä
= 2c by previous properties. This

implies we must have c ∈ 1
2Z since all sl2-weights are integers. Every irreducible

Sα-submodule of M of even highest weight contributes one dimension (just H)
to the zero weigths pace of M . But Sα ⊆M is irreducible and

H = Ker(α)⊕ FHα,

where Sα acts as zero on the subspace Ker(α)⊕, which has dimension dim(H)−1,
and FHα is the 0-weight space in Sα. Since we already have Lα, L−α ⊆ Sα, it
must hold that Lcα = 0 if c is an even integer with c ̸= −2, 0, 2.

We can conclude that α ∈ Φ then 2a /∈ Φ. Hence we cannot have α, 12α ∈ Φ
so if α ∈ Φ then 1

2α /∈ Φ. This means that 1 cannot occur as a weight for
M =⇒ M = H + Sα = Ker(α)⊕ FHα ⊕ FXα ⊕ FYα so dim(Lα) = 1.

Proposition 2.21. 1. If α, β ∈ Φ then β(Hα) ∈ Z (call this a Cartan
integer) and β − β(Hα)α ∈ Φ.

2. If α, β ∈ Φ and α+ β ∈ Φ then [Lα, Lβ ] = Lα+β.

3. If α, β ∈ Φ and α + β ̸= 0 then there are integers r, q ≥ 0 such that
(β + Zα) ∩ Φ = {β + iα|i ∈ Z,−r ≤ i ≤ q} (”no gaps in the α-root string
through β”). Also, it holds that β(Hα) = r − q.

4. L is generated by the root spaces Lα as a Lie algebra.

Proof. We will show that (3) holds. The other are straightforward.

Let K =
∑

i∈Z Lβ+iα where α, β ∈ Φ with α + β = 0. No multiple of α except
±α is a root. So we have β + iα ̸= 0∀i ∈ Z. K is a submodule of Sα

∼= sl2(F)
and each Lβ+iα is either zero if β + iα /∈ Φ or 1-dimensional if β + iα ∈ Φ in
which case (β + iα)(Hα) = β(Hα) + 2i. In the latter case, β(Hα) + 2i is the
weight of Hα on Lβ+iα.

Because all of these weights differ by an even integer, exactly one of the numbers
0 or 1 can occur as a weight, so κ is an irreducible Sα-module. Thus if r, q are
maximal with β−rα ∈ Φ, β+qα ∈ Φ then the corresponding weights β(Hα)−2r
and β(Hα) + 2q sum to zero, and (3) follows.
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We have our root space decomposition = H ⊕
⊕

α∈Φ⊆H∗\0 Lα and κ|H×H is

nondegenerate, and we defined tα ∈ H for α ∈ H∗ to have κ(tα, h) = α(h)∀h ∈
H. We now further define (α, β) := κ(tα, tβ) for α, β ∈ H∗.

Let EQ = Q-span {α ∈ Φ} and E = R⊗Q ∈ Q. One can show that

Theorem 2.22. (·, ·) restricts to a positive definite form on E with (α, β) ∈
Q∀α, β ∈ Φ. Additionally,

1. Φ spans R.

2. If α ∈ Φ then Rα ∩ Φ = {−α, α}

3. If α, β ∈ Φ then β − 2(β,α)
(α,α) α ∈ Φ.

4. 2(β,α)
(α,α) ∈ Z∀α, β ∈ Φ.

If L = ∼⋖n(F) and H = diagonal matrices in L, then Φ = {ϵi − ϵj |1 ≤ i, j ≤
n, i = j} where ϵi : H 7→ F, D 7→ Dii. As noted earlier, we have t(ϵi − ϵj) =
1
4 (Eii −Ejj) and (ϵi − ϵj , ϵk − ϵl) := κ(tϵi−ϵj , tϵk−ϵl) =

1
4 ⟨ϵi − ϵj , ϵk − ϵl⟩ where

⟨ϵi − ϵj⟩ =
®
1 if i = j

0 if i ̸= j
.

so

2
ϵi − ϵj , ϵk − ϵl
ϵk − ϵl, ϵk − ϵl

= ⟨ϵi − ϵj , ϵk − ϵk⟩.

2.6 Root Systems

Properties of the root space decomposition of L motivate the axiomatic defini-
tion of a root system.

Let E be a finite dimensional real vector space with a symmetric, positive defi-
nite bilinear form (·, ·).

For 0 ̸= α ∈ E, define rα : E → E by rα(β) := the vector obtained by reflecting
β across the hyperplane Hα = {v ∈ E|(α, v) = 0} = (Fα)⊥.

If c ∈ R such that β − cα ∈ Hα, then rα(β) = β − 2cα. But β − cα ∈ Hα =⇒
(β − cα, α) = 0 =⇒ (β, α) = c(α, α) =⇒ c = (β,α)

(α,α) .

Thus the reflection rα : E → E belongs to GL(E) and has the formula rα(β) =

β − ⟨β, α⟩α where ⟨β, α⟩ := 2(β,α)
(α,α) .

Thus,
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r−1
α = rα

rcα = rα if 0 ̸= c ∈ R
(rα(β), rα(γ)) = (β, γ)

Definition 2.23. A subset Φ ∈ E is a root system if

1. |Φ| <∞ and 0 ̸= Φ and Φ spans E.

2. If α ∈ Φ then Rα ∩ Φ = {±α}.

3. If α ∈ Φ then rα(β) ∈ Φ∀β ∈ Φ.

4. If α ∈ Φ then ⟨β, α⟩ ∈ Z.

The Weyl group of Φ is W = ⟨rα|α ∈ Φ⟩ ⊆ GL(E).

Since Φ is finite and spans E, and each rα defines a permutation of Φ, it follows
that W is isomorphic to a subgroup of the symmetric group of all permutations
of Φ. Thus, the Weyl group has |W | <∞.

Quick intuitive idea for root system: Suppose W is any finite subgroup of E
generated by reflections rα. Consider the set lines Rα for α ̸= 0 with rα ∈ W¿
Replace each of these lines by a pair of vectors α and −α. Morally, the result
is a root system with Weyl group W , and any root system arises like this.

Example 2.24 (ΦA1×A1). 4 roots, (α, β) = ⟨α, β⟩ = 0. rα : α 7→ α,−α 7→
α,−β 7→ β,−β 7→ −β. rβ fixes ±α, negates ±β. We have W = ⟨rα, rβ⟩ ∼=
S2 × S2

∼= Z2 × Z2.

Example 2.25 (ΦA2). 6 roots (diagonal of hexagon), (α, β) = ||α|| ||β|| cos
(
2π
3

)
=

−||β||2
2 =⇒ ⟨α, β⟩ = 2(α,β)

(β,β) = −1, similarly for ⟨α, γ⟩, ⟨β, γ⟩.

rα : β ⇐⇒ γ, α ⇐⇒ −α,−β ⇐⇒ −γ. rβ : α ⇐⇒ γ, β ⇐⇒ −β,−α ⇐⇒ −γ.
rγ : α⇐⇒ −β, β ⇐⇒ −α, γ ⇐⇒ −γ.

Can check that W ∼= S3.

Example 2.26 (ΦB2
). 8 roots, ||β|| =

√
2||α||, ||α + β|| = ||α||. ⟨α, β⟩ =

2||α|| ||β|| cos( 3π
2 )

||β||2 = −1, likewise for other inner products.

rα : ±β ⇐⇒ ±(2α + β), α ⇐⇒ −α,±(α + β) is fixed. rβ : ±α ⇐⇒ ±(α +
β), β ⇐⇒ −β,±(2α+ β) is fixed.

Can check that W ∼= ⟨
ï
0 1
1 0

ò
,

ï
−1 0
0 1

ò
⟩.

Example 2.27 (ΦG2). 12 roots (6 short and 6 long like ΦA2), can show that
W ∼= D12.
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Pairs of roots: The rank of Φ is dim(E). Examples above are rank 2.

Suppose α, β ∈ Φ and β ̸= ±α. Then

⟨β, α⟩ = 2(β, α)

(α, α)
= 2

||β||
||α||

cos θ ∈ Z

and

⟨β, α⟩⟨α, β⟩ = 4 cos2(θ) ∈ Z

as cos2(ϕ) ∈ [0, 1], the only possitbilities for ⟨α, β⟩, ⟨β, α⟩, θ, ||β||
2

||α||2 ,Φ are as fol-

lows:

— ⟨α, β⟩ — ⟨β, α⟩ — θ — ||β||2
||α||2 — Φ — —————————————————

—————————————-——————————————————— — 0
— 0 — π

2 — ? — A1 × A1 — — 1 — 1 — π
3 — 1 — A2 — — -1 — -1 — 2π

3
— 1 — A2 — — 1 — 2 — π

4 — 2 — B2 — — -1 — -2 — 3π
4 — 2 — B2 — —

1 — 3 — π
6 — 3 — G2 — — -1 — -3 — 5π

6 — 3 — G2 —

So in fact the four examples given account for all possible rank two root systems
(up to isomorphism).

2.7 Properties of Simple Roots and the Weyl group

2.8 Abstract Root Systems (Continued)

Set ⟨β, α⟩ = 2(β,α)
(α,α) for α, β ∈ Φ.

Definition 2.28. If Φ ∈ E and Φ′ ∈ E′ are root systems, then an isomor-
phism Φ → Φ is a linear bijection f : E → E′ such that ⟨f(β), f(α)⟩ =
⟨β, α⟩∀α, β ∈ Φ.

Motivation: Suppose L is a semisimple Lie algebra over C, finite dimensional
and nonzero. Choose a maximal toral subalgebra H ⊆ L and let H∗ =
{linera maps H → C}. For each α ∈ H∗ define Lα := {X ∈ L|[h, x] =
α(h)X∀h ∈ H}. Set Φ = {α ∈ H∗\0|Lα ̸= 0}. We showed H = L0 is abelian.
So we have a decomposition L = H ⊕

⊕
α∈Φ Lα. Here, Φ is a root system in

E = R − span{α ∈ Φ}, where the relevant form (·, ·) is the Killing form of L,
restricted H, and then transferred to H∗ by nondegeneracy.

Also: [Lα, Lβ ] ⊆ Lα+β∀α, β ∈ Φ.

Up to isomorphism, there are 4 root systems in R2: ΦA1×A1
,ΦA2

,ΦB2
, and ΦG2

.

Proposition 2.29. Let Φ be a root system with Weyl group W . If σ ∈ GL(E)
has σ(Φ) = Φ then σrασ

−1 = rσ(α) and ⟨β, α⟩ = ⟨σ(β), σ(α)⟩∀α, β ∈ Φ.
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Proof. Compute σrασ
−1(σ(β)) = σrα(β) = σ(β)−⟨β, α⟩σ(α). Clearly, σrασ−1

preserves Φ and sends σ(α) 7→ −σ(α). Also, σrασ fixes the hyperplane σ(Hα)
where Hα = {v ∈ E|(v, α) = 0}.

A priori, we don’t know that σ(Hα) = Hσ(α). If we knew this then it would be
clear by comparing formulas that σrασ

−1 = rσ(α) and also ⟨β, α⟩ = ⟨σ(β), σ(α)⟩∀α, β ∈
Φ. So just need to show:

Step 1: If σ ∈ GL(E) has σ(Φ) = Φ and σ fixes a hyperplane H ⊆ E while
sending some 0 ̸= α ∈ E to −α, then H = Hα and σ = σα.

Proof idea: Define τ = σrα. Then τ(α) = α, τ(Φ) = Φ, τ fixes H point-wise.
Choose a basis v1, v2, ..., vn−1 for H. Set vn = α. Since α /∈ H, v1, v2, ..., vn is a
basis for E. But the matrix of τ in this basis is the identity matrix, so τ = 1.

Step 2: Let α, β ∈ Φ be non-proportional (so α ̸= ±β).

1. If (α, β) > 0 then α− β ∈ Φ.

2. Of (α, β) < 0 then α+ β ∈ Φ.

Proof: Part 2 follows from part 1, swapping β and −β. For part 1: (α, β) >
0 =⇒ ⟨α, β⟩ > 0. The acute angle between α and β must be π

3 ,
π
4 , or

π
6 (since

α, β not orthogonal) and must have ⟨α, β⟩ = 1 or ⟨β, α⟩ = 1. If ⟨α, β⟩ = 1 then
α− β = σβ(α) ∈ Φ. If ⟨β, α⟩ = 1 then α− β = −sigmaα(β) ∈ Φ.

Definition 2.30. For α, β ∈ Φ with β ̸= ±α, the α-string through β is the
set of roots {β + iα|i ∈ Z} ∩ Φ.

Proposition 2.31. There are integers q, r ≥ 0 such that the α-string through
β is exactly {β + iα| − r ≤ i ≤ q}.

Proof. If there were any gaps in the string, then we could find p, s ∈ Z with
−r ≤ p < s ≤ q where β + pα, β + sα ∈ Φ but β + (p+ 1)α, b+ (s− 1)α /∈ Φ.

Previous lemma implies (β + βα, α) ≥ 0 ≥ (β + sα, α) =⇒ ((s − p)α, α) =
|s− p|(α, α) ≤ 0, impossible as (·, ·) is positive definite.

Corollary 2.32. The integers r, q ≥ 0 such that the α-string through β is
{β+ iα|− r ≤ i ≤ q} satisfy r− q = ⟨β, α⟩ = {0,±1,±2,±3}. So every α-string
has at most 4 elements.

Proof. The reflection rα preserve the α-string through β since rα(β + iα) =
β − (⟨β, α⟩ + i)α. Therefore, must have rα(β + qα) = β − ⟨β, α⟩α − qα so
⟨β, α⟩ = r − q.
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2.9 Simple Roots and the Weyl Group

Definition 2.33. A base or a simple system for Φ is a basis ∆ for E such
that each α ∈ Φ can be written as α =

∑
β∈∆ kαββ where coefficients kαβ are

either all nonnegative integers or all nonpositive integers.

Necessarily |∆| = dim(E). Not clear a priori that any base exists.

Example 2.34. In each root system in R2, the roots labeled {α, β} form a base.

Lemma 2.35. If ∆ is a base of Φ and α, β ∈ ∆ have α ̸= β, then α − β ∈ Φ
so (α, β) ≤ 0.

Proof. If (α, β) > 0 then our earlier lemma says α− β ∈ Φ. Since if α ̸= β then
also α ̸= −β (since elements of ∆ are linearly independent). But if α − β ∈ Φ
then ∆ would not be a base.

Definition 2.36. Given a system ∆ for Φ, define the height of a root α =∑
β∈∆ kαββ to be the sum

ht(α) =
∑
β∈∆

kαβ ∈ Z\0.

Definition 2.37. We define Φ+ = {α ∈ Φ|ht(α) > 0} and Φ− = −Φ+ so
that Φ = Φ+ ⊔ Φ−. We call Φ+ the set of positive roots, and Φ− the set of
negative roots.

Theorem 2.38. Φ does have a base/simple system.

For each γ ∈ E define Φ+(γ) = {α ∈ Φ|(γ, α) > 0}. One can always choose
γ ∈ E\

⋃
α∈ΦHα and we call such γ regular.

If γ is regular then Φ = Φ+(γ)⊔Φ−(γ) where Φ−(γ) = −Φ+(γ). Call α ∈ Φ+(γ)
indecomposable if we cannot write α = β1 + β2 where βi ∈ Φ+(γ).

Theorem 2.39. If γ ∈ E is regular, then the set ∆(γ) of indecomposable roots
in Φ is a base, and every base arises in this way.

Proof. We make a series of claims:

1. Each α ∈ Φ+(γ) is in Z≥0 − span{β ∈ ∆(γ)}.

Otherwise, choose α ∈ Φ+(γ) not in span{β ∈ ∆(γ)} with (α, γ) minimal.
Then α = β1 + β2 for some β1, β2 ∈ Φ+(γ) (α cannot be indecomposable).
Thus (α, γ) = (β1, γ) + (β2, γ) so by minimality of (α, γ) it must hold that
β1, β2 ∈ Z≥0 − span{β ∈ ∆(γ)}, a contradiction.

1. If α, β ∈ ∆(γ) and α ̸= β, then (α, β) ≤ 0.
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Otherwise α − β ∈ Φ, β = ±α, so α − β or β − α is in Φ+(γ). But then
α = β + (α− β) or β = α+ (β − α) would be decomposable.

1. ∆(γ) is linearly independent.

Suppose we can write 0 =
∑

α cαα −
∑

β dββ where α, β range over distinct
subsets of ∆(γ) and cα, d|beta ≥ 0. Then

0 ≤

(∑
α

cαα,
∑
α

cαα)

)

=

Ñ∑
α

cαα,
∑
β

dββ

é
=
∑
α,β

cαdβ(α, β) ≤ 0

so all cα = 0. Similarly derive that all dβ = 0.

1. ∆(γ) is a base of Φ.

Proof is clear from previous parts.

1. Every base of Φ arises as ∆(γ) for some regular γ ∈ E.

Given some base ∆ for Φ, we need to find γ with ∆ = ∆(γ). Choose a regular
γ with (γ, α) > 0 for all α ∈ ∆. Then Φ+/− = Φ+/−(γ) so every α ∈ ∆ must be
indecomposable with respect to γ. This means ∆ ⊆ ∆(γ). As |∆| = |∆(γ)| =
dim(E), must have ∆ = ∆(γ).

Call elements of ∆ simple roots.

The hyperplanes Hα for α ∈ Φ divide E into finitely many regions. We call the
connected component of

E\
⋃
α∈Φ

Hα

the Weyl chambers of E.

2.10 Properties of Simple Roots

Fix a base ∆ of Φ and define Φ+/− relative to ∆. Elements of Φ+ are positive
roots, elements of Φ− are negative roots.

Lemma 2.40. If α ∈ Φ+ but α /∈ ∆ then α− β ∈ Φ+ for some β ∈ ∆.
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Proof. If (α, β) ≤ 0∀β ∈ ∆ then the argument presented earlier in the 3rd part
of the previous proof would show that ∆⊔ {α} is linearly independent. As this
is impossible, must have (α, β) > 0 for some β ∈ ∆ and then α− β ∈ Φ. Since
α, β cannot be proportional, α− β must be in Φ+, since at least one coefficient
in α− β =

∑
δ∈∆ cδδ must have cδ > 0.

By induction:

Corollary 2.41. Each α ∈ Φ+ can be written α = α1+ ...+αk where αi ∈ ∆∀i
and where each partial sum α1 + ...+ αj ∈ Φ+ for 1 ≤ j ≤ k.

Lemma 2.42. If α ∈ ∆ then rα(α) = −α and rα (Φ+\{α}) = Φ+\{α}.

Proof. Suppose β ∈ Φ+\{α}. Write β =
∑

γ∈∆ kγγ where kγ ∈ Z≥0. Note: β
is not proportional to α. Thus kγ ̸= 0 for some γ ̸= α. Then the coefficient of
γ in rα(β) = β − ⟨β, α⟩α is also kγ > 0, so rα(β) must still be in Φ+ since it is
a valid root. The lemma follows as rα : E → E is a bijection.

Corollary 2.43. Set δ = 1
2

∑
β∈Φ+ β then rα(δ) = δ − α∀α ∈ ∆.

Lemma 2.44. Suppose we have a sequence α1, ..., αm ∈ ∆. Write ri = rαi .
Suppose r1r2...rm−1(αm) ∈ Φ−. Then r1r2...rm = r1...rs−1rs+1...rm−1 for some
index 1 ≤ s ≤ m− 1.

Remark 2.45. The roots α1, α2, ..., αm don’t need to be all distinct.

Proof. Set βi := ri+1ri+2...rm−1(αm), with βm−1 := αm. Then β0 ∈ Φ− and
βm−1 ∈ ∆ ⊂ Φ+ so there is some smallest index s with βs ∈ Φ+. Then
rs(βs−1) = βs since r2s = 1 =⇒ rs(βs) = βs−1 ∈ Φ− =⇒ βs = αs

by previous lemma. This implies rs := rαs = rβs = rrs+1rs+2...rm−1(αm) =
(rs+1...rm−1)rm(rm−1...rs+1). The result follows by substituting this expres-
sion (into r1...rs...rm) for rs, noting that r2i = 1.

Corollary 2.46. If σ = rα1
rα2

...rαm
is an expression for σ ∈ W with m as

small as possible and if αi ∈ ∆, then σ(αm) ∈ Φ−.

Recall: Φ is a root system with Weyl group W .

Proposition 2.47. Any given α ∈ Φ belongs to some base of Φ.

Proof. The hyperplanes Hβ for β ∈ Φ\{±α} are distinct from Hα, so if we
choose γ ∈ Hα with γ /∈ Hβ∀β ∈ Φ\{±α}, and then choose some regular γ′

close to γ with (γ′, α) = ϵ > 0 and (γ′, β) > ϵ∀β ∈ Φ\{±α} then we’ll have
α ∈ ∆(γ′).
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Fix a base ∆ for Φ.

Theorem 2.48. If ∆′ is any base for Φ then there exists a unique element
σ ∈W with σ(∆′) = ∆. Moreover, it holds that W = ⟨rα|α ∈ ∆⟩.

Proof. Let W̃ = ⟨rα|α ∈ ∆⟩ ⊆ W . We’ll show that W̃ = W . Let δ =
1
2

∑
α∈Φ+ α and choose a regular γ ∈ E along with σ ∈ W̃ such that (σ(γ), δ)

is maximal. If α is a simple root then rασ ∈ W̃ so our maximality assumption
implies (σ(γ), δ) ≥ (rασ(γ), δ) = (σ(γ), rα(δ)) = (σ(γ), δ − α) = (σ(γ), δ) −
(σ(γ), α)∀α ∈ ∆.

Thus (σ(γ), α) ≥ 0∀α ∈ ∆. Equality never holds since γ is regular and 0 ̸=
(γ, σ−1(α)) = (σ(γ), α).

Thus we have (σ(γ), α) > 0∀α ∈ ∆. If ∆′ is any base then ∆′ = ∆(γ) for some

reular γ ∈ E and if we choose σ ∈ W̃ as above then evidently ∆ = ∆(σ(γ)) =
σ−1(∆(γ)) = σ−1(∆′).

So for any base ∆′ there is at least some σ ∈ W̃ ⊂W with σ(∆′) = ∆.

To show that W̃ = W , it suffices to check that rα ∈ W̃∀α ∈ Φ. Given α ∈ Φ,
choose a base ∆′ with α ∈ ∆′ and then choose σ ∈ W̃ with σ(∆′) = ∆. Set

β = σ(α) ∈ ∆ and then we have rβ = rσ(α) = σrασ
−1 ∈ W̃ as well.

Finally, we need to show that the element σ ∈ W̃ = W with σ(∆′) = ∆ is
unique for a given base ∆′ of Φ.

We appeal to the technical lemma above: it’s enough to show that if σ ∈ W
has σ(∆) = ∆ then σ = 1. Assume σ(∆) = ∆ and write σ = r1r2...rm where
ri = rαi

for some simple roots α1, ..., αm ∈ ∆, and assumem is minimal. If σ ̸= 1
then m > 0. So by the corollary above σ(αm) ∈ Φ− =⇒ σ(∆) ̸= ∆ ⊆ Φ+.
Thus the only way to have σ(∆) = ∆ is if m = 0 and then σ = 1.

Fix an ordering α1α2...αn of the roots in ∆.

Definition 2.49. We call any minimal length expression

σ = ri1ri2 ...riℓ

where rj := rαj
a reduced expression for σ ∈W .

Set ℓ(w) = ℓ, and call this the length of W .

Proposition 2.50. If σ ∈W then ℓ(σ) = #{α ∈ Φ+|σ(α) ∈ Φ−}.

Remark 2.51. This gives ℓ(rα) = 1∀α ∈ ∆.
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Proof. Use induction and earlier lemmas.

2.11 Irreducible Root Systems

Definition 2.52. A root system Φ is irreducible if it cannot be partitioned as
a disjoint union Φ = Φ1⊔Φ2 where Φ1 and Φ2 are both nonempty and (α, β) = 0
for all α ∈ Φ1, β ∈ Φ2. If Φ can be partitioned in this way then Φ is reducible.

Next time: there is a natural notion of root subsystem and direct sum
for root systems, and any Φ is isomorphic to the direct sum of its irreducible
subsystems.

Example 2.53. The root system ΦA1×A1
= {±α} ⊔ {±β} is reducible, but

ΦA2 ,ΦB2 ,ΦG2 are all irreducible.

Proposition 2.54. Suppose Φ has a base ∆. Then Φ is reducible if and only if
there is a portion ∆ = ∆1 ⊔∆2 where ∆1,∆2 ̸= ∅ and (α, β) = 0∀α ∈ ∆1, β ∈
∆2.

3 More on Root Systems and Enveloping Alge-
bras

3.1 Classification of Irreducible Root Sytems, Isomorphism
and Conjugacy Theorems

3.2 More on Bases of Root Systems

Fix a base ∆ for Φ from now on. Some facts:

Theorem 3.1. 1. W := ⟨rα|α ∈ Φ⟩ = ⟨rα|α ∈ Φ+⟩ = ⟨rα|α ∈ ∆⟩.

2. If β ∈ Φ then there is some base of Φ containing β and there is some
w ∈W with w(β) ∈ ∆.

Theorem 3.2. For a root system Φ with base ∆, the following are equivalent:

1. We can write Φ = Φ1 ⊔ Φ2 for some nonempty disjoint subsets Φi with
(α, β) = 0∀α ∈ Φ1, β ∈ Φ2.

2. We can write ∆ = ∆1 ⊔ ∆2 for some nonempty disjoint sets ∆i with
(α, β) = 0∀α ∈ ∆1, β ∈ ∆2.

3. Φ is reducible ≡ not irreducible.

Assume these properties hold. Let Ei = R-span{α ∈ ∆i}. Then [·, ·] restricts
to a nondegenerate form on each Ei and E = E1 ⊕ E2 and each Φi is a root
system in Ei with ∆i as a base.

All of this extends from two to k factors as follows:
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Proposition 3.3. There is a maximal partition ∆ = ∆1 ⊔ ∆2 ⊔ ... ⊔ ∆k into
nonempty pairwise disjoint and orthogonal subsets, which is unique up to per-
mutation of indices, and if Ei := R-span{α ∈ ∆i} and Φi := Φ ∩ Ei then
E = E1 ⊕ E2 ⊕ ... ⊕ Ek and each Φi is a root system in Ei with base ∆i and
Φ = Φ1 ⊔ Φ2 ⊔ ... ⊔ Φk.

We call the root systems Φi the irreducible components of Φ. The proposi-
tion shows that Φ is determined up to isomorphism by these components.

Note: Φ is irreducible if and only if k = 1 in the prop.

Proof. The only part that is not clear is the claim that Φ = Φ1 ⊔ Φ2 ⊔ ... ⊔ Φk.
To show this, consider some γ ∈ Φ. Then there is w ∈ W with w(γ) ∈ ∆, so γ
is an W -orbit of an element of some ∆i. But orthogonality +W = ⟨rα|α ∈ ∆⟩
which means that W preserves the subspace Ei so γ ∈ Φi.

3.3 Invariants of Root Systems

Fix an ordering α1, α2, ..., αℓ of the simple roots in our fixed base ∆ ⊆ Φ.

Definition 3.4. The Cartan matrix of Φ is the ℓ× ℓ matrix [⟨αi, αj⟩]1≤i,j≤ℓ,

where ⟨α, β⟩ := 2 (α,β)
β,β ∈ Z.

Example 3.5. • Cartan matrix for ΦA1×A1
is

ï
2 0
0 2

ò
as (α1, α2) = 0.

• Cartan matrix for ΦA2 is

ï
2 −1
−1 2

ò
because (α1, α2) = ||α1|| ||α2|| cos 2π

3

and ||α1|| = ||α2|| so we have ⟨α1, α2⟩ = ⟨α2, α1⟩ = 2 cos
(
2π
3

)
= −1.

• Cartan matrix for ΦB2
is

ï
2 −1
−2 2

ò
because (α1, α1) = 1, (α2, α2) =

2, (α1, α2) =
√
1
√
2 · cos 3π

2 .

• Cartan matrix for ΦG2 is

ï
2 −1
−3 2

ò
.

Proposition 3.6. The Cartan matrix (up to reordering of rows/columns) de-
termines Φ (up to isomorphism). More precisely, if there is another root system
Φ′ ⊆ E′ with ordered base ∆′ and there is a bijection f : ∆ → ∆′ such that

⟨a, b⟩ = ⟨f(α), f(β)⟩∀α, β ∈ ∆

then the unique linear map E → E′ extending f is a root system isomorphism
Φ

∼→ Φ′. In particular, the linear extension of f has ⟨α, β⟩ = ⟨f(α), f(β)⟩∀α, β ∈
Φ
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Proof. The linear extension f : E → E′ is invertible since ∆,∆′ are bases. For
α ∈ ∆, it holds rf(α) = f ◦ rα ◦ f−1. Hence the Weyl group W ′ of Φ of exactly

{f ◦ w circf−1|w ∈W}.

Each β ∈ Φ has β = w(α) for some w ∈ W,α ∈ ∆. So f(β) = f ◦ w(α) =
f ◦w ◦ f−1(f(α)) ∈ ∆′. Similar argument shows that f−1(b) ∈ Φ∀β ∈ Φ′ so we
can conclude that f is a bijection Φ → Φ′. Finally observe for α, β ∈ Φ that

rf(α)(f(β)) = f ◦ rα ◦ f−1(f(β))

= f(rα(β))

= f(β)− ⟨β, α⟩f(α)

so we must have ⟨β, α⟩ = ⟨f(β), f(α)⟩.

Checking that rf(α) = f ◦ rα ◦ f−1 for any α ∈ Φ follows from acse when
α ∈ ∆.

The Coxeter graph of a root system Φ with base ∆: this is the undirected graph
with vertices labeled by the elements of ∆ and with exactly ⟨α, β⟩⟨β, α⟩ =
4(α,β)2

(α,α)(β,β) edges between vertices α and β.

Example 3.7. ΦA1×A1 ,ΦA2 ,ΦB2 ,ΦG2 have 0, 1, 2, 3 edges, respectively.

The number of edges between αi, αj is the product of entries (i, j) and (j, i) of
Cartan matrix.

If all roots have the same length (eg. for ΦA2
) then ⟨α, β⟩ = ⟨β, α⟩. If roots have

different lengths then we need a little extra information to recover the Cartan
matrix from the Coxeter graph.

Define the Dynkin diagram of Φ by taking the Coxeter diagram and addig an
arrow from larger root to shorter root to each double or triple edge.

Example 3.8. For ΦA1×A1
,ΦA2

, the Coxeter graph is the Dynkin diagram. For
ΦB2

,ΦG2
, the arrow points towards the α1 vertex because ||α2|| > ||α1||.

The Dynkin diagram determines the Cartan matrix.

Corollary 3.9. The Dynkin diagram of Φ determines Φ up to ∼=. Moreover,
the irreducible components of Φ correspond to the connected components of the
Dynkin diagram, and so Φ is irreducible if and only if the Dynkin diagram is
connected.
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3.4 Classification Results and Constructions

We’ll mostly skip the proofs.

Proposition 3.10. Let E = {v ∈ Rn+1|v1 + ... + vn+1 = 0} ≡ Rn. Write
e1, ..., en+1 for standard basis of Rn+1. Define ΦAn

= {ei − ej |1 ≤ i, j ≤ n, i ̸=
j}. Then ΦAn

is a root system with base ∆An
= {ei − ei+1|i = 1, 2, ..., n} and

Dynkin diagram of Type A. Also, rei−ei+1

Öv1...
vn


è

=

v1...
vn

− (vi − vi+1)(ei −

ei+1) =



v1
...

vi+1

vi
...
vn


so it follows Weyl Group WAn

≡ Sn+1.

Proof. Straightforward calculation.

Proposition 3.11. Let ΦBn ⊆ Rn be a set of 2n + 4
(
n
2

)
vectors {±ei|i =

1, 2, ..., n} ⊔ [±ei ± ej |1 ≤ i < j ≤ n]. Then ΦBn
is a root system with base

∆Bn
= {e1 − e2, e2 − e3, ..., en−1 − en, en}

and Dynkin diagram of type B. The Weyl group WBn
≡ (signed n × n permu-

tation matrices).

Proposition 3.12. Let ΦCn
= {±2ei|i = 1, 2, ..., n}⊔{±ei±ej |1 ≤ i < j ≤ n}.

Then ΦCn
is a root system with base ∆Cn

= {e1 − e2, ..., en−1 − en, 2en} and
Dynkin diagram of type C. Also, WCn =WBn .

Proposition 3.13. Finally, let ΦDn
⊆ Rn be the set of 4

(
n
2

)
vectors {±ei ±

ej |1 ≤ i < j ≤ n}. Then ΦDn
is a root system with base ∆Dn

= {e1 − e2, e2 −
e3, ..., en−1 − en, en−1 + en} and Dynkin diagram of type E. The Weyl group
WDn is an index two normal subgroups of WBn =WCn .

ΦAn is irreducible ∀n ≥ 1 (Dynkin diagram is connected). ΦB1
∼= ΦA1 as Dynkin

diagram is just isolate vertex. So we only consider ΦBn for n ≥ 2. ΦC1
∼= ΦB1

and ΦC2
∼= ΦB2

since Dynkin diagrams are isomorphic. So we only consider
ΦCn

for n ≥ 3. ΦD1
∼= ΦA1

,ΦD2
∼= ΦA1×A1

(not irreducible), ΦD3
∼= ΦA3

so we
only consider ΦDn

for n ≥ 4.

Theorem 3.14. Suppose Φ is an irreducible root system. Then the Dynkin
diagram of Φ is either isomorphic to the Dynkin diagram of ΦAn

(some n ≥
1), ΦBn (some n ≥ 2), ΦCn (come n ≥ 3), ΦDn (some n ≥ 4), or to one
of 5 exceptional diagrams: E6, E7, E8, F4, and G2. Moreover, each of these
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exceptional diagrams does arise as the Dynkin diagram of an (irreducible) root
system.

Now let’s construct these.

We’ve already seen ΦG2
.

We have

ΦF4
:= {±ei±ej |1 ≤ i < j ≤ 4}⊔{1

2
(a1e1+a2e2+a3e3+a4e4)|a1, a2, a3, a4 ∈ {±1}}⊔{±ei|1 ≤ i ≤ 4} ⊆ R4.

ΦF4
has 48 elements and it’s Weyl group has size 1152. It’s base is {e2−e3, e3−

e4, e4,
1
2 (e1 − e2 − e3 − en)}.

It suffices to construct ΦE8
as ΦE6

, ΦE7
can be realized as subsystems. We can

construct ΦE8
⊆ R8 as the set of 240 vectors of the form

{±ei±ej |1 ≤ i < j ≤ 8}⊔{1
2
(a1e1+a8e8)|a1, a2, ..., a8 ∈ {±1} with a1a2...a8 = 1}.

This is a root system with base

∆E8 = {1
2
(e1 − e2 − e3 − ...− e7 + e8), e1 + e2, e2 − e3, e3 − e4, ..., e7 − e8}.

3.5 Isomorphism and Conjugacy Theorems

Recall that if L is a semisimple Lie algebra (over an algebraically closed, char-
acteristic zero field F), and H ⊆ L is a maximal toral subalgebra then there is
a finite set Φ ⊆ H∗ [0] with L = H ⊕

⊕
α∈Φ Lα where Lα := {X ∈ L|[h, x] =

α(h)X∀h ∈ H} ≠ 0 for α ∈ Φ.

The set Φ is a root system in E = R⊗Q Q-span{α ∈ Φ} with the bilinear form
on H∗ dual to the Killing form of L restricted to H.

Proposition 3.15. If L is simple then Φ is irreducible.

Proof. If Φ = Φ1 ⊔ Φ2 were reducible (with Φ1,Φ2 nonempty and orthogonal)
and α ∈ Φ1, β ∈ Φ2, then α+ β is neither in Φ1 (since (β, α+ β) = (β, β) ̸= 0)
nor in Φ2 (since (α, α + β) = (α, α) ̸= 0) so α + β /∈ Φ and it follows that the
subalgebra of L generated by Lα for α ∈ Φ1 is a proper nonzero ideal (since
[Lα, Lβ ] = 0∀α ∈ Φ1, β ∈ Φ2).

Proposition 3.16. If L = L1 ⊕ L2 ⊕ ... ⊕ Ln is the decomposition of L into
simple ideals then Hi := H ∩ Li is a maximal toral subalgebra of Li and the
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irreducible root system Φi determined by Hi ⊆ Li may be viewed as a subsystem
of Φ such that Φ = Φ1 ⊔Φ2 ⊔ ... ⊔Φn is the decomposition of Φ into irreducible
components.

Theorem 3.17. Suppose L′ is another semisimple Lie algebra with a maximal
toral subalgebra H ′ and root system Φ′. Suppose there exists a root system
isomorphism f : Φ → Φ′. Extend f to a vector space isomorphism f : H

∼→ H ′

by setting f(tα) = t′f(α) where for α ∈ Φ, α′ ∈ Φ′, tα ∈ H and t′α′ ∈ H ′ are the

elements with κ(tα, h) = α(h), κ(t′α, h
′) = α′(h′). Choose a base ∆ ⊆ Φ along

with isomorphisms between the 1-dim root spaces Lα
∼→ L′

f(α) for α ∈ ∆. Then

there is a unique Lie algebra isomorphism L
∼→ L′ extending f : H → H ′ and

these chosen isomorphisms.

3.6 Cartan Subalgebras

Definition 3.18. A Cartan subalgebra of a Lie algebra L is a nilpotent
subalgebra H ⊆ L with H = NL(H), where NL(H) := {X ∈ L|[X,h] ∈ H∀h ∈
H}.

Theorem 3.19. If L is semisimple and defined over an algebraically closed
field F with characteristic zero, then a subalgebra H ⊆ L is a maximal toral
subalgebra if and only if H is a Cartan subalgebra.

Remark 3.20. If the characteristic is not zero, this does not hold.

Definition 3.21. A Borel subalgebra of a Lie algebra L is a maximal solvable
subalgebra.

Theorem 3.22. If B1, B2 are two Borel subalgebras of a Lie algebra L, then
there is an automorphism f ∈ Aut(L) with f(B1) = B2. Moreover, the same
fact holds if B1 and B2 are two Cartan subalgebras.

Example 3.23. If L = sl2(F) then two Borel subalgebras are B1 = upper
triangular matrices and B2 = lower triangular matrices. We have f(B1) = B2

for f(X) = −XT .

The textbook proves the stronger fact that f ∈ Aut(L) can be chosen in a
subgroup E(L) ⊆ Aut(L) generated by exp(ad(X)) for X ∈ L that are strongly
ad-nilpotent in a certain sense.

Theorem 3.24. In a nice setting (ie. when L is semisimple, defined over
C or a similar field), Cartan subalgebras are the same thing as maximal toral
subalgebras.

For semisimple theory over more general fields → one works with Cartan sub-
algebras instead of maximal toral subalgebras.

One last related important fact:

Theorem 3.25. In a general Lie algebra, all Cartan subalgebras H are isomor-
phic.
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3.7 Universal Enveloping Algebras

3.8 Introduction

The following constructions pertian to arbitrary Lie algebras over any field F.
The main idea is to construct from a Lie algebra L an associative unital algebra
U(L) ”as freely as possible” subject to the commutation relations of L. That
is, we want to build the ”most general possible algebra” L ⊆ U(L) that has
X · Y − Y ·X = [X,Y ]∀X,Y ∈ L.

Definition 3.26. An associative unital algebra is a vector space A with an
associative bilinear multiplication operation and a compatible unit 1 ∈ A.

Definition 3.27. An enveloping algebra of a given Lie algebra L is a pair
(A, ϕ) where A is an associative unital algebra and ϕ : L → A is a linear map
such that

ϕ([X,Y ]) = ϕ(X)ϕ(Y )− ϕ(Y )ϕ(X)∀X,Y ∈ L.

Example 3.28. If L ⊆ gl(V ) for a vector space V then gl(V ) is an enveloping
algebra with respect to to obvious inclusion ϕ : L ↪→ gl(V ).

Definition 3.29. A morphism of enveloping algebras f : (A1, ϕ1) → (A2, ϕ2)
is an algebra homomorphism f : A1 → A2 such that

¡div className=”text-center”¿ ¡Image alt=”diagram” src=”/static/images/com/liealg/1.png”
width=116 height=96 /¿ ¡/Image¿

commutes. ¡/Image¿

Definition 3.30. A universal enveloping algebra of L is an initial object
in the category of enveloping algebras for L: that is, an enveloping algebra
(U, i) such that if (A, ϕ) is any enveloping algebra for L then there is a unique
morphism (U, i) → (A, ϕ).

Proposition 3.31. If (U1, i1) and (U2, i2) are both universal enveloping algebras
for L then there is a unique isomorphism (U1, i1)

∼→ (U2, i2).

Proof. By definition, there are unique morphisms f : (U1, i1) → (U2, i2) and g :
(U2, i2) → (U1, i1). But the identity morphism is the only morphism (Uj , ij) →
(Uj , ij). So f ◦ g = g ◦ f = id.

So there is at most one universal enveloping algebra of L (up to isomorphism).
More involved:

Theorem 3.32. Any Lie algebra L has a universal enveloping algebra.

Remark 3.33. This is always infinite-dimensional if L ̸= 0.
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The proof requires a short digression on tensor algebras.

Let V be a finite-dimensional vector space over a field F. Define T 0(V ) =
F, T 1(V ) = V, T 2(V ) = V ⊗ V, ..., Tn(V ) = V ⊗ ...⊗ V (n factors).

Let T (V ) =
⊕

n≥0 T
n(V ). This is a vector space whose elements are finite linear

combinations of tensors v1 ⊗ ...⊗ vn for any n ≥ 0, any vi ∈ V .

We make T (V ) into an associative unital algebra with unit 1 ∈ F = T 0(V ) ⊂
T (V ) by setting

(v1 ⊗ ...⊗ vk)(w1 ⊗ ...⊗ wℓ) := v1 ⊗ ...⊗ vk ⊗ w1 ⊗ ...⊗ wℓ

and extending by linearity for vi, wj ∈ V . The resulting structure is the tensor
algebra of V .

Some properties of the tensor algebra T (V ):

• Associative

• Infinite-dimensional

• Graded as Tm(V )× Tn(V ) → Tm+n(V ).

• Generated as an algebra by any basis of V .

The tensor algebra of V is characterized by this universal property: for any
associative unital algebra A and any linear map ϕ : V → A, there is a unique
algebra morphism ψ : T (V ) → A such that

¡div className=”text-center”¿ ¡Image alt=”diagram” src=”/static/images/com/liealg/2.png”
width=176 height=96 /¿ ¡/Image¿ commutes.

Let I be the two-sided ideal in T (V ) generated by the set {x⊗y−y⊗x|x, y ∈ V }.

Definition 3.34. The symmetric algebra of V is the quotient S(V ) :=
T (V )/I.

This is a commutative algebra with the same universal property as T (V ) but
restricted to commutative algebras.

If X1, ..., Xn is a basis for V then S(V ) is isomorphic to the polynomial algebra
F[X1, ..., Xn] in n commuting variables.

The tensor algebra T (V ) is similarly isomorphic to the free associative algebra
F ⟨X1, ..., Xn⟩ of polynomials in n noncommuting variables.

Let’s look at the proof of existence of universal enveloping algebras.

Proof. Let J be the two-sided ideal in T (L) generated by the set {x⊗ y − y ⊗
x− [X,Y ]|X,Y ∈ L}.
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Next we set U(L) := T (L)/J . Also define Π : T (L) → U(L) to be the quotient
map and define i : L → U(L) to be the quotient map and define i : L → U(L)

to be the composition L ↪→ T (L)
Π→ U(L).

Since J ⊆
⊕

n>0 T
nL the quotient U(L) is nonzero and contains T 0L = F.

It is not yet clear whether or not i is injective (this will turn out to be true but
is not part of any definitions).

To show that (U(L), i) is a universal enveloping algebra: suppose (A, j) is some
enveloping algebra for L. The universal property of T (L) gives us a unique
algebra homomorphism ϕ′ : T (L) → A such that the diagram

¡div className=”text-center”¿ ¡Image alt=”diagram” src=”/static/images/com/liealg/3.png”
width=176 height=96 /¿ ¡/Image¿

commutes.

But all elements X ⊗ Y − Y ⊗ X − [X,Y ] for X,Y ∈ L are in Ker(ϕ′), since
ϕ′(X ⊗ Y ) = ϕ′(X)ϕ′(Y ) as ϕ′ is an algebra homomorphism. Thus j ⊆ Ker(ϕ′)
so ϕ′ descends to the desired unique morphism (U(L), i) → (A, ϕ). ¡/Image¿

Example 3.35. Suppose L is abelian so that [X,Y ] = 0∀X,Y ∈ L. Then J = I
and U(L) = S(L) is the symmetric algebra of L.

Next, we’ll look at the algebra structure of U(L) and the Poincaré-Birkhoff-Witt
theorem describing a basis for U(L).

3.9 Structure of U(L)

Let Tm := T 0L⊕ T 1L⊕ ...⊕ TmL and UmL = Π(Tm) where Π : T (L) → U(L)
is a quotient map and U−1 := 0.

Clearly Um · Un ⊆ Um+n and Um ⊆ Um+1. So we can define a vector space
Gm = Um/Um−1 and set

G(L) =
⊕
m≥0

Gm ̸= U(L).

There is a well-defined associative bilinear map Gm × Gn → Gm+n so we can
view G(L) as a grade associative algebra.

There is also a (surjective) map T (L) → G(L) =
⊕

m≥0 Um/Um−1.

Call this map ϕ : T (L) → G(L). This is surjective because Π(Tm − Tm−1) =
Um − Um−1.

Lemma 3.36. The map ϕ : T (L) → G(L) is an algebra homomorphism with
ϕ(I) = 0, so ϕ descends to a morphism S(L) → G(L).
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Note: the algebra structure on G(L) encodes multiplication in U(L) modulo
lower degree terms.

Proof. Let X = X1 ⊗ ... ⊗ Xm ∈ TmL and Y = Y1 ⊗ ... ⊗ Yn ∈ TnL. Then
ϕ(XY ) = ϕ(X)ϕ(Y ) so ϕ is an algebra morphism. For any X,Y ∈ L, we have
Π(X ⊗Y −Y ⊗X) ∈ U2 but Π(X ⊗Y −Y ⊗X) = Π([X,Y ]) ∈ U1, so it follows
that ϕ(X ⊗ Y − Y ⊗X) ∈ U1/U1 = 0 and I ⊆ Ker(ϕ).

This leads to a fundamental result, the PBW theorem.

Theorem 3.37 (The PBW Theorem). Let w : S(L) → G(L) be the morphism
induced by ϕ in the previous lemma. Then w is an isomorphism of algebras.

The proof is elementary but very technical, so we’ll skip it. This theorem was
several useful consequences.

Corollary 3.38. Let W be a subspace of TmL. Suppose the quotient map
TmL→ SmL sends W isomorphically onto SmL. Then Um = Um−1 ⊕Π(W ).

Remark 3.39. The symmetric algebra inherits a grading S(L) =
⊕

m≥0 S
mL

where SmL is the image of TmL under T (L) → S(L).

Proof. Consider the diagram

¡div className=”text-center”¿ ¡Image alt=”diagram” src=”/static/images/com/liealg/4.png”
width=176 height=137 /¿ ¡/Image¿

The lemma and PBW theorem imply that this diagram commutes. Since w
is an isomorphism, bottom two maps send w isomorphically onto Gm. Result
follows as kernel of Um → Gm is Um−1. ¡/Image¿

Corollary 3.40. The associated map i : L→ U(L) is injective.

Proof. Recall that i is composition L = T−1L ↪→ T (L)
Π→ U(L). Thus if we

take W = T 1L = L then quotient map T (L) → S(L) sends W isomorphically
onto S1L = T 1L, so previous corollary implies that Π(L)⊕U0 = i(L)⊕F = U1,
so i(L) is complementary to U0 in U1 and i is injective.

Corollary 3.41. If (U, i) is any universal enveloping algebra for L then i is
injective.

Proof. (U, i) is isomorphic as an enveloping algebra to explicit constructions just
given.

Corollary 3.42. Suppose X1, X2, ... is an ordered basis of L (which could be
infinite). Then a basis for U(L) is provided by all elements of the form

Xi1 ...Xim :=
∏

(Xi1 ⊗ ...⊗Xim)
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where m ≥ 0 is an nonnegative integer and the indices i1 ≤ i2 ≤ ... ≤ im are
weakly increasing.

Remark 3.43. In this setting the case m = 0 contributes the unit element 1.
Call this set of elements the PBW basis of L.

Proof. Let W be the subspace of TmL spanned by the PBW basis elements of
degree m. THen W is mapped isomorphically onto SmL and so the corollary
above implies that Π(W ) is complementary to Um−1 in Um.

By induction on m, follows that PBW basis spans U(L) and is a basis.

Corollary 3.44. Suppose H is a subalgebra of L with an order basis (h1, h2, ...)
that can be extended to a basis of L by adding (X1, X2, ...). Then the inclusion
H ↪→ L extends to an injective algebra morphism U(H) 7→ U(L) and U(L) is
a free U(H)-module with basis given by the PBW basis elements involving only
X1, X2, ...

Proof. Clear from the description of the PBW basis.

3.10 Free Lie Algebras

These are analogous to free groups and will enable us to define Lie algebras by
generators and relations, on taking certain quotients.

Let L be a Lie algebra over a field F generated by a set X.

Definition 3.45. L is free on X if for any map ϕ : X → M , where M is a
Lie algebra, there exists a unique Lie algbra morphism ψ : L→M such that the
diagram

¡div className=”text-center”¿ ¡Image alt=”diagram” src=”/static/images/com/liealg/5.png”
width=176 height=106 /¿ ¡/Image¿

commutes. ¡/Image¿

The usual universal property arguments show that ay two Lie algebras that are
free on a given set X are uniquely isomorphic.

To establish the existence of a free Lie algebra:

• Begin with a vector space V with X as a basis.

• Form the tensor algebra T (V ), viewed as a Lie algebra with [X,Y ] =
XY − Y X.

• Then let L be the Lie subalgebra of T (V ) generated by X.

Proposition 3.46. This gives a free Lie algebra on X.
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Proof. Suppose ϕ : X → M is a map, with M a Lie algebra. First extend ϕ
to a linear map V → M ⊂ U(M). Then canonically extend this to an algebra
morphism T (V ) → U(M), and restrict this to a Lie algebra morphism.

Definition 3.47. If L is free on X and R is the ideal of L generated by some
elements {fj |j ∈ I} then call quotient Lie algebra L/R = ⟨X|fi = 0⟩ the Lie
algebra generated by X with relations fi = 0.

3.11 Serre’s Theorem, Weight Spaces, Standard Cyclic
Modules

3.12 Setup

In this post, we’ll do two things:

1. Sketch the statement of Serre’s theorem and explain how to go from ab-
stract root system to semisimple Lie algebras.

2. Begin studying highest weight representations of semisimple Lie algebras.

For the entire post, let L be a semisimple Lie algebra defined over an alge-
braically closed field of characteristic zero. L will always be finite-dimensional.

We fix a Cartan subalgebra H ⊆ L. The choice of H gives us a root space
decomposition of L with corresponding root system to be denoted by Φ ⊆ H∗.

Choose a set of simple roots ∆ = {α1, ..., αn}. This determines a subset of
positive roots Φ+ that is not a subset of Φ.

Define hj ∈ H such that αi(hj) =
2(αi, αj)

(αj , αj)
:= ⟨αi, αj⟩. Finally, choose elements

xi ∈ Lαi and yi ∈ L−αi with [xi, yi] = hi.

Example 3.48. When L = sln+1(F), we can take H to be the subalgebra of
diagonal matrices in L, and then one gets

hi = Ei,i − Ei+1,i+1(1 ≤ i ≤ n)

xi = Ei,i+1

yi = Ei+1,i

Proposition 3.49. In this notation, we have L = ⟨xi, yi, hi|i = 1, 2, ..., n⟩ and
these generators satisfy the following relations:

1. [hi, hj ] = 0.

2. [xi, yi] = hi and [xi, yi] = 0 if i ̸= j.

3. [hi, xj ] = ⟨αj , αi⟩xj and [hi, yj ] = −⟨αj , αi⟩yj.
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4. (ad(xi))
1−⟨αj ,αi⟩(xj) = 0 for i ̸= j.

5. (ad(yi))
1−⟨αj ,αi⟩(yj) = 0 for i ̸= j.

When i ̸= j, ⟨αj , αi⟩ =
2(αj , αi)

(αi, αi)
∈ Z≤0 so these identities make sense.

Proof.

1. Holds since H is abelian.

2. By definition and since [Xi, Yj ] ∈ Lαi−αj
= L0 but αi − αj /∈ Φ when

i ̸= j.

3. Holds by definition: as [hi, xj ] = αj(hi)xj and [hi, yj ] = −αj(hi)yj .

To check that last two, it suffices to check (S+
ij) by symmetry. We assume i ̸= j.

Then αj − αi is not a root, so the αi-root string through αj the form

αj , αj + αi, αj + 2αi, ..., αj + qαi

where q = −⟨αj , αi⟩ by the earlier result.

So why does this imply that (ad(xi))
1−⟨αj ,αi⟩ = 0?

Just note that (ad(xi))
k maps Lαj → Lαj+kαi so if k > −⟨αj , αi⟩ then (ad(xi))

k(Laj ) =
0.

Remark 3.50. When rank(Φ) = 1 so that L ∼= sl2(F), then the relations (S
+/−
ij )

are vacuous since we have too few indices to have i ̸= j, and the first three
relations reduce to the usual relations [x, y] = h and [h, x] = −2x and [h, y] = 2y.

Key point about these relations: they only involve constants depending on the
root system Φ.

Theorem 3.51 (Serre’s Theorem). Suppose Φ is any root system with simple
system ∆ = {α1, αn}. Let L be the Lie algebra generated by the 3n elements
{xi, yi, hi|i = 1, 2, ..., n} subject to the just the first 5 relations from the previous
property. Then L is a finite-dimensional semisimple Lie algebra with Cartan
subalgebra H := F − span{h1, ..., hn} and with corresponding root system Φ
(viewing Φ ⊆ H∗ by setting αi(hj) = ⟨αi, αj⟩ and extending by linearity).

We will skip the proof out of time constraints.

Remark 3.52. If you do this construction but leave out (S+
ij) and (S−

ij ) then
the resulting Lie algebra is usually infinite-dimensional, but the proof of Serre’s
theorem proceeds by first studying this object.

Corollary 3.53. For each root system Φ there is a semisimple Lie algebra with
Φ as its root system (relative to some Cartan subalgebra). Moreover, if we have
isomorphic root systems Φ

∼→ Φ′ and with a simple system ∆ ⊆ Φ whose image
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in Φ′ is ∆′, then the obvious bijection between generating sets of the associated
Lie algebras extends to an isomorphism of Lie algebras.

Proof. The described map on generators extends to a Lie algebra homomor-
phism because the images of the generators of one Lie algebra satisfy the same
defining relations in the other Lie algebra. (This is a general phenomena of mor-
phisms from Lie algebras constructed by generators and relations: a map from
the generating set extends uniquely to a morphism if and only if the images of
the generators still satisfy all defining relations).

You can build such a morphism in either direction, and there must be inverses
because their composition is the identity map on the generating sets.

3.13 Criteria for Semisimplicity

Recall that L is reductive if Rad(L) = Z(L).

1. Semisimple =⇒ reductive since Z(L) ⊆ Rad(L) so if Rad(L) = 0 then
Z(L) = 0 = Rad(L).

2. Abelian =⇒ reductive since if Z(L) = L then Rad(L) = L = Z(L).

Proposition 3.54. If L is reductive then [L,L] is semisimple and L = [L,L]⊕
Z(L).

Proof. Since L/Z(L) ∼= textadL is semisimple, it acts completely reducibly on
L, so L =M ⊕ Z(L) for some ideal M . But then [L,L] = [M,M ] ⊆M and we
must have equality since [L/Z(L), L/Z(L)] = L/Z(L) as this is semisimple.

Proposition 3.55. Let L ⊆ gl(V ), where V is finite-dimensional, be a nonzero
Lie algebra acting irreducibly on V . Then L is reductive with dim(Z(L)) ≤ 1
and if L ⊆ sl(V ) is not a subset of gl(V ), then L is semisimple.

Proof. Let S = Rad(L). By Lie’s theorem, S has a common eigenvector in V ,
call this v ∈ V , with s · v = λ(s)v∀s ∈ S where λ ∈ S∗. If x ∈ L then [S, x] ∈ S
so

S · (x · v) = x · (S · v) + [S, x] · v = λ(S)x · v + λ([S, x])v.

Since L acts irreducibly on V , all vectors in V are obtained by applying se-
quences of elements x ∈ L to v ∈ V and taking linear combinations. Thus in
some basis of Vj , each s ∈ S acts as a triangular matrix with λ(S) on diagonal.

Because the commutators [S,L] ⊂ S all have trace zero, λ must vanish on [S,L].
But this means that s ∈ S acts exclusively as the scalars λ(s). Therebefore
Rad(L) = S ⊆ Z(L) whence Rad(L) = Z(L) so L is reductive and dim(S) ≤ 1.
Finally if L ⊆ sl(V ) then S = 0 since sl(V ) has no scalars except zero, in which
case L is semisimple.

57



Recall the classical Lie algebras:

• Type An: sln+1(F) = (traceless matrices)

• Type Cn: sp2n(F) ∼= {x ∈ gl2n(F)|Jx+ xTJ = 0}

• Type B,D: Dn(F) ∼= {x ∈ gln(F)|x+ xT = 0}

Proposition 3.56. Each classical Lie algebra is semisimple and in fact simple.

Proof. gl(V ) = sl(V )+ (scalar matrices) and gl(V ) acts irreducibly on V , so
sl(V ) also acts irreducibly. Then sln(F) ∼= sln(V) for V = Fn is semisimple.

We observed that sp2n(F) ⊆ sl2n(F) and Dn(F) ⊆ sln(F) so we just need to show
that these Lie algebras act irreducibly on F2n or Fn. This is straight forward
from explicit constructions: just want to find a way to express any x ∈ gln(F)
as a linear combination of elements in your classical algebra and scalars. In this
way, deduce that each algebra is semisimple. Simplicity follows by computing
the root systems and their Dynkin diagrams.

3.14 Representation Theory of Semisimple Lie Algebras

Assumptions:

• L is a semisimple Lie algebra over a field F.

• F is algebraically closed with characteristic zero.

• H ⊆ L is a fixed Cartan subalgebra.

• Φ ⊆ H∗ is the corresponding root system.

• ∆ ⊆ Φ is a simple system with elements α1, ..., αn.

• W := ⟨rα|α ∈ Φ⟩ is a Weyl group of Φ.

Our goal is to understand the finite-dimensional L-modules, in particular those
which are irreducible.

Suppose V is a finite-dimensional L-module. Then H acts on V as commuting
diagonalizable operators, so V can be decomposed into simultaneous eigenspaces
for H.

Specifically, we can write V =
⊕

λ∈H∗ Vλ where Vλ := {v ∈ V |h ·v = λ(h)v∀h ∈
H}. If Vλ ̸= 0 (which can only happen for finitely-many λ ∈ H∗) then we call
Vλ a weight space and λ a weight.

Example 3.57. If V = L,L acting by the adjoint representation, then the
weight spaces are just the root spaces Lα (along with H) and the weights are the
roots α ∈ Φ (along with 0).
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Example 3.58. If L = sl2(F) = ⟨x =

ï
0 1
0 0

ò
, y =

ï
0 0
1 0

ò
, h =

ï
1 0
0 −1

ò
⟩ and

V is irreducible, then V looks like

V = V−m ⊕ V−m+2 ⊕ ...⊕ Vm

for some integer m ≥ 0. Each Vi is a weight space for the weight λ : h 7→ i.
Everything is easy because H = F-span{h}.

Some pathologies: if dim(V ) = ∞ then the sum of the weight spaces Vλ ⊆ V
may be a proper subspace, though this sum of subspaces is always direct.

However:

Lemma 3.59. Let V be an arbitrary L-module. Then:

1. Lα maps Vλ into Vλ+α∀λ ∈ H∗ and α ∈ Φ.

2. U :=
∑

λ∈H∗ Vλ is equal to
⊕

λ∈H∗ Vλ and is an L-submodule of V .

3. If dim(V ) <∞ then U = V .

Proof. We’ll just prove the first part. Note for x ∈ Lα, v ∈ Vλ, h ∈ H that
h · x · v = x · h · v + [h, x] · v = (λ(h) + α(h))x · v so Lα sends Vλ to Vλ+a.

3.15 Standard Cyclic Modules

Definition 3.60. A maximal vector of weight λ ∈ H∗ in an L-module V is
a nonzero vector v+ ∈ V with xv+ = 0∀α ∈ ∆, x ∈ Lα.

Remark 3.61. This depends implicitly on choice of simple roots ∆. If dim(V ) =
∞ then it could happen that there are no such vectors.

But if dim(V ) <∞ then the Borel subalgebra B = H⊕
⊕

α∈Φ+ Lα is solvable
and so has a common eigenvector in V (by Lie’s theorem) and this eigenvector
provides a maximal vector (because it is killed by all Lα for α ∈ Φ+).

So the idea is to first study L-modules generated by a maximal vector.

Note that any L-module structure on V corresponds to a map L → gl(V )
which his an algebra, and so extends uniquely to an associative algebra module
structure on V related to U(L).

Definition 3.62. If V = U(L) · v+ for a maximal vector v+ of weight λ, then
we say V is a standard cyclic of weight λ, and we call v+ the highest weight
vector of V .

Fix xα ∈ Lα, yα ∈ L−α with [xα, yα] = hα for each α ∈ Φ+. Write λ > µ for
λ, µ is a sum of positive roots.
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Theorem 3.63 (Structure Theorem for Standard Cyclic Modules). Let V be
a standard cyclic L-module with highest weight vector v+ ∈ Vλ. Write Φ+ =
{β1, ..., βm} and yi := yβi

. Then:

1. V is spanned by the vectors yi1 ...yikv
+ as (i1, ..., ik) ranges over all weakly

increasing sequences 1 ≤ i1 ≤ ... ≤ ik ≤ m. Also V is the direct sum of
its weight spaces.

2. All weights µ for V have the form

µ = λ−
n∑

i=1

kiαi

where ki ∈ Z≥0 and therefore µ < λ.

1. For each µ ∈ H∗,dim(Vµ) <∞ and dim(Vλ) = 1.

2. Each submodule of V is a direct sum of weight spaces.

3. V is an indecomposable L-module with a unique maximal proper submodule
whose quotient is irreducible.

4. Every nonzero homomorphic image of V is also standard cyclic of weight
λ.

Proof. Let N− =
⊕

α∈Φ− Lα and B = H ⊕
⊕

α∈Φ+ Lα so L = N− ⊕ B. PBW
theorem implies that U(L)v+ = U(N−)U(B)v+ = U(N−)Fv+ since v+ is a
common eigenvectof rof B. Part 1 follows from the PBW theorem for N−.

Our lemma above implies that yi1 ...yikv
+ has weight µ = λ− βi1 − ...− βik(⋆)

so part 2 also follows. There are only finitely many vectors in part 1 that can
give rise a given weight µ via (⋆) so dim(Vµ) < ∞, and the only such weight
vector of weight λ is v+ so dim(Vλ) = 1.

For part 4, let W be a submodule of V and write w ∈ W as a sum of vectors
vi ∈ Vµi

for distinct weights µi. We want to show that each vi is in W . Suppose
otherwise and choose w = v1 + ...+ vn with n minimal where none of v1, ..., vn
are in W . (Then n > 1). Find h ∈ H with µ1(h) ̸= µ2(h). Then h · w =∑

i µi(h)vi ∈W so (h− µ1(h))w ∈W but (h− µ1(h))w has the form (µ2(h)−
µ1(h))v2 + ... + (µn(h) − µ1(h))vn ̸= 0 contradicting minimality of n. Thence
each vi ∈W and part 4 holds.

We conclude from parts 3 and 4 that each proper submodule of V is in the
sum of weight spaces other than Vλ, so the sum W of all proper submodules is
proper, so the quotient V/W must be irreducible. This proves part 5, and part
6 holds by definition.

Corollary 3.64. If V is as in the theorem and V is irreducible then v+ is the
unique maximal weight vector up to rescaling.
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Proof. If there were another such vector of weight λ′ then the theorem implies
that λ < λ′ and λ′ < λ so λ = λ′.

4 Module Theory and Character Formulas in
Lie Algebras

4.1 Finite-Dimensional Modules, Multiplicity Formulas,
Formal Characters

4.2 More About Standard Cyclic Modules

Theorem 4.1. If V and W are irreducible standard cyclic L-modules with same
highest weight λ ∈ H∗, then V ≡W .

Theorem 4.2. If λ ∈ H∗ then there exists an irreducible standard L-module
V (λ) of highest weight λ.

Proof. Let X = V ⊕W := {v + w|v ∈ V,w ∈ W}. This is an L-module and if
v+ ∈ V and w+ ∈ W are highest weight vectors then x+ := v+ + w+ ∈ X is a
maximal vector also of weight λ.

Let Y be the submodule of X generated by x+. This is standard cyclic by
definition. But v ≡ Y/Ker(π1) and W ∼= Y/Ker(ϕ2) where π1 : Y → V and
π2 : Y →W are the obvious surjective homomorphisms. This means V and W
are both isomorphic to the unique irreducible quotient of Y .

To prove the second theorem we must explain how to construct standard cyclic
modules.

Begin with a 1-dimensional vector space Dλ = F−span{v+} spanned by some
vector v+. Let λ ∈ H∗ and B = B(∆) := H ⊕

⊕
α∈Φ+ Lα ⊂ L.

The Borel subalgebra B acts on Dλ linearly by h ·v+ := λ(h)v+ and xv+ := 0
for h ∈ H,α ∈ Φ+, x ∈ Lα.

This makes Dλ into a module for B and for U(B).

Definition 4.3. Let Z(λ) := U(L)⊗U(B)Dλ. This is a general construction of
a U(L)-module: U(L) +Dλ. Concretely, Z(λ) is a vector space spanned by the
tensors x⊗ y (x ∈ U(L), y ∈ Dλ) subject to relations

(x+ x′)⊗ y = x⊗ y + x′ ⊗ y

x⊗ (y + y′) = x⊗ y + x⊗ y′

c(x⊗ y) = (cx)⊗ y = x⊗ (cy)

xb⊗ y = x⊗ by

61



for x ∈ U(L), b ∈ U(L), y ∈ Dλ.

THe way L acts on Z(L) is a A · (x⊗ x) := (Ax)⊗ y.

Proposition 4.4. Z(λ) is a standard cyclic L-module of weight λ.

Proof. Every y ∈ Dλ is a scalar multiple of v+ so every tensor x⊗ y ∈ Z(λ) is

equal to
∼
x ·(1 ⊗ v+) where

∼
x∈ U(L) is a vector multiple of x. For x ∈ Lα for

α ∈ ∆ we have x · (1⊗v+) = x⊗v+ = 1⊗xv+ = 1⊗0 = 0. Also for h ∈ H ⊂ B
we have h · (1⊗ v+) = h⊗ v+ = 1⊗ hv+ = 1⊗ λ(h)v+ = λ(h)(1⊗ v+).

Let N− =
⊕

α∈−Φ− Lα. The relation xb ⊗ v+ = x ⊗ bv+]forallb ∈ B, since
b = N− ⊕ B, implies that if Φ+ = {β1, β2, ...} and {xi = xβi

spans Lβi
}, {yi =

yβi
spans L−βi

} then

{yi1yi2 ...yik ⊗ v+|k ≥ 0 and i1 ≤ ... ≤ ik}

is a basis for Z(λ), via the PBW theorem.

Proposition 4.5. Z(λ) ∼= U(L)/I(λ) as U(L)-modules, where I(λ) is the left
ideal generated in U(L) by the elements

{x1, x2, ...} ∪ {hα − λ(hα) · 1|α ∈ Φ}.

Proof. These generators annihilate 1 ⊗ v+ so there is a surjective morphism
U(L)/I(λ) → Z(λ) which is injective using PBW theorem.

Theorem 4.6. Define V (λ) for λ ∈ H∗ to be the unique irreducible quotient of
the standard cyclic module Z(λ). Then V (λ) is standard cyclic of weight λ and
irreducible.

Remark 4.7. V (λ) might still be infinite-dimensional.

Proof. Since Z(λ) is standard cyclic, and since V (λ) as a quotient is a homo-
morphic image of Z(λ), everythnig follows from structure theorem for standard
cyclic modules.

In some sense, the hardest part of the theorem is showing Z(λ) ̸= 0 (but we will
not discuss this issue in detail, follows from PBW theorem).
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4.3 Two New Goals

Two new goals:

1. Explain when V (λ) is finite-dimensional.

2. Determine weight spaces V (λ)µ ⊆ V (λ).

Proposition 4.8. If V is any irreducible L-module with dim(V ) < ∞ then
V ∼= V (λ) for some λ ∈ H∗.

Proof. If dim(V ) < ∞ then Lie’s theorem applied to B-action on V implies
existence of a maximal vector of some weight λ. This vector must generate V
by irreducibility, so V ∼= V (λ) by the first theorem.

For each simple root αi ∈ ∆ let Si = Sαi
= L−αi

⊕ Fhαi
⊕ Lαi

∼= sl2(F). Then
V (λ) is a module for Si and a maximal vector for L is also maximal for Si.

Theorem 4.9. If V ∼= V (λ) and dim(V ) < ∞ then λ(hαi
) ∈ Z≥0∀αi ∈ ∆ and

if µ ∈ H+ is any weight for V then µ(hαi) ∈ Z∀αi ∈ ∆.

Proof. Follows from sl2-representation theory, as V decomposes as sum of finite
dimensional irreducible Si-modules.

Definition 4.10. Call λ ∈ H∗

• dominant if λ(hα) > 0∀α ∈ ∆ (equivalently ∀α ∈ Φ+)

• integral if λ(hα) ∈ Z∀α ∈ ∆ (equivalently ∀α ∈ Φ).

Then λ ∈ H∗ is dominant integral if λ(hα) ∈ Z≥0∀α ∈ ∆.

Let Λ be an abelian group of integral weights and Λ+ the subset of dominant
integral weights. Note that Φ ⊂ Λ. For an L-module V let Π(v) ⊆ H∗ be its
set of weights and define Π(λ) = Π(v(λ)). If dim(V ) <∞ then Π(λ) ⊂ Λ.

Now, let’s look at the main theorem.

Theorem 4.11. Suppose λ ∈ Λ+. Then V (λ) has finite dimension and the
Weyl groupW ⊆ GL(H+) permutes Π(λ) with dim(V (λ)µ) = dim(V (λ)σµ)∀σ ∈
W .

Corollary 4.12. The map λ 7→ V (λ) is a bijection from Λ+ to isomorphism
classes of irreducible finite dimensional L-modules.

Proof. Combine the main theorem with the last two theorems and propositions.
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4.4 Proof of Main Theorem

Now let’s prove the main theorem.

Proof. Some identities in U(L): writing xi = xαi
, yi = yαi

, hi = hαi
for αi ∈ ∆:

1. [xj , y
k+1
i ] = 0 when i ̸= j, k ≥ 0.

2. [hj , y
k+1
i ] = −(k + 1)αi(hj)y

k+1
i (k ≥ 0)

3. [xi, y
k+1
i ] = −(k + 1)yki (k − hi) (k ≥ 0)

Straightforward algebra by induction on k ≥ 0.

Now we derive a series of claims:

Claim 1: ymi+1
i v+ = 0 where mi = λ(hi) ∈ Z≥−, and v+ ∈ V = V (λ) is a

highest weight vector.

Proof. Otherwise we can use parts (1-3) to show that ymi+1
i v+ is a second

maximal vector of weight ̸= λ which is impossible.

Claim 2: v contains a nonzero finite dimensional Si = Sαi
∼= sl2(F)-module.

Proof. Consider subspace spanned by v+, yiv
+, y2i v

+, ... This is finite-dimensional
by claim 1.

Claim 3: V is a sum of finite-dimensional Si-modules.

Proof. Let V ′ be the sum of all Si-submodules of finite dimension in V . Then
V ′ ̸= 0 by claim 2. Check that V ′ is an L-module, hence V ′ = V since V is
irreducible.

Claim 4: If ϕ : L → gl(V ) is a representation corresponding to an L-module
structure on V then ϕ(xi) and ϕ(yi) are both locally nilpotent (meaning
nilpotent when restricted to a finite-dimensional subspace).

Proof. Each v ∈ V is a finite sum of finite dimensional Si-modules, on which
ϕ(xi), ϕ(yi) act as nilpotent operators, by sl2-representation theory.

Claim 5: Define σi := exp(xi)exp(−yi)exp(xi). This is an automorphism of V
(as a vector space).

Proof. Just need to check that σi is well-defined, but this follows from previous
claim.

Claim 6: if µ is a weight of V then σi(Vµ) = Vν for ν := rαi
(µ) with rα ∈ W

the usual reflection.

Proof. Follows from sl2-representation theory since Vµ is finite-dimensional Si-
submodule.

Claim 7: If µ ∈ Π(V ) = Π(λ) and w ∈W then w(µ) ∈ Π(λ) and dim(Vw(µ)) =
dim(Vµ).
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Proof. Immediate from claim 6 as W = ⟨rαi |αi ∈ ∆⟩.

Claim 8: Π(λ) is finite.

Proof. Π(λ) is a subset of the set of W -conjugates of all dominant integral
µ ∈ H∗ with µ < λ by previous claim and structure theorem of standard cyclic
modules. Results in chapter 13 of textbook imply this set is finite.

Claim 9: dim(V ) < ∞ since Π(V ) = Π(λ) is finite and each µ ∈ Π(λ) has
dim(Vµ) <∞.

4.5 Multiplicity Formula

Fix λ ∈ Λ+. Then V (λ) is finite dimensional and irreducible. For µ ∈ H∗ let
mλ(µ) := dim(V (λ)µ) ∈ Z≥0.

This is zero if µ /∈ Π(λ). The mλ(µ) the multiplicity of µ in V (λ). If µ ∈ H∗

and µ /∈ Λ then µ /∈ Π(λ) so mλ(µ) = 0.

Theorem 4.13 (Freudenthal’s Formula). If µ ∈ Λ and σ =
1

2

∑
α∈Φ+ α then

((λ+ δ, λ+ δ)− (λ+ σ, λ+ σ))mλ(µ) = 2
∑

α∈Φ+

∞∑
i=1

mλ(u+ iα)(u+ iα, α)

and this formula provides an effective algorithm to compute mλ(µ).

Remark 4.14. Key point: if λ ̸= µ then ||λ+σ||2 ̸= ||µ+σ||2, so we can divide
both sides by this number.

Minor point: mλ(λ) = 1.

4.6 Formal Characters

We want to assign each finite-dimensional L-module a vector (similar to char-
acter of a group representation) that identifies its isomorphism class.

Notation: Let Z[Λ] be the free Z-module with basis given by symbols {eλ|λ ∈ Λ}
and make this additive group into a ring by setting eλeµ = eλ+µ, where Λ ⊂ H∗

is the infinite set of integral weights, including 0 ∈ A.

Definition 4.15. If λ ∈ Λ+ then the formal character of V ∼= V (λ) is
chV = chλ :=

∑
µ∈Π(λ)mλ(µ)e

µ ∈ Z[Λ]. If V is an arbitrary finite dimensional

L-module then V has unique decomposition V ∼= V (λ1)⊕ ...⊕ V (λk) with each

λi ∈ Λ+ and we set chV =
∑k

i=1 chλi .

Example 4.16. If L = sl2(F) then chλ = eλ + eλ−α + ... + eλ−mα where

m = ⟨lambda, α⟩. Here, α =

ï
1
−1

ò
, λ =

ï
λ1
λ2

ò
,m = λ1 − λ2.
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Weyl group W acts on Z[Λ] by

w ·

Ñ∑
µ∈Λ

cµe
µ

é
=
∑
µ∈Λ

cµe
w(µ)

where cµ ∈ Z.

Corollary 4.17. chV is fixed by every w ∈W .

Proof.
mλ(µ) = mλ(w(µ))∀w ∈W.

Proposition 4.18. If f ∈ Z[Λ] is fixed by all w ∈ W then f has a unique
expansion as a finite linear combination of formal characters chλ for λ ∈ Λ+.

Proof. Write f =
∑

λ∈Λ cλe
λ with cλ ∈ Z all but finitely many cλ’s must be

zero. Find a maximal λ ∈ Λ+ with cλ ̸= 0, form g = f − cλchλ, and argue that
you may conclude by induction that g has desired expansion.

Proposition 4.19. Suppose V and W are both finite dimensional L-modules.
Then chv⊗w = chV chW .

Proof. Straightforward calculation.

4.7 Harish-Chandra’s Theorem, More Formal Characters,
Kostant’s Formula

4.8 Harish-Chandra’s Formula

Some technical proofs will just be outlined.

Let Z denote the center of the algebra U(L):

Z := {x ∈ U(L)|xy = yx∀y ∈ L}

This is a commutative subalgebra, and each of the L-module is also a U(L)-
module and, by restriction, a Z-module.

Consider the standard cyclic L-module

Z(λ) = U(L)⊗U(B) Dλ

for some λ ∈ H∗, now viewed as a Z-module.
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If v+ is a maximal vector in Z(λ) and z ∈ Z, then

h · z · v+ = z · h · v+ = λ(h)z · v+∀h ∈ H

x · z · v+ = z · x · v+ = 0∀α ∈ ∆,∈ Lα

Thus z · v+ is also a maximal vector of weight λ. Therefore z · v+ is a scalar
multiple of v+.

Define χλ : Z → F to be the map with z · v+ = χλ(z)v
+∀z ∈ Z. Does not

depend on choice of v+, as all maximal vectors in Z(λ) are scalar multiples of
each other.

Proposition 4.20. χλ is an algebra homomorphism.

Proof.

χλ(z1z2)v
+ = z1z2 · v+ = z1 · (z2 · v+) = χλ(z2)z1 · v+ = χλ(z1)χ(z2)v

+.

Definition 4.21. Call χλ : Z → F the central character of λ ∈ H∗ (or of
Z(λ)).

These central character χλ may coincide for different λ’s, and Harish-Chandra’s
theorem will tell us precisely when this happens.

Proposition 4.22. If z ∈ Z and u ∈ Z(λ) is any vector then z · u = χλ(z)u.

Proof. Since v+ generates Z(λ) and z commutes with all elements of L, the
result follows.

Corollary 4.23. The action of z ∈ Z on any submodule of homomorphic image
of Z(λ) is by the scalar χλ(z).

Definition 4.24. Two elements λ, µ ∈ H∗ are linked (by w ∈ W ) if λ + σ =

w · (µ+ S) where σ :=
1

2

∑
α∈Φ+ α.

In this situation we write µ ∼ λ. Given α ∈ Φ+ choose 0 ̸= xα ∈ Lα. Then there
exists a unique yαinL−α such that if ha := [xα, yα] then ⟨xα, yα, hα⟩ ∼= sl2(F)

via xα 7→
ï
0 1
0 0

ò
, yα 7→

ï
0 0
1 0

ò
, hα 7→

ï
1 0
0 −1

ò
.

Proposition 4.25. Let λ ∈ Λ, α ∈ ∆,m = ⟨λ, α⟩ ∈ Z. If m ≥ 0 then
ym+1
α ⊗U(B) v

+ ∈ Z(λ) is a maximal vector of weight λ − (m + 1)α. Here,
v+ ∈ Dλ so 1⊗U(B) v

+ generates Z(λ).

Proof. Formulas last time tell us that:
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• For α ̸= β in ∆: [xβ , y
m+1
α ] = 0 =⇒ xβ · ym+1

α ⊗ v+ = ym+1
α ⊗ xβv

+ = 0.

• For any α, β ∈ ∆: [hβ , y
m+1
α ] = −(m + 1)α(hβ)y

m+1
α = λ(hβ) =⇒

hβ · ym+1
α ⊗ v+ = −(m + 1)α(hβ)y

m+1
α ⊗ v+ + ym+1

α ⊗ hβv
+ = (λ −

(m+ 1)α)(hβ)y
m+1
α ⊗ v+.

Corollary 4.26. If λ ∈ Λ, α ∈ ∆, µ = rα · (λ + σ) − σ where rα ∈ W,x 7→
x− ⟨x, α⟩α then χλ = χµ.

Proof. rα sends α 7→ −α and permutes Φ+\{α}, so rασ − σ = −α and µ =
rαλ− α = λ− (⟨λ, α⟩+ 1)α. We always have ⟨λ, α⟩ ∈ Z.

If ⟨λ, α⟩ ∈ Z≥0 then previous proposition shows that Z(λ) has maximal vector
of weight µ.

As z ∈ Z acts on this vector by the scalar χµ(z) and also χλ(z), we must hvae
χλ = χµ.

If ⟨λ, α⟩ < 0 then ⟨µ, α⟩ = ⟨λ, α⟩ − 2(⟨λ, α⟩+ 1) = −⟨λ, α⟩ − 2 is ≥ 0 so we can
apply proposition with µ in place of λ to deduce the same conclusion.

Because W = ⟨rα|α ∈ ∆⟩ we can conclude:

Corollary 4.27. If λ ∼ µ where λ ∈ Λ, then χλ = χµ.

Theorem 4.28 (Harish-Chandra’s Theorem). Let λ, µ ∈ H∗. Then χλ = χµ if
and only if λ ∼ µ.

4.9 Outline of Proof

First part: already know that λ ∼ µ =⇒ χλ = χµ when λ ∈ Λ. We want to
extend this to a statement allowing any λ ∈ H∗.

Construct PBW bases of U(L) and U(H) from the basis {hα|α ∈ ∆}⊔{xα, yα|α ∈
Φ+} for L, under any order putting all yα’s first, then the hα’s, then the xα’s.

Then we can define a linear map ζ : U(L) → U(H) sending each PBW basis
elements in U(A) to itself, every other PBW basis elements to 0.

Since Πα∈Φ+yiαα Πα∈∆h
kα
α Πα∈Φ+xjαα will either kill v+ ∈ Z(λ) if any jα > 0, or

sent v+ to lower weight space if all jα = 0 and any iα > 0. It follows that
χλ(z) = λ(ζ(z))∀z ∈ Z.

Now define another Lie algebra homomorphism η : H → U(H) with η(hα) =
hα − 1∀α ∈ ∆. This extends to an algebra automorphism η : U(H) → U(H).
Define

ψ : Z ζ→ U(H)
η→ U(H)
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so ψ = η ◦ ζ.

We can write σ =
∑

α∈∆ λα as a sum over fundamental weights λα which have

λα(hβ) =

®
1 if α = β,

0 if α ̸= β.
for α, β ∈ ∆. Then we have

(λ+ δ)(hα − 1) = (λ+ σ)(hα)− (λ+ σ)(1) = λ(hα)

so (λ + σ)(ψ(z)) = λ(ζ(z))∀z ∈ Z, γ ∈ H∗ =⇒ (λ + σ)(ψ(z)) = χλ(z)∀z ∈
Z, λ ∈ H∗.

Now check that ψ(z) isW -invariant (using the easy case of theorem and proper-
ties ofW -orbits in Λ) and use this to conclude that if λ ∼ µ then (λ+σ)(ψ(z)) =
(µ+ σ)(ψ(z)) and hence that χλ = χµ (for any λ, µ ∈ H∗).

The other half of the theorem remains: if χλ = χµ, then we need toshow that
λ ∼ µ. This requires a more involved argument, see section 23.3 of textbook.

4.10 Applications of Harish-Chandra Theorem

We want to introduce formal characters for Z(λ) and similar modules. Let
X be the vector space of all formal Z-linear combinations

∑
λ∈H∗

cλe
λ

(cλ ∈ Z, eλ is a symbol)

which are finitely supported in the sense that there are finitely many λ1, ..., λk ∈
H∗ such that cλ ̸= 0 =⇒ λ ≤ λi for some i. Then the formal character
chZ(λ) :=

∑
µ∈H∗ dim(Z(λ))µe

µ belongs to X , where λ ≤ µ means µ − λ ∈
Z≥0−span{α ∈ ∆}.

Proposition 4.29. X is closed under usual mutliplication extending ring struc-
ture on Z≱.

We now have a well-defined notion of formal character

chV :=
∑

µ∈H∗

dim(Vµe
µ) ∈ X

for any standard cuclic L-module V .

Let p(λ) for λ ∈ H∗ be the number of functions k : Φ+ → Z≥0 such that
λ+

∑
α∈Φ+ k(α)α = 0. Clearly p(λ) = 0 unless (−λ) ∈ Z≥0-span{α ∈ ∆}.

Call p the Kostant (partition) function and identify p⇐⇒
∑

λ∈H∗ p(λ)eλ ∈
X .
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Also let q =
∏

α∈Φ+(e
α
2 − e−

α
2 ) and call this the Weyl function.

Finally set fα = e0 + e−α + e−2α + ... ∈ X for α ∈ Φ+.

Lemma 4.30. 1. p =
∏

α∈Φ+ fα

2. (e0 − e−α)fα = e0.

3. q = eσ
∏

α∈Φ+(e0 − e−α) where σ =
1

2

∑
α∈Φ+ α.

Proof.

1. Holds by definition

2. Is basic algebra

3. Is clear

Lemma 4.31. For any w ∈W it holds that wq = sgn(w)q.

Proof. Suffices to show rαq = −q for any α ∈ ∆. Easy enough: rαq = rα(e
α
2 −

e−
α
2 )rα

Ä∏
β∈Φ+\{α}(e

α
2 − e−

α
2 )
ä
= −q.

Lemma 4.32.
qpe−σ = e0 = 1

Proof.

qpe−σ =
∏

α∈Φ+

(e0 − e−α) · eσ · p · e−σ

=
∏

α∈Φ+

(e0 − α−α)pp

=
∏

α∈Φ+

((e0 − e−α)fα)

=
∏

α∈Φ+

e0

= e0

= 1

Lemma 4.33.
chZ(λ) =

∑
µ∈H∗

p(µ− λ)eµ = eλp

Proof. Straightforward from properties of Z(λ).
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Lemma 4.34.
qchZ(λ) = eλ+σ

Proof. qpe−σ = e0 = 1 and chZ(λ) = eλp so qchZ(λ) = eλ+σqpe−σ = eλ+σ.

Want to express chλ = chV (λ) are linear combination of chZ(µ)’s.

Define Mλ (for λ ∈ H∗) to be the family of L-modules V such that

1. V is direct sum of its weight spaces.

2. Z-action on V is by scalar χλ(z).

3. chV ∈ X .

Mλ is closed under taking submodules homomorphic images, direct sums, con-
tains each standard cyclic module.

Corollary 4.35. Mλ =Mµ if and only if λ ∼ µ.

Lemma 4.36. Suppose 0 ̸= V ∈Mλ. Then V has a maximal vector.

Proof. Since chV ∈ X , for each weight µ of V , and each α ∈ Φ+ there is a
maximal k ∈ Z≥0 with µ + kα still a weight. So we can find a weight µ for V
such that µ + α is not a weight ∀α ∈ Φ+, and then any nonzero vector in the
corresponding weight space is maximal.

For λ ∈ H∗ let θ(λ) = {µ ∈ H∗|µ < λ and µ ∼ λ}.

Proposition 4.37. Let λ ∈ H∗.

1. Z(λ) has a composition.

2. Each composition factor of Z(λ) is ∼= V (µ) for some µ ∈ θ(λ).

3. V (λ) occurs as exactly one composition factor.

Proof.

1. Nothing to prove if Z(λ) is irreducible (then Z(λ) = V (λ)). Otherwise
Z(λ) has a proper nonzero submodule V ∈Mλ. Since dim(Z(λ)λ) = 1, λ
is not a weight of V . So by lemma, V has maximal vector, of some weight
µ > λ. V contains homomorphic image W of Z(µ), so χλ = χµ =⇒ λ ∼
µ =⇒ µ ∈ θ(λ). Continue inductively, repeating same argument applied
to W and Z(λ)/W .

2. Each composite factor is inMλ so has a maximal vector and is irreducible,
so must be standard cyclic, have ∼= V (µ) for some µ ∈ θ(λ).

3. Clear since dim(Z(λ)λ) = 1.
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Corollary 4.38. Let λ ∈ H∗. Then chV (λ) =
∑

µ∈θ(λ)={v∈H∗|v≤λ,v∼λ} cµchZ(µ)
for some coefficients cµ ∈ Z with cλ = 1.

Proof. Proposition says we can write chZ(λ) = chV (λ)+
∑

µ∈θ(λ) dµchV (µ) where

dµ ∈ Z≥0. Thus chV (λ) = chZ(λ) −
∑

µ∈θ(λ) dµchV (µ) and expanding the RHS
recursively gives desired formula.

Theorem 4.39 (Kostant’s Formula). Let λ ∈ Λ+ then

mλ(µ) =
∑
w∈W

sgn(w)p(µ+ σ − w(λ+ σ)).

Proof. chλ =
∑

µ∈θ(λ) cµchZ(µ) with cλ = 1. Earlier lemmas tell us that qchλ =∑
µ∈θ(λ) cµe

µ+σ and w(qchλ) = w(q)w(chλ) = sgn(w)qchλ∀w ∈ W . But also

w
Ä∑

µ∈θ(λ) cµe
µ+σ
ä
=
∑

µ∈θ(µ) cµe
w(µ+σ) since w ∈ W . Permutes θ(λ) while

cλ = 1, deduce that cµ = sgn(w) if w−1(µ+ σ) = λ+ σ.

So

qchλ =
∑
w∈W

sgn(w)ew(λ+σ).

By one of the earlier lemmas,

chλ = qpe−σchλ

= pe−σ

(∑
w∈W

sgn(w)ew(λ+σ)

)
= p

∑
w∈W

sgn(w)ew(λ+σ)−λ

=
∑
w∈W

sgn(w)pew(λ+σ)−σ.

Corollary 4.40.

q =
∑
w∈W

sgn(w)ewσ

Proof. Take λ = 0 for

qchλ =
∑
w∈W

sgn(w)ew(λ+σ).
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Next time, we’ll look at the Weyl character formula and Chevalley groups.

4.11 Weyl Character Formula, Chevalley Bases

4.12 Weyl Character Formula

Setup throughout: L is a finite-dimensional semisimple Lie algebra, defined over
an algebraically closed field F with char(F) = 0, choose a Cartan subalgebra
H ⊂ L, write Φ ⊂ H∗ for corresponding root system, choose a set of simple
roots ∆, positive roots ϕ+, write

W = ⟨rα|α ∈ Φ⟩ ⊂ GL(H∗)

for Weyl group.

Last time: Let Z be the center of the universal enveloping algebra L. For each
λ ∈ H∗ we have a standard cyclic L-module Z(λ) := U(L)⊗U(B) Dλ.

Proposition 4.41. There exists a unique algebra homomorphism χλ : Z → F
(called the central character) with a · u = χλ(a)u∀a ∈ Z, u ∈ Z(λ).

Harish-Chandra’s theorem gives necessary and sufficient condition to have χλ =
χµ for λ, µ ∈ H∗. Namely: say that λ, µ ∈ H∗ are linked (and write λ ∼ µ) if

λ+ δ and µ+ δ are in the same W -orbit where δ =
1

2

∑
α∈Φ+ α.

Theorem 4.42. For λ, µ ∈ H∗ we have χλ = χµ if and only if λ ∼ µ.

Define the formal character of any (standard cyclic) L-module V to be the for-
mal expression chV =

∑
µ∈H∗ dim(Vµ)e

µ. Here, Vµ = {v ∈ V |h · v = µ(h)v∀h ∈
H}, and eµ is just a formal symbol.

The reason for this notation is that we want to enable adding and multiply-
ing characters like formal power series (or polynomials) under convention that
eλeµ = eλ+µ.

For this kind of multiplication to be well the set of nonzero coefficients cµ ̸= 0
in a character

∑
µ∈H∗ cµe

µ must be finitely supported in some sense.

Relevant property: If V is standard cyclic then chV ∈ X where X is the set
of expressions

∑
µ∈H∗ cµe

µ for which there are finitely many λ1, ..., λk ∈ H∗

such that cµ ̸= 0 =⇒ µ < λi for some index i, where µ < λ means λ − µ ∈
Z≥0−span{α ∈ ∆}.

Recall that V (λ) is unique irreducible quotient of Z(λ). Now, given λ, µ ∈ H∗

define

mλ(µ) = dim(V (λ)µ) = (dim of µ weight space in V (λ))
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so that χV (λ) := chλ =
∑

µ∈H∗ mλ(µ)e
µ.

Let sgn :W → {±1} be the unique group homomorphism with sgn(rα) = −1.

Let

p(λ) = number of ways of writing − λ as a sum of positive roots)

= (number of functions k : ϕ+ → Z≥0 such that λ+
∑

α∈Φ+

κ(α)α = 0)

Explicit formula but still less efficient than recursive, less explicit algorithms for
computation.

In the proof of Kostant’s formula, we encountered two identities: Let q :=∏
α∈Φ+(e

α
2 − e−

α
2 ) = eδ

∏
α∈Φ+(1− e−α) ∈ X .

Then

1. qchλ =
∑

w∈W sgn(w)ew(λ+δ)

2. q =
∑

w∈W sgn(w)ewδ

Substituting (2) into (1) gives the Weyl character formula.

Theorem 4.43 (Weyl Character Formula). If λ ∈ Λ+ then

(∑
w∈W

sgn(w)ewδ

)
chλ =

∑
w∈W

sgn(w)ew(λ+δ)

Thus can compute chλ by doing ”long division” in ring X , but this is somewhat
complicated in practice if |∆| is large.

4.13 An Application

We can use this to find an explicit formula for deg(λ) := dim(V (λ)) =
∑

µ∈H∗ mλ(µ)

only defined for λ ∈ Λ+.

Let X0 ⊂ X be Z-span{eλ|λ ∈ H∗} (so formal characters with finite number of
nonzero coefficients cµ). Then we can define eval : X0 → F,

∑
µ cµe

µ 7→
∑

µ cµ.
Then deg(λ) = eval(chλ). Also eval : X0 → F is a ring homomorphism so
eval(ch1, ch2) = eval(ch1)eval(ch2).

For α ∈ Φ let Dα : X0 → X0 be the linear map with Dαe
λ = (λ, α)eλ. This is a

derivation Dα(fg) = fDα(g) + gDα(f) since

Dα(e
λeµ) = Dα(e

λ+µ) = (λ+ µ, α)eλ+µ = Dα(e
λ)eµ + eλDα(e

µ).
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LetD =
∏

α∈Φ+ Dα : X0 → X0 (no longer a derivation). LetQ =
∑

w∈W sgn(w)ewδ

and P =
∑

w∈W sgn(w)ew(δ+λ), so the Weyl character formula is just Q · chλ =
P .

We want to apply eval ◦ D to both sides of this since each Dα is derivation,
Q = e−δ

∏
α∈Φ+(eα − 1), and eval(eα − 1) = 0, one can show that this gives

eval(D(Q))eval(chλ) = eval(D(P )).

This implies that deg(λ) =
eval(D(P ))

eval(D(Q))
. Now observe that eval(D(eδ)) =

eval
(∏

α∈Φ+(δ, α) · eδ
)
=
∏

α∈Φ+(δ, α). Similarly,

eval(D(ewδ)) =
∏

α∈Φ+

(wδ, α) =
∏

α∈Φ+

(δ, w−1α) = (−1)ℓ(w)
∏

α∈Φ+

(δ, α) = sgn(w)
∏

α∈Φ+

(δ, α).

Thus eval(D(Q)) =
∑

w∈W sgn(w)eval(D(ewδ)) =
∑

w∈W sgn(w)2
∏

α∈Φ+(δ, α) =
|W | ·

∏
α∈Φ+(δ, α).

Similarly, we derive eval(D(P )) =
∑

w∈W sgn(w)eval(D(ew(λ+δ))) = |W |·
∏

α∈Φ+(δ+

λ, α). Thus, as deg(λ) =
eval(D(P ))

eval(D(Q))
.

Corollary 4.44 (Weyl Dimension Formula). If λ ∈ Λ+ then

deg(λ) := dim(V (λ)) =
∏

α∈Φ+

(δ + λ, α)

(δ, α)
=
∏

α∈Φ+

⟨δ + λ, α⟩
⟨δ, α⟩

where δ =
1

2

∑
α∈Φ+ α and ⟨β, α⟩ = 2(β, α)

(α, α)
.

Example 4.45. Consider type A2. Let λ1, λ2 ∈ R2 be such that

⟨λi, αj⟩ =
®
1 if i = j,

0 if i ̸= j.

which implies ⟨δ, α1⟩ = ⟨δ, α2⟩ = 1, ⟨δ, α1 + α2⟩ = 2 =⇒
∏

α∈Φ+⟨δ, α⟩ = 2.

Every weight λ ∈ Λ+ can be written uniquely as λ = m1λ1 +m2λ2. As ⟨λ +
δ, α1⟩ = m1 +1, ⟨λ+ δ, α2⟩ = m2 +1, ⟨λ+ δ, α1 +α2⟩ = m1 +m2 +2 we end up

with deg(λ) =
1

2
(m1 + 1)(m2 + 1)(m1 +m2 + 2).
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4.14 Chevalley Algebras and Groups

Keep same notation for L,H,Φ,∆,Φ+,W,F, etc.

Idea: there is a basis for L whose structure constants are all integers, so we can
realize L as a Lie algebra generated by matrices over Z. By extending scalars,
one can construct L and its representations over arbitrary fields (rather than
just the nic field F).

Recall that L = H ⊕
⊕

α∈Φ Lα where

Lα := {X ∈ L|[h,X] = α(h)X∀h ∈ H}.

Key properties:

1. dim(Lα) = 1

2. dim(H) = |∆|

3. [Lα, L−α] is a 1-dimensional subspace of H spanned by a certain element
hα.

To be explicit: writing κ(X,Y ) = tr(ad(X)ad(Y )), we can define tα =
1

κ(X,Y )
[X,Y ]

for any nonzero X ∈ Lα, Y ∈ L−α. Then tα is a unique element of H with

κ(tα, h) = α(h). Then hα =
2tα

κ(tα, tα)
.

Definition 4.46. A Chevalley basis for L is a basis

{xα ∈ Lα|α ∈ Φ} ⊔ {h1, h2, ..., hn ∈ H}

st.

1. [xα, x−α] = hα∀α ∈ Φ.

2. If α, β, α + β ∈ Φ and [xα, xβ ] = cαβxα+β for cαβ ∈ F, then cαβ =
−c−α,−β.

3. Φ has a simple system ∆ such that {h1, ..., hn} = {hα|α ∈ ∆}.

Proposition 4.47. L has a Chevalley basis, and the coefficients cαβ corre-
sponding to any such basis satisfy

c2αβ = q(r + q)
(α+ β, α+ β)

β, β

where the α-root string through β is

β − rα, β − rα + α, ..., β + qα
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Proof. Slightly technical but elementary algebraic exercise given what we know
about the root space decomposition.

Theorem 4.48. If {xα ∈ Lα|α ∈ Φ} ⊔ {h1, h2, ..., hn ∈ H} is a Chevalley basis
for L the corresponding structure constants are all integers:

1. [hi, hj ] = 0∀i, j

2. [hi, xα] = ⟨α, αi⟩xα.

3. [xα, x−α] = hα ∈ Z-span{h1, ..., hn}.

4. If α, β ∈ Φ are non-proportional then [xα, xβ ] =

®
0 if α+ β ∈ ϕ,

±(r + 1)xα+β if α+ β /∈ ϕ.
.

Proof. We have [hi, hj ] = 0 since H is abelian. We have by definition [hi, xβ ] =

α(hi)xβ =
2β(tαi

)

κ(tαi
, tαi

)
xβ = 2(β,αi)

αi,αi
x = ⟨β, αi⟩x.

We have [xα, x−α] = hα by definition of Chevalley basis. We want to show that
hα ∈ Z-span{h1, ..., hn}. For this, let α∨ = 2α

(α,α) then Φ∨{α∨|α ∈ Φ} is a root

system base ∆∨ = {α∨|α ∈ ∆}, under the Killing form identification of H with
H∗, tα ⇐⇒ α and hα ⇐⇒ α∨, and each α∨ is a Z-linear combination of ∆∨ so
each hα is a linear combination of {h1, ..., hn}.

Finally property follows from the proposition and ths lemma:

Lemma: If α, β ∈ Φ are nonproportional and the α-string through β is β −
rα, ..., β + qα then

r + 1 =
q(α+ β, α+ β)

β, β
.

Proof. Either case by case argument, considering rank two root systems, or see
uniform geometric argument in textbook.

About uniqueness: given H,Φ, etc. ⊂ L, a Chevalley basis is ”almost unique”:
once a simple system ∆ ⊂ Φ is chosen, the hi’s are determined, but there is
some flexibility in constructing the xα’s.

Fix a Chevalley basis for L. Let

L(Z) := Z− span{this Chevalley basis}
= Z− span{xα(α ∈ Φ), h1, h2, ..., hn}

This is the ”Lie algebra over Z” in the obvious sense, inheriting the Lie bracket
from L.
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For a prime finite field Fp = Z/pZ (p > 0 prime) can define L(Fp) := L(Z)⊗ZFp.
More generally, for any field extension Fp ⊆ K can define L(F) := L(Fp)⊗FpK =
L(Z)⊗Z K.

Proposition 4.49. Then L(K) is a Lie algebra over K. Call this a Chevalley
algebra.

How do tensors ⊗Z work?

You have symbols a⊗Z b but not for any k ∈ Z wehave ka⊗Z b = a⊗Z kb, plus
usual tensor formalities.

Proposition 4.50. Isomorphism class of L(K) depends only on L not on the
choice of Chevalley basis.

Example 4.51. If L = sln(F) then L(K) has the same multiplication table
relative to usual standard basis, so L(K) ∼= sln(K). Only change in this case is
that sln(K) may no longer be simple if char(K) divides n.

Proposition 4.52. Let α ∈ Φ and m ∈ Z≥0. Then
(ad(xα))

m

m!
preserves L(Z).

Proof. Straightforward calculation.

Definition 4.53. Express ad(xα) as a (nilpotent) matrix Mα relative to the

Chevalley basis. Define xα(t) = exp(tMα) =
∑

k≥0

tk

k!
Mk

α. The Chevalley

group (of adjoint type) is then

G(K) := ⟨xα(t)|α ∈ Φ, t ∈ K⟩ ⊂ GL(L(K))

Here are some key facts about Chevalley groups:

Proposition 4.54. 1. When K is finite the group G(K) is finite.

2. When K is finite and L is simple, G(K) is a finite simple group outside a
short list of exceptional cases.

3. There is a uniform way of proving that these Chevalley groups are almost
always simple, and this gives most of the families of finite simple groups.

4. As usual, isomorphism type of G(K) depends on L but not on the choice
of Chevalley basis.
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